
Trustful Cumulus Clouds
Technical Report
LPD-REPORT-2010-10

December-2010

Rachid Guerraoui Maysam Yabandeh

School of Computer and Communication Sciences,
EPFL, Switzerland

firstname.lastname@epfl.ch

Ali Shoker Jean-Paul Bahsoun

Toulouse Informatics Research Institute, I.R.I.T,
University of Toulouse

firstname.lastname@irit.fr

Abstract
Cloud computing offers an appealing business model and it
is tempting for companies to delegate their IT services to
the cloud. Yet, a company might find it risky to do so for
sensible services and to depend entirely on a single provider,
which can be vulnerable and constitute a clearly identified
target for attackers. We explore in this paper a replication
approach where copies of the same IT service are placed
on several (cumulus) clouds that are not only independent
but actuallyunaware of each other. Replica consistency is
ensured using CBFT, a new BFT protocol designed for wide
area networks. CBFT uses a primary to handle contention
among multiple client requests but shares the load of multi-
casting and encrypting them among the clients. We evaluate
CBFT on an Emulab cluster with a wide area topology and
convey its scalability with respect to state of the art BFT
protocols.

Keywords Distributed systems, fault-tolerance, cloud com-
puting, Byzantine

1. Introduction
Cloud computing is appealing for its cost effectiveness and
elasticity. In terms of reliability, the cloud might however
not be a panacea. Whenever a cloud server fails, a service
level agreement (SLA) stipulates the proportion of the paid
fee to be returned by the cloud provider. The cheap price
of cloud services, however, might imply that one could not
expect much from the SLA. Amazon EC2 SLA [1] states
for instance that only 10% of the paid bill (excluding one-
time payments made for reserved nodes) will be returned,
for longer than 5 minutes loss of external connectivity, if

[Copyright notice will appear here once ’preprint’ option is removed.]

this occurs more than 50 times in the year1. The (modest)
financial recompense does not even cover the server unavail-
ability caused by attacks, e.g., denial of service (DoS), nor
by failures in the connecting path between a client node and
the cloud. Preventing DoS attacks, for which Amazon is not
viable, is still an open problem, and reportedly very hard
to handle in practice. Recently a code hosting service ex-
perienced for instance more than 19 hours of downtime af-
ter a distributed DoS attack on the computing infrastructure
rent from Amazon [2]. Moreover, having the computation
located over a wide area network (WAN), and far from the
client, increases the unavailability risks, due, for example, to
an intermediary network device failure.

This state of affairs calls for the good, oldreplication
technique [3, 4] to obtain dependable services out of cheap,
yet unreliable, components; namely services offered by the
cloud. Assuming the independence of replica failures, a BFT
protocol involving 3f+1 replicas ensures the safe progress
of a service, as long as less thanf+1 of the replicas are
faulty [5, 6]. In the extreme case, to promote failure indepen-
dance, the replicas should however be located in geograph-
ically distributed clouds, i.e, what we callcumulus clouds.
Failures that prevent the access to one replica in a given re-
gion would have a small probability to affect replicas in other
regions. For instance, even after a DNS attack or tier-1 router
failure in a given region, the replicas in other regions should
be still reachable.

Nevertheless, a geographical distribution of replicas over
cumulus clouds raises new challenges such as high latency
and communication variance. Current state of the art BFT
protocols [6, 7, 8, 9, 10] are typically designed and op-
timized for short network delays in local area networks
(LAN); and most of them rely on multi-cast (that is not yet
supported in WANs) to enhance performance. Figure 1 de-
picts the performance of PBFT [6], Zyzzyva [7], and Q/U [9]
with 1, 10, and 50 clients in a WAN setting (60 ms delay, 1

1 99.95% annual uptime of 5 minute periods is less than∼53 times 5
minutes downtime.

1 2010/12/20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147968502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60 70

La
te

nc
y

in
 s

ec

Throughput in op/s

QU
PBFT

PBFT-b10

Figure 1. State of the art BFT protocols in a WAN setting.

Mb bandwidth)2. (We faced implementation problems with
Zyzzyva). The performance of PBFT drops very quickly
when increasing the number of clients. Although Q/U per-
forms much better than other state of the arts BFT protocols,
because of contention between client requests, the latency
quickly increases with the number of clients. In short, the
limited scalability of BFT protocols in a WAN is a major
barrier for adopting a replication approach over multiple
clouds.

Furthermore, most of these BFT protocols involve inter-
replica communication and this hampers failure indepen-
dence. An attacker inside the cloud can obtain the location of
all replicas after compromising or monitoring the traffic ona
single replica. Locating the replicas, an attacker could focus
his attacks on them. With enough resources and motivation,
an attacker can at anytime orchestrate a DoS attack against
a specific node, causing the unavailability of that node. In-
stead, anobfuscated BFT approach, where replicas are un-
aware of each other, and even if they have no idea about the
replication scheme, relies on the client to increase the inde-
pendence of replica failures.

However, replica communication is essential in any state
machine replication protocol. Replicas can interact directly
(as in traditional BFT protocols) or indirectly through a
trustful mediator. The former option is not suitable for an
obfuscation approach. On the contrary, the second option
can have the replicas communicate through a trustful and
secure mediator, i.e., the client. We do assume clients can
fail by crashing but do not behave maliciously.

We argue that this assumption makes sense for appli-
cations where cloud customers are trusted members of the
same organization; e.g., airline ticketing services that pro-
vide access to different agencies. In an airline ticketing sys-
tem, the company hosts its service on a private/public cloud.
It allows access for the ticketing agencies around the globe.
The ticketing agencies access the airline service via theirse-
cured and trusted servers, which are viewed as correct clients
by the airline service.

Figure 2 conveys the idea behind our approach: the clouds
are oblivious to the replication procedure, driven by the

2 The experiments are performed in bftsim [11].

Figure 2. Cumulus clouds.

client. An attacker hosted in one of the clouds cannot obtain
the address of other replicas by compromising the replica in-
side that cloud or by monitoring its traffic. In fact, an attacker
will not even know about the replication factor used by the
client. The failure of a replica, hence, remains independent
from the failure of other replicas, since the attacker couldnot
locate the other replicas after compromising one of them.

This paper is a first step towards putting this approach to
work. We present CBFT, a BFT protocol that offers a high
independence of failures by distributing the replicas over
cumulus clouds. CBFT scales to hundreds of clients due to
two simple design decisions.

1. To handle contention between multiple client requests,
we make use of aprimary replica. All requests are first
assigned an order by the primary before getting executed
by the replicas. The requests in all replicas are thus exe-
cuted in the same order regardless of the message arrival
reordering.

2. A high load of client requests on the primary implies a
large number of clients issuing them, which means more
potential processing units. Pushing the load of encrypting
and multi-casting a request from the replicas to the is-
suing clients, therefore, enables the system to efficiently
benefit from the client processing powers.

The load on the primary in CBFT is minimal: it receives
the request from the client and returns the reply. The client
is then responsible for encrypting and sending the request
alongside the assigned order (by the primary) to all other
replicas.

In order to enhance performance, CBFT uses speculation,
which however requires a recovery phase to handle failures.
We address this challenge using the recently proposed notion
of abortability [12]: Replicas in CBFT belong either to the
Active set or to thePassive set. The protocolspeculative
phase operates on the Active set. Upon failure detection, the
client eliminates thesuspicious replicas from theActive set,
and replaces them with correct ones from thePassive set.
The protocol then resumes progress on the updated Active
set.

2 2010/12/20

We experimented CBFT on Emulab [13]. On such sys-
tem, CBFT scales to hundreds of clients, and its peak
throughput doubles that of the state of the art Q/U proto-
col, its closest competitor.

The rest of the paper is organized as follows. The back-
ground is recalled in Section 2. Section 3 presents CBFT.
After presenting the evaluation results in Section 4, we dis-
cuss some related work in Section 5, and then we conclude
the paper in Section 6.

2. Background
BFT protocols are replication-based solutions to the prob-
lem of tolerating arbitrary failures of software and hardware
components. A BFT protocol can ensure safety and progress
up to a subset of one third of faulty replicas. Some BFT pro-
tocols requires more replicas. For example, if the application
is replicated on four separate machines, then the BFT proto-
col can tolerate at most one faulty hard disk [5].

2.1 Quorums vs. Agreement-based BFT Protocols

BFT protocols differ in the following characteristics: be-
ing agreement-based or quorum-based, the number of re-
quired phases to commit (communication rounds), response
latency, and throughput. In general, there is a trade-off be-
tween latency and throughput; to have high throughput, the
contention between two competing client requests must be
avoided by using a primary (basically in agreement based
protocols). The primary orders the client requests, and then
forwards them to the other replicas. Although this offers a
high throughput, the commit latency increases because of the
extra phase in communicating with the primary. On the con-
trary, in general, quorum based protocols like Q/U [9] need
no such primary; but they have to deal with the problem of
contending requests.

2.2 Authentication

To tolerate malicious attacks, the messages must be authen-
ticated via some cryptographic techniques, such as Public
Key Cryptography (PKC), which authenticates a single mes-
sage, and Message Authentication Code (MAC), which au-
thenticates a single channel (and its messages). PKC could
make the BFT protocols much simpler since it is verifiable
even after the message is forwarded multiple times, but it is
around 100 times slower than MAC. The throughput can be
bounded by the number of MAC operations per request per-
formed by the bottleneck replica; because the sender has to
authenticate a message for each destination. The node that
sends more messages to the other nodes, therefore, has to do
more MAC operations as well.

2.3 BFT Throughput

For large message sizes, the throughput is bounded by the
input/output bandwidth of the bottleneck replica, i.e., the
replica that sends/receives more messages per request. An

example of such a bottleneck is multi-casting the request by
the primary. The multi-cast cost can be remedied in setups
such as local area network that support hardware multi-cast.
Nevertheless the cloud vendors might be reluctant in offer-
ing the hardware multi-cast support due to its scalability is-
sues [14]. Moreover, to make the replica failures as inde-
pendent as possible, the replicas should be located in geo-
graphically separated clouds, where hardware multi-cast is
not available.

2.4 PBFT

In PBFT [6], the client sends the request to all the replicas
including the primary. The primary determines a sequence
number and forwards the order to other replicas. To detect
the faulty primary, all the replicas broadcast the received
order to ensure that all other replica has received the same
order for the request. Being ensured about the primary, all
the replicas broadcast the ordered request before executing
it. This phase is necessary to detect the interference of two
primaries, which might happen duringview change. The
client accepts the replies if they match.

2.5 Zyzzyva

In Zyzzyva [7], the client sends the request only to the pri-
mary. However, after other replicas receive the request as
well as its sequence number from the primary, they imme-
diately execute it and send the reply to the client. The client
accepts the replies if they all match. Otherwise, either the
primary or some of the replicas are faulty. In this case, the
first correct client can detect that and demand changing the
primary.

2.6 Chain

Chain [8] also uses a primary to avoid contention. All other
replicas are ordered in a chain and each one forwards the
request to its successor. The last replica in the chain, i.e.,
the tail, sends the reply back to the client. Although this
technique increases the end-to-end delay, the throughput im-
proves as the number of MAC operations by each replica is
close to one, i.e. the theoretical lower bound. The key idea
is to partition the replicas into two groups, where one group
only verifies the client requests and the other only authenti-
cates the reply. After detecting the failure, the whole proto-
col aborts and theabort history is used to initialize another
instance of BFT protocol.

2.7 Q/U

Quorum-based BFT protocols such as Q/U [9] do not use
a primary and the clients directly communicate with the
replicas. Q/U requires5f +1 replicas to toleratef Byzantine
faults. Nevertheless, clients can only contact apreferred
quorum (of size 4f+1) for optimum performance. This could
result in outdated histories in some replicas, which induce
the cost ofsynchronization phase to the protocol. In this
phase, the outdated replica requests the up-to-date history

3 2010/12/20

from f+1 other replicas (to ensure that the history is not
manipulated by some faulty replicas).

To tolerate Byzantine clients, Q/U requires the clients to
attach to the request a hash of the latest histories of the repli-
cas. A replica rejects the client request if the hash does not
match with the current history of the replica. In this case, the
replica sends an updated version of the history to the client,
in case it is a correct, but outdated client. If two clients are
accessing the replicas at the same time, neither of them can
complete the commit and the replicas state remain incon-
sistent. This again induces another complexrepair phase to
make the histories consistent. In short, the repair phase first
suppresses the replicas from progress. Then, the client that
has noticed the inconsistency,Copy the history prefix that is
confirmed by at least 4f+1 replicas.

Although Q/U has the advantage of optimal communica-
tion rounds in non-contention cases, it becomes very com-
plex as well as expensive in the case of client request con-
tention. As a result, the protocol is not scalable to large num-
ber of clients, where the probability of contention is very
high.

2.8 Abortability

The very notion of abortability [12] was introduced to sim-
plify the complex recovery phases in the design of specula-
tive BFT protocols. An abort-able BFT protocol can abort
at any time upon request; afterwards, no client request will
be serviced by the aborted protocol. A client can initiate
abort if the current running instance of BFT cannot safely
progress anymore (e.g., because of contention or a failure),
or the performance is not satisfactory (because of a change
in the workload or the communication medium). The client
requests can be safely serviced via a new BFT instance. The
new BFT instance is initialized with the last state of the last
BFT instance.

As long as there a client requires a service, the switching
process can be finished by the client. The new instance of
BFT is initialized with anabort history that includes all
the requests globally committed by the replicas in the last
BFT instance. The abort history is calculated based on the
returned commit histories by the replicas. The design of an
abort-able BFT protocol specifies a way to obtain the abort
history, considering that (i) some replicas might be faulty,
and not responding; (ii) some of the responding replicas
might be faulty and return invalid histories; and (iii) the
histories in the replicas could be inconsistent because of
contention or a Byzantine behavior.

Quorum [12] is such an abortable BFT protocol. Similar
to Q/U, Quorum has the minimum latency under no con-
tention. Although abortability has significantly simplified
the design of Quorum, it suffers from the same contention
problem as Q/U. In the case of contention or a Byzantine
behavior, Quorum aborts.

3. Design of CBFT
3.1 Infrastructure

CBFT is designed to be deployed on cloud infrastructures:
Preferably, clouds of distinct providers, different platforms,
and located in geographically distinct locations around the
universe. Server farms like public/private clusters, virtual-
ization systems, orGrids can also be considered. Different
clouds are connected via the Internet, and they are not re-
quired to identify each other. System replicas can be chosen
from distinct cloud vendors seeking high independence.

3.2 Model

Our system model complies with the traditional BFT model
(e.g., PBFT [6]). We assume a message-passing distributed
system using a fully connected network among nodes:
clients and servers. The network may (not infinitely) fail to
deliver, corrupt, delay, or reorder messages. Faulty replicas
and clients may either behave arbitrarily, i.e., in a differ-
ent way to their designed purposes, or they just crash (be-
nign faults). A strong adversary coordinates faulty replicas
to compromise the replicated service. However, we assume
the adversary cannot break cryptographic techniques like
collision-resistant hashes, encryption, and signatures.

Safety properties need to hold in any asynchronous en-
vironment. Clients might fail by crashing, but we don’t as-
sume them to behave maliciously (They are typically part
of the same organization that delegates its IT to the cloud).
Liveness, however, is guaranteed only whenever the sys-
tem iseventually synchronous; i.e., during intervals in which
messages reach their correct destinations within some fixed
worst case delay.

3.3 Algorithm

CBFT is a BFT protocol that minimizes fault dependency
among replicas and exhibits high throughput in WANs. It is
client-based and avoids any inter-replica interaction; repli-
cas communicate through the client instead. The protocol
obtains good performance using speculation: requests are
executed speculatively on replicas. Cryptographic loads and
requests multi-cast are pushed towards clients to reduce
overloads on replicas seeking best performance. CBFT uses
Abortability [12] techniques to recover upon failures.

CBFT, like any optimally resilient BFT protocols, re-
quires 3f+1 replicas to tolerate Byzantine replicas, where
no more thanf replicas can be Byzantine. However, using
2f +1 replicas only at a time, it can sustain faults, but cannot
ensure progress. Thus, CBFT launches the speculative phase
on2f + 1 replicas, and upon failure it recovers by replacing
the faulty replicas with the remainingf . The2f +1 replicas
are enough to collect correctabort history.

Active/Passive Sets. At any time, the protocol distributes
the replicas over two sets:Active set andPassive set. The
former is composed of2f + 1 replicas (we call themActive
replicas); these replicas are used in thespeculative phase,

4 2010/12/20

Figure 3. Message diagram of CBFT running on three repli-
cas.

speculatively. The otherf Passive replicas are used as recov-
ery backups. Particularly, upon failure detection (i.e., in re-
covery phase), the client identifiesf Suspicious replicas (that
can include some correct replicas, and other faulty ones), and
replaces them withf replicas from the Passive set. Then, the
new Active set becomes correct again, and the process (the
speculative phase) continues as designed.

Therefore CBFT algorithm consists of two main phases:
a speculative phase, and arecovery phase. The messaging
pattern of speculative phase of CBFT is depicted in Figure 3.
In this section, we present the phases briefly (Details in later
sections).

Speculative Phase. The communication pattern of CBFT
in a failure-free scenario is simple, and it is concerned with
the Active set only (2f + 1 replicas):

1. The client first sends its request to the primary.

2. The primary assigns a sequence number to the request,
executes it, and sends a reply back to the client along
with the assigned sequence number.

3. The client then sends the request together with the as-
signed order (previously done by the primary) to all other
replicas (in Active set).

4. Each non-primary replica executes the received requests
by order, and returns the results to the client.

5. A client accepts a reply only if all replica responses
match; otherwise the recovery phase is launched.

Recovery Phase. This phase takes place using both Pas-
sive and Active sets.

1. When client timer expires waiting for2f + 1 matching
replies, the client panics and sends aPanic message to all
Active replicas.

2. At this time the client saves a list off Suspicious replicas
that correspond to the remainder of the first matching
f + 1 replies (possibly a collection of faulty and non-
faulty replicas)

3. Replicas, upon receiving the Panic messages, stop exe-
cuting new requests and send anAbort message back to
client with their signedlocal histories.

4. Client constructs anAbort history collected from the
matching replies (more details later).

5. Client replaces theSuspicious replicas in the Active set
with thef Passive replicas.

6. The updated Active set becomes correct again, and the
collected abort history is used to initialize the new repli-
cas’ local histories.

3.4 Algorithm Details

We describe here the algorithm. (Because of space limita-
tions, some details and proofs are given in the companion
technical report [15]).

Client Role. To mitigate fault dependencies; CBFT clients
enroll important tasks. First, the client issues the request to-
wards the primary that assigns a unique sequence number.
This is crucial to maintain consistency among different repli-
cas. When the client receives the assigned reply from the
primary, it validates its contents by verifying the MAC. The
client takes the grip again to resend the signed request to the
other 2f Active replicas, however this time, accompanied
with the sequence number. At that instant the client starts a
timer, waiting for replies.

The final decision is also taken by the client. Upon receiv-
ing all replies from all replicas before the timer expires; the
client verifies their MACs and makes sure the replies con-
tents (i.e., the results) are matching. If so, the client consid-
ers the request as complete; otherwise, the client launches
a recovery phase by collecting an abort history, cleaning the
Active set fromsuspicious replicas, and switching to it again
when updated.

A Light Primary. CBFT pushes multi-cast and MAC
overload towards its clients. In contrast to traditional BFT
protocols, the primary in CBFT has almost the same load as
other replicas. The only additional task is assigning an order
to the requests, which requires very simple computations.
On the other hand, the primary is deprived from any multi-
casting duties that can transform the primary to a bottleneck,
especially that individual MACs should be computed to ev-
ery replica. Instead, multi-cast is done by the client that or-
chestrates communication among replicas as mentioned be-
fore.

Replicas. Excluding the primary, all replicas validate the
client request upon its receipt. They must verify requests
(with MACs, and sequence number) and then try to execute
them. Replicas discard a requestrnew in caseo(rlast) >

o(rnew); where rnew and rlast are the assigned order of
current request and that of the last executed request in the
replica local history, respectively. Each replica executes the
requestrnew if it has already executed all requestsrj where
o(rj) < o(rnew). Otherwise, requestrnew is en-queued in
a buffer, waiting for the missing requests that fill the gap.
Final replies are authenticated via MACs and are sent by all
replicas directly to the client.

Fault Independence. In spite of the diversity in the infras-
tructure and platforms of different clouds being used at once;
the obfuscation aspects requires replicas to be unknown and

5 2010/12/20

Figure 4. An example of aborting, wheref = 1.

unaware of each other. Replicas usually, need to communi-
cate for two purposes: to ensure a total order (atomic) request
execution, and to validate response correctness (usually done
by the primary). Thus, replicas in CBFT communicate with
each other, howeverblindly, but guided by a third party me-
diator, the client. As depicted in previous sections, CBFT
makes a unique total ordering possible through the client
(that delivers the sequence number to all replicas), though
replicas cannot directly communicate. The other issue; i.e.,
validating a response, is also performed by the client upon
matching all replica responses. Notice that assuming no ma-
licious clients is essential for this fault independence tohold.

3.5 Recovery Phase

TheRecovery phase is composed of three major steps: abort-
ing, collecting abort history, and cleaningActive set from
suspicious replicas.

Aborting. A client in CBFT considers a request as com-
plete if the received2f + 1 Active replica responses are
matching, before the expiry of the timer. Otherwise, the
client stops sending requests and sends aPanic message to
all replicas. Each replica, upon receiving the Panic message,
stops executing requests, signs anAbort message from itslo-
cal history of committed requests, and sends it to the client.
The latter waits until it receives a sufficient number of signed
Abort messages, i.e., the firstf+1 non-conflicting ones. The
intuition is that it is necessary and sufficient for the number
of received correct commit histories to exceed the number of
faulty ones; knowing that faulty replicas might not respond
at all. Aborting is achieved as follows:

1. The client waits for the firstf+1 local commit histories
to be received.

2. If no conflicting entries among thef + 1 received local
histories found by the client, it stops receiving new histo-
ries, and collects thef + 1 messages in aProofAH set.
That is used to form the abort history AH later.

3. Otherwise if the client identified commit histories with
conflicting entries it waits for new local histories (since
definitely there are correct clients that did not respond
yet). The loop continues from step 1 again.

Figure 4 presents an example where the first two histo-
ries returned from replicasR1 andR2 are conflicting, con-
sequently the client has to wait for the history from replica

R3. Thus, the phase continued tillf+1 non-conflicting local
commit histories are received by the client.

Building Abort History. A correct abort history is cru-
cial for safety. It preserves total ordering and consistency
across different switching phases. The abort history is col-
lected from the current Active set, to initialize replica local
histories on a new correct Active set. Building the abort his-
tory AH is done by the client after receipt off + 1 non-
conflicting signed abort messages from different replicas,
collected in theProofAH structure (as revealed before). The
steps can be summarized as follows:

1. The client generates historyh such thatAH[j] equals the
value that appears at positionj ≥ 1 of f + 1 different
local historiesLHj that appear inProofAH .

2. If such a value does not exist for some positionx, thenx

is the last index ofh.

3. Finally, AH is the longest prefix ofh in which no request
appears twice (exclude duplicate entries).

The resulting abort history AH thus includes all the glob-
ally committed client requests as well as some partially com-
mitted ones; for example, if the request is received by at least
f+1 replicas but not all of them. The AH is used to initialize
the new Active replicas’ histories (more details in [15])).

Eliminating Faulty Replicas. A client in CBFT attempts
to replace faulty replicas in the Active set with correct ones
from the Passive set; thus detecting the faulty replicas is
mandatory for progress. As previously explained, upon the
client timer expiry; if no2f + 1 matching replies were re-
ceived from Active replicas; the client follows a safe pro-
cess to eliminate the faulty replicas by categorizing replies
senders as correct, orsuspicious (these might be Byzantine
or not). Sincef maximum faulty replicas are assumed, then
f + 1 out of the received messages should correspond to
correct replicas (the matching ones). Therefore the client, to
be on the safe side, considers the remaining Active replicas
suspicious, and replaces them with thef Passive replicas.

The Active set thus comprises2f+1 correct replicas. The
client initializes them with the abort history AH to restore
system state, and the protocol continues as designed.

3.6 Checkpointing and State Transfer

Since CBFT launches a recovery phase upon fault detection,
and this phase requires executingabort history, then switch-

6 2010/12/20

ing from Active set to another (it is actually the same Active
set, but cleared out from faulty replicas) will be expensiveif
the abort history is large. Consequently, this leads us to min-
imize the local history size. Thus we design aLightweight
checkpointing system that truncates local histories everyk

steps (k can be 128, 256,...).
In addition, since requests are executed on the Active set

only (under normal conditions), then the Passive replicas
will have old state versions, especially systems that are as-
sumed reliable for speculative BFT protocols; in this case the
abort history becomes enormously large. For that, we build
our checkpointing system to keep Passive replicas states up-
to-date (except for the last non-checkpointed offset requests
that are fewer thank). Therefore, the Lightweight check-
pointing protocol proceeds as follows (more details in [15]):

1. The client requires checkpoints from Active replicas pe-
riodically by sendingRCHK (for example, when the se-
quence number modk becomes zero)

2. Each replicai sends its last checkpoint digestCHKi af-
ter truncatingk requests (one replica should send com-
plete requests).

3. The client sends the received messages/digestsCHK to
the Passive replicas.

4. Passive replicas executes their missing requests found in
CHK, and replies withACK to the client.

5. When the client receivesf ACK messages, it sends a
commitCOM request to all (Active and Passive) replicas
for final commit.

As presented above, the checkpoints are initiated and con-
trolled by the client. This is crucial to respect obfusca-
tion; and here again, replicas are communicating indirectly
through the client.

4. Evaluation
4.1 Overview

CBFT acquires its robustness and performance through vari-
ous characteristics: (1) it needs only 3f+1 replicas to tolerate
f arbitrary faults (though speculative case communication is
done on2f +1 Active replicas only at a time). (2) It relies on
clients to multi-cast request and not on replicas. (3) It orders
requests using a primary that handles consistency. Finally,
(4) CBFT can be efficiently setup oncumulus clouds, scat-
tered on distant locations and maybe from different vendors,
to ensure higher levels of failure independence.

The closest competitor to CBFT, i.e., Q/U [9], requires
at least 5f+1 to toleratef Byzantine faults. Additional fees
shall be paid with largerf . Despite the use of preferred
quorums (of size 4f+1), Q/U provides less throughput than
CBFT. This also makes Q/U more susceptible to failures un-
der which its performance drops dramatically. This becomes
lucid when the number of clients increases; partly because
Q/U does not make use of a primary to order request as

CBFT does. In addition, although Q/U is client-based, it en-
forces inter-replica interaction upon failures, which makes
replica failures more dependent. Note that, as mentioned
above, Q/U can overcome this by not using preferred quo-
rums, reducing however its performance further. Regard-
ing fault scalability, Q/U exhibited [9] great performance
over agreement-based protocols; we expect Q/U to dominate
CBFT in this sense, though we did not experiment our pro-
tocol forf > 1.

Quorum [8] also shares some aspects with Q/U; mostly
since it is client-based and involves only two communication
phases. However, Quorum also suffers from interference
under contention; this makes it hard to deploy on reliable
contended services. Note that we faced some difficulties in
experimenting Quorum on our environment because of the
use of multi-cast (especially for large number of clients).
Therefore we do not provide results for Quorum except with
a micro-benchmark.

On the other hand, we do not pretend perfection in CBFT.
The protocol is inherently speculative and outperform oth-
ers only in best cases, i.e., when there are no faults. Under
failure the protocol should abort to another Active set, and
this imposes additional costs represented by switching de-
lays (Section 4.8).

4.2 Experimental Setting

CBFT experiments are performed on 23 64-bit Xeon ma-
chines with 2 GB of memory employed on Emulab [13]
cluster. No virtualization is used, thus simulating cloud en-
vironment on real machines. Each replica runs on a sepa-
rate machine, and the clients are scattered over 20 machines.
All machines are connected using a star topology. The max-
imum bandwidth of the network is set to 100Mb. We set it
to this high value because each machine can host up to 10
clients; and as we will see in the experimental results, the
actual bandwidth that a client can use over a WAN is far be-
low this limit. The end-to-end (E2E) delay is set to 20 ms
and 60 ms, depending on the setup.

For each setting, we have run foura/b benchmark3 (same
benchmark used in PBFT [6]) experiments using different
payload sizes: 0/0, 0/1, 1/0, and 1/1. Without a payload, the
size of request and reply messages are 66 and 88 bytes,
respectively. The fault factor,f , is equal to one, and the
number of replicas is three.

Q/U experiments are also done on the same environment;
except for a single difference where we needed six replicas
(5f+1; for f = 1) instead of three, as this is the number
required by Q/U [9] to operate.

4.3 Benchmark

We present here the results on a benchmark, where only one
client is accessing the replicated service. Figure 5 displays

3 In a/b benchmarks,a andb correspond to request size, and response size
in KB, respectively.

7 2010/12/20

 0

 50

 100

 150

 200

 250

 300

 350
La

te
nc

y
(m

s)

 E2E = 20ms E2E = 60ms

CBFT
Q/U

Quorum

Figure 5. Commit latency when only one client is used.

the latency results for both CBFT and Q/U by setting the
end-to-end (E2E) latency to 20 ms, and 60 ms. We do not
plot the results for all benchmarks (0/0, 1/0, 0/1, 1/1) as these
are very close; thus we only choose one of them (the one
with minimal latency).

When the E2E latency is set to 20 ms, CBFT achieves a
latency of 80 ms; Q/U on the other hand reaches half this
latency as depicted in Figure 5. We relate this difference to
the number of communication round-trips needed to com-
plete an operation. In fact, CBFT needs a couple of round-
trip messages; one message is sent to the primary to estab-
lish request ordering, and another is sent to communicate
with other replicas and execute the request. Q/U, however,
achieves this latency since it completes the operation in a
single round-trip instead of two.

Again, since Quorum (like Q/U) needs only two commu-
nication phases to commit a request in a speculative way,
they share same performance in a contention-free environ-
ment, the results are shown clearly in Figure 5.

Similar results are obtained upon changing the E2E la-
tency to 60 ms. As shown on the same graph in Figure 5,
the latency of CBFT becomes 240 ms. This was expected
because the large E2E latency becomes the main impacting
factor in the service. The graph also conveys the fact that
Q/U again achieves half this latency. As mentioned above,
this can be demonstrated by the number of round-trip mes-
sages in the protocols.

Analyzing the above numbers, we notice that the latency
can be obtained by the number of round-trips needed for one
request multiplied by the E2E latency. This means that the
system delay is the major factor overhead in the communi-
cation; the operation execution and MAC handling times are
almost negligible as compared to the E2E latency. Notice
that, although Q/U client needs to contact at least 5 repli-
cas (i.e., the preferred quorum [9]), this does not impact the
latency as one might expect, and hence keeps Q/U leading
CBFT in such experiments.

The throughput with the micro-benchmarks again shows
that Q/U outperforms CBFT by almost a double. The through-

 0

 200

 400

 600

 800

 1000

 1200

T
hr

ou
gh

pu
t (

op
/s

)

 E2E = 20ms E2E = 60ms

CBFT
Q/U

Figure 6. Peak throughput of CBFT vs Q/U for both E2E
latencies: 20 ms, and 60ms.

put of Q/U is 8 op/s when the E2E latency is 60 ms, whereas
the throughput of CBFT is 4 op/s. The ratio is almost the
same in an experiment with 20 ms E2E latency. These
throughput results follow from the above latency difference.
Since there is only one client operating, and the client does
not invoke a new request until it completes the previous one,
the latency will be inversely proportional to the throughput.
We do not plot a graph for the throughput since this has less
importance than latency in contention-free experiments.

4.4 Peak Throughput

To experiment the peak throughput, we used up to 200 con-
current clients. Again since the results are close in different
benchmarks (i.e., 0/0, 1/0, 0/1, 1/1), we mention the results
for only one experiment. The throughput achieved by CBFT
is very interesting and inverts the leadership with Q/U which
it exhibits in contention-free cases. As depicted in Figure6,
our protocol achieves a peak throughput of 1300 op/s upon
setting the E2E latency to 20 ms.

Q/U, however, could not exceed 570 op/s throughput
when the E2E latency is equal to 20 ms (Figure 6). These
results are justified since; (1) CBFT relies on the primary
to order requests and thus avoids request collisions while
accessing replicas; and (2) it pushes multi-cast and encryp-
tion overhead towards clients. On the contrary, Q/U is not
resilient to a high number of clients and this forces the pro-
tocol to load excessiveRepair and Sync phases, and the
client backoff scheme. Note that this throughput is reached
for 80 clients in Q/U, which is the maximum value we could
get in the experiments.

By setting the E2E latency to 60 ms, as expected, the
throughput drops to 520 op/s and 167 op/s in CBFT and Q/U,
respectively. This change is logical since both protocols are
affected by message round-trip delays. However, can be
noticed in Figure 6, the throughput ratio of CBFT over Q/U
changes from 1/2 to 1/3 upon updating the E2E latency
from 20 ms to 60 ms. This might be explained by the extra

8 2010/12/20

 0

 50

 100

 150

 200

 250
N

um
be

r
of

 C
lie

nt
s

 E2E = 20ms E2E = 60ms

CBFT
QU

Figure 7. Client scalability of CBFT vs Q/U for both E2E
latencies: 20 ms, and 60ms.

transmissions needed by Q/U because of increasing update
failures.

4.5 Scalability

Yet, in another measure, i.e., client scalability, CBFT domi-
nates Q/U (Figure 7). In the experiments, the results of Q/U
started to fluctuate for more than 40 clients. Then, between
40 and 60 clients at least one run (out of four) was failing.
The protocol ceased to work for a number of clients greater
than 60 or 80, depending on the experiment.

However, CBFT experiments finished successfully even
with 200 simultaneous clients. CBFT can handle this high
number of clients since it avoids requests collisions by hav-
ing a primary replica that only assigns sequence numbers
(a simple operation), and by distributing the load of multi-
casting on clients to avoid replica bottlenecks.

By observing Figure 7, we notice that the CBFT scalabil-
ity is not affected by the E2E latency; however Q/U scales
for 80 clients when E2E latency is 20 ms, and could not tol-
erate more than 60 clients by setting it to 60 ms. This can
be justified by the timeouts caused byRepair phase delays
that Q/U launches more frequently as the number of clients
grows up.

4.6 CBFT3 Observation

To explain the good performance of our client-based ap-
proach for CBFT, we run a comparison withCBFT3, another
version of CBFT that uses3f + 1 Active replicas instead of
2f + 1. Interestingly, we observed very close performance.

Figure 8 conveys this comparison. For clarity, we only
plot 0/0 benchmark, given that the other benchmark results
are almost the same. The results depict the very facts that
the protocols performances rarely diverge starting from one
client and until 200 clients. This stands as an experimental
support for our claim that CBFT design features (and not the
number of Active replicas) play the main role in achieving
its performance.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 200 400 600 800 1000 1200

La
te

nc
y

(s
)

Throughput (op/s)

CBFT
CBFT3

Figure 8. Performance of CBFT vs. CBFT3 for E2E latency
20 ms.

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 200 400 600 800 1000 1200 1400

La
te

nc
y

(s
)

Throughput (op/s)

0/0
0/1
1/0
1/1

Figure 9. Response time vs. Throughput of CBFT. The E2E
latency is 20ms.

4.7 Performance Traces

Figure 9 presents the evaluation results of CBFT in the
setting where the E2E latency is 20 ms. The x and y axes
represent the throughput and the response time for each run,
respectively. The number of clients varies between 0 and 200
in the runs with 10 clients added per step. As depicted in
the figure, the change in the payload size has a negligible
impact on the performance since the bottleneck is caused
by the network latency and not its bandwidth. The latency
remains 80 ms up to the point where the throughput exceeds
400- 450 op/s. After this point, by increasing the throughput,
the latency also increases up to 30% at a throughput point of
1200 op/s (160 clients). Starting from this point, increasing
the number of clients leads to an exponential increase in the
commit-latency.

Figure 10 conveys the results of the same experiment
when setting the E2E latency to 60 ms. Compared to Figure 9
the performance drops earlier, when the throughput reaches
170 op/s. After this point, the response latency increases
linearly up to 40%, as the number of clients grows.

As already mentioned, the closest competitors to our
protocol are Q/U [9] and Quorum [8]. We performed the

9 2010/12/20

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0 100 200 300 400 500 600

La
te

nc
y

(s
)

Throughput (op/s)

0/0
0/1
1/0
1/1

Figure 10. Response time vs. Throughput of CBFT. The
E2E latency is 60ms.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600 700 800

La
te

nc
y

(s
)

Throughput (op/s)

CBFT
Q/U 1/1
Q/U 1/0
Q/U 0/1
Q/U 0/0

Figure 11. Response time vs. Throughput of Q/U and
CBFT. The E2E latency is 20ms.

same experiments as CBFT with Quorum. Although we have
shown above the response latency was lower: 40 ms and 120
ms for the settings with an E2E latency of 20 ms and 60 ms,
respectively; however we could not have more results with
more clients because of multi-cast issues in the environment.

Q/U on the other hand, and despite the number of replicas
required (5f+1) to toleratef faults, dominates our protocol
for a few number of clients; however, CBFT outperforms
Q/U for more clients, where the latter’s latency increases
quickly. Q/U also provided little scalability in the number
of clients as compared to CBFT.

We plot both Q/U and CBFT results (of E2E latency 20
ms) on the same graph in Figure 11. As can be noticed, Q/U
performs differently for benchmarks 1/1 and 1/0 in contrast
with 0/0 and 0/1. Q/U exhibits a constant latency of 40 ms
until reaching a throughput of 80-140 op/s (depends on the
experiment), where, its latency grows to higher than 200 ms
quickly; this is achieved when the number of clients ranges
between 20 and 30.

The other two benchmarks 0/0 and 0/1 in Q/U (also Fig-
ure 11), however, maintain a 40 ms latency until reaching the
400-450 op/s throughput; again where 20 to 30 clients are

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(s
)

Throughput (op/s)

CBFT
Q/U 1/1
Q/U 1/0
Q/U 0/1
Q/U 0/0

Figure 12. Response time vs. Throughput of Q/U and
CBFT. The E2E latency is 60ms.

Figure 13. CBFT switching cost as a function of abort his-
tory size, and missing requests in local history.

running. This was expected because Q/U needs a single com-
munication phase to commit. Soon, this gets changed signif-
icantly under contention since more phases are needed like
Repair andSync, in addition to thebackoff scheme applied
on contending clients. However, notice on the same graph
that the latency of CBFT remains almost stable (80-100 ms)
even after reaching high throughput levels. Our protocol is
superior to Q/U when the client count advances.

Setting the E2E latency to 60 ms shows very similar re-
sults to what has been conveyed, but of course with different
numbers. Thus, we considered it enough to keep Figure 12
for the reader to analyze without including any comments.
We just note that, we have no explanation to the Q/U apex it
reaches, at the very beginning.

4.8 Switching Cost

As shown above, CBFT achieves a good performance in
free-failure environment. However, under failures, the recov-
ery phase should be launched. The main expensive steps in
this phase are: aborting, collecting abort history, and switch-
ing to a new correct Active set that includes initializing repli-
cas with the new abort history.

10 2010/12/20

Figure 13 shows the cost of this recovery phase as a
function of an abort history size forf = 1. We assume
that the history size can grow up to 250 requests (of size
1KB). We plot two different curves: one corresponds to
the case when replicas do not miss any request, i.e., all
abort history requests are already executed. The other one
corresponds to the case when one replica misses 30% of
the abort history requests (they are not executed yet); this
replica might represent the Passive set. The figure shows that
the switching cost increases with the history size and that it
is slightly higher in the case when replicas miss requests.
More precisely, the switching cost ranges between 20ms and
30ms as the abort history size varies from 0 to 256. We
consider this cost to be very reasonable, provided that faults
are supposed to be rare in environments that run speculative
protocols’ like CBFT.

5. Related Work
5.1 Obfuscated BFT

CBFT falls into the category ofobfuscated BFT protocols,
where replicas do only see the client, thereby increasing the
independence to failures. To the best of our knowledge, Quo-
rum [8] is the only BFT protocol that also belongs to this cat-
egory. However, Quorum can operate with only a few clients,
while CBFT scales to hundreds of clients. Although Q/U [9]
does not have any inter-replica communication in usual sce-
narios, after an inconsistency is caused by contention or a
faulty node, the replicas have to re-synchronize.

5.2 Client-based BFT

One key to the scalability of CBFT is to push the load of
agreement onto the client side. Quorum-based protocols,
such as Q/U and Quorum, benefit from the same design prin-
ciple. However, these notoriously do not scale with the num-
ber of clients. This is mainly because they are vulnerable
to contention between multiple client requests, which makes
the state of the replicas inconsistent. Upon detecting an in-
consistency, the protocol has to call a recovery procedure
to synchronize the replica states. CBFT benefits from a pri-
mary replica to handle contention and is hence scalable to
hundreds of clients. The drawback, however, is the extra la-
tency of communicating with the primary under contention.

5.3 Primary-based BFT

CBFT makes use of a primary replica to avoid contention
between multiple client requests. This has been used in many
BFT protocols such as PBFT [6] and Zyzzyva [7]. The
primary, however, mostly becomes the scalability bottleneck
as it performs more cryptographic operations as well as
message transmissions. In particular, the lack of hardware
multi-cast support in WAN puts a high load on the primary
to multi-cast its messages. To address the scalability issue,
CBFT pushes the multi-cast load on the client side. More
clients issuing the requests implies more processing units

available on the client side, and using these enables the
system to handle a large volume of requests.

5.4 Abortable BFT

Admitting that a single BFT protocol cannot fit all require-
ments, the notion of abortability [8] has recently been pro-
posed to enable switching between BFT protocols whenever
one could perform better, e.g., because of a change in the op-
erating environment. We make use of this abortability notion
to switch betweenQuorum andChain, when the load on the
system changes. Furthermore, CBFT leverages abortability
by switching between Active sets: after a failure is detected,
the protocol replaces the suspicious replicas by correct ones
from the Passive set, and uses the updated Active set again.

6. Conclusion
This paper explores an approach where reliable IT services
are built on top of unreliable, yet cost-effective,cumulus
clouds, i.e., geographically distributed clouds. Replicas of
the service, located on the cumulus clouds, are oblivious of
each other, as well as of the replication setting. Distributing
the replicas over a WAN (with a high latency and variance)
raises new challenges in the design of a scalable, high-
throughput BFT protocol.

As a first step putting this approach to work, we intro-
duce CBFT, a BFT protocol that takes up the challenges
of scaling agreement over a WAN. Two simple design de-
cisions are behind CBFT performance. First, we make use
of a primary replica, avoiding contention between multiple
client requests, to assign a sequence number to every request.
Second, we push the load of encrypting and multi-casting a
request from the replicas, which are the bottleneck of agree-
ment, to the issuing clients. Our experimental results shows
that CBFT scales to hundreds of clients in a WAN, while the
throughput of state-of-the-art BFT protocols quickly drops
with the number of clients. CBFT could tolerate both faulty
replicas and clients by using 3f+1 replicas.

With few clients, the latency of CBFT, however, is higher
than that of client-based protocols such as Q/U and Quo-
rum [8, 9]. By applying the notion of abortability [8] in the
design of CBFT, and in contention-free environments, we
can switch to Quorum-like protocols, provided these do not
use multi-cast and achieve low-latency.

11 2010/12/20

References
[1] Amazon.com, “Amazon ec2,” 2010. [Online]. Available:

http://aws.amazon.com/ec2/

[2] C. Metz, “Ddos attack rains down on amazon cloud,” 2009.
[Online]. Available: http://www.theregister.co.uk/2009/10/05/
amazonbitbucketoutage/

[3] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: a tutorial,”ACM Comput. Surv.,
vol. 22, no. 4, pp. 299–319, 1990.

[4] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,”Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[5] G. Bracha and S. Toueg, “Asynchronous consensus and broad-
cast protocols,”Journal of the ACM (JACM), vol. 32, no. 4, pp.
824–840, 1985.

[6] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,”ACM Trans. Comput. Syst., vol. 20,
no. 4, pp. 398–461, 2002.

[7] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,”SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, pp. 45–58, 2007.

[8] R. Guerraoui, N. Knězevíc, V. Qúema, and M. Vukolíc, “The
next 700 bft protocols,” inEuroSys ’10: Proceedings of the
5th European conference on Computer systems. New York,
NY, USA: ACM, 2010, pp. 363–376.

[9] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Re-
iter, and J. J. Wylie, “Fault-scalable byzantine fault-tolerant
services,”SIGOPS Oper. Syst. Rev., vol. 39, no. 5, pp. 59–74,
2005.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira,
“Hq replication: a hybrid quorum protocol for byzantine fault
tolerance,” inOSDI ’06: Proceedings of the 7th symposium
on Operating systems design and implementation. Berkeley,
CA, USA: USENIX Association, 2006, pp. 177–190.

[11] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe,
“Bft protocols under fire,” inNSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and
Implementation. Berkeley, CA, USA: USENIX Association,
2008, pp. 189–204.

[12] R. Guerraoui, N. Knězevíc, V. Qúema, and M. Vukolíc, “The
next 700 bft protocol,” EPFL, Tech. Rep. LPD-REPORT-
2008-008, 2008.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An inte-
grated experimental environment for distributed systems and
networks,”SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255–
270, 2002.

[14] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,
and Y. Tock, “Dr. multicast: Rx for data center communication
scalability,” in LADIS ’08: Proceedings of the 2nd Workshop
on Large-Scale Distributed Systems and Middleware. New
York, NY, USA: ACM, 2008, pp. 1–12.

[15] R. Guerraoui, M. Yabandeh, A. Shoker, and J. Bahsoun,
“Trustful cumulus clouds,” EPFL, Tech. Rep. LPD-REPORT-
2010-10, 2010.

A. Appendix
In this Appendix, we explain CBFT in details. We present
a pseudo-code for the main functions of the protocol de-
scribing the two phases:speculative phase and therecovery
phase; in both client and server sides.

A.1 Notations

We denote the set of all (3f + 1) replicas byΣ. At any time
2f + 1 replicas are in theActive set, and the remainingf
are in thePassive set. In addition, we denote the set of
suspicious replicas (all faulty replicas, and possibly some
correct ones) bySuspicious.

A messagem sent by processp to the processq and au-
thenticated with a MAC is denoted by〈m〉µp,q

. In addition,
we denote the digest of the message m byD(m). All pro-
cesses are assumed to own the public key of every other pro-
cess.

Notations for message fields and client/replica local vari-
ables used in CBFT are shown in Figure 14. To help distin-
guish clients requests for the same operationo, we assume
that clientc callsInvoke(req, c), wherereq = 〈o, tc, c〉 and
wheretc is a unique, monotonically increasing clients time-
stamp. A replicarj executesreq by appending it toLHj .

c - client ID
P - the primary replica
tc - local time-stamp at clientc
tj [c] - the highesttc seen by replicaj
o - operation invoked by the client
LHj - a local history at replicaj
snj - sequence number at replicaj

AH - abort history

Figure 14. Message fields and process local variables

A.2 CBFT Pseudo-code

The pseudo-code of the client (c) includes a single method
Invoke(). This method initializes a request, authenticates it
to the primaryP , and sends it after adjusting a timerTimer1

(Pseudo 1). When the timer expires andc has not received a
reply from P yet, it launches theRecovery phase. In fact,
some retransmission attempts are invoked before recovery;
however, we do not include this in the pseudo-code for
clarity.

Before recovery, theSuspicious set is formed by call-
ing Identify() function, so that, faulty replicas are ex-
cluded from theSpeculative phase. Pseudo 4 conveys
how this takes place. In words, the client looks up for the
first f + 1 matching replies; the corresponding replicas are
consideredcorrect, and the otherf replica are noted as
suspicious (though some of them are not, but they have de-
layed responses). TheSuspicious set is then passed to the
Recover() method that updates theActive set, and launches
theSpeculative phase on the (updated)Active set again.

12 2010/12/20

Pseudo 1Invoke(req, c)
1: {Sending to Primary P}

2: m ← 〈REQ, req〉µc,P

3: Send(m, P)

4: if T imer1() 6= φ then{Until T imer1 expires}

5: Receive(rP,snnew
, P)∧ V erifiy(rp)

6: if snnew = NULL then

7: {empty sequence #}

8: Recover(P)

9: end if
10: else{T imer1 expiry}

11: Recover(P)

12: end if
13: {Sending to the rest Active replicas}

14: for i ∈ Active \ {P} do{Exclude primary P}

15: {Create messages including sequence snnew}

16: m ← 〈REQ, req, snnew〉µc,i

17: Send(m, i)

18: end for
19: if T imer2() 6= φ then{Until T imer2 expires}

20: for i ∈ Active \ {P} do

21: Receive(ri, i)∧ V erifiy(ri)

22: end for
23: else{T imer2 expiry}

24: R ← ∪{received rk ∀k ∈ Active}

25: Suspicious ← Identify(R)

26: Recover(Suspicious)

27: end if
28: {Verify if all responses are matching}

29: R ← ∪{rk ∀k ∈ Active}

30: {Cardinality check}

31: if ‖Matching(R)‖ 6= 2f + 1 then

32: {Identify suspicious replicas}

33: Suspicious ← Identify(R)

34: Recover(Suspicious)

35: end if

Pseudo 2V erify(ri)
1: {Verify response validity}

2: if MAC(ri) is T rue andri.tc = req.tc then

3: return T rue

4: else
5: return F alse

6: end if

Pseudo 3Recover(X)
1: P roof ← P anic(req, c)

2: AH ← AbortHistory(Proof)

3: if X = P then{Primary is faulty}

4: Active← Active \ {P}

5: Mal ← P

6: I ← P assive.pop()

7: P ← I {New Primary}

8: Active← Active ∪ {P}

9: P assive.push(Mal)

10: else{X is a Suspicious list}

11: Active← Active ∪ P assive

12: Active← Active \X

13: P assive← X

14: end if
15: m ← 〈INIT, req, AH, P roofAH〉µc,P

16: RE − INV OKE(m, AH)

Pseudo 4Identify(X)
1: {Return Suspicious set}

2: for i ∈ X and‖Correct‖ < f + 1 do

3: if ‖ri.reply = rj.reply‖ ≥ f +1;∀rj ∈ X

then
4: Correct← Correct ∪ {i}

5: end if
6: end for
7: Suspicious ← Active \ Correct

8: return Suspicious

Pseudo 5AbortHistory(Proof)
1: {Build abort history}

2: h←{anyLH ∈ P roof}

3: for all i : 1 → h.size() do

4: for all LH ∈ P roof do

5: if ‖h[i] = LH[i]‖ ≥ f + 1 then

6: H[i] ← h[i]

7: end if
8: end for
9: end for

10: {Remove duplicates}

11: for all i : 1 → H.size() do

12: for all j : i→ H.size() do

13: if H[i] 6= H[j] then

14: AH ← H[i]

15: else
16: return AH

17: end if
18: end for
19: end for
20: return AH

Pseudo 6Panic(req, c)
1: {Send PANIC to all Active replicas}

2: for i ∈ Active do
3: m ← 〈PANIC, req〉µc,i

4: Send(m, i)

5: end for
6: while ‖P roof‖ < f + 1 andi ∈ Active do {Until

collecting f + 1 matching LH}

7: R← Receive(ri, i)∧ V erifiy(ri)

8: if ri.type = ABORT then

9: for all j ∈ R do

10: for all k ∈ R do
11: if ‖rj.LH = rk.LH‖ ≥ f + 1

then
12: P roof ← P roof ∪{rj.LH}

13: end if
14: end for
15: end for
16: end if
17: end while
18: return P roof

Pseudo 7Server(id)
1: while Truedo
2: Receive(mc, c)

3: Handle(mc, id)

4: end while

Pseudo 8Matching(X)
1: {Check if replies match}

2: for i ∈ X do
3: if ri.reply = rj.reply and ri.D(LHi) =

rj.D(LHj) ∀rj ∈ X then

4: M ← M ∪ {ri}

5: end if
6: end for
7: if ‖M‖ = 2f + 1 then

8: return T rue

9: else
10: return F alse

11: end if

Pseudo 9Handle(mc, i)
1: {Handling client request}

2: if MAC(mc) is F alse or mc.tc ≤ ti[c] then

3: return F alse

4: {request is not valid}

5: end if
6: if m.type = REQ then{Request message}

7: if i = P then{if Primary}

8: sni ← sni + 1

9: Exec(mc) {execute request, append to LH}

10: r ← 〈REP, rep, D(LHi), sni〉µi,c

11: Send(r, c)

12: else{not a Primary}

13: if mc.sn = sni + 1 then

14: sni ← mc.sn

15: Exec(mc) {execute request, append to LH}

16: r ← 〈REP, D(rep)〉µi,c

17: Send(r, c)

18: end if
19: end if
20: else ifm.type = P ANIC then{Panic message}

21: r ← 〈ABORT, mc.tc, D(LHi)〉µi,c

22: Send(r, c)

23: else ifm.type = INIT then{Init message}

24: if LHi = φ then{Empty local history}

25: LHi ← AH

26: end if
27: Exec(mc)

28: r ← 〈REP, D(LHi)〉µi,c

29: Send(r, c)

30: end if
31: return T rue

13 2010/12/20

Then, after collecting the local histories inProof . The
client builds the abort historyAH by callingAbortHitory()
method (Pseudo 5).AH represents the matching entries of
all the f + 1 local histories inProof (duplicates are also
removed). Note that, some entries of the local history will
not be included inAH. Actually, since these are not included
in all the local histories, then some clients have definitelynot
completed the corresponding requests, and they will simply,
re-invoke them again.

The recovery phase is launched by the client upon invok-
ing Recover() method (Pseudo 3). The client starts by call-
ing thepanic() method; thus, it sends aPANIC message
to all Active replicas. As depicted in Pseudo 6, the client
waits for the firstf + 1 ABORT messages. Then, it checks
whether the replies are non-conflicting; if they are, it waits
for further replies to be received. However, whenf + 1 of
the received replies match, the client stores them (as well as
the local historiesLH) in a Proof set (Pseudo 6; lines:11
and12). Proof is used later to build the abort historyAH.
Since a maximum off replicas can be Byzantine, the client
must eventually receivef + 1 correct replies. In addition,
PANIC messages are retransmitted if the network delays
are longer than expected; however, we strongly assume that
this should not happen in the environments that are supposed
to run speculative protocols like CBFT.

On the contrary, whenc receives a reply from the primary
P , it verifies its MAC and the corresponding time-stamp
(Pseudo 2). The client then, prepares to send the requestreq

to the remaining replicas in theActive set (Active \ P);
however this time, it appends the sequence numbersnP (al-
ready assigned byP) to req, and signs it with the MACs
of theActive \ P replicas. The client (c) then waits for2f

replies to be received from the replicas (thus the total count
becomes2f + 1). Again, if the timerTimer2 expired be-
fore receiving the supposed replies, recovery will be invoked
(some retransmissions have been removed for clarity). Oth-
erwise,c checks if all replies are matching (Pseudo 8) to
complete the request; if they are not, the client recovers after
collectingsuspicious replicas.

Finally, the client in Pseudo 3 removes theSuspicious

replicas from theActive set and replaces them with the
Passive ones. Therefore, the active set becomes correct
again, and ready to enter theSpeculative phase by invoking
the request (after initializing the local histories of the new
replicas). Note that, the special case of faulty primary is
treated in a bit different way than other replicas. In fact, if the
client has not received a reply fromP beforeTimer1 expiry,
P is simply replaced by another replica from thePassive

set (i.e., no need to replacef replicas).
The pseudo-code of the server side is simple in CBFT.

It is represented by receiving requests from clients and han-
dling them (Pseudo 7). Handling requests of various types
occurs differently:REQ messages are ordinary requests; af-
ter validating their MACs, and checking out the validity of

their time-stamps, the request is executed (i.e, appended to
LH). If the replica is a primary, it increments its sequence
numbersnP and appends it to the reply. The non-primary
replicas, however, need to make sure that the received re-
quest is not already executed (Pseudo 9; lines13 and14).
In addition, if some requestssni with sni < snnew are not
executed yet, the replicas buffer the new request until the
missing (actually delayed) requests arrive (We do not con-
vey buffering in the pseudo-code for simplicity).

Replicas handlePANIC requests by ceasing to exe-
cute further requests, and then sendingABORT replies that
comprises their local history digestsD(LH) (Pseudo 7). On
the other hand,INIT requests are used by replicas to exe-
cute any missing requests in their local histories after recov-
ery.

B. Correctness
B.1 Commit Certificate

Proposition. Any completed request by the client has been
committed by the Active replicas.

Proof. The client in CBFT completes a request only if it
has received2f + 1 matching responses including the local
history digestsD(LHi) of the Active replicas (Pseudo 9,
line 31), among whichf + 1 replicas are correct. Recall
that, local histories (LHi) are uniquely defined sequences
of requests, which represent the replica state at any time.
Then, since a correct replica appends the new request (upon
execution) to its local history before sending theLH digest
(Exec method in Pseudo 9), then these digests represent an
indication for the client certifying that its request has been
committed successfully.

B.2 Validity

Proposition. Any request that is found in the commit/abort
history must have been sent by some client.

Proof. A client commits a request only if all the received
commit histories (LH) of the Active replicas are matching
(Pseudo 1, line 31). Thus, at leastf +1 correct replicas must
have executed the request, and appended it toLH. On the
other hand, a replica executes (i.e., appends toLH) a request
messageREQ (or INIT message) only after validating
its sender identity; that should be some client. In addition,
to avoid duplicates inLH, a replica always maintains and
checks the last client time-stampti[c] (Pseudo 9, line 2).

As for the abort historyAH, since it is collected from
f + 1 matchingLH (Pseudo 5); thus, all requests in the
AH are sent by some client (follows from the previous
paragraph). As forAH duplicates, they are removed by
construction (Pseudo 5, lines: 10 to 15).

B.3 Termination

Proposition. Aborting from theSpecultive phase eventu-
ally occurs.

14 2010/12/20

Proof. CBFT runs the Speculative phase until: (1) the
client detects non matching responses from replicas or (2)
its timer expires. In both cases, the client should abort the
Speculative phase by sending aPANIC messages to all the
Active replicas (for progress, it keeps sending such mes-
sages until receiving the neededABORT messages). The
replicas should eventually receive thePANIC messages
(according to our assumption that sent messages are not in-
finitely delayed or dropped by the network). Thus, at least
f + 1 correct replicas should sendABORT messages to
the client (Pseudo 6, line 11). When the client (eventually)
receivesf + 1 matchingABORT messages, it aborts the
request (since the clients can not be malicious).

B.4 Lemma 1

Denote the state of the local history of replicari upon ap-
pending requestreq to LHi by LH

req
i . Then, for any mes-

sagem sent byri upon appending toLHi with historyLHm
i

, LH
req
i is a prefix ofLHm

i . In other words,LH
req
i remains

a prefix ofLHi forever.
Proof. Let the current stateLHi of some replicari be

LH
req
i . A correct replicari modifies its local historyLHi

by sequentially appending any new requestm to LHi; in
particular, appending to its prefixLH

req
i (Exec function in

Pseudo 9). Hence,∀ new requestm, LH
req
i remains a prefix

of LHm
i forever.

B.5 Commit Ordering

Proposition. Commit histories can not contain requests in
conflicting orders.

Proof. Assume, by contradiction, that there are two com-
mitted requestsreq andreq′ 6= req (sent by two clientsc
andc′, respectively) with different commit historieshreq and
hreq′ , such that, neither is the prefix of the other. Since a cor-
rect client commits a request only when it receives2f + 1
identicalLH digests from replicas (Pseudo 1; line 31); then,
there must be a correct replicarj that sentD(hreq) to c and
D(hreq′) to c′ such thathreq is not a prefix ofhreq′ nor vice
versa. A contradiction with Lemma 1.

B.6 Abort Ordering

Proposition. For any committed requestreq, every commit
historyhreq is a prefix of any abort historyAH.

Proof. Considering a single replicari; suppose that∃ a
requestreq andABORT messagem such thathreq is not
a prefix ofLHm

i . Sincereq is already committed, then it
must be included in2f + 1 local histories from the Active
replicas includingri (Pseudo 1; line 31). Butri does not
sendABORT messages unless after it stops executing new
requests; thusri executedreq beforem. Hence, by Lemma
1,hreq is a prefix ofLHm

i . On the other hand, since an abort
history is constructed fromf + 1 matchingLH digests sent
by correct replicas (Pseudo 5), thenhreq must be a prefix to
all theseLH, i.e., to the abort historyAH.

B.7 Init Ordering

Proposition. INIT history is a prefix for any commit/abort
history.

Proof. Every correct process must initialize its local his-
tory with some validInit history before sending any mes-
sage (Pseudo 9, line 23). Since any common prefixCP of all
valid Init histories is a prefix of every singleInit historyI,
thusCP is a prefix for every local history sent by a correct
replica.Init ordering for commit histories immediately fol-
lows.

In the case of abort histories;f + 1 correctABORT

messages are received by a client upon aborting a request.
TheABORT message contains the replicasLH (Pseudo 9,
line 21) that haveCP as a prefix. Thus,CP is a prefix of
any abort historyAH.

B.8 Progress

Proposition. Clients eventually receive replies to their re-
quests.

Proof. Recall: we assume that the network can not de-
lay messages infinitely. Thus, we suppose any sent mes-
sages to reach its destination within a maximum delayδ. In
theSpeculative phase of CBFT, clients wait for responses
from replicas twice: (1) waiting for the primary (Timer1,
Pseudo 1, line 4), and then (2) waiting for the otherActive

replicas (Timer2, Pseudo 1, line 23). AdjustingTimer1 and
Timer2 for a duration of2δ+t (i.e, the delay for a complete
request round trip + the expected execution time at replicas)
ensures that the client will eventually receive2f + 1 replies
from theActive replicas.

In the Recovery phase, the client also waits forf + 1
non-conflictingABORT messages from replicas to switch
(Pseudo 6). This must occur since at leastf + 1 Active

replicas must be correct. A timer in this case can be adjusted
to 2δ + t also to ensure progress. This represents the time
for thePANIC messages to reach the replicas + handling
time at replicas + the delay ofABORT messages from
the replicas to the client (however this is not shown in the
pseudo-code). Upon the expiry of the timer , retransmission
of PANIC messages is invoked again.

Regarding the detection and replacement ofSuspicious

replicas, some progress issues might appear if the faulty
replicas are distributed among bothActive and Passive

sets. Section C addresses this issue, and provides a switching
optimization to ensure liveness.

C. Switching Optimization
The concept of switching from oneActive set to another
is possible by the replacement off Suspicious replicas
with otherf Passive ones (Pseudo 4). TheseSuspicious

replicas can be faulty or just slow; thus, it is worth replac-
ing them with new correct/fast replicas. This is suitable for
smallf (for instance,f = 1). However, whenf is large, and
the faulty replicas are distributed among thePassive and

15 2010/12/20

Active sets; liveness problems might show up, since faulty
replicas can force continuous switching. A slight optimiza-
tion for switching solves this issue with paying a very lit-
tle cost: Instead of electing the firstf + 1 matching replies
to distinguish theSuspicious replicas, we give way to the
client to contact the3f + 1 replicas in order to choose the
Suspicious set.

In particular, after the client receives theABORT mes-
sages fromf + 1 replicas, it sends theINIT request to all
(3f + 1) replicas instead of theActive ones only. The first
2f +1 received matching replies correspond to correct repli-
cas, that are designated asActive replicas by the client. The
remainingf replicas form thePassive set. Starting from
that instant, the client sends itsREQ messages to theActive

replicas as usual. By this optimization; choosing theActive

replicas is always done by consulting all replicas at once, and
thus, obtaining a possibly differentActive set upon distinct
Recovery phases to maintain progress.

D. Lightweight Checkpointing
The objective of Lightweight checkpointing is to maintain
small size local historiesLH on replicas in order to reduce
the communication cost, in particular, upon moving from
theSpeculative phase to theRecovery phase. Lightweight
checkpointing can minimize the local history sizes (256 for
instance); and thus reducing the switching time. Figure 13
conveys the switching time as a function of abort history
size. Checkpointing appears more crucial asPassive repli-
cas have to be updated continuously, so that, they maintain
an up-to-date state asActive replicas.

Lightweight checkpointing pseudo-code is presented in
Pseudo 10 and Pseudo 11. The client triggers checkpointing
everyk requests (we usek = 256). It sendsRCHK message
toActive replicas (Pseudo 10, lines: 1 to 5) and starts a timer
Timer1. EachActive replica validates theRCHK (MAC
and times-tamp), and sends aCHK message to the client.
A CHKi message sent by replicai contains: the digest of
256 requests starting from its last checkpoint of numberni,
and the new supposed checkpoint counterni+1 (Pseudo 11,
lines: 10 and 13). The primaryP is an exception; it sends
the CHK messages with the wholeLHP (not a digest;
Pseudo 11, line 8).

When the client receives2f + 1 CHK messages with
valid MACs and matching digests, it sends aRCHK message
to the Passive replicas with theLHc piggybacked (LHc

is equivalent toLH of the primary). Otherwise, ifTimer1

expired, the checkpoint is postponed to the next attempt.
After validating the request, aPassive replica appendsLHc

to its local history (Pseudo 11, line 12), and replies to the
client with a CHK message. When the client receivesf

such messages from thePassive replicas, it sendsCOM

message to all replicas (Active andPassive) to commit the
checkpoint (Pseudo 10, lines: 28 to 30). The replicas, then,

truncate the256 requests from theirLH and increment their
checkpoint counterni (Pseudo 11, lines: 17 and 18).

As we notice, a checkpoint does not succeed unless all
the replicas responded correctly. Thus, if a checkpoint failed,
replicas should truncate2×256 requests instead of256 in the
next attempt. More generally,i× 256 requests are truncated
if i consecutive failed attempts occurred.

Pseudo 10CHKclient()
1: {Send RCHK to all Active replicas}

2: for i ∈ Active do
3: m ← 〈RCHK〉µc,i

4: Send(m, i)

5: end for
6: if T imer2() 6= φ then{Until T imer1 expires}

7: while ‖P roofCHK‖ < 2f + 1 andi ∈ Active do{Until collecting 2f + 1 matching
CHK}

8: Receive(ri, i)∧ V erifiy(ri)

9: if ri.LH = j.LH andri.ni = rj.nj ; ∀j ∈ R1 then

10: R1 ← R1 ∪ {ri}

11: end if
12: end while
13: end if
14: {Send RCHK to all P assive replicas}

15: for i ∈ P assive do
16: m ← 〈RCHK, LHc〉µc,i

17: Send(m, i)

18: end for
19: if T imer2() 6= φ then{Until T imer2 expires}

20: while ‖P roofCHK‖ < f + 1 andi ∈ P assive do {Until collecting f matching ACK
CHK}

21: Receive(ri, i)∧ V erifiy(ri)

22: if ri.LH = rj.LH andri.ni = rj.nj ; ∀j ∈ R1 ∪ R2 then

23: R2 ← R2 ∪ {ri}

24: end if
25: end while
26: end if
27: {Commit checkpoint nc}

28: for i ∈ P assive ∪ Active do
29: m ← 〈COM, ni〉µc,i

30: Send(m, i)

31: end for

Pseudo 11CHKreplica(mc)

1: {Handling checkpoint requests}

2: if MAC(mc) is F alse or mc.tc ≤ ti[c] then

3: return F alse

4: {request is not valid}

5: end if
6: if m.type = RCHK then{RCHK message}

7: if i = P then{if Primary}

8: r ← 〈CHK, LHi, ni + 1〉µc,i

9: else ifi ∈ Active then{Send digest only}

10: r ← 〈CHK, D(LHi), ni + 1〉µc,i

11: else{Passive replicas update their LH}

12: LHi ← mc.LHc

13: r ← 〈CHK, D(LHi), ni + 1〉µc,i

14: end if
15: Send(r, c)

16: else ifm.type = COM then{Commit request}

17: ni ← ni + 1

18: T runcate(LHi, ni) {truncate 128 LH entries}

19: end if
20: return T rue

16 2010/12/20

