View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Trustful Cumulus Clouds
Technical Report
LPD-REPORT-2010-10

December-2010

Rachid Guerraoui Maysam Yabandeh Ali Shoker Jean-Paul Bahsoun
School of Computer and Communication Sciences, Toulouse Informatics Research Institute, I.R.I.T,
EPFL, Switzerland University of Toulouse
firstname.lastname@epfl.ch firstname.lastnameQ@irit.fr
Abstract this occurs more than 50 times in the yéaiThe (modest)

Cloud computing offers an appealing business model and it financial recompense does not even cover the server unavail-
is tempting for companies to delegate their IT services to aPility caused by attacks, e.g., denial of service (DoS), no
the cloud. Yet, a company might find it risky to do so for by failures in the cpnnectlng path betweer_1 a client nod_e and
sensible services and to depend entirely on a single pmvide the cloud. Preventing DoS attacks, for which Amazon is not

which can be vulnerable and constitute a clearly identified Viable, is still an open problem, and reportedly very hard
target for attackers. We explore in this paper a replication {0 handle in practice. Recently a code hosting service ex-
approach where copies of the same IT service are p|aceaper|enced for instance more than 19 hours of downtime af-
on several (cumulus) clouds that are not only independentter a distributed DoS attack on the computing infrastrlﬂ:_tur
but actuallyunaware of each other. Replica consistency is €Nt from Amazon [2]. Moreover, having the computation
ensured using CBFT, a new BFT protocol designed for wide '0cated over a wide area network (WAN), and far from the
area networks. CBFT uses a primary to handle contention €li€nt, increases the unavailability risks, due, for extyio
among multiple client requests but shares the load of multi- 21 intermediary network device failure. o
casting and encrypting them among the clients. We evaluate 11is state of affairs calls for the good, oféplication
CBFT on an Emulab cluster with a wide area topology and technique [3, 4] to obtain dependable services out of cheap,

convey its scalability with respect to state of the art BFT Y€t unreliable, components; namely services offered by the
protocols. cloud. Assuming the independence of replica failures, a BFT

o protocol involving ¥+1 replicas ensures the safe progress
Keyyvords D|s.tr|buted systems, fault-tolerance, cloud com- 45 4 service, as long as less th@nl of the replicas are
puting, Byzantine faulty [5, 6]. In the extreme case, to promote failure indepe
. dance, the replicas should however be located in geograph-
1. Introduction ically distributed clouds, i.e, what we calmulus clouds.
Cloud computing is appealing for its cost effectiveness and Failures that prevent the access to one replica in a given re-
elasticity. In terms of reliability, the cloud might howave gion would have a small probability to affect replicas ineath
not be a panacea. Whenever a cloud server fails, a servicaegions. For instance, even after a DNS attack or tier-lerout
level agreement (SLA) stipulates the proportion of the paid failure in a given region, the replicas in other regions $thou
fee to be returned by the cloud provider. The cheap price be still reachable.
of cloud services, however, might imply that one could not Nevertheless, a geographical distribution of replicag ove
expect much from the SLA. Amazon EC2 SLA [1] states cumulus clouds raises new challenges such as high latency
for instance that only 10% of the paid bhill (excluding one- and communication variance. Current state of the art BFT
time payments made for reserved nodes) will be returned, protocols [6, 7, 8, 9, 10] are typically designed and op-
for longer than 5 minutes loss of external connectivity, if timized for short network delays in local area networks
(LAN); and most of them rely on multi-cast (that is not yet
supported in WANSs) to enhance performance. Figure 1 de-
picts the performance of PBFT [6], Zyzzyva [7], and Q/U [9]
with 1, 10, and 50 clients in a WAN setting (60 ms delay, 1

199.95% annual uptime of 5 minute periods is less theBB times 5
[Copyright notice will appear here once "preprint’ opticnremoved.] minutes downtime.

1 201012120

https://core.ac.uk/display/147968502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1 : — 5
QU ——

1L PBFT -3 |
PBFT:b10 [z

09 r
0.8 r
0.7

0.6

Latency in sec

10 20 30 40 50 60 70
Throughput in op/s

Figure 1. State of the art BFT protocols in a WAN setting.

Figure 2. Cumulus clouds.

Mb bandwidth)?. (We faced implementation problems with
Zyzzyva). The performance of PBFT drops very quickly client. An attacker hosted in one of the clouds cannot obtain
when increasing the number of clients. Although Q/U per- the address of other replicas by compromising the replica in
forms much better than other state of the arts BFT protocols, Side that cloud or by monitoring its traffic. In fact, an aitac
because of contention between client requests, the latencyill not even know about the replication factor used by the
quickly increases with the number of clients. In short, the client. The failure of a replica, hence, remains independen
limited scalability of BFT protocols in a WAN is a major from the failure of other replicas, since the attacker cowitd
barrier for adopting a replication approach over multiple 0cate the other replicas after compromising one of them.
clouds. This paper is a first step towards putting this approach to
Furthermore, most of these BFT protocols involve inter- Work. We present CBFT, a BFT protocol that offers a high
replica communication and this hampers failure indepen- independence of failures by distributing the replicas over
dence. An attacker inside the cloud can obtain the locafion o cumulus clouds. CBFT scales to hundreds of clients due to
all replicas after compromising or monitoring the trafficon ~ two simple design decisions.
single replica. Locating the replicas, an attacker coutdifo
his attacks on them. With enough resources and motivation,
an attacker can at anytime orchestrate a DoS attack against
a specific node, causing the unavailability of that node. In-
stead, arobfuscated BFT approach, where replicas are un-
aware of each other, and even if they have no idea about the

1. To handle contention between multiple client requests,
we make use of @rimary replica. All requests are first
assigned an order by the primary before getting executed
by the replicas. The requests in all replicas are thus exe-
cuted in the same order regardless of the message arrival

replication scheme, relies on the client to increase the-ind reordering.

pendence of replica failures. 2. A high load of client requests on the primary implies a
However, replica communication is essential in any state large number of clients issuing them, which means more

machine replication protocol. Replicas can interact diyec potential processing units. Pushing the load of encrypting

(as in traditional BFT protocols) or indirectly through a ~ and multi-casting a request from the replicas to the is-

trustful mediator. The former option is not suitable for an suing clients, therefore, enables the system to efficiently
obfuscation approach. On the contrary, the second option benefit from the client processing powers.
can have the replicas communicate through a trustful and

secure mediator, i.e., the client. We do assume clients can '€ load on the primary in CBFT is minimal: it receives
fail by crashing but do not behave maliciously. the request from the client and returns the reply. The client

We argue that this assumption makes sense for appli-is then_ responsibl_e for encrypting and s_ending the request
cations where cloud customers are trusted members of the?lOngside the assigned order (by the primary) to all other
same organization; e.g., airline ticketing services thrat p replicas.)
vide access to different agencies. In an airline ticketiyss s In order to enhance performance, CBFT uses speculation,
tem, the company hosts its service on a private/public cloud Which however requires a recovery phase to handle failures.
It allows access for the ticketing agencies around the globe We addre§s_ this challenge using the recently pr(_)posednotlo
The ticketing agencies access the airline service via tieeir O abortability [12]: Replicas in CBFT belong either to the

cured and trusted servers, which are viewed as correctglien Active set or to thePasswe_ set. The protopolspeculatwe
by the airline service. phase operates on the Active set. Upon failure detectien, th

Figure 2 conveys the idea behind our approach: the cIoudsC”em eliminates thsus:picious replicas from theActjve set,
are oblivious to the replication procedure, driven by the 2nd replaces them with correct ones from Bessive set.
The protocol then resumes progress on the updated Active

2The experiments are performed in bftsim [11]. set.

2 201012120

We experimented CBFT on Emulab [13]. On such sys- example of such a bottleneck is multi-casting the request by
tem, CBFT scales to hundreds of clients, and its peak the primary. The multi-cast cost can be remedied in setups
throughput doubles that of the state of the art Q/U proto- such as local area network that support hardware multi-cast
col, its closest competitor. Nevertheless the cloud vendors might be reluctant in offer-

The rest of the paper is organized as follows. The back- ing the hardware multi-cast support due to its scalabitty i
ground is recalled in Section 2. Section 3 presents CBFT. sues [14]. Moreover, to make the replica failures as inde-
After presenting the evaluation results in Section 4, we dis pendent as possible, the replicas should be located in geo-
cuss some related work in Section 5, and then we concludegraphically separated clouds, where hardware multi-cast i
the paper in Section 6. not available.

2.4 PBFT

In PBFT [6], the client sends the request to all the replicas
including the primary. The primary determines a sequence
number and forwards the order to other replicas. To detect
Sthe faulty primary, all the replicas broadcast the received
order to ensure that all other replica has received the same
order for the request. Being ensured about the primary, all
the replicas broadcast the ordered request before exgcutin
it. This phase is necessary to detect the interference of two

2.1 Quorums vs. Agreement-based BFT Protocols primaries, which might happen duringew change. The

_ .) . client accepts the replies if they match.
BFT protocols differ in the following characteristics: be-

ing agreement-based or quorum-based, the number of re2.5 Zyzzyva

quired phases to commit (communication r_ounds), response|n zyzzyva [7], the client sends the request only to the pri-
latency, and throughput. In general, there is a trade-off be 51y However, after other replicas receive the request as
tween latency and throughput; to have high throughput, the \ye||"as its sequence number from the primary, they imme-
contention between two competing client requests must be giately execute it and send the reply to the client. The tlien
avoided by using a primary (basically in agreement based 4ccepts the replies if they all match. Otherwise, either the
protocols). The primary orders the client requests, and the rimary or some of the replicas are faulty. In this case, the

forwards them to the other replicas. Although this offers a first correct client can detect that and demand changing the
high throughput, the commit latency increases becauseof th primary.

extra phase in communicating with the primary. On the con-

trary, in general, quorum based protocols like Q/U [9] need 2.6 Chain

no such primary; but they have to deal with the problem of cpain [8] also uses a primary to avoid contention. All other
contending requests. replicas are ordered in a chain and each one forwards the
request to its successor. The last replica in the chain, i.e.
the tail, sends the reply back to the client. Although this
To tolerate malicious attacks, the messages must be authentechnique increases the end-to-end delay, the througimput i
ticated via some cryptographic techniques, such as Publicproves as the number of MAC operations by each replica is
Key Cryptography (PKC), which authenticates a single mes- close to one, i.e. the theoretical lower bound. The key idea
sage, and Message Authentication Code (MAC), which au- js to partition the replicas into two groups, where one group
thenticates a single channel (and its messages). PKC coulthnly verifies the client requests and the other only authenti
make the BFT protocols much simpler since it is verifiable cates the reply. After detecting the failure, the whole grot

even after the message is forwarded multiple times, but it is col aborts and thebort history is used to initialize another
around 100 times slower than MAC. The throughput can be instance of BFT protocol.

bounded by the number of MAC operations per request per-

formed by the bottleneck replica; because the sender has t?-7 Q/U

authenticate a message for each destination. The node thaQuorum-based BFT protocols such as Q/U [9] do not use

sends more messages to the other nodes, therefore, has to dp primary and the clients directly communicate with the

more MAC operations as well. replicas. Q/U requireSf + 1 replicas to toleratg Byzantine
faults. Nevertheless, clients can only contacpreaferred

2.3 BFT Throughput quorum (of size 4f+1) for optimum performance. This could

For large message sizes, the throughput is bounded by theesult in outdated histories in some replicas, which induce

input/output bandwidth of the bottleneck replica, i.eg th the cost ofsynchronization phase to the protocol. In this

replica that sends/receives more messages per request. Aphase, the outdated replica requests the up-to-date yhistor

2. Background

BFT protocols are replication-based solutions to the prob-
lem of tolerating arbitrary failures of software and hardsva
components. A BFT protocol can ensure safety and progres
up to a subset of one third of faulty replicas. Some BFT pro-
tocols requires more replicas. For example, if the apptoat

is replicated on four separate machines, then the BFT proto-
col can tolerate at most one faulty hard disk [5].

2.2 Authentication

3 2010/12/20

from f+1 other replicas (to ensure that the history is not 3. Design of CBFT
manipulated by some faulty replicas). 31
To tolerate Byzantine clients, Q/U requires the clients to)])
attach to the request a hash of the latest histories of tie rep CBFT IS designed to be deployed on cloud infrastructures:
cas. A replica rejects the client request if the hash does notPreferably, clouds of distinct providers, different ptaths,
match with the current history of the replica. In this cae,t ~ and located in geographically distinct locations arours th
replica sends an updated version of the history to the client Universe. Server farms like public/private clusters, uaft
in case it is a correct, but outdated client. If two clients ar 12ation systems, o6rids can also be considered. Different
accessing the replicas at the same time, neither of them carfouds are connected via the Internet, and they are not re-
complete the commit and the replicas state remain incon-duired to identify each other. System replicas can be chosen
sistent. This again induces another compigpair phase to from distinct cloud vendors seeking high independence.
make the histories consistent. In short, the repair phaste fir 32 Model
suppresses the replicas from progress. Then, the client tha ™
has noticed the inconsisten&opy the history prefix that is Our system model complies with the traditional BFT model
confirmed by at least#+1 replicas. (e.g., PBFT [6]). We assume a message-passing distributed
Although Q/U has the advantage of optimal communica- System using a fully connected network among nodes:
tion rounds in non-contention cases, it becomes very com- clients and servers. The network may (not infinitely) fail to
plex as well as expensive in the case of client request con-deliver, corrupt, delay, or reorder messages. Faulty gapli
tention. As a result, the protocol is not scalable to larganu ~ @nd clients may either behave arbitrarily, i.e., in a differ

ber of clients, where the probability of contention is very €ntway to their designed purposes, or they just crash (
high. nign faults). A strong adversary coordinates faulty replicas

to compromise the replicated service. However, we assume
the adversary cannot break cryptographic techniques like
- collision-resistant hashes, encryption, and signatures.

2.8 Abortability Safety properties need to hold in any asynchronous en-
The very notion of abortability [12] was introduced to sim- vironment. Clients might fail by crashing, but we don't as-
plify the complex recovery phases in the design of specula- sume them to behave maliciously (They are typically part
tive BFT protocols. An abort-able BFT protocol can abort of the same organization that delegates its IT to the cloud).
at any time upon request; afterwards, no client request will Liveness, however, is guaranteed only whenever the sys-
be serviced by the aborted protocol. A client can initiate tem iseventually synchronous; i.e., during intervals in which
abort if the current running instance of BFT cannot safely messages reach their correct destinations within some fixed
progress anymore (e.g., because of contention or a failure) worst case delay.
or the performance is not satisfactory (because of a change ,
in the workload or the communication medium). The client 3-3 Algorithm
requests can be safely serviced via a new BFT instance. TheCBFT is a BFT protocol that minimizes fault dependency
new BFT instance is initialized with the last state of the las among replicas and exhibits high throughput in WANSs. It is
BFT instance. client-based and avoids any inter-replica interactiopjite

As long as there a client requires a service, the switching cas communicate through the client instead. The protocol
process can be finished by the client. The new instance ofobtains good performance using speculation: requests are
BFT is initialized with anabort history that includes all executed speculatively on replicas. Cryptographic loads a
the requests globally committed by the replicas in the last requests multi-cast are pushed towards clients to reduce
BFT instance. The abort history is calculated based on theoverloads on replicas seeking best performance. CBFT uses
returned commit histories by the replicas. The design of an Abortability [12] techniques to recover upon failures.
abort-able BFT protocol specifies a way to obtain the abort CBFT, like any optimally resilient BFT protocols, re-
history, considering that (i) some replicas might be faulty quires ¥+1 replicas to tolerate Byzantine replicas, where
and not responding; (i) some of the responding replicas no more thanf replicas can be Byzantine. However, using
might be faulty and return invalid histories; and (iii) the 2f-+1 replicas only at a time, it can sustain faults, but cannot
histories in the replicas could be inconsistent because ofensure progress. Thus, CBFT launches the speculative phase
contention or a Byzantine behavior. on2f + 1 replicas, and upon failure it recovers by replacing

Quorum [12] is such an abortable BFT protocol. Similar the faulty replicas with the remaining The2f + 1 replicas
to Q/U, Quorum has the minimum latency under no con- are enough to collect correabort history.
tention. Although abortability has significantly simpliie Active/Passive Sets. At any time, the protocol distributes
the design of Quorum, it suffers from the same contention the replicas over two setgictive set andPassive set. The
problem as Q/U. In the case of contention or a Byzantine former is composed dff + 1 replicas (we call themctive
behavior, Quorum aborts. replicas); these replicas are used in Hpeculative phase,

Infrastructure

4 2010/12/20

Client

N

Primary

Replica — —

Replica — —

Figure 3. Message diagram of CBFT running on three repli-
cas.

speculatively. The othef Passive replicas are used as recov-
ery backups. Particularly, upon failure detection (i.ere
covery phase), the client identifigsSuspiciousreplicas (that
can include some correct replicas, and other faulty onad), a
replaces them witlf replicas from the Passive set. Then, the

5. Client replaces th&8uspicious replicas in the Active set
with the f Passive replicas.

6. The updated Active set becomes correct again, and the
collected abort history is used to initialize the new repli-
cas’ local histories.

3.4 Algorithm Details

We describe here the algorithm. (Because of space limita-
tions, some details and proofs are given in the companion
technical report [15]).

Client Role. To mitigate fault dependencies; CBFT clients
enroll important tasks. First, the client issues the regjizes
wards the primary that assigns a unique sequence number.
This is crucial to maintain consistency among differentirep
cas. When the client receives the assigned reply from the

new Active set becomes correct again, and the process (thgyrimary, it validates its contents by verifying the MAC. The

speculative phase) continues as designed.

Therefore CBFT algorithm consists of two main phases:
a speculative phase, and aecovery phase. The messaging
pattern of speculative phase of CBFT is depicted in Figure 3.
In this section, we present the phases briefly (Details e lat
sections).

Speculative Phase. The communication pattern of CBFT
in a failure-free scenario is simple, and it is concernedhwit
the Active set onlyZf + 1 replicas):

1.
2.

The client first sends its request to the primary.

executes it, and sends a reply back to the client along
with the assigned sequence number.

signed order (previously done by the primary) to all other
replicas (in Active set).

. Each non-primary replica executes the received request
by order, and returns the results to the client.

. A client accepts a reply only if all replica responses
match; otherwise the recovery phase is launched.

Recovery Phase. This phase takes place using both Pas-
sive and Active sets.

1. When client timer expires waiting f&f + 1 matching
replies, the client panics and sendRaaic message to all
Active replicas.

. At this time the client saves a list gfSuspicious replicas
that correspond to the remainder of the first matching
f + 1 replies (possibly a collection of faulty and non-
faulty replicas)

cuting new requests and send Aoort message back to
client with their signedocal histories.

. Client constructs ambort history collected from the
matching replies (more details later).

S

client takes the grip again to resend the signed requesgto th
other2f Active replicas, however this time, accompanied
with the sequence number. At that instant the client starts a
timer, waiting for replies.

The final decision is also taken by the client. Upon receiv-
ing all replies from all replicas before the timer expirdse t
client verifies their MACs and makes sure the replies con-
tents (i.e., the results) are matching. If so, the clientstbn
ers the request as complete; otherwise, the client launches
arecovery phase by collecting an abort history, cleaning the
Active set fromsuspiciousreplicas, and switching to it again

The primary assigns a sequence number to the requestyhen updated.

A Light Primary. CBFT pushes multi-cast and MAC
overload towards its clients. In contrast to traditionalTBF

. The client then sends the request together with the as-protocols, the primary in CBFT has almost the same load as

other replicas. The only additional task is assigning aeiord

to the requests, which requires very simple computations.
On the other hand, the primary is deprived from any multi-
casting duties that can transform the primary to a bottlenec
especially that individual MACs should be computed to ev-
ery replica. Instead, multi-cast is done by the client thrat o
chestrates communication among replicas as mentioned be-
fore.

Replicas. Excluding the primary, all replicas validate the
client request upon its receipt. They must verify requests
(with MACs, and sequence number) and then try to execute
them. Replicas discard a request.,, in caseo(rus:) >
0(Tnew); Wherer,.,, andr,,s; are the assigned order of
current request and that of the last executed request in the
replica local history, respectively. Each replica exestte
requestr,.,, if it has already executed all requestswhere
o(rj) < o(rpew). Otherwise, request,.,, is en-queued in
a buffer, waiting for the missing requests that fill the gap.

- Replicas, upon receiving the Panic messages, Stop eXegjng| replies are authenticated via MACs and are sent by all

replicas directly to the client.

Fault I ndependence. In spite of the diversity in the infras-
tructure and platforms of different clouds being used atpnc
the obfuscation aspects requires replicas to be unknown and

2010/12/20

(1) C1 sends PANICto all R (2) C1 accepts H1 from R1

(3) C1 receives H2 from R2 and
waits for another H

(4) C1 accepts H3 from R3 and
aborts with sucess

Figure 4. An example of aborting, wherg = 1.

unaware of each other. Replicas usually, need to communi-

cate for two purposes: to ensure a total order (atomic) tque
execution, and to validate response correctness (usuaily d
by the primary). Thus, replicas in CBFT communicate with
each other, howevddindly, but guided by a third party me-
diator, the client. As depicted in previous sections, CBFT
makes a unique total ordering possible through the client

R3. Thus, the phase continued tfif-1 non-conflicting local
commit histories are received by the client.

Building Abort History. A correct abort history is cru-
cial for safety. It preserves total ordering and consistenc
across different switching phases. The abort history is col
lected from the current Active set, to initialize replica#d
histories on a new correct Active set. Building the abort his

(that delivers the sequence number to all replicas), thoughtory AH is done by the client after receipt ¢gf+ 1 non-

replicas cannot directly communicate. The other issug; i.e
validating a response, is also performed by the client upon

matching all replica responses. Notice that assuming no ma-

licious clients is essential for this fault independencedtal.

3.5 Recovery Phase

TheRecovery phase is composed of three major steps: abort-
ing, collecting abort history, and cleanimfgtive set from
suspicious replicas.

Aborting. A client in CBFT considers a request as com-
plete if the receive@f + 1 Active replica responses are
matching, before the expiry of the timer. Otherwise, the
client stops sending requests and sen®arac message to
all replicas. Each replica, upon receiving the Panic messag
stops executing requests, signsAdoort message from itko-
cal history of committed requests, and sends it to the client.
The latter waits until it receives a sufficient number of gidn
Abort messages, i.e., the firt-1 non-conflicting ones. The
intuition is that it is necessary and sufficient for the numbe

conflicting signed abort messages from different replicas,
collected in theProof 4 g structure (as revealed before). The
steps can be summarized as follows:

1. The client generates histokysuch thatd H[j] equals the
value that appears at positign> 1 of f + 1 different
local historiesL H; that appear ilProofay.

2. If such a value does not exist for some positigthenz:
is the last index of.

3. Finally, AH is the longest prefix of in which no request
appears twice (exclude duplicate entries).

The resulting abort history AH thus includes all the glob-
ally committed client requests as well as some partially-com
mitted ones; for example, if the request is received by atlea
f+1replicas but not all of them. The AH is used to initialize
the new Active replicas’ histories (more details in [15])).

Eliminating Faulty Replicas. A client in CBFT attempts
to replace faulty replicas in the Active set with correct®ne

of received correct commit histories to exceed the number of from the Passive set; thus detecting the faulty replicas is

faulty ones; knowing that faulty replicas might not respond
at all. Aborting is achieved as follows:

1. The client waits for the firsf+1 local commit histories
to be received.

. If no conflicting entries among thg+ 1 received local
histories found by the client, it stops receiving new histo-
ries, and collects th¢ + 1 messages in &roofapy set.
That is used to form the abort history AH later.

. Otherwise if the client identified commit histories with
conflicting entries it waits for new local histories (since
definitely there are correct clients that did not respond
yet). The loop continues from step 1 again.

Figure 4 presents an example where the first two histo-
ries returned from replica®, and R, are conflicting, con-
sequently the client has to wait for the history from replica

mandatory for progress. As previously explained, upon the
client timer expiry; if no2f + 1 matching replies were re-
ceived from Active replicas; the client follows a safe pro-
cess to eliminate the faulty replicas by categorizing espli
senders as correct, suspicious (these might be Byzantine
or not). Sincef maximum faulty replicas are assumed, then
f + 1 out of the received messages should correspond to
correct replicas (the matching ones). Therefore the gltent
be on the safe side, considers the remaining Active replicas
suspicious, and replaces them with thePassive replicas.

The Active set thus compriseg +1 correct replicas. The
client initializes them with the abort history AH to restore
system state, and the protocol continues as designed.

3.6 Checkpointing and State Transfer

Since CBFT launches a recovery phase upon fault detection,
and this phase requires executaimrt history, then switch-

2010/12/20

ing from Active set to another (it is actually the same Active CBFT does. In addition, although Q/U is client-based, it en-
set, but cleared out from faulty replicas) will be expensive forces inter-replica interaction upon failures, which sk
the abort history is large. Consequently, this leads us B mi replica failures more dependent. Note that, as mentioned

imize the local history size. Thus we desigr.ightweight above, Q/U can overcome this by not using preferred quo-
checkpointing system that truncates local histories ekery rums, reducing however its performance further. Regard-
steps g can be 128, 256,...). ing fault scalability, Q/U exhibited [9] great performance

In addition, since requests are executed on the Active setover agreement-based protocols; we expect Q/U to dominate
only (under normal conditions), then the Passive replicas CBFT in this sense, though we did not experiment our pro-
will have old state versions, especially systems that are as tocol for f > 1.
sumed reliable for speculative BFT protocols; in this chse t Quorum [8] also shares some aspects with Q/U; mostly
abort history becomes enormously large. For that, we build since it is client-based and involves only two communigatio
our checkpointing system to keep Passive replicas states upphases. However, Quorum also suffers from interference
to-date (except for the last non-checkpointed offset retgue under contention; this makes it hard to deploy on reliable
that are fewer thark). Therefore, the Lightweight check- contended services. Note that we faced some difficulties in
pointing protocol proceeds as follows (more details inJ15] experimenting Quorum on our environment because of the
use of multi-cast (especially for large number of clients).
Therefore we do not provide results for Quorum except with
a micro-benchmark.

On the other hand, we do not pretend perfection in CBFT.

1. The client requires checkpoints from Active replicas pe-
riodically by sendingRc i (for example, when the se-
guence number moklbecomes zero)

2. Each replica sends its last checkpoint digest? K; af- The protocol is inherently speculative and outperform oth-
ter truncatingk requests (one replica should send com- ers only in best cases, i.e., when there are no faults. Under
plete requests). failure the protocol should abort to another Active set, and

3. The client sends the received messages/digests’ to this imposes additional costs represented by switching de-
the Passive replicas. lays (Section 4.8).

4. Passive replicas executes their missing requests found i 4 - Experimental Setting
CHK, and replies withrAC K to the client.

5. When the client receivep AC K messages, it sends a
commitCOM requestto all (Active and Passive) replicas
for final commit.

CBFT experiments are performed on 23 64-bit Xeon ma-
chines with 2 GB of memory employed on Emulab [13]
cluster. No virtualization is used, thus simulating cloud e
vironment on real machines. Each replica runs on a sepa-
As presented above, the checkpoints are initiated and con-rate machine, and the clients are scattered over 20 machines

trolled by the client. This is crucial to respect obfusca- All machines are connected using a star topology. The max-
tion; and here again, replicas are communicating indiyectl imum bandwidth of the network is set to 100Mb. We set it

through the client. to this high value because each machine can host up to 10
clients; and as we will see in the experimental results, the
4. Evaluation actual bandwidth that a client can use over a WAN is far be-

low this limit. The end-to-end (E2E) delay is set to 20 ms

. ~and 60 ms, depending on the setup.
CBFT acquires its robustness and performance through vari- Fqr each setting, we have run fafb benchmark? (same

ous characteristics: (1) it needs onlf3l replicas to tolerate yanchmark used in PBET [6]) experiments using different
f arbitrary faults (though speculative case communicasgon i payload sizes: 0/0, 0/1, 1/0, and 1/1. Without a payload, the
done or2 f +1 Active replicas only atatime). (2) Itrelieson gjze of request and reply messages are 66 and 88 bytes,
clients to multi-cast request and not on replicas. (3) leosd respectively. The fault factorf, is equal to one, and the
requests using a primary that handles consistency. Finally humber of replicas is three.

(4) CBFT can be efficiently setup aumulus clouds, scat- Q/U experiments are also done on the same environment;
tered on distant locations and maybe from different vendors except for a single difference where we needed six replicas

to ensure higher levels of failure independence. (5f+1; for f = 1) instead of three, as this is the number
The closest competitor to CBFT, i.e., Q/U [9], requires required by Q/U [9] to operate.

at least §+1 to toleratef Byzantine faults. Additional fees
shall be paid with largerf. Despite the use of preferred 4.3 Benchmark

quorums (of size A+1), Q/U provides less throughput than We present here the results on a benchmark, where only one

CBFT. This also makes Q/U more susceptible to failures un- . _ .. - ; : : .
o .) client is accessing the replicated service. Figure 5 dyspla
der which its performance drops dramatically. This becomes g P g

lucid when the number of clients_increases; partly beCause3ln a/b benchmarksa andb correspond to request size, and response size
Q/U does not make use of a primary to order request asin KB, respectively.

4.1 Overview

7 2010/12/20

350
CBFT xxxxxi CBET
QU m— 1200 QIU |
300 Quorum s
250 o 1000
2 g
£ 200 < 800
>
o o
& 150 5 600
S o
- 2
100 i E 400
50] 200 .

0 0

E2E = 20ms EéE = 60ms E2E = 20ms E2E = 60ms
Figure 5. Commit latency when only one clientis used. Figure 6. Peak throughput of CBFT vs Q/U for both E2E
latencies: 20 ms, and 60ms.

the latency results for both CBFT and Q/U by setting the
end-to-end (E2E) latency to 20 ms, and 60 ms. We do not
plot the results for all benchmarks (0/0, 1/0, 0/1, 1/1) as¢h
are very close; thus we only choose one of them (the one
with minimal latency).

When the E2E latency is set to 20 ms, CBFT achieves a
latency of 80 ms; Q/U on the other hand reaches half this
latency as depicted in Figure 5. We relate this difference to

tk;etnur:ber (r)fticonmmufn|ctatg)SFr_?unnd-ér|ps needled]Eor conn;— We do not plot a graph for the throughput since this has less
p'ete an operation. in 1act, L.b eeds a coupie of round- importance than latency in contention-free experiments.
trip messages; one message is sent to the primary to estab-

lish request ordering, and another is sent to communicate
with other replicas and execute the request. Q/U, however,4'4
achieves this latency since it completes the operation in aTo experiment the peak throughput, we used up to 200 con-
single round-trip instead of two. current clients. Again since the results are close in differ
Again, since Quorum (like Q/U) needs only two commu- benchmarks (i.e., 0/0, 1/0, 0/1, 1/1), we mention the result
nication phases to commit a request in a speculative way,for only one experiment. The throughput achieved by CBFT
they share same performance in a contention-free environ-is very interesting and inverts the leadership with Q/U wahic
ment, the results are shown clearly in Figure 5. it exhibits in contention-free cases. As depicted in Figire
Similar results are obtained upon changing the E2E la- our protocol achieves a peak throughput of 1300 op/s upon
tency to 60 ms. As shown on the same graph in Figure 5, setting the E2E latency to 20 ms.
the latency of CBFT becomes 240 ms. This was expected Q/U, however, could not exceed 570 op/s throughput
because the large E2E latency becomes the main impactingvhen the E2E latency is equal to 20 ms (Figure 6). These
factor in the service. The graph also conveys the fact that results are justified since; (1) CBFT relies on the primary
Q/U again achieves half this latency. As mentioned above, to order requests and thus avoids request collisions while
this can be demonstrated by the number of round-trip mes-accessing replicas; and (2) it pushes multi-cast and encryp
sages in the protocols. tion overhead towards clients. On the contrary, Q/U is not
Analyzing the above numbers, we notice that the latency resilient to a high number of clients and this forces the pro-
can be obtained by the number of round-trips needed for onetocol to load excessiv&epair and Sync phases, and the
request multiplied by the E2E latency. This means that the client backoff scheme. Note that this throughput is reached
system delay is the major factor overhead in the communi- for 80 clients in Q/U, which is the maximum value we could
cation; the operation execution and MAC handling times are get in the experiments.
almost negligible as compared to the E2E latency. Notice By setting the E2E latency to 60 ms, as expected, the
that, although Q/U client needs to contact at least 5 repli- throughput drops to 520 op/s and 167 op/s in CBFT and Q/U,
cas (i.e., the preferred quorum [9]), this does not impaet th respectively. This change is logical since both protocods a
latency as one might expect, and hence keeps Q/U leadingaffected by message round-trip delays. However, can be
CBFT in such experiments. noticed in Figure 6, the throughput ratio of CBFT over Q/U
The throughput with the micro-benchmarks again shows changes from 1/2 to 1/3 upon updating the E2E latency
that Q/U outperforms CBFT by almost a double. The through-from 20 ms to 60 ms. This might be explained by the extra

put of Q/U is 8 op/s when the E2E latency is 60 ms, whereas
the throughput of CBFT is 4 op/s. The ratio is almost the
same in an experiment with 20 ms E2E latency. These
throughput results follow from the above latency differenc
Since there is only one client operating, and the client does
not invoke a new request until it completes the previous one,
the latency will be inversely proportional to the throughpu

Peak Throughput

8 2010/12/20

250 0.18

CBFT 550 CBFT ——
QU o CBFT3 -
200 0.16 |
2 014t
£ 150 >
= g o2y
£ 100 T oaf
>
2
50 0.08
0.06 ‘ ‘ ‘ ‘ ‘ ‘
0 0O 200 400 600 800 1000 1200
E2E = 20ms E2E = 60ms Throughput (op/s)
Figure 7. Client scalability of CBFT vs Q/U for both E2E Figure 8. Performance of CBFT vs. CBFT3 for E2E latency
latencies: 20 ms, and 60ms. 20 ms.
o . . 0.16 ; ;
transmissions needed by Q/U because of increasing update o1 0/0 ——
failures. dl
0.14
4.5 Scalability ~ 0137
Yet, in another measure, i.e., client scalability, CBFT ¢om oy 012 1
nates Q/U (Figure 7). In the experiments, the results of Q/U % 0.11 ¢
started to fluctuate for more than 40 clients. Then, between 01rf
40 and 60 clients at least one run (out of four) was failing. 0.09 r
The protocol ceased to work for a number of clients greater 0.08
than 60 or 80, depending on the experiment. 0.07 : \ \ ‘ ‘ ‘
However, CBFT experiments finished successfully even 0 200 400 600 800 1000 1200 1400
with 200 simultaneous clients. CBFT can handle this high Throughput (0p/s)

Figure 9. Response time vs. Throughput of CBFT. The E2E

number of clients since it avoids requests collisions by hav .
latency is 20ms.

ing a primary replica that only assigns sequence numbers
(a simple operation), and by distributing the load of multi-
casting on clients to avoid replica bottlenecks. 4.7 Performance Traces

By observing Figure 7, we notice that the CBFT scalabil-
ity is not affected by the E2E latency; however Q/U scales
for 80 clients when E2E latency is 20 ms, and could not tol-
erate more than 60 clients by setting it to 60 ms. This can
be justified by the timeouts caused Bgpair phase delays
that Q/U launches more frequently as the number of clients
grows up.

Figure 9 presents the evaluation results of CBFT in the
setting where the E2E latency is 20 ms. The x and y axes
represent the throughput and the response time for each run,
respectively. The number of clients varies between 0 and 200
in the runs with 10 clients added per step. As depicted in
the figure, the change in the payload size has a negligible
impact on the performance since the bottleneck is caused
) by the network latency and not its bandwidth. The latency
4.6 CBFT3 Observation remains 80 ms up to the point where the throughput exceeds
To explain the good performance of our client-based ap- 400- 450 op/s. After this point, by increasing the throughpu
proach for CBFT, we run a comparison WiliBFT3, another the latency also increases up to 30% at a throughput point of
version of CBFT that use®f + 1 Active replicas instead of 1200 op/s (160 clients). Starting from this point, incregsi
2f + 1. Interestingly, we observed very close performance. the number of clients leads to an exponential increase in the
Figure 8 conveys this comparison. For clarity, we only commit-latency.
plot 0/0 benchmark, given that the other benchmark results Figure 10 conveys the results of the same experiment
are almost the same. The results depict the very facts thatwhen setting the E2E latency to 60 ms. Compared to Figure 9
the protocols performances rarely diverge starting from on the performance drops earlier, when the throughput reaches
client and until 200 clients. This stands as an experimental 170 op/s. After this point, the response latency increases
support for our claim that CBFT design features (and not the linearly up to 40%, as the number of clients grows.
number of Active replicas) play the main role in achieving As already mentioned, the closest competitors to our
its performance. protocol are Q/U [9] and Quorum [8]. We performed the

9 2010/12/20

0.36 ‘ : : : : 0.4

0.34 | 0.35 |
0.32 |
. 03¢
) z
Z 03¢t N
e g oy
= 0.28 | =
— —
0.2t
0.26 | CBFT ——
QMU /1 —eerre
0.15 | o) (VR J—
0.24 QU 0/1
7 —— S —
0 100 200 300 400 500 600 50 100 150 200 250 300 350 400 450 500
Throughput (op/s) Throughput (op/s)
Figure 10. Response time vs. Throughput of CBFT. The Figure 12. Response time vs. Throughput of Q/U and
E2E latency is 60ms. CBFT. The E2E latency is 60ms.
0.2 ; ;
i i H CBFT —— o 30% ‘misses --------
L (o) U R 2| no misses
il QM 1/0 - .l
016 I i QU O/L -
: : Lo Q/U 0/0 ot
D 0.14 T
> i 2 |
9 12t : 1 £ %
2 £ o
3oy P o
0.08 R R 2| :
s e
0.06 |
] 20 b e
0.04 L=zt — : : 10 ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 0 50 100 150 200 250

History size (nb of requests)

Throughput (op/s)
Figure 11. Response time vs. Throughput of Q/U and Figure 13. CBFT switching cost as a function of abort his-
CBFT. The E2E latency is 20ms. tory size, and missing requests in local history.

same experiments as CBFT with Quorum. Although we have running. This was expected because Q/U needs a single com-
shown above the response latency was lower: 40 ms and 12@nunication phase to commit. Soon, this gets changed signif-
ms for the settings with an E2E latency of 20 ms and 60 ms, icantly under contention since more phases are needed like
respectively; however we could not have more results with Repair andSync, in addition to thebackoff scheme applied
more clients because of multi-cast issues in the environmen on contending clients. However, notice on the same graph

Q/U on the other hand, and despite the number of replicasthat the latency of CBFT remains almost stable (80-100 ms)
required (5+1) to toleratef faults, dominates our protocol ~ €ven after reaching high throughput levels. Our protocol is
for a few number of clients; however, CBFT outperforms superior to Q/U when the client count advances.

Q/U for more clients, where the latter’s latency increases ~ Setting the E2E latency to 60 ms shows very similar re-
quickly. Q/U also provided little scalability in the number Sults to what has been conveyed, but of course with different

of clients as compared to CBFT. numbers. Thus, we considered it enough to keep Figure 12
We plot both Q/U and CBFT results (of E2E latency 20 for the reader to analyze without including any comments.

ms) on the same graph in Figure 11. As can be noticed, Q/UWe just note that, we have no explanation to the Q/U apex it

performs differently for benchmarks 1/1 and 1/0 in contrast reaches, at the very beginning.

with 0/0 and 0/1. Q/U exhibits a constant latency of 40 ms o

until reaching a throughput of 80-140 op/s (depends on the 4-8 Switching Cost

experiment), where, its latency grows to higher than 200 ms As shown above, CBFT achieves a good performance in

quickly; this is achieved when the number of clients ranges free-failure environment. However, under failures, treore

between 20 and 30. ery phase should be launched. The main expensive steps in
The other two benchmarks 0/0 and 0/1 in Q/U (also Fig- this phase are: aborting, collecting abort history, andcwi

ure 11), however, maintain a 40 ms latency until reaching the ing to a new correct Active set that includes initializinglie

400-450 op/s throughput; again where 20 to 30 clients are cas with the new abort history.

10 2010/12/20

Figure 13 shows the cost of this recovery phase as aavailable on the client side, and using these enables the
function of an abort history size fof = 1. We assume system to handle a large volume of requests.
that the history size can grow up to 250 requests (of size
1KB). We plot two different curves: one corresponds to >4 Abortable BFT
the case when replicas do not miss any request, i.e., allAdmitting that a single BFT protocol cannot fit all require-
abort history requests are already executed. The other onaments, the notion of abortability [8] has recently been pro-
corresponds to the case when one replica misses 30% ofposed to enable switching between BFT protocols whenever
the abort history requests (they are not executed yet); thisone could perform better, e.g., because of a change in the op-
replica might represent the Passive set. The figure shows thaerating environment. We make use of this abortability rotio
the switching cost increases with the history size and that i to switch betwee®QuorumandChain, when the load on the
is slightly higher in the case when replicas miss requests. system changes. Furthermore, CBFT leverages abortability
More precisely, the switching cost ranges between 20ms andby switching between Active sets: after a failure is detecte
30ms as the abort history size varies from 0 to 256. We the protocol replaces the suspicious replicas by correzs on
consider this cost to be very reasonable, provided thatisfaul from the Passive set, and uses the updated Active set again.
are supposed to be rare in environments that run speculative

protocols’ like CBFT. 6. Conclusion

This paper explores an approach where reliable IT services
5. Related Work are built on top of unreliable, yet cost-effectiveymulus
5.1 Obfuscated BFT clouds, i.e., geographically distributed clouds. Replich

CBFT falls into the category afbfuscated BFT protocols, the service, located on the cumu_lus _clouds,_ are o_bliy_ious of
where replicas do only see the client, thereby increasiag th each other, as well as of th? repllganon setting. D'St".tglt
independence to failures. To the best of our knowledge, Quo-th_e replicas over a WAN_(W'th a h|g_h latency and var|an<_:e)
rum [8] is the only BFT protocol that also belongs to this cat- raises new challenges in the design of a scalable, high-
egory. However, Quorum can operate with only a few clients, throughpgt BFT protogol. : .

while CBFT scales to hundreds of clients. Although Q/U [9] As a first step putting this approach to work, we intro-
does not have any inter-replica communication in usual sce—duce CBFT, a BFT protocol that takes up the challenges

narios, after an inconsistency is caused by contention or ao_]c _scallng agree_ment over a WAN. Two s_|mple design de-
faulty node, the replicas have to re-synchronize. cisions are behind CBFT performance. First, we make use

of a primary replica, avoiding contention between multiple
5.2 Client-based BFT client requests, to assign a sequence number to every teques
Second, we push the load of encrypting and multi-casting a
request from the replicas, which are the bottleneck of agree
ment, to the issuing clients. Our experimental results show
that CBFT scales to hundreds of clients in a WAN, while the
throughput of state-of-the-art BFT protocols quickly dsop
with the number of clients. CBFT could tolerate both faulty
replicas and clients by usingf31 replicas.

With few clients, the latency of CBFT, however, is higher
than that of client-based protocols such as Q/U and Quo-
rum [8, 9]. By applying the notion of abortability [8] in the
design of CBFT, and in contention-free environments, we
can switch to Quorum-like protocols, provided these do not
use multi-cast and achieve low-latency.

One key to the scalability of CBFT is to push the load of
agreement onto the client side. Quorum-based protocols,
such as Q/U and Quorum, benefit from the same design prin-
ciple. However, these notoriously do not scale with the num-
ber of clients. This is mainly because they are vulnerable
to contention between multiple client requests, which rsake
the state of the replicas inconsistent. Upon detecting an in
consistency, the protocol has to call a recovery procedure
to synchronize the replica states. CBFT benefits from a pri-
mary replica to handle contention and is hence scalable to
hundreds of clients. The drawback, however, is the extra la-
tency of communicating with the primary under contention.

5.3 Primary-based BFT

CBFT makes use of a primary replica to avoid contention
between multiple client requests. This has been used in many
BFT protocols such as PBFT [6] and Zyzzyva [7]. The
primary, however, mostly becomes the scalability bottténe

as it performs more cryptographic operations as well as
message transmissions. In particular, the lack of hardware
multi-cast support in WAN puts a high load on the primary
to multi-cast its messages. To address the scalabilitgjssu
CBFT pushes the multi-cast load on the client side. More
clients issuing the requests implies more processing units

11 2010/12/20

References

[1] Amazon.com, “Amazon ec2,” 2010. [Online]. Available:
http://aws.amazon.com/ec2/

[2] C. Metz, “Ddos attack rains down on amazon cloud,” 2009.
[Online]. Available: http://www.theregister.co.uk/28Q0/05/
amazonbitbucketoutage/

[3] F. B. Schneider, “Implementing fault-tolerant sendcesing
the state machine approach: a tutoridiCM Comput. Surv.,
vol. 22, no. 4, pp. 299-319, 1990.

[4] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,Commun. ACM, vol. 21, no. 7, pp. 558—
565, 1978.

[5] G. Bracha and S. Toueg, “Asynchronous consensus andbroa
cast protocols,Journal of the ACM (JACM), vol. 32, no. 4, pp.
824-840, 1985.

[6] M. Castro and B. Liskov, “Practical byzantine fault tcdece
and proactive recoveryACM Trans. Comput. Syst., vol. 20,
no. 4, pp. 398-461, 2002.

[7] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault toleranc&'GOPS
Oper. Syst. Rev,, vol. 41, no. 6, pp. 45-58, 2007.

[8] R. Guerraoui, N. Knievic, V. Quema, and M. Vuko&, “The
next 700 bft protocols,” irEuroSys ' 10: Proceedings of the
5th European conference on Computer systems. New York,
NY, USA: ACM, 2010, pp. 363-376.

[9] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Re-
iter, and J. J. Wylie, “Fault-scalable byzantine fauletaint
services,"SSGOPS Oper. Syst. Rev., vol. 39, no. 5, pp. 59-74,
2005.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Bar
“Hq replication: a hybrid quorum protocol for byzantine fiau
tolerance,” inOSDI '06: Proceedings of the 7th symposium
on Operating systems design and implementation. Berkeley,
CA, USA: USENIX Association, 2006, pp. 177-190.

[11] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe
“Bft protocols under fire,” inNSDI’08: Proceedings of the
5th USENIX Symposium on Networked Systems Design and
Implementation. Berkeley, CA, USA: USENIX Association,
2008, pp. 189-204.

[12] R. Guerraoui, N. Kngevic, V. Quema, and M. VukoE, “The
next 700 bft protocol,” EPFL, Tech. Rep. LPD-REPORT-
2008-008, 2008.

[13] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprsa
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An inte-
grated experimental environment for distributed systents a
networks,”SI GOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 255—
270, 2002.

[14] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birma
and Y. Tock, “Dr. multicast: Rx for data center communicatio
scalability,” in LADIS’08: Proceedings of the 2nd Workshop
on Large-Scale Distributed Systems and Middleware. New
York, NY, USA: ACM, 2008, pp. 1-12.

[15] R. Guerraoui, M. Yabandeh, A. Shoker, and J. Bahsoun,
“Trustful cumulus clouds,” EPFL, Tech. Rep. LPD-REPORT-
2010-10, 2010.

12

A. Appendix

In this Appendix, we explain CBFT in details. We present
a pseudo-code for the main functions of the protocol de-
scribing the two phasespeculative phase and theecovery
phase; in both client and server sides.

A.1 Notations

We denote the set of alB + 1) replicas byX. At any time
2f 4 1 replicas are in thedctive set, and the remaining
are in thePassive set. In addition, we denote the set of
suspicious replicas (all faulty replicas, and possibly som
correct ones) bysuspicious.

A messagen sent by processg to the procesg and au-
thenticated with a MAC is denoted lyn),,, .. In addition,
we denote the digest of the message mikyn). All pro-
cesses are assumed to own the public key of every other pro-
cess.

Notations for message fields and client/replica local vari-
ables used in CBFT are shown in Figure 14. To help distin-
guish clients requests for the same operatipwe assume
that clientc callsInvoke(req, ¢), wherereq = (o, t., ¢) and
wheret, is a unique, monotonically increasing clients time-
stamp. A replicar; executes-eq by appending it ta. ;.

c - clientD

P - the primary replica

t. - local time-stamp at client

t;[c] - the highest, seen by replicg
o - operation invoked by the client
LH; -alocal history at replica

sn; - sequence number at repliga
AH - abort history

Figure 14. Message fields and process local variables

A.2 CBFT Pseudo-code

The pseudo-code of the client) (includes a single method
Invoke(). This method initializes a request, authenticates it
to the primaryP, and sends it after adjusting a tinieimer
(Pseudo 1). When the timer expires anlgias not received a
reply from P yet, it launches th&kecovery phase. In fact,
some retransmission attempts are invoked before recovery;
however, we do not include this in the pseudo-code for
clarity.

Before recovery, th&uspicious set is formed by call-
ing Identify() function, so that, faulty replicas are ex-
cluded from theSpeculative phase. Pseudo 4 conveys
how this takes place. In words, the client looks up for the
first f + 1 matching replies; the corresponding replicas are
consideredcorrect, and the otherf replica are noted as
suspicious (though some of them are not, but they have de-
layed responses). Theuspicious set is then passed to the
Recover() method that updates th&-tive set, and launches
the Speculative phase on the (updated)tive set again.

2010/12/20

Pseudo 1Invoke(reg, c)

Pseudo 4ldentify(X)

Pseudo 8M atching(X)

. Sending to Primary P . Return Suspicious set . Check if replies matcl
1: " . 1: 1: {Cheifrepl h
2. m — (REQ,7eq)u, p 2! fori € X and|Correct| < f + 1do 2: fori € Xdo
3: Send(m, P) ’ 3 if |7 reply = rj.replyll > f+1:Vr; € X 3: if rj.reply = rj.reply andr;.D(LH;) =
4: i Timerqy () # ¢ then {Until Timerq expires} 4 then . rj-D(LH;)Vrj € Xthen
5. L o . Correct « Correct U {i} 4: M — MU {r;}
: Receive(rp, gny o P) A Verifiy(rp) 5 end i 5 o i
6: it snpew = NULL then 6: endfor 6 endg: !
7: {empty sequence #} 7. Suspicious «— Active \ Correct 75 M| = 2f + 1 then
g: Recover(P) 8. retum Suspicious 8: return Truwe
. end if . else
10: else{ Timery expiry} 10: return False
11: Recover(P) 11 endif
12: endit

Pseudo 5Abort History(Proof)

13: { Sending to the rest Active replicas}
14: tori € Active \ {P} do {Excludeprimary P}

15: (Creat ncludi) 1: {Build abort history }
. reate messages including sequence sy, e 40 . .
16: e (REO. req emmomyn 2 n—{anyLH € Proof} Pseudo 9Handle(m.., i)
: ' yreds Stmew /e g 3. foralli: 1 — h.size()do
17: Send(m, i) 4: forall LH € Proof do 1. {Handiing client request}
18; end for 5: it |h[i] = LH[4]| > f + 1then 2. it MAC(me)is Falseorme.te < t;[c] then
19: it Timerqg() # ¢ then {Uniil T'imer expires} 6 H[) — hi] 3: retum False
20: fori € Active \ {P}do 7: end if 4: {request isnot valid}
21: Receive(r;, i) A Verifiy(r;) 8: end for 5. endif
22: end for 9: endfor 6: if m.type = REQ then {Request message}
23: else{ Timers epiry} 10: {Remove duplicates} 7: if i = P then {if Primary}
24: R — U{received ry Vk € Active} 11 foralli: 1 — H.size()do 8: smy — smy + 1
25: Suspicious «— Identify(R) 12: forall j : i — H.size()do 9: Ezec(m) {execute request, appendto L H }
26: Recover(Suspicious) %‘31 if H[i] # H{[j] then 10: 7 (REP,rep, D(LH;), snidp, .
27: endi . AH — HJi| 11 Send(r <) '
28 { Verify if all responses are matching } %g else 12: else{not a Primary}
29. R «— U{ry Vk € Active} : retum AH 13: h _
k 17: end if if me.sn = sn; + 1then
30: { Cardinality check} 18 end for 14: sn; — me.sn
31: ifllMatching(R)|| # 2f + 1 then 19: endfor 15: Exec(m,) {executerequest, appendto L H }
32: {Identify suspicious replicas} 20: retun AH 16: e (REP, D(rep)p,
33: Suspicious «— Identify(R) 17: ie
34: Recover(Suspicious) : Send(r, c)
35 endif 18: end if
: 19: end if
Pseudo 6Panic(7“eq7 C) 20: elseifm.type = PANIC then {Panic message}
21: 7 (ABORT, me.te, D(ILH)y,
. 1. {sendPANICtoall Act] . ’
Pseudo 2V67"ny(7“i) 2 f{ e I’.oya ’ ive replicas} 22: Send(r, ¢)
3: ori € Lt;::]\;)lc 23: else ifm.type = I NIT then {Init message}
1: { Verify response validity } m—{ ’ Teq)“ai 24 if LH; = ¢ then {Empty local history}
2! if MAC(r;)isTrueandr;.te = req.tc then 4: Send(m, i) 25: LH; — AH
3: retun T'rue 5! endfor 26 end if
4: 6: while | Proof|| < f + 1andi € Active do {Unil :
5: o wumn Fal " ool ng f + 1 matching L H} 27 Bzee(me)
. return alse { I ” .
6: endif 7 R — Receive(r;, i) A Verifiy(r;) 28: T (REP.D(LH)) ;.
8 if r; . type = ABORT then 29: Send(r, e)
9: forall j € Rdo 30: endif
10: forall k € Rdo 3L rewn True
Pseudo 3RGCO”U67"(X) 11: it llr; LH = rp LH| > f+1
then
1. Proof « Panic(req, c) 12:
. , : Proof «— Proof U{r;.LH}
2. AH « AbortHistory(Proof) 13) J
3 .) . end if
. if X = P then {Primaryisfaulty} 14: end for
4 Active «— Active \ {P} 15: end for
5: Mal «— P 16: end if
6: I — Passive.pop() 17: endwhile
7: P «— I {NewPrimary} 18: rewm Proof
8 Active «— Active U {P}
9 Passive.push(Mal)

10: else{Xisa Suspiciouslist}

15 dctve — dctiven Passie Pseudo 7Server (id)
%2 end if“‘”i“e — X 1: while Truedo

15 Receive(me, c)
I m o (INIT,req, AH, Proof Ag)u, p Handle(me, id)

3
16: RE — INVOKE(m, AH) 4 endwhile

13 2010/12/20

Then, after collecting the local histories roof. The
client builds the abort histord i by calling Abort Hitory()
method (Pseudo 54 H represents the matching entries of
all the f + 1 local histories inProof (duplicates are also
removed). Note that, some entries of the local history will
not be included iM H. Actually, since these are notincluded
in all the local histories, then some clients have definitelly
completed the corresponding requests, and they will simply
re-invoke them again.

The recovery phase is launched by the client upon invok-
ing Recover() method (Pseudo 3). The client starts by call-
ing the panic() method; thus, it sends BANIC message
to all Active replicas. As depicted in Pseudo 6, the client
waits for the firstf + 1 ABORT messages. Then, it checks
whether the replies are non-conflicting; if they are, it wait
for further replies to be received. However, whgr- 1 of
the received replies match, the client stores them (as well a
the local historied.H) in a Proof set (Pseudo 6; lined:1
and12). Proof is used later to build the abort histoA/H .
Since a maximum of replicas can be Byzantine, the client
must eventually receivg + 1 correct replies. In addition,

PANIC messages are retransmitted if the network delays

their time-stamps, the request is executed (i.e, apperaded t
LH). If the replica is a primary, it increments its sequence
numbersnp and appends it to the reply. The non-primary
replicas, however, need to make sure that the received re-
quest is not already executed (Pseudo 9; lingsnd 14).

In addition, if some requests; with sn; < sn,., are not
executed yet, the replicas buffer the new request until the
missing (actually delayed) requests arrive (We do not con-
vey buffering in the pseudo-code for simplicity).

Replicas handlePANIC requests by ceasing to exe-
cute further requests, and then sendiigO RT replies that
comprises their local history diges® LH) (Pseudo 7). On
the other hand/ N IT requests are used by replicas to exe-
cute any missing requests in their local histories aftepvec
ery.

B. Correctness
B.1 Commit Certificate

Proposition. Any completed request by the client has been
committed by the Active replicas.
Proof. The client in CBFT completes a request only if it

are longer than expected; however, we strongly assume thahas receivedf + 1 matching responses including the local
this should not happen in the environments that are supposedhistory digestsD(LH;) of the Active replicas (Pseudo 9,

to run speculative protocols like CBFT.

On the contrary, wheareceives a reply from the primary
P, it verifies its MAC and the corresponding time-stamp
(Pseudo 2). The client then, prepares to send the regegst
to the remaining replicas in thdctive set (Active \ P);
however this time, it appends the sequence nursher(al-
ready assigned by’) to req, and signs it with the MACs
of the Active \ P replicas. The clientd) then waits for2 f
replies to be received from the replicas (thus the total toun
becomef + 1). Again, if the timerTimer, expired be-
fore receiving the supposed replies, recovery will be ik

(some retransmissions have been removed for clarity). Oth-

erwise,c checks if all replies are matching (Pseudo 8) to
complete the request; if they are not, the client recovees af
collectingsuspicious replicas.

Finally, the client in Pseudo 3 removes tRespicious
replicas from theActive set and replaces them with the

Passive ones. Therefore, the active set becomes correct

again, and ready to enter tS@eculative phase by invoking
the request (after initializing the local histories of thean
replicas). Note that, the special case of faulty primary is
treated in a bit different way than other replicas. In fddh e
client has not received a reply frombeforeT imer; expiry,
P is simply replaced by another replica from tRessive
set (i.e., no need to replagereplicas).

The pseudo-code of the server side is simple in CBFT.
Itis represented by receiving requests from clients and han

dling them (Pseudo 7). Handling requests of various types

occurs differently:R E(Q messages are ordinary requests; af-
ter validating their MACs, and checking out the validity of

14

line 31), among whichf + 1 replicas are correct. Recall
that, local histories I{ H;) are uniquely defined sequences
of requests, which represent the replica state at any time.
Then, since a correct replica appends the new request (upon
execution) to its local history before sending thé& digest
(Fxzec method in Pseudo 9), then these digests represent an
indication for the client certifying that its request hagbe
committed successfully.

B.2 \Validity

Proposition. Any request that is found in the commit/abort
history must have been sent by some client.

Proof. A client commits a request only if all the received
commit histories [LH) of the Active replicas are matching
(Pseudo 1, line 31). Thus, at legst 1 correct replicas must
have executed the request, and appended itHo On the
other hand, a replica executes (i.e., appendsH) a request
messageRFE(Q (or INIT message) only after validating
its sender identity; that should be some client. In addjtion
to avoid duplicates inLH, a replica always maintains and
checks the last client time-stamgc| (Pseudo 9, line 2).

As for the abort historyAH, since it is collected from
f + 1 matching LH (Pseudo 5); thus, all requests in the
AH are sent by some client (follows from the previous
paragraph). As forAH duplicates, they are removed by
construction (Pseudo 5, lines: 10 to 15).

B.3 Termination

Proposition. Aborting from the Specultive phase eventu-
ally occurs.

2010/12/20

Proof. CBFT runs the Speculative phase until: (1) the B.7 Init Ordering

client detects non matching responses from replicas or (2) Proposition. INIT history is a prefix for any commit/abort
its timer expires. In both cases, the client should abort the history.

Speculative phase by sending’al N /¢ messages to all the Proof. Every correct process must initialize its local his-
Active replicas (for progress, it keeps sending such mes- o1 yith some validinit history before sending any mes-
sages until receiving the needewORT messages). The sage (Pseudo 9, line 23). Since any common prefixof all
replicas should eventually receive tANIC messages \qjig 1pt histories is a prefix of every singlit history I,
(according to our assumption that sent messages are not ing, ;s p s a prefix for every local history sent by a correct
finitely delayed or dropped by the network). Thus, at least rgpjica. 174t ordering for commit histories immediately fol-
f + 1 correct replicas should senrdl BORT messages to _

the client (Pseudo 6, line 11). When the client (eventually) |, the case of abort historieg: + 1 correct ABORT
receivesf + 1 matching ABORT messages, it aborts the egsages are received by a client upon aborting a request.

request (since the clients can not be malicious). The ABORT message contains the replidca& (Pseudo 9,
line 21) that haveC' P as a prefix. Thus¢C' P is a prefix of
B4 Lemmal any abort historyA H.

Denote the state of the local history of replicaupon ap-
pending requesteq to LH; by LH!“* . Then, for any mes- ~ B.8 Progress

sagem sent byr; upon appending té H; with history LH]" Proposition. Clients eventually receive replies to their re-

, LH]“"is a prefix of LH™. In other wordsLH,;“/ remains quests.

a prefix of LH; forever. Proof. Recall: we assume that the network can not de-
Proof. Let the current statd H; of some replicar; be lay messages infinitely. Thus, we suppose any sent mes-

LH;“. A correct replicar; modifies its local historyLH; ~ sages to reach its destination within a maximum délai

by sequentially appending any new requesto LH;; in the Speculative phase of CBFT, clients wait for responses

particular, appending to its prefixH;“ (Exec function in from replicas twice: (1) waiting for the primarn’¢mer:,
Pseudo 9). Henc®,new requesin, LH; “* remains a prefix ~ Pseudo 1, line 4), and then (2) waiting for the othetive

of LH;" forever. replicas ("imers, Pseudo 1, line 23). Adjustirifimer; and
. _ Timers for a duration o6 +¢ (i.e, the delay for a complete
B.5 Commit Ordering request round trip + the expected execution time at replicas
Proposition. Commit histories can not contain requests in ensures that the client will eventually recei/e+ 1 replies
conflicting orders. from the Active replicas.
Proof. Assume, by contradiction, that there are two com- In the Recovery phase, the client also waits fgr+ 1
mitted requestseq andreq’ # req (sent by two clients: non-conflictingABO RT messages from replicas to switch

and¢’, respectively) with different commit historiés., and ~ (Pseudo 6). This must occur since at legist 1 Active
h,eqr, SUCh that, neither is the prefix of the other. Since a cor- replicas must be correct. A timer in this case can be adjusted
rect client commits a request only when it receiggs+ 1 to 26 + ¢ also to ensure progress. This represents the time
identical LH digests from replicas (Pseudo 1; line 31); then, for the PANIC messages to reach the replicas + handling
there must be a correct replicathat sentD(h,..,) tocand ~ time at replicas + the delay o BORT messages from

D(hyeq) to ¢’ such thath,., is not a prefix ofh,..,, nor vice the replicas to the client (however this is not shown in the

versa. A contradiction with Lemma 1. pseudo-code). Upon the expiry of the timer , retransmission
of PANIC messages is invoked again.

B.6 Abort Ordering Regarding the detection and replacemen$ofpicious

replicas, some progress issues might appear if the faulty
replicas are distributed among botlrtive and Passive
sets. Section C addresses this issue, and provides a switchi
optimization to ensure liveness.

Proposition. For any committed requestq, every commit
history h,.., is a prefix of any abort historyi /.

Proof. Considering a single replica; suppose thall a
requestreq and ABORT messagen such thath,., is not
a prefix of LH™. Sincereq is already committed, then it o L T
must be included i2f + 1 local histories from the Active C. Switching Optimization
replicas includingr; (Pseudo 1; line 31). But; does not The concept of switching from ondctive set to another
sendA BORT messages unless after it stops executing new is possible by the replacement ¢f Suspicious replicas
requests; thus; executed-eq beforem. Hence, by Lemma with other f Passive ones (Pseudo 4). Thes$aispicious
1, hyeq is a prefix of LH™. On the other hand, since an abort replicas can be faulty or just slow; thus, it is worth replac-
history is constructed fronf + 1 matchingL H digests sent ing them with new correct/fast replicas. This is suitable fo
by correct replicas (Pseudo 5), then, must be a prefixto small f (for instance f = 1). However, whery is large, and
all theseL H, i.e., to the abort historyl 4. the faulty replicas are distributed among tRessive and

15 2010/12/20

Active sets; liveness problems might show up, since faulty truncate the56 requests from theif. H and increment their
replicas can force continuous switching. A slight optimiza checkpoint counten; (Pseudo 11, lines: 17 and 18).
tion for switching solves this issue with paying a very lit- As we notice, a checkpoint does not succeed unless all
tle cost: Instead of electing the firgt4+ 1 matching replies the replicas responded correctly. Thus, if a checkpoitedai
to distinguish theSuspicious replicas, we give way to the replicas should truncafex 256 requests instead @66 in the
client to contact th&f + 1 replicas in order to choose the next attempt. More generallyx 256 requests are truncated
Suspicious Set. if 4 consecutive failed attempts occurred.

In particular, after the client receives tieBORT mes-
sages fromf + 1 replicas, it sends theNIT requestto all ~ Pseudo 100H K cjient()
(3f + 1) replicas instead of thdctive ones only. The first 1 {Snd Ro g g toall Active replicas}
2 f+1 received matching replies correspond to correct repli- % ore icjjggj;w“c v
cas, that are designated.dstive replicas by the client. The 41 Send(m, i) N
remaining f replicas form thePassive set. Starting from g
that instant, the client sends & () messages to théctive 7 whie | Proofc | < 2 + 1ands € Active do {Unil allesing 27 + 1 macting
replicas as usual. By this optimization; choosing theive g: Receive(r;, i) A Verifiy(r;)
0
1
2

. endfor
L if Timerg() # ¢ then {Until Tirmerq expires}

replicas is always done by consulting all replicas at onee, a g LH = -7"LH{3””}”'”1' = vyngiva € fathen
.. Ry «— Ry U {r;

thus, obtaining a possibly differentctive set upon distinct 11: it

Recovery phases to maintain progress. 12 cnavnie

. endif
14: {send Re g i toall Passive replicas}

15: fori € Passivedo

16: m — (Ropi. LHedp, ;

. . .. 17: Send(m, i)
D. Lightweight Checkpointing 18 endfor

i X i i L . i i 19: i Timerg() # ¢ then {Until T'imerq expiresk
The objective of Lightweight checkpointing is to maintain 20: whie | Proofc il < f + 1andi € Pasoive do {Unil mleing £ micing ACK
small size local histories H on replicas in order to reduce 21: Receive(ry, i) A Verifiy(r;)
the communication cost, in particular, upon moving from 22 Wrg LH = rj LHandr;.n; =r;j.n;iVvj € Ry ULz then

. . . 3: Ry — Rp U {ry}

the Speculative phase to thdkecovery phase. Lightweight 24: end it

checkpointing can minimize the local history sizes (256 for 52 _ ¢

. endif

instance); and thus reducing the switching time. Figure 13 %5 fircimznéhifjf‘;"&}Amwdo
conveys the switching time as a function of abort history 29: w — (com.), ,
size. Checkpointing appears more crucialassive repli- 325 | Sendlm, ©
cas have to be updated continuously, so that, they maintain—
an up-to-date state akctive replicas.

Lightweight checkpointing pseudo-code is presented in
Pseugdo 10 %nd Pseugo 11. 9I'hlza client triggers cF:)heckpointingpseUdo VIOH Kreptica(me)

1: {Handling checkpoint requests}

everyk requests (we use = 256). It sendsR¢ g x message 20 i MAC(me)is Falseorme.te < t;[c] then

to Active replicas (Pseudo 10, lines: 1 to 5) and starts atimer 3 e

Timery. Each Active replica validates thédRcyx (MAC 5: endif

and times-tamp), and send<’#/ K message to the client, ~ 9; '",7* 5 fem e e o)
A C'HK,; message sent by repligacontains: the digest of 8 T (CHK,LHj nj + Dy,
256 requests starting from its last checkpoint of numbgr 1%: sett € (“CLK ‘]“;? L{jd)”gn‘i'j})“ ‘
and the new supposed checkpoint counter 1 (Pseudo 11, 110 else{Pasverslicosupciethar L7}
lines: 10 and 13). The primar# is an exception; it sends 1%5 LH; — me.LH,

the CHK messages with the wholBHp (not a digest; 5, /= (7O 70 et e
Pseudo 11, line 8). 150 send(r, o)

16: elseifm.type = C'OM then { Commit request}

When the client receive®f + 1 C HK messages with 170 ny ey t1
valid MACs and matching digests, it sendBay x message %gf |, Trumeate(LHy, ng) {innate125 LA mvies
to the Passive replicas with theL H,. piggybacked [H, 20° rewm True
is equivalent tol. H of the primary). Otherwise, if"imer;
expired, the checkpoint is postponed to the next attempt.
After validating the request, Bassive replica appends H,.
to its local history (Pseudo 11, line 12), and replies to the
client with a C HK message. When the client receivgs
such messages from theussive replicas, it send€'OM
message to all replicasl¢tive and Passive) to commit the
checkpoint (Pseudo 10, lines: 28 to 30). The replicas, then,

16 2010/12/20

