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Abstract

We propose a semiparametric model for regres-
sion problems involving multiple response vari-
ables. Conditional dependencies between the re-
sponses are represented through a linear mixture
of Gaussian processes. We propose an efficient
approximate inference scheme for this semipara-
metric model whose complexity is linear in the
number of training data points, and show how
the mixing matrix and kernel parameters can be
learned by empirical Bayesian techniques. Our
inference technique exploits conditional inde-
pendencies between the latent variables and can
be seen as a variant of belief propagation with
nonparametric messages. We present experimen-
tal results on a meteorological task.

1 Introduction

We are interested in predicting multiple responses yc ∈
R, c = 1, . . . , C from covariates x ∈ X , and we would
like to model the responses as conditionally dependent. In
statistical terminology, we would like to “share statistical
strength” between the yc. Such sharing can be especially
successful if the data for the responses is partially missing.

Models related to the one proposed here are known in geo-
statistics and spatial prediction as co-kriging techniques
[2]. For example, suppose a spatial map of uranium con-
centration is sought after an accidental spill. Carbon con-
centration is easier to measure than uranium, so the space
can be sampled more densely, and these two responses are
known to be significantly (conditionally) correlated. In co-
kriging we set up a joint spatial model for both responses
with the aim of an improved prediction of at least one of
them (uranium). Our model can be applied to co-kriging,
but goes beyond many of the standard techniques in that
conditional dependencies are represented directly using lin-
early mixed latent random fields, and all free parameters

can be learned from the data using empirical Bayesian tech-
niques. Problems with missing data arise frequently in
statistics, for example as the result of sensor failures. If sev-
eral responses are measured for each covariate, dependen-
cies between the responses can be learned from the com-
plete data part and can be used to reconstruct the complete
sample. Other potential applications arise in computer vi-
sion, for example with the problem of estimating the pose
of a human figure from images. In this case the response
variables are the joint angles of the human body [1], and
constraints on human body poses imply dependencies be-
tween these angles. In all these cases it is quite common
for data sets to have missing response variables. Methods
that share statistical strength among multiple responses can
make full use of such data, in marked contrast to “indepen-
dent” techniques which fit each response separately.

Our approach is related to a nonparametric conditional ver-
sion of factor analysis where both the P latent factors
(which are mixed using the factor loadings) and the C addi-
tive independent components are represented by Gaussian
processes. This model is semiparametric, as it combines a
nonparametric component (P+C Gaussian processes) with
a parametric one (the linear mixing). We refer to the model
as extended semiparametric latent factor model (SLFM).

As in the case of simpler Gaussian process models, a sig-
nificant part of the challenge of working with the SLFM is
computational. In this paper we combine two very differ-
ent techniques in order to meet this challenge. First, we ex-
ploit conditional independencies between latent variables
through the belief propagation algorithm. Second, we em-
ploy the sparse Informative Vector Machine (IVM) frame-
work [4] in order to represent the approximate beliefs and
pass the messages in a way which scales only linearly in
the number of training points. We are not aware of pre-
vious work combining techniques from parametric struc-
tured graphical models and nonparametric random fields
on a level comparable to what we do here. Free parame-
ters are adjusted by maximizing a variational lower bound
on the marginal likelihood of the data. While most pre-
vious work for nonparametric random fields use more ro-
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bust techniques like cross-validation for this purpose, the
large number of O(P C) parameters precludes such strate-
gies here. It is straightforward to apply our method to mod-
els with non-Gaussian likelihoods, by approximating them
using ADF projections as in the single process IVM, but
this is not done here.

The extended SLFM presented here generalizes the work of
[8] by allowing for additional additive independent compo-
nents. This extension is significant in that the model of
[8] can only represent data whose responses lie in a P -
dimensional linear subspace, an assumption which is fre-
quently violated for real world data (and P < C). Ap-
proximate inference for the extended SLFM presented here
is significantly more challenging and requires genuinely
new techniques for propagating information between latent
variables (in the model of [8] the latent variables have a
deterministic linear relationship).

The structure of the paper is as follows. We introduce the
SLFM in Section 2. The approximate inference scheme,
a version of belief propagation with nonparametric mes-
sages, is developed in Section 3. In Section 4, we describe
our hyperparameter learning strategy. Experimental results
on a meteorological task are presented in Section 5, and we
close with a discussion in Section 6. We refer to [6] for
many details which do not have space here.

2 Semiparametric Latent Factor Models

In order to model the relationship x ∈ X → y ∈ R
C , we

introduce latent variables v ∈ R
C and assume independent

Gaussian noise: P (y |v) = N(v , diag(σ2
c )c). The prior

P (v |x) will be modelled using Gaussian processes. The
simplest possibility is to assume that the vc are independent
given x, i.e. P (v |x) =

∏

c P (vc|x). In this case we can
represent P (vc|x) as a Gaussian process (GP) with mean
function 0 and covariance function K̃(c):

E [vc(x)vc′(x′)] = δc,c′K̃(c)(x, x′).

This model will be called the baseline model or the in-
dependent model in the sequel. Note that the inference
and learning task simply decompose into C independent
ones, so even if there are dependencies in the data the pre-
diction under the baseline model cannot profit from them.
This can be a problem especially in situations where part
of the yc data is missing. On the other end of the spec-
trum, P (v |x) can be dependent Gaussian processes with
C(C +1)/2 cross-covariance functions. This setup will be
called naive. While being most flexible, the computational
and memory costs for inference are typically infeasible for
the naive method. If n is the training set size, we have to
deal with n variables at a time in the baseline model, but
with C n in the naive one.

We propose a model in which v |x are dependent in a flex-
ible adaptive way, yet inference and learning is much more

tractable than for the naive model. The key is to restrict the
dependencies in a way which can be exploited in inference.
We represent v using latent variables u ∈ R

P , v(0) ∈ R
C ,

where typically P � C, in that for a mixing matrix
Φ ∈ R

C,P we have

v = Φu + v(0). (1)

The components of (uT v(0)T )T are independent a priori.
The relationship to factor analysis is imminent from this
equation. Just as in FA our aim is to represent dependen-
cies which live in a space of lower dimension than the re-
sponses. However, our model is conditional in that x is
not modeled, while FA represents a complete joint density
model. Furthermore, the factors u and independent com-
ponents v(0) are flexible processes in our model and not
i.i.d. between cases, even if we condition on Φ.

The components v
(0)
c and up have GP priors with covari-

ance functions K̃(c) and K(p) respectively. The baseline
model is a special case (P = 0), but for P > 0 the vc

are dependent, and the dependencies themselves are repre-
sented by nonparametric latent random fields u. We refer
to this setup as semiparametric latent factor model (SLFM),
owing to the fact that the model combines nonparametric
(the processes u, v) and parametric elements (the mixing
matrix Φ). The model suggested in [8] is obtained by fix-
ing v(0) = 0. Our model is crucially more flexible in that
the responses are not restricted to lie in a P -dimensional
subspace.

Note that by integrating out the u processes, we obtain in-
duced cross-covariance functions for x 7→ v :

E[vc(x)vc′(x′)] = δc,c′K̃(c)(x, x′)

+
∑

p

φc,pφc′,pK
(p)(x, x′), (2)

and the naive method could be applied based on these. The
main goal of this paper is to devise a representation and
inference procedure which is significantly more efficient.

Suppose we observe some independently and identically
distributed data D = {(xi, yi) | i = 1, . . . , n}. We
are interested in approximating the predictive distributions
P (v∗|x∗, D), which requires the approximation of the pos-
terior P (v |D). Note that v = (vi,c)i,c, vi,c = vc(xi),
which consists of C n dependent variables, so even though
P (v |D) is just a Gaussian, it cannot be dealt with feasibly
for realistic n C. We can accommodate missing values for
yi,c effortlessly by simply dropping the corresponding like-
lihood terms. Note that if yi,c are given for some c, then all
vi = (vi,c′)c′ are constrained by this case.

We will make use of the following subindex notation:
xJ = (xj)j∈J , XI,J = (xi,j)i∈I,j∈J . A dot denotes
the complete range. Vectors such as u, v have two in-
dexes i (over cases) and c (over responses) or p (over latent



processes) respectively, where i changes faster. We write
uJ = (ui,p)i∈J,p ∈ R

P |J| and uJ,p = (ui,p)i∈J ∈ R
|J|.

3 Gaussian Process Belief Propagation

The informative vector machine (IVM) was proposed in [4]
in order to address large-scale binary classification and uni-
variate regression problems with Gaussian process models.
It can be applied to single process models, i.e. C = 1. In
a nutshell, the IVM selects an active subset I of the train-
ing set of size d and represents an approximation to the
posterior covariance matrix using O(n d) memory. I is se-
lected in order to greedily minimize an information-based
criterion which can be computed efficiently given the rep-
resentation. The insertion of a case into I is referred to as
inclusion. Just as in Bayesian online techniques, cases are
included (i.e. we condition on them) in a sequential man-
ner. The complexity of inference is O(n d2). For details
about the IVM and hyperparameter learning see [5]. In or-
der to motivate our work here, we note that the IVM frame-
work is a technique for representing the posterior belief for
a single random field. In this paper we show how it can be
used to represent messages and marginal beliefs in order to
drive belief propagation in a graphical model representing
a number of dependent fields.

If we applied the IVM technique to our model in the naive
way, we would have C n variables from which C d are se-
lected, leading to O(C3 n d2) time and O(C2 n d) memory
cost. This is similar to ignoring the particular structure of
a graphical model, i.e. considering it as a single clique. In
contrast to that, the baseline method scales linearly in C,
because the C fields vc are independent, i.e. the graph fac-
torizes completely w.r.t. c. In order to improve upon the
naive scaling, we need to exploit the conditional indepen-
dence structure in v (Eq. 1).

Variables represented by a graphical model can be depicted
in two dimensions of dependencies: between different vari-
ables in the domain (model dimension) and between data
cases (data dimension). The latter is usually trivial in para-
metric graphical models: the data cases are i.i.d. given the
parameters.1 In contrast to that, in nonparametric models
the data dimension has a rich structure: typically there is
no finite number of parameters which render the data inde-
pendent. On the other hand, the model dimension is trivial
in most nonparametric random field techniques we known
of, consisting either of a single variable only or assuming
pairwise independence between all domain variables (the
baseline method is an example).

In the SLFM we see that the vc are independent given u, so
the graphical structure is that of a tree if the up are collected
in one node.

1The graphical symbol for this conditional data independence
is the plate.

The graphical structure is
shown on the right. The
nodes in this tree extend
through the data dimen-
sion as well, so that u ∈
R

n P and vc ∈ R
n. We

can use the belief propa-
gation (BP) algorithm [3]
to maintain marginal pos-
teriors of the vc as more
and more evidence (com-
ponents of the yc nodes) is
included.

v1 vC

u

yC1y

Note that running BP on this network is challenging due to
the large number of components of each node. It is essen-
tial to combine the message passing scheme with the IVM
framework in order to represent beliefs and messages and
perform the local computations efficiently.

Just as in the single process IVM we maintain active sets Ic

for every yc marking the evidence already included. The
marginals over the vc are required to drive the forward se-
lection of the Ic and to adapt hyperparameters (see Sec-
tion 4). The evidence potentials have the form

Ψv(vc) = exp

(

−
1

2
vT

Ic,cD
(c)vIc,c + vT

Ic,cb
(c)

)

where D(c) ∈ R
dc,dc , dc = |Ic|, is diagonal. In our case,

D(c) = σ−2
c I , b(c) = σ−2

c yIc,c, but for non-Gaussian
likelihoods one can fit Gaussian potentials with other site
parameters. The edge potentials are Ψu→v(vc, u) =

P (vc|u) = N((φT
c ⊗ I)u, K̃

(c)
) where K̃

(c)
∈ R

n,n

is the kernel matrix for K̃(c) and φc = Φ
T
c,·, furthermore

Ψu(u) = P (u) = N(0, K ) with K = diag(K(p))p (re-
call that the u components are independent). Now suppose
new evidence is introduced in the sense that j is included
into Ic with site parameters bj,c, dj,c. This will change the
message

mvc→u(u) ∝

∫

Ψv(vc)Ψu→v(vc, u) dvc

which in turns modifies the messages u sends to vc′ , c′ 6=
c:

mu→v
c
′
(vc′) ∝

∫

∏

c′′ 6=c′

mv
c
′′→u(u)

Ψu(u)Ψu→v(vc′ , u) du.

The message mu→vc
remains the same. Finally, all

marginals have to be updated:

Q(vc′) ∝ Ψv(vc′)mu→v
c
′
(vc′),

Q(vc) because Ψv(vc) changed, and Q(vc′) because
mu→v

c
′

changed, c′ 6= c. In a nutshell, our conditional



inference approximation iterates between selecting a new
pattern j to be included into Ic and the update of the
marginals Q(vc) after each inclusion. The latter are re-
quired to score the remaining patterns for the next inclu-
sion. The key problem of applying BP to our nonpara-
metric setup is that messages have to be represented by a
number of parameters which grows as new evidence is in-
corporated. This situation is very different from BP on a
parametric graphical model where messages have a fixed
size. In order to limit the message growth, we need to ap-
ply a second approximation by assuming that all active sets
Ic share a common prefix I of size d. Our method selects I
first (common inclusion phase), followed by the choice of
Ic \ I for each c (second inclusion phase).

We will only sketch the representation and its update here,
the details are involved and can be found in [6].2 The mes-
sage mvc→u requires a standard IVM representationR1(c)
of size dc for the “prior” Ψu→v(vc, u) (as a function of
vc) and the “likelihood” Ψv(vc) with active set Ic, an in-
clusion into Ic triggers an update of R1(c) as described in
[4]. The message is a (Gaussian) function of uIc

, i.e. of uI

during the common inclusion phase. Our second approx-
imation consists of limiting the growth of mvc→u during
the second phase, in that the message must remain a func-
tion of uI even if Ic \ I 6= ∅. This does not mean that
mvc→u does not change during the second phase, but the
changes are “squeezed” through the bottleneck uI . The
message mu→vc

is supported by another IVM representa-
tion R2(c) which is determined by the product of the mes-
sages mv

c
′→u , c′ 6= c. It has the size of uI , i.e. P d.3

Finally, the maintenance of the marginal Q(vc) requires
an IVM representation R3(c) of size dc which is similar
to R1(c), but the “prior” term is ∝ mu→vc

instead of
∝ Ψu→v(vc, u).

An update during the second phase (say j into Ic) starts
with changingR1(c). The modified message mvc→u leads
to updates of R2(c

′) and R3(c
′) for all c′ 6= c (in BP terms

this means that the evidence at vc has to be distributed to
all other nodes vc′). Finally, the new evidence leads to a
change of R3(c) as well (the backward message mu→vc

is not changed). The second phase is run until the sum of
active set sizes

∑

c dc reaches a target value dtot. We will
describe the common inclusion phase shortly.

It is important to note that our representation of Q(v) as
a tree does not allow for efficient access to joint informa-
tion spanning more than one vc (the same restriction ap-
plies to parametric networks). This is not a problem during
the second inclusion phase or for hyperparameter learning
(see Section 4), but during the common inclusion phase

2The basic ingredients are Cholesky factors and low rank up-
dates thereof, similar to the single process IVM, but combined in
more involved ways.

3Without our bottleneck approximation, this size could be as
large as P

P

c
dc.

we would like to score a pattern j using the joint marginal
Q(vj), vj = (vj,c)c. Since the common active set size d is
significantly smaller than most of the dc (see comments be-
low in this Section), we can actually afford to run the com-
mon inclusion phase in the naive way (see Section 2) based
on the induced cross-covariance functions of Eq. 2, which
of course allows easy computation of all joint marginals
Q(vj). At the end of this phase we simply compute the
representation described above from scratch and start the
second phase from there.

The overall running time complexity for conditional infer-
ence with full selection of all Ic is

O

(

n

(

P C d +
∑

c

dc

)

∑

c

dc

)

and the memory requirements are

O

(

n

(

P C d +
∑

c

dc

))

.

In large sample situations it makes sense to require P C d
to be of the same order as dtot =

∑

c dc, i.e. the com-
mon active set size d should be limited to dtotal/(P C) or
davg/P . Under this assumption the second inclusion phase
dominates the time requirements. In order to perform the
common phase in the naive way, memory usage has to be
limited (see [6] for details).

Note that the time requirements are at least O(n (
∑

c dc)
2)

which is about C times faster than the naive method (the
memory requirements are also C times smaller). In con-
trast, the baseline method requires O(n

∑

c d2
c) time which

can be up to C times faster than our method (if the active
sets are all of the same size), showing that modelling condi-
tional dependencies comes at a significant additional price.
However, if all the active sets Ic are fixed in advance, the
complete representation can be computed in

O

(

n

(

∑

c

d2
c + P d

(

C P d +
∑

c

dc

)))

which is about O(n
∑

c d2
c) under the assumptions above.4

We refer to this computation as conditional inference in mi-
nor mode, as opposed to major mode conditional inference
which includes the re-selection of the Ic. During hyperpa-
rameter learning, conditional inference is used as a subrou-
tine, and most of these runs can be done in minor mode (see
Section 4).

In order to predict v∗ and y∗ on test datapoints x∗, the
dominant buffers (of size O(n)) in the representation are

4This difference is in marked contrast to the situation for the
single process IVM where the time complexity is the same for
computing the representation with or without selection of the ac-
tive set.



not required. The test marginals are computed using a
subset of the computations for inference in minor mode,
namely R2(c) and R3(c) against the test rather than the
training set. The time complexity is

O

(

m

(

∑

c

d2
c + P d

(

C P d +
∑

c

dc

)))

where m is the number of test points. By chunking the
test set it is possible to control the space requirements,
which means that the computational requirements of our
method at prediction time are fairly small (they do not scale
with the training set size n) and comparable to the baseline
method.

3.1 Active Set Selection

For the single process IVM [4] information-based criteria
are used to score remaining points in order to myopically
select an optimal candidate for the next inclusion into the
active set. These criteria (for a pattern j) are functions of
the current marginal posterior approximation Q(vj). The
IVM representation allows us to access all marginals at
each inclusion while retaining practical feasibility in time
and memory. Here, we attempt to adapt this strategy to
our model, and we focus on the (instanteneous) informa-
tion gain score being the negative relative entropy between
the posteriors after and before the inclusion of j. Since the
likelihood factorizes, it is easy to see that in this definition
the complete posteriors Q can be replaced by the corre-
sponding marginals at j, so that once the current marginal
at j is known, the score for j can be computed easily.

During the second inclusion phase we need to score pairs
(j, c) with j 6∈ Ic, using ∆j,c = −D[Q′(vj,c) ‖Q(vj,c)]
(we aim to minimize this score). Here, Q′ is the marginal
after the inclusion of j into Ic which can be computed in
O(1) without updating the representation. Since our rep-
resentation maintains all marginals Q(vj,c) updated at all
times, we can score all remaining patterns in O(n C). In
the common inclusion phase pattern j is scored w.r.t. po-
tential inclusion into I , i.e. into all Ic at once, and our
decision is based on the score ∆j = −D[Q′(vj) ‖Q(vj)].
Recall that we use a naive representation during this initial
phase which maintains all joint marginals Q(vj) updated.
The computation of ∆j is O(C) due to the Gaussian likeli-
hood.

For models with non-Gaussian likelihood, we can general-
ize the usage of ADF projections in the single process IVM
to the C-dimensional case. In general, these projections
require the evaluation of C-dimensional non-Gaussian in-
tegrals which is hard for larger C, but we suggest a proxy
in [6] which needs one-dimensional integrals only, and the
latter can be done using Gaussian quadrature.

4 Hyperparameter Learning

The set of hyperparameters in our model consists of the
kernel parameters of K̃(c), K(p), c = 1, . . . , C, p =
1, . . . , P, Φ ∈ R

C,P , and (σ2
c )c. While for single pro-

cess models in which conditional inference is performed
by IVM or support vector machines (SVM), the number of
hyperparameters can be very small and simple robust tech-
niques such as cross-validation can be applied, this is not
an option for our setup where at least C P + 1 parameters
have to be adapted to the training data. In this Section we
show how an empirical Bayesian technique can be applied
to perform this selection in a completely automatic way.

Let α be the vector of all hyperparameters. Marginal like-
lihood maximization amounts to computing the marginal
likelihood P (y |α) of the data where all primary parame-
ters of the model are integrated out, and to maximizing this
score w.r.t. α. In our case, the primary parameters are the
processes v and u (we can restrict ourselves to the pro-
cess evaluations at the training points, because these sep-
arate the data from the rest of the process values), and the
marginal likelihood is a Gaussian in C n dimensions whose
direct evaluation is practically infeasible (in the same sense
as inference the naive way). We can use a standard varia-
tional “mean field” lower bound as follows:

log P (y |α) ≥ EQ [log P (y , v |α)] + H[Q(v)]

= EQ [log P (y |v , α)] − D[Q(v) ‖P (v |α)]

for any distribution Q(v), a simple consequence of
Jensen’s inequality and the concavity of log. The bound is
tight for the true posterior Q(v) = P (v |y), but any other
posterior approximation gives a valid lower bound. We
will use the posterior approximation Q(v) employed in our
conditional inference approximation descrived above. In
this case we have D[Q(v) ‖P (v)] = D[Q(vI) ‖P (vI)],
where vI = (vi,c)i∈Ic,c (a slight abuse of notation). A
second bounding step is necessary, because the relative en-
tropy D[Q ‖P ] is not a function of the marginals Q(vc)
only, and only these can be extracted efficiently from our
representation:

D[Q(vI) ‖P (vI)] ≤
∑

c

D[Q(vIc,c) ‖P (vIc,c)].

Thus, the learning criterion to be minimized is

G =

C
∑

c=1

n
∑

i=1

EQ[− logP (yi,c|vi,c)]

+ D [Q(vIc,c) ‖P (vIc,c)] .

If the active sets Ic are fixed, it is possible to compute G
and its gradient w.r.t. α in a way which is as costly as con-
ditional inference in minor mode (given the representation)
and does not need additional memory. The idea is that the
gradient parts are propagated along the network edges in



the same way as the messages. The (involved) details can
be found in [6].

We use a simple double-loop optimization strategy in order
to descend on G. In the inner loop, we fix the active sets
Ic and perform gradient-based minimization of G using a
Quasi-Newton method. Note that it is possible to compute
the exact gradient even w.r.t. the noise variances σ2

c which
appear in the site parameters b(c), D(c) of the posterior ap-
proximation Q. In the outer loop, the Ic are re-selected as
described in Section 3. The scheme is run for a fixed num-
ber of outer loop iterations. It is important to note that all
criterion/gradient computations during the inner loop re-
quire conditional inference in minor mode only, so that the
more costly inference with full re-selection of the Ic has to
be done only once for each outer loop iteration.

We close this Section by pointing out some differences to
conventional variational Bayesian procedures. First, we
do not keep the complete posterior approximation Q (the
“variational distribution”) fixed during the inner loop, but
only the discrete part {Ic} for which meaningful descent
information such as gradients cannot be obtained easily.
In nonparametric methods the posterior (or a sensible ap-
proximation) depends very strongly on the prior, so fixing
the former while optimizing for the latter will usually lead
to very small improvements only. Second, our method is
not a variational Bayesian technique in that we do not re-
select Q in order to descend on the upper bound G. In fact,
re-selection of Q by conditional inference in major mode
could lead to an increase in G, although we have not ob-
served that in practice.

5 Experiments

In this Section we present experimental results on a meteo-
rological task. We compare the extended SLFM method
against the baseline method in which the single process
IVM with hyperparameter learning [5] is applied to each
problem x 7→ vc separately. Covariance functions are cho-
sen from the Matérn class (see [7], Sect. 2.10)

K(r) =
V

2ν−1Γ(ν)
(αr)νKν(αr), α = 2ν1/2,

r =
(

(x − x′)T W (x − x′)
)1/2

with parameters ν > 0, V > 0, W = diag(wi)i, wi >
0. Here, Kν is the modified Bessel function of the sec-
ond kind. ν controls the roughness of sample paths in
that they are bνc times mean-square differentiable. For
ν = 1/2 we have the “random walk” Ornstein-Uhlenbeck
kernel V e−αr, and the squared-exponential kernel V e−r2

(frequently used in machine learning) is obtained in the
limit ν → ∞.5 In all our experiments here, we used

5The Matérn class is frequently used in geostatistical applica-
tions, arguments underlining its theoretical qualities are given in

ν = 5/2. Note that modeling the data to be described with
the squared-exponential kernel and our baseline method re-
sults in a poor fit, while the SLFM is affected less severely
by this oversmooth choice.

The data consists of C = 7 responses sampled on
a grid of size 384 × 512, measured by the Mod-
erate Resolution Imaging Spectroradiometer (MODIS),
one instrument in NASA’s Earth Observing System (see
http://modis.gsfc.nasa.gov/). The covariate
x ∈ R

2 is the position on the grid, the responses are en-
ergy reflected/emitted in spectral bands at 13.9µm, 11µm,
6.7µm, 3.75µm, 1.375µm, 0.936µm, and 0.87µm. These
measurements are used in systems for cloud detection,
which can be challenging if the landmass is covered with
ice and snow. The data was collected over Greenland in
July 2002, the spatial resolution is 1km. All variables are
normalized to zero mean, unit variance. For the experi-
ments here, we extracted the central 43 × 58 window and
used five different random splits into n = 2000 training,
m = 494 test cases. Some prior analysis using the in-
dependent baseline reveals that reponses 5 − 7 are more
variable and harder to predict than 1 − 4. The smoothest
response is 2, the hardest is 5. Figure 1 shows four of the
responses.6 Note that 3 has some regular artefacts (strap-
ing), and that 5, 7 show a more nonstationary behaviour.
However, the responses 5− 7 seem to be more informative
for cloud detection.

We designed the following experiment in order to ana-
lyze how baseline and SLFM cope with different degrees
of missing data. To this end, for every split and a range
of ρ values {0, 0.75, 0.9} we removed a fraction ρ of the
response values yi,c, where (i, c) were drawn at random.
Here, we made sure that at least 60 (of 2000) cases remain
completely labeled which allows us to run the common in-
clusion phase for the SLFM (see Section 3) up to d = 60.
We used P = 4 latent processes and dtot = 2700 for the
SLFM (final value of

∑

c dc) and allowed active sets of size
dtot/C = 386 for each baseline run (for a single response).
For ρ = 0.9, we used dtot = 1390 (there are only 1400
given response values) and allowed the baseline to use all
labeled cases. The hyperparameter optimization was run
for 6 outer loops (active set re-selections) and 5 inner it-
erations (line searches) each. As for kernels, the baseline
is allowed an independent covariance function for each re-
sponse c. For the SLFM, the kernels K̃(c) share the wi

parameters, but have different V ’s, while the K(p) kernels

[7]. Apart from [9] it has not been used in the machine learn-
ing community where the squared-exponential kernel is generally
recommended. Interestingly, the latter is considered unreasonable
by spatial statisticians: it enforces a high degree of smoothness
(sample paths are mean-square analytic) which can lead to overly
small variance estimates and nonrobust behaviour during hyper-
parameter learning.

6We plot a 122 × 164 central frame. For each plot, the box
marks the window we extracted for our task.



Figure 1: Four responses of the MODIS data. c = 1 upper
left, c = 3 upper right, c = 5 lower right, c = 7 lower right.

are independent. All runs were started from the same hy-
perparameter values: wi = 1, V = 1. The mixing matrix
Φ was initialized to random unit length rows. The results
(we quote mean-square test error ×100) can be found in
Table 1.

1 2 3 4 5 6 7
B0 2.912 .1751 2.219 .7646 13.09 4.883 9.181
S0 3.132 .2456 4.182 .8856 16.35 4.871 7.998

B75 3.421 .2627 3.070 1.021 16.88 7.763 12.70
S75 3.638 .2768 6.183 1.274 18.51 7.524 14.52
B90 4.755 .5896 6.482 2.555 43.18 15.45 32.10
S90 4.272 .5627 10.63 2.947 41.04 16.45 32.40

Table 1: Mean-square test error ×100 for setups Bρ (base-
line), Sρ (SLFM). ρ is the fraction of missing response vari-
ables.

These preliminary results do not suggest any strong con-
clusions. The SLFM is slightly less affected by the data
removal on response 5 which is hardest to fit. On the other
hand, it does less well on response 3 (the corruption by the
regular straping pattern seems to be handled better by the
independent model; see Figure 1). Follow-up experiments,
possibly on different datasets, are required in order to ob-
tain a better picture.

We also need to mention that our SLFM implementation is
significantly slower than the baseline. A run of S0 takes
about 1h on a single Pentium processor, while B0 needs
less than 10min. To put these numbers into perspective,
recall that a run includes full hyperparameter optimization
over 52 hyperparameters in the SLFM case, performing 6

major and more than 60 minor mode conditional inference
steps along the way. The single process IVM implementa-
tion does the same number of conditional inference steps
(a single major mode step can be compared to a full op-
timization run of a support vector machine), but needs to
optimize 4 parameters only.

6 Discussion

In this paper we have presented a semiparametric model for
multi-response regression which represents multiple con-
ditionally dependent Gaussian random fields. Inference
and hyperparameter learning are practically efficient even
for large datasets. We achieve this favourable scaling by
exploiting conditional independencies between the latent
variables and using the belief propagation algorithm for in-
ference. We show how the problem of nonparametric mes-
sage growth can be handled using the IVM technique in
order to represent messages and beliefs. The techniques
and representations we develop here may be applicable to
graphical models with more complicated structure. While
the present paper is limited to regression estimation in the
presence of Gaussian noise, we have outlined how our work
can be applied to models with non-Gaussian likelihood.

Our preliminary results on a single task do not suggest def-
inite conclusions yet, especially in view of the fact that the
method proposed here is significantly more costly in terms
of running time than the simpler independent baseline.
However, the improvement by a factor of C (in time and
memory) over a naive implementation places our method
halfway between the latter and the baseline in terms of ef-
ficiency.

The scheme as presented here grows the representation by
starting with trying to identify coupling variables (the uI ),
and concentrate on the marginals Q(vc) afterwards. A dif-
ferent promising approach would be to start from the solu-
tion of the independent baseline (which can be computed
very efficiently using our single process IVM implementa-
tion) and try to introduce coupling variables starting from
the factorized posterior approximation. In future work we
will explore this direction and contrast it with the approach
presented here.
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