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Abstract

In this paper we describe methods for dealing with the trace spectrum of a subgroup
of PSL(2, R) generated by four elliptic elements α, β, γ, δ of respective orders 2, 2, 3, 3,
satisfying αβγ δ = 1. We give a parametrization and a fundamental domain in the parameter
space of such groups. Furthermore we construct an algorithm that decides whether or not a
given group is discrete and which moves the discrete groups into the fundamental domain.
Our main result is that any two discrete such groups are isospectral if and only if they are
conjugate in GL(2, R).

In the Appendix we consider pairs of subgroups of PSL(2, R) that arise from non-
conjugate maximal orders in a quaternion algebra over a number field. We show that for
the isospectrality of such pairs there is a peculiar exception in the case where the groups
contain elements of both orders 2 and 3.

1. Introduction

In the last 25 years, many examples of pairs of isospectral non-isometric Riemann surfaces
have been found, beginning with Vignéras [35, 36] in 1980 and then later by various authors
as for instance in [3–6, 33, 34]. In particular, Brooks and Tse [5] have shown that such
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146 P. BUSER, N. FLACH AND K.-D. SEMMLER

examples exist for any genus g � 4. For g = 2 and 3, the existence of such examples is still
an open problem.

All constructions use essentially combinatorial methods, and it has been conjectured that
for Riemann surfaces or, more generally, quotients of the hyperbolic plane by Fuchsian
groups, combinatorics is the only source of isospectrality, and that isospectrality does not
occur if there is not enough “room” for combinatorics. Some progress towards showing that
sufficiently small topological types are spectrally rigid has been made in [8, 12, 18]. All
known cases, so far, come from 2-generator groups.

In 1994, Maclachlan and Rosenberger [26] described two examples of arithmetic groups
of signature (0; 2, 2, 3, 3; 0) which they claimed to be isospectral. While studying the geo-
metric properties of these examples we found that the trace spectra did not coincide. This led
us to the question whether any pair of non-conjugate isospectral examples of this signature
exists. We will show that in fact, no such pair exists, and so we have here for the first time,
it seems, a full moduli space of spectrally rigid 3-generator groups (Theorems 1·3 and 5·1).

The proof is rather elaborate and made it necessary to describe the geometry of the groups
in considerable detail. The paper splits therefore into two main parts. In the first four sections
we parameterize all groups of the given type using as parameter space the null set of a certain
polynomial. Then we describe an explicit fundamental domain for the Teichmüller modular
group in these parameters. That is, we give a complete set of representatives of the conjugacy
classes of our groups. This is of interest of its own and is in general quite a complicated task
(see e.g. Griffiths [16, 17], Semmler [30], Maskit [28]). A picture of this domain is shown
in Figure 2.

In the second main part, Sections 5–7, we show that distinct representatives in the fun-
damental domain are non-isospectral. It will be shown in Section 5 that out of a properly
chosen finite set of traces one can determine the parameters of the group in a purely algeb-
raic way dealing with trace identities and inequalities, but without making any use of the
geometry of the underlying groups. In Sections 6 and 7, however, geometry will be needed
to make sure that our choice of traces covers the necessary initial part of the spectrum.

Sections 8 and the Appendix give a short account of the examples in [26] which gave rise
to this paper.

Let us now introduce the type of groups to be studied.

Definition 1·1. A subgroup � of PSL(2, R) is called a 2233-Möbius group if it is gener-
ated by four elliptic Möbius transformations α, β, γ, δ satisfying

α2 = β2 = γ 3 = δ3 = αβγ δ = 1. (1·1)

It is called marked if the list of these generators is explicitly mentioned.

Note that such a group is not necessarily discrete and there may be further independent
relations that hold in PSL(2, R). In particular we do not exclude the case α = β, so that e.g.
the triangle groups �(2, 3, n) are (degenerated) 2233-Möbius groups.

The concept thus set includes the type of groups discussed in Lehner [24], where in addi-
tion, (1·1) is required to be a faithful representation of an abstractly presented group, as well
as the type considered in Singerman [32], where signature (0; 2, 2, 3, 3; 0) is required, i.e.
the group has to be discrete and the quotient of the hyperbolic plane divided by the action of
the group must be a closed surface of genus 0 with two cone points of order 2 and two cone
points of order 3.
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Spectral rigidity and discreteness of 2233-groups 147

We give a representation of the Teichmüller spaces of marked 2233-Möbius groups
as null sets of polynomials and an explicit representation of the corresponding modular
group in Section 4. Using an algorithm of Nielsen type we then get an explicit descrip-
tion of the moduli space of the discrete 2233-Möbius groups. These fall into three families
(Corollary 4·12): the 2-parameter family of Fuchsian groups of signature (0; 2, 2, 3, 3; 0),
the �(2, 3, n) triangle groups, and one elementary group of order 6.

The spectra studied in this paper are the trace spectra. Any γ ∈ PSL(2, R) is represented
by a matrix X ∈ SL(2, R) which is determined by γ up to multiplication by −1. We define
the trace of γ as

tr(γ ) = 1
2 | trace X |. (1·2)

The factor 1/2 is for practical reasons. Any γ acts as an isometry on the Poincaré upper
half plane H = {x + iy ∈ C | y > 0} with respect to the hyperbolic metric, and tr(γ ) is the
cosine of half the rotational angle if γ is elliptic, respectively the hyperbolic cosine of half
the displacement length if γ is hyperbolic.

Definition 1·2. For any finitely generated discrete subgroup � ⊂ PSL(2, R) we consider
the sets

C(�) = {[γ ] | γ ∈ �} and C ′(�) = {[γ ]′ | γ ∈ �},
where [γ ] is the conjugacy class of γ in �, and [γ ]′ = [γ ] � [γ −1] is called the extended
conjugacy class. The trace spectra of � are the following sequences listed in increasing order
and with multiplicities

TS(�) = {tr(γ ) | [γ ] ∈ C(�)} and TS′(�) = {tr(γ ) | [γ ]′ ∈ C ′(�)}.
We will call TS(�) the algebraic trace spectrum and TS′(�) the geometric trace spectrum.

Observe that TS(�) contains each member of TS′(�) twice except for the ones corres-
ponding to elements of order two or to elements of the form γ = στ with σ 2 = τ 2 = 1.
While TS′(�) is more natural from a geometric point of view, TS(�) is used for example in
the Selberg trace formula (see Hejhal [19, chapter 3, theorem 5·1]).

Our main result is the following, where we note that PGL(2, R) may be identified with
the isometry group of H (in which we include the orientation reversing isometries).

THEOREM 1·3. Let �1, �2 be discrete 2233-Möbius groups. If either TS(�1) = TS(�2)

or TS′(�1) = TS′(�2), then �1 and �2 are conjugate in PGL(2, R).

2. Möbius groups and matrix groups

For computational matters it is useful to work with matrices, and so all groups will be
lifted from PSL(2, R) to SL(2, R). We first collect some general facts about traces of the
corresponding matrices.

Definition 2·1. For any 2×2 matrix X ∈ M(2, R) we write

tr : M(2, R) −→ R, tr(X)� 1
2 trace(X).

Note that these traces have signs. We point out that although the signs are of no signi-
ficance for the corresponding Möbius transformations, there are situations (e.g. Observa-
tion 3·3) where they do carry geometric information.
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148 P. BUSER, N. FLACH AND K.-D. SEMMLER

In the following lemma we collect trace identities that go back to Fricke–Klein [15].
A more recent reference with applications to spectral questions is Horowitz [22, p. 637].
Relations of this type are used extensively in Helling [20, 21]. Of course, the lemma may be
checked by direct computation.

LEMMA 2·2. If A, B, C, X, Y ∈ SL(2, R) andtr(A) = tr(B) = 0, then
(i) tr(XY −1) = 2tr(X)tr(Y ) −tr(XY ),

(ii) tr(ABC) +tr(AC B) = 2tr(C)tr(AB),

(iii) tr(ABC)tr(AC B) = tr2(C) − 1 +tr2(AB) +tr2(BC) +tr2(C A)

+ 2tr(AB)tr(BC) tr(C A).

We will lift the generators of 2233-Möbius groups to SL(2, R) with the help of the fol-
lowing observation (see e.g. Milnor [29]).

FACT 2·3. For X ∈ SL(2, R) and n > 0 minimal such that Xn ∈ {−1, 1} we have

tr(X) � 0 =⇒ Xn = −1.

Definition 2·4. A subgroup G of SL(2, R) is called a 2233-matrix group if it is generated
by four matrices A, B, C, D ∈ SL(2, R) of non-negative traces satisfying

A2 = −1, B2 = −1, C3 = −1, D3 = −1, ABC D = ε1, (2·1)

where ε ∈ {−1, 1} .

The group is called marked if it is given together with the ordered list of these generators.
Two marked groups are marking equivalent if they differ by a conjugation in GL(2, R) that
conjugates the ordered lists of the generators.

Notation 2·5. In this paper, the symbol ε will always refer to the sign appearing in the
above definition.

For any 2233-Möbius group with a given choice of generators α, β, γ, δ, we find matrices
A, B, C, D ∈ SL(2, R) that project to α, β, γ, δ under the natural projection SL(2, R) →
PSL(2, R), and thus generate a 2233-matrix group by Fact 2·3. The matrices with trace 0 in
this sequence are only determined up to a multiplication by −1. To make them unique, we
require an additional condition,

tr(C) > 0, tr(D) > 0, tr(AC) < 0, tr(BC) < 0. (2·2)

If this is satisfied we shall say that the ordered sequence A, B, C, D is a standard marking
of the matrix group. The next observation allows us to define parameters for Möbius groups
using these matrices.

OBSERVATION 2·6. Any 2233-Möbius group lifts to a 2233-matrix group with standard
marking. If �1, �2 with generators αi , βi , γi , δi , are conjugate in PGL(2, R) by a conjuga-
tion that sends α1, β1, γ1, δ1 to α2, β2, γ2, δ2, and if Ai , Bi , Ci , Di are the lifts of the gener-
ators in ∈ SL(2, R) satisfying the sign convention (2·2), then there exists a conjugation in
GL(2, R) sending A1, B1, C1, D1 to A2, B2, C2, D2.

Proof. The appearance of GL(2, R) rather than SL(2, R) comes from the fact that con-
jugation of Möbius groups takes place in the full isometry group of H, where we also have
orientation reversing elements. The observation follows from the identification of Isom(H)

with PGL(2, R) (e.g. [31]).
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Spectral rigidity and discreteness of 2233-groups 149

Remark 2·7. A comment on our use of the word “lift” may be necessary. If � is a 2233-
Möbius group and G its lift as described above, then the natural projection from G to �

is 2-to-1. Furthermore, the generators of G are of order 4 and 6, so the two groups are
not isomorphic. Hence “lift” is not synonymous with “embedding”. It is shown in [31, sec-
tions 3·20–3·22], that the above construction leads to an embedding of a group of Möbius
transformations in SL(2, R) if and only if this group contains no elements of order two.

The fact that our lifts are 2-to-1 rather than 1-to-1 has no influence in what follows.

Möbius groups such as �1, �2 in Observation 2·6 are called marking equivalent. Thus, the
marking equivalence classes of the 2233-Möbius groups may be identified with the marking
equivalence classes of the 2233-matrix groups with standard marking.

PROPOSITION 2·8. The generators of a marked 2233-matrix group with sign convention
(2·2) satisfy:

tr(A) = tr(B) = 0, tr(C) = tr(D) = 1

2
, (1)

tr(AB) � −1, tr(BC) � −1

2

√
3, tr(C A) � −1

2

√
3, (2)

−ε
1

2
tr(AB) + 2tr(BC)tr(C A)tr(AB) (3)

+tr2(BC) +tr2(C A) +tr2(AB) − 1

2
= 0,

−2tr(BC)tr(C A)tr(AB) −tr2(BC) −tr2(C A) � 3

4
(tr2(AB) − 1) � 0. (4)

Proof. (1) is clear. Conjugating the triple A, B, C in GL(2, R) as e.g. in the next section,
we easily check that |tr(AB)| � 1 and |tr(BC)|, |tr(C A)| � (1/2)

√
3. The second and the

third inequality in (2) thus follow from the sign convention (2·2).
(3) is Lemma 2·2(ii), (iii) with ABC = εD−1, and (4) follows from (3) writing

tr2(AB) − ε
1

2
tr(AB) − 1

2
= 3

4
(tr2(AB) − 1) + 1

4
(tr(AB) − ε)2.

Finally, (4) yieldstr(AB) < 0, hence the first inequality in (2).

Definition 2·9. We define three real parameters to describe a 2233-matrix group with
standard marking {A, B, C, D},

x = −tr(AB), y = −tr(BC), z = −tr(C A),

and, by Proposition 2·8, use them in the parameter space {(x, y, z) | x � 1, y, z �
√

3/2}.
By Observation 2·6, these parameters describe also the marked 2233-Möbius groups.

We will show in Section 3 that up to conjugation in GL(2, R), there is at most one 2233-
matrix group with standard marking, for any triple (x, y, z) in the above parameter space
(Proposition 3·2).

3. Explicit matrices

In this section we calculate explicitly matrices for 2233-matrix groups. This is used for
existence proofs. Otherwise the section is independent of the rest of the paper because all
the information needed is coded in the variables x, y, z, ε.
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PROPOSITION 3·1. For three positive real numbers

(x, y, z) with x > 1 and 2xyz − z2 − y2 � 3

4
(x2 − 1),

respectively x = 1 and y = z �
√

3/2, there exist three matrices A, B, C ∈ SL(2, R)

having the properties

tr(A) = 0 tr(B) = 0 tr(C) = 1
2

tr(AB) = −x tr(BC) = −y tr(C A) = −z.

The triple A, B, C is unique up to conjugation in GL(2, R) or passing simultaneously to the
inverses.

Proof. Uniqueness: A, B, C are elliptics. We conjugate the triple such that the fixed
points of A and B in the upper half plane become i and λi with λ � 1 respectively. Then
we conjugate again, using reflection along the imaginary axis so that the fixed point of C
becomes r + is with s > 0, r � 0. This reflection is obtained by conjugation with

(
1 0
0 −1

)
.

In the special case where x = 1, and thus A = B, we further apply a rotation around i so
that the fixed point of C in H becomes is with s � 1. The resulting matrices are again called
A, B, C . They are

A =
(

0 σ

−σ 0

)
B =

(
0 λσ

−σ

λ
0

)

C = 1

2s

(
s − r	σ (r 2 + s2)	σ

−	σ s + r	σ

)
,

(3·1)

where 	2 = 3 and σ 2 = 1. Note that changing the sign of σ we pass simultaneously to the
inverses. The negative traces of the products become

x = 1

2

(
1

λ
+ λ

)
, y = 	(r 2 + s2 + λ2)

4λs
, z = 	(r 2 + s2 + 1)

4s
. (3·2)

Now, λ � 1 is determined by x . The sign of s yields 	 =√
3. In the case x = 1 we have

λ = 1, y = z, r = 0, and s is the larger solution to (1/s + s) = 4y/
√

3. In the case x > 1 the
quantities y/z and λ determine r 2 + s2, and then z determines s > 0 and therefore also r � 0.
Hence the equations (3·2) can be solved for λ � 1, s > 0, r � 0 uniquely:

λ = x +
√

x2 − 1, r 2 + s2 = λ − y
z

y
z − 1

λ

, s =
√

3(r 2 + s2 + 1)

4z
. (3·3)

Existence: If x = 1, then by hypothesis y �
√

3/2, and the equation (1/s + s) = 4y/
√

3
has a solution s � 1. If x > 1, then (3·3) has a solution for r and s when
u = (λ − y/z)/(y/z − 1/λ) � s2 = 3(u + 1)2/(16z2), and this inequality is equi-
valent to 2xyz − z2 − y2 � 3(x2 − 1)/4.

Observe that with the above matrices, D � ε(ABC)−1 turns out to be

D = −ε

2s

⎛
⎜⎜⎝ (s + rσ

√
3)λ

−(r 2 + s2)σ
√

3

λ

λσ
√

3
(s − rσ

√
3)

λ

⎞
⎟⎟⎠ , (3·4)

and tr(D) is a solution to the polynomial equation

tr2(D) + εx tr(D) + x2 + y2 + z2 − 2xyz − 3
4 = 0 (3·5)

by Lemma 2·2(ii), (iii).
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Fig. 1.

PROPOSITION 3·2. Let A, B, C be as in Proposition 3·1 and assume that for D �
ε(ABC)−1 we have tr(D) = 1/2.

If x = 1, then ε = −1, A = B, C−1 = D, and the couple B, C is uniquely determined by
y up to conjugation in GL(2, R).

If x > 1, then the quadruple A, B, C, D is uniquely determined by (x, y, z, ε) up to con-
jugation in GL(2, R).

Proof. Conjugate A, B, C as in the proof of Proposition 3·1. The only parameter then left
free is the sign of σ .

For x = 1 we have λ = 1, r = 0, and tr(D) = −ε/2. Hence, ε = −1, and changing the

sign of σ can be obtained by conjugating A, B, C with
(

1 0
0 −1

)
.

For x > 1, only σ = +1 is possible because otherwise we get |tr D| � (1/λ + λ)/4.

We add some remarks about the fixed points of the above generators.
If in (3·4) we have tr(D) = 1/2, then s = −r

√
3(λ − ε)/(λ + ε), and the fixed point of

D in H becomes (εr + is)/λ. Hence, the fixed points of the generators form the following
polygon:

a = i, b = λi, c = r + is, d = 1

λ
(εr + is). (3·6)

Translating this to Möbius groups we get the following.

OBSERVATION 3·3. Let α, β, γ, δ with α2 = β2 = γ 3 = δ3 = αβγ δ = 1 be the gen-
erators of a 2233-Möbius group, take the lifts A, B, C, D in SL(2, R) with sign convention
(2·2) and set ε such that ABC D = ε1. Then the polygon abcd formed by the fixed points of
α, β, γ, δ respectively, is convex if ε = 1 and crossed if ε = −1.

“Crossed” is short hand for the three remaining cases: self-crossing, non-convex and de-
generate. It is interesting to note that this way of reading off the convexity is inaccessible in
the Möbius group itself.

Figure 1 shows the two cases schematically. Denoting by µ the hyperbolic isometry with
axis through a, b which shifts a to b (and thus µ2 = βα), and by η the symmetry with respect
to this axis, we have

µ(d) = c, if ε = 1, µη(d) = c, if ε = −1.

In the first case, the filled quadrilateral abcd and its image under µ together form a polygon
domain P = aba1d1cd with a1 = βα(a), d1 = βα(d). The group � generated by α, β, γ, δ

or likewise µ, β, γ has the following geometric property.

PROPOSITION 3·4. P is a fundamental domain for the action of � on H, and H/� is an
orbifold of signature (0; 2, 2, 3, 3; 0).
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Proof. This follows from Poincaré’s theorem [1, 11, 27]: Since αβγ δ = 1, we have d1 =
βα(d) = βαδ−1(d) = γ (d), and so the generators β, γ, µ = βα of � yield the side pairing

β(ba1) = ba, µ(ad) = a1d1, γ (cd) = cd1.

Furthermore, since µ(abcd) = ba1d1c, the sum of the interior angles of P at a and a1 equals
the angle at b which is π , and the sum of the angles at d and d1 equals the angle at c which
is 2π/3.

The right hand side of Figure 1 depicts a case for ε = −1, where BC is elliptic with
some fixed point p. Since BC = −ε AD−1 = AD−1, p is also the fixed point of AD−1. (In
the figure, C rotates counter-clockwise, and D clock-wise.) This case will be discussed in
Section 4·3 (see the remarks after the proof of Observation 4·10).

4. Null sets of polynomials as Teichmüller spaces

We now introduce the Teichmüller spaces of the marked 2233-Möbius groups for ε = −1
and 1, following the approach of Helling [20, 21]. In Section 4·2 the modular group is
presented by natural polynomial actions. In Section 4·3 we describe an explicit fundamental
domain Fε for the action of the modular group on the discrete locus and define an algorithm
which a) determines whether or not a given 2233-group is discrete and b) constructs its
representative in Fε in case it is discrete. Section 4·4 lists properties of F1 needed for the
discussion of the trace spectra.

4·1. Teichmüller spaces

Definition 4·1. We define the following polynomials and their null sets for ε = ±1.

Pε(x, y, z)� x2 + y2 + z2 − 2xyz + εx − 1

2
,

Tε � {(x, y, z) | x � 1, y, z �
√

3/2, Pε(x, y, z) = 0}.
PROPOSITION 4·2. (x, y, z) with x � 1, y, z �

√
3/2 are the parameters of a 2233-

matrix group as in Definition 2·9 iff they satisfy

Pε(x, y, z) = 0.

In this sense the sets Tε serve as Teichmüller spaces for the 2233-matrix groups marked by
the choice of generators satisfying (2·1) and (2·2), or, what is the same (see Observation
2·6), for the marking equivalence classes of the 2233-Möbius groups. Note that the groups
need not be discrete.

Proof. For a 2233-matrix group the above polynomials are the relations 2·8(3). Con-
versely, given (x, y, z) satisfying Pε(x, y, z) = 0, construct matrices as in Proposition 3·1
(we have 2xyz − y2 − z2 = (3/4)(x2 − 1) + (1/4)(x − ε)2) with σ = 1, to obtain gen-
erators A, B, C and put D = ε(ABC)−1. Now x2 + y2 + z2 − 2xyz = −(εx − 1)/2, and
equation (3·5) becomes

0 = tr2(D) + εx tr(D) − 1

2
(εx − 1) − 3

4
=

(
tr(D) − 1

2

)(
tr(D) + εx + 1

2

)
.

By (3·4) and using that σ = 1 and λ � 1, we have εtr(D) � −(1/2)x . Hence, ε(tr(D)+εx+
1/2) � (1/2)(x+ε), where the right-hand side is positive except for the case x = 1, ε = −1.
It follows that tr(D) = 1/2, and the construction is complete.
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4·2. The Teichmüller-modular group in these parameters

There is an obvious action on the null sets of our quadratic polynomials:
If (x, y, z) ∈ Tε then

other z: (x, y, z′) ∈ Tε, where z′ = 2xy − z,
other y: (x, y′, z) ∈ Tε, where y′ = 2xz − y,
other x: (x ′, y, z) ∈ Tε, where x ′ = 2yz − 1

2ε − x ,
y-z-symmetry: (x, z, y) ∈ Tε .
In fact, fixing any two of the variables, Pε becomes a quadratic polynomial in the third,

and if that one is a root, its prime is the other root. The only point to check is that the two
roots lie on the same side of 1 in case this variable is x , and on the same side of

√
3/2 in

case the variable is y or z. For this it suffices to observe that

Pε(1, y, z) = (z − y)2 + 1

2
(ε + 1) � 0,

Pε

(
x, y,

√
3

2

)
=

(
y −

√
3

2
x

)2

+ 1

4
(x + ε)2 � 0.

The first line is strictly positive except for the case ε = −1, y = z, in which the two roots
are x = 1, x ′ = 2y2 − 1/2 � 1. The second line is strictly positive except for the case
ε = −1, x = 1, y = √

3/2, in which the two roots are z = √
3/2 = z′.

Definition 4·3. The four transformations other z : Tε → Tε , (x, y, z) �→ (x, y, z′), etc.
generate a group of automorphisms of Tε . This group is denoted by Mε .

We show that Mε corresponds to the change of markings i.e. change of generators satis-
fying (2·1), (2·2).

THEOREM 4·4. If (x, y, z) and (x1, y1, z1) lie on the same orbit w.r.t.the action of Mε on
Tε , then the corresponding 2233-Möbius groups are conjugate in Isom(H).

Proof. By Observation 2·6, one may work with matrix groups. We will show that for
any automorphism m ∈ Mε there are words w1, w2, w3, w4 over an alphabet of four letters
such that if a 2233-matrix group has standard marking A, B, C, D with parameters (x, y, z)
(Definition 2·9), then the wi (A, B, C, D) form a standard marking of the same group with
parameters m(x, y, z). Of course, this program needs to be carried out only for the generators
of Mε .

y-z-symmetry: we put

A1 �−B, B1 �−A, C1 � C−1, D1 � C D−1C−1.

(2·1) is easily checked for the new generators, and furthermore, tr(C1) = tr(D1) = 1/2.
Using 2·2(i), we obtain the following relations, which also imply the two remaining condi-
tions in (2·2),

x1 = −tr(A1 B1) = x, y1 = −tr(B1C1) = z, z1 = −tr(C1 A1) = y.

other z: here we put

A1 �−εB, B1 �−ε A, C1 � D−1, D1 � C−1.

(2·1) is checked again for the new generators, and tr(C1) = tr(D1) = 1/2. Using 2·2(i) and
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εD−1 = ABC , we obtain

x1 = −tr(A1 B1) = −tr(B A) = x,

y1 = −tr(B1C1) = −tr(−AεD−1) = −tr(BC) = y,

z1 = −tr(C1 A1) = −tr(−BεD−1) = tr(B ABC),

= 2tr(B A)tr(BC) −tr(AB BC) = 2xy − z.

This is the required action, and since we already know it operates in Tε , we see here that
tr(A1C1) < 0 andtr(B1C1) < 0.

other y: this transformation can be obtained by using first y-z-symmetry followed by
other z and then again y-z-symmetry.

The most interesting transformation is
other x: here we put

A1 �−A, B1 �−C−1 BC, C1 � C−1, D1 � AD−1 A−1.

(2·1) and tr(C1) = tr(D1) = 1/2 are checked once again, and using 2·2(i) and εD−1 =
ABC , we get

x1 = −tr(A1 B1) = −tr(AC−1 BC) = −(2tr(AC−1)tr(BC) −tr(C A−1 BC)),

= 2yz − (2tr(C)tr(ABC) −tr(C−1 AB C)) = 2yz − 1
2ε − x,

y1 = −tr(B1C1) = −tr(−C−1 B) = −tr(C B) = y,

z1 = −tr(C1 A1) = −tr(−C−1 A) = −tr(C A) = z.

This is indeed the other x-action. Hence, (x1, y1, z1) ∈ Tε and tr(A1C1) < 0,tr(B1C1) < 0.

For easy reference we restate the expressions for x ′ and z′,

x ′ = 2yz − 1
2ε − x = −tr(BC AC−1), z′ = 2xy − z = tr(B ABC). (4·1)

4·3. Fundamental domains

Definition 4·5. We define the following domains in Tε ,

Fε �
{

(x, y, z) ∈ Tε | y � z � xy, x � yz − 1

4
ε

}
. (4·2)

Rewriting the polynomials Pε in the form

Pε(x, y, z) = (z − xy)2 + εx + 1

2
− (x2 − 1)(y2 − 1), ε = ±1, (4·3)

P−1(x, y, z) = −
[
(xy − z)(z − y) +

((
yz + 1

4

)
− x

)
(x − 1) (4·4)

+
(

y2 − 3

4

)
(x − 1)

]
,

we get the following properties.

PROPOSITION 4·6. If (x, y, z) ∈ T1, then

x, y, z > 1 and (x − 1)(y2 − 1) � 1
2 .

If (x, y, z) ∈ T−1, then (x + 1)(1 − y2) � 1/2 and

(x, y, z) ∈ F−1 ⇐⇒ x = 1 ⇐⇒ z = y = xy.
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Proof. By (4·3), the conditions x − 1, y, z � 0 imply x, y > 1 for any solution of
P1(x, y, z) = 0. By symmetry (in the original writing of P1) also z > 1. The second state-
ment for T1 and the first statement for T−1 follow from (4·3) in the same way.

For the equivalences we begin with (x, y, z) ∈F−1. In this case all three terms in the
brackets of (4·4) are non-negative, so they vanish, and we proceed with the following lo-
gical game: if x > 1, then y =√

3/2 and x = (
√

3/2)z + 1/4, and either of the conditions
z = y =√

3/2 and z = xy = (
√

3/2)x implies x = 1, a contradiction, hence x = 1.
If x = 1, then (4·4) yields z = y = xy, and by the definition of F−1 this implies (x, y, z) ∈

F−1.

We will show that Fε is a fundamental domain for Mε for the discrete locus i.e. the part
of Tε that corresponds to the discrete groups (Corollary 4·13). This will be carried out in
two steps. In the first step we propose an algorithm of Nielsen type [14] which moves any
discrete group along its Mε-orbit into Fε . In the second (rather involved) step we show that
distinct groups in Fε have distinct trace spectra and thus are non-conjugate.

ALGORITHM 4·7. The following algorithm takes as input any (x, y, z) ∈ Tε and pro-
duces an orbit in Tε .

(i) If y > z execute y-z-symmetry.
(ii) If z > xy execute other z.

(iii) If x > yz − ε/4 execute other x.
If this orbit is discrete, then it is finite and ends in Fε .

Proof. The Euclidean distance from 0 to (x, y, z) in R3 is decreasing (z � xy ⇒ z′ � xy,
x � yz − (1/4)ε ⇒ x ′ � yz − (1/4)ε). Hence, a sequence of these transformations will
end in Fε or accumulate.

THEOREM 4·8.
(i) If ε = 1 every orbit under the above algorithm is discrete.

(ii) If ε = −1 and if any y < 1 that is encountered is of the form y = cos(π/n) with
integer n, then the orbit of the algorithm is discrete.

Part (i) is a consequence of the next observation, where we abbreviate

qx =

⎧⎪⎨
⎪⎩

1

2
if x � 5

4
,

2(x − 1) if 1 < x � 5

4
.

OBSERVATION 4·9. For ε = 1, Algorithm 4·7 has the following characteristics.
(a) When other x is applied, then either |x − x ′| � 1/2, or the algorithm stops after this

step.
(b) When other z is applied, then either |z − z′| � qx , or the algorithm stops after this

step.

Proof. We prove this in a way that makes no use of the geometry of the 2233-groups
represented by the triples (x, y, z).

Note that steps (a) and (b) are only applied if y � z.
(a) For given y, z the two roots of P1( . , y, z) are of the form x = yz − 1/4 + r , x ′ =

yz − 1/4 − r , with r � 0, and thus x ′ � yz − 1/4. If now r < 1/4, then, by the next
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calculation, z � x ′y, and therefore (x ′, y, z) ∈ F1, which causes the algorithm to halt. The
calculation uses Proposition 4·6.

x ′y − z = 2y2z − 1

2
y − xy − z � 2y2z − 1

2
y − y2z − z

= (y2 − 1)z − 1

2
y � 1

2x
((2y2 − 1)z − xy)

= 1

2x
(y(yz − x) + z(y2 − 1)) > 0.

(b) For given x, y the two roots of P1(x, y, . ) are of the form z = xy +ρ, z′ = xy −ρ with
ρ � 0, and thus z′ � xy. Now if ρ < qx/2, then, observing that qx/2 � x − 1,

z′ − y = (2x − 1)y − z > (2x − 1)y −
(

xy + 1

2
qx

)

= y(x − 1) − 1

2
qx > 0.

Using Proposition 4·6 again and observing that z � xy + qx/2 � xy + 1/4 we also see that

z′y − 1

4
− x = 2xy2 − yz − 1

4
− x � 2xy2 − y

(
xy + 1

4

)
− 1

4
− x

= x(y2 − 1) − 1

4
y − 1

4
� 1

2
+ (y2 − 1) − 1

4
y − 1

4

= (y − 1)

(
y + 3

4

)
> 0.

These inequalities yield (x, y, z′) ∈ F1 and so the algorithm stops.

Since any monotone decreasing sequence of numbers y = cos(π/n) with integer values
of n is necessarily finite, the next observation will complete the proof of Theorem 4·8.

OBSERVATION 4·10. For ε = −1, Algorithm 4·7 has the following characteristics.
(a) When y � 1 and other x is applied, then |x − x ′| � 1/2.
(b) When y � 1 and other z is applied, then |z − z′| �

√
2(x − 1).

(c) When y < 1, then the algorithm produces at most finitely many consecutive other x
and other z moves.

Proof. (a) Here we have z � y � 1, and it suffices to observe that the two roots in x of
P−1(x, y, z) = 0 are yz + 1/4 ± (1/2)

√

 with 
 = 4(y2 − 1)(z2 − 1) + 2(yz − 1) + 1/4.

(b) This is proved in the same way using (4·3).
(c) For given y < 1, the moves may be described by a Chebyshev sequence: set

u = 1

4(1 − y2)
, v = u − 1,

and observe that u � 1, v � 0 (Definition 4·1). Since (x+1)(1−y2) � 1/2 (Proposition 4·6),
we have 1 = u − v � x � u + v, and so there exists ρ > 0 and φ � 0 such that y = cos ρ

and x = u − v cos(φ). If we now define

xk = u − v cos(2kρ − φ)

zk = uy − v cos((2k + 1)ρ − φ),
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then x0 = x , and we easily check that for any k,

P−1(xk, y, zk−1) = P−1(xk, y, zk) = P−1(xk+1, y, zk).

In particular, z−1 and z0 are the two roots of P−1(x, y, . ) = 0, and so either z = z−1 or
z = z0. Therefore, as long as the algorithm does not change y, it runs along this sequence.
Furthermore, the xk are monotone decreasing. This is only possible for finitely many steps.

It is interesting to watch how the sequence described in (c) operates geometrically. Since
ABC D = −1, the products BC and AD−1 (of half trace tr(BC) = tr(AD−1) = −y) have
the same fixed point p. The fixed points a, b, c, d of A, B, C, D together with p form two
congruent triangles pbc and pad as shown in Figure 1. Using the description given in the
proof of Theorem 4·4, we see that other z simply changes the labels a, b, c, d into b, a, d, c,
while other x (used when the labelling is as in the figure) reflects triangle pad along side
pd and triangle pbc along side pb.

To interpret the above in terms of the Möbius groups we use the following fact about
2-generator Fuchsian groups (see e.g. Rosenberger [13]).

PROPOSITION 4·11. Let H be a group generated by B, C ∈ SL(2, R) with tr(B) = 0,
tr(C) = 1/2, and set y = |tr(BC)|. If y � 1 then H is always discrete. If y < 1 then H is
discrete if and only if

y = cos
(π

n

)
for some n ∈ N.

The result is the following, where we restate certain earlier points for convenient refer-
ence.

COROLLARY 4·12. Let � be a 2233-Möbius group.
(i) If ε = 1, then � is discrete and is a Fuchsian group of signature (0; 2, 2, 3, 3; 0).

Furthermore, Algorithm 4·7 produces a marking of � with parameters (x, y, z) ∈ F1.
(ii) Any (x, y, z) ∈ F1 is the parameter triple of some Fuchsian group of signature

(0; 2, 2, 3, 3; 0).
(iii) If ε = −1 and � is discrete, then � is a triangle group of type (2, 3, n) with ∞ �

n � 7, or the elementary group of order 6. Furthermore, Algorithm 4·7 produces a
marking of � with parameters (x, y, z) = (1, y, y) ∈ F−1.

(iv) If ε = −1 and � is not discrete, then Algorithm 4·7 encounters a marking of � with
y < 1, where y is not of the form cos(π/n) with integer n.

In (iii), a (2, 3, ∞)-group is, by definition, a group generated by elliptic elements β, γ of
order 2 and 3 such that βγ is parabolic or hyperbolic.

Note that by (iv), Algorithm 4·7 always finds out (not in the numerical sense, of course)
whether or not � is discrete.

Proof. (i) The statement about the signature is Observation 3·3 and Proposition 3·4. By
Theorem 4·4, all points in the orbit represent the same group, and by Theorem 4·8 and the
definition of Algorithm 4·7, the final parameters (x, y, z) lie in F1.

(ii) This is part of Proposition 4·2.
(iii) If the group is discrete then the orbit is too and ends in F−1. Hence, the group has

a marking with x = 1, i.e with α = β and γ = δ−1. The statement thus follows from
Proposition 4·11.
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(iv) If the algorithm stops, then it stops at x = 1, and by Proposition 4·11 we then have
y as in the statement. If the algorithm does not stop, then Observation 4·10 tells us that the
algorithm produces an infinite decreasing sequence of values y < 1. But only finitely many
of these can have the form y = cos(π/n) with integer n.

To complete the discussion of the moduli spaces we note that by (i), M1 moves any point
of T1 into F1, and by (ii) and (iii), M−1 moves any point of T−1 belonging to a discrete group,
into F−1. The spectral results, Theorem 5·1 for ε = 1 and Proposition 7·1 for ε = −1,
will show that the discrete marked groups belonging to Fε are pairwise non-conjugate in
Isom(H). Together with Theorem 4·4 we have therefore the following.

COROLLARY 4·13.
(i) Two groups �i with parameters (xi , yi , zi) ∈ Tε are conjugate in Isom(H) if and only

if (x2, y2, z2) = m(x1, y1, z1) for some m ∈ Mε .
(ii) The fundamental domain for the action of M1 on T1 is F1.

(iii) The fundamental domain for the action of M−1 on the subset of T−1 corresponding
to the discrete groups is

F′
−1 =

{
(1, y, y) | y = cos

(
π

n

)
for some n = 6, 7, 8, . . . , or y � 1

}
.

4·4. Inequalities for F

From now on all considerations concern groups with ε = 1 and we write for simplicity

P1 = P, T1 = T, F1 = F.

From the defining inequalities (4·2) and Proposition 4·6 we have on F

1 < x � yz − 1
4 � x ′

1 < y � z � xy � z′

1 � 2(x − 1)(y2 − 1)

(4·5)

where we recall that

x ′ = 2yz − x − 1
2 , z′ = 2xy − z.

For (x, y, z) satisfying the inequalities in (4·5), the partial derivatives of P are non-
positive. This implies the following monotonicities in F.

For fixed x : y increases ⇐⇒ z decreases.
For fixed y : z increases ⇐⇒ x decreases.
For fixed z : x increases ⇐⇒ y decreases.

(4·6)

It is helpful to visualize F by projecting it into the xy-plane.

PROPOSITION 4·14. The projection (x, y, z) �→ (x, y) yields a bijection of F onto the
set of pairs (x, y) ∈ R2 satisfying

1 + 1

2(y2 − 1)
� x � y + 1

4(y − 1)
(4·7)

1 < y � 1

2

√
2x2 + x − 1

x − 1
,

Proof. For given (x, y) in the image of F only one of the two roots of P(x, y, z) =
0 is � xy, and so the projection is one-to-one. The root in question is z = xy −
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Fig. 2.

((x2 − 1)(y2 − 1) − (1/2)(x + 1))
1
2 and is well defined for any (x, y) satisfying the in-

equalities on the left-hand side in (4·7). Writing P = P1 as in (4·3) respectively as follows,

P(x, y, z) = −y2(2x − 2) + 1

2
(2x2 + x − 1) + (z − y)(z + y − 2xy)

=
(

1 − 1

y2

)(
x + y + 1

4(y + 1)

)(
−x + y + 1

4(y − 1)

)
(4·8)

+ 1

y2

(
yz − x − 1

4

)(
yz + x + 1

4
− 2xy2

)

and using that z � xy we see that the inequalities (4·7) are equivalent to the defining in-
equalities of F, and the lemma follows.

Figure 2 shows the projection of F. Its boundary consists of three smooth arcs, (where in
the description we identify F with its image):

Arc �1 is the curve 2(x − 1)(y2 − 1) = 1. It is the same (via (4·3)) as z = xy and also
the same as z = z′.

Arc �2 is a truncated part of the curve y = (1/2)
√

(2x2 + x − 1)/(x − 1). It is the same
(via upper (4·8)) as y = z.

Arc �3 is a truncated part of the curve x = y +1/(4y −4). It is the same (via lower (4·8))
as x = yz − 1/4.

The dotted lines separate F into three regions, Fa , Fb, Fc (to be defined in (5·1)), which
will need different spectral considerations. Line y = x + 1/2, (4) meets side y = z at point
q1 = (r, r + 1/2), where

r = 1 + √
17

4
.

Line x = y + 1/2, (u) goes from point q2 = (r + 1/2, r) on side z = z′ to the common
vertex q3 = (2, 3/2) of the two opposite sides. Line z = y + 1/2, (v) meets side x = x ′ at
q4 = ((2 + √

5)/2, (3 + √
5)/4).
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As additional information (not used explicitly in the sequel) we have plotted lines 4 –
9 showing loci of equality between certain traces, namely, 4: y = x + 1/2, 5: y = x , 6:
z = x + 1/2, 7: x ′ = z′, 8: x = z, 9: x ′ = x + 1/2. Lines u and v do not represent loci of
equality between traces.

Point m2 on arc �2 satisfies x = y = z and corresponds to the second example described
in Section 8. The first example, m1 lies on arc �1 with x = 1.0574 . . . and is outside the
scope of the figure.

The next lemma gathers relations which will be used to distinguish certain spectra from
each other.

LEMMA 4·15. For (x, y, z) ∈ F the following hold:
(i) x ′, z′ � x, y, z;

(ii) y > x + 1/2 =⇒ x < (1 + √
17)/4;

(iii) x = y + 1/2 =⇒ y � (1 + √
17)/4;

(iv) z = y + 1/2 =⇒ y � (3 + √
5)/4;

(v) x = z + 1/2 =⇒ y = z = 3/2, x = x ′ = 2.

Proof. (i) By (4·5) we have z′ � xy > x, y and z′ � z, x ′ � x . Now assume that x ′ � z,
i.e. 2yz − x − 1/2 � z. Then x � z and 2yz − 2z � x − z + 1/2 � 1/2, from which we
obtain (y − 1)x � (y − 1)z � 1/4. On the other hand, (y2 − 1)(x − 1) � 1/2, and therefore
(y −1)x � (y2 −1/2)/(y +1). It follows that 0 � 4(y2 −1/2)− (y +1) = (y −1)(4y +3),
a contradiction. Hence, x ′ � z. Since z � y, this establishes (i).

(ii) By Lemma 4·14 we have 4y2(x − 1) � 2x2 + x − 1. The largest possible x (for
(x, y, z) ∈ F) for which this can hold simultaneously with y � x + 1/2, is the larger
solution to 2x2 − x − 2 = 0. This yields (ii).

(iii) Use that 2(x − 1)(y2 − 1) � 1 (4·5).
(iv) On line z = y + 1/2 in F, y is a monotone decreasing function of x (4·6). The

minimum is reached on the boundary of F, that is, when x = y + 1/(4y − 4) = yz − 1/4 =
y(y + 1/2) − 1/4. Solving this equation for y we get the bound.

(v) By (4·5) and the current hypothesis, we have 1 < yz − 1/4 − x = (y − 1)x − 1/4 −
(1/2)y, and therefore (1/2)y � (y − 1)x − 1/4. Using that P(x, y, z) = P(x, y, x − 1/2) =
0, we obtain (1/2)y(2x − 1) � (2x − 1)((y − 1)x − 1/4) = y2. Hence, z = x − 1/2 � y. But
z � y, and therefore z = x −1/2 = y. Using 0 = P(x, x −1/2, x −1/2) =−x(2x −1)(x −2)

we conclude that x = 2.

For the inequalities in the next lemma we denote by xy the minimal value that x can
assume in F when y is given. Similarly, yx denotes the minimal value y can assume in F

when x is given. By (4·7), these values are

xy = 2y2 − 1

2y2 − 2
, yx =

√
2x − 1

2x − 2
. (4·9)

LEMMA 4·16. For any (x, y, z) ∈ F we have:
(i) z � xyx , z � yxy;

(ii) (x − 1)(y − 1) � 1/2;
(iii) If x � y + 1/2, then z � x + 1/2 and x, z < 2x2

y − 1;
(iv) If min{x, z} � y + 1/2, then x + 1/2, z � 2y < 2y2 − 1/2, 4y3

x − 3yx .

Proof. (i) This follows from the monotonicities (4·6) and by applying the inequality z �
xy (4·5) to the extremal cases.
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(ii) If x � 2, then by (4·7), y � 1

2

√
(x + 1)(2x − 1)

x − 1
� 2x − 1

2x − 2
and the inequality

follows. If x > 2 then y <
3

2
and, also by (4·7), x � y + 1

4(y − 1)
� 2y − 1

2y − 2
, which again

yields the inequality. Note that we have equality at x = 2, y = 3

2
.

(iii) Here
(
x − 1

2

)2 � y2 � y2
x = 2x − 1

2x − 2
. By (i) we have z2 � x2 y2

x = x2 2x − 1

2x − 2
.

Plugging this into the identity(
x + 1

2

)2

− x2 2x − 1

2x − 2
= 1

2x − 1

((
x − 1

2

)2

− 2x − 1

2x − 2

)

we obtain z � x + 1/2. Since x � y + 1/2 we have y � 3/2 and xy � x3/2 = 7/5. Hence,
by (4·7),

x � y + 1

4(y − 1)
= y + 1

2
(xy + 1) − 1 � 5

4
(xy + 1) − 1 < 2x2

y − 1.

For the second inequality we use that xy and xy(2xy − 3/2) are monotone decreasing func-
tions of y for y > 1. For y = (3/2) we have xy(2xy − 3/2) > 1. Together with (i) we obtain
z � yxy � (3/2)xy < 2x2

y − 1.
(iv) We begin with the first two inequalities on the left-hand side of “2y”, where we first

consider the case x � y+1/2. Then x +1/2 < x +y−1/2 � 2y. The condition x � y+1/2
implies that x � 2 and therefore by (4·5), z � xy � 2y.

Now consider the case x � y +1/2, z � y +1/2. Then, of course, z < 2y. The condition
x � y + 1/2 implies that y � 3/2. If we increase x keeping y fixed then z decreases. By
(4·7) and (4·5), the maximal value of x is reached when

x = y + y

4(y − 1)
, x = yz − 1

4
.

It suffices therefore to prove the inequality x + 1/2 � 2y under this special hypothesis. If
we further increase x , but now under this hypothesis, then y decreases and so z increases.
The extremal case is reached when z = y + 1/2, and in this case we obtain the equations
x = y(y + 1/2) − 1/4 = y + 1/(4y − 4). The solutions to these with x, y > 1 are y =
(3 + √

5)/4, x = 1 + √
5/2 (vertex q4 in Figure 2). Hence, in the extremal case we have

x + 1/2 = 2y, and the inequality follows.
For the proof of the two inequalities on the right hand side of “2y” in (iv) we first observe

that for any (x, y, z) ∈ F satisfying the hypothesis of (iv) we have x � 1 + √
5/2 (equality

at q4) and y � (1 + √
17)/4 (equality at q2).

In fact, if x � y + 1/2 and z � y + 1/2, then by what we have just shown, the largest
possible value of x is 1 + √

5/2 and the smallest possible value of y is (3 + √
5)/4. If

x � y + 1/2, then the largest possible value of x is 2, and the smallest possible value of y is
obtained when x = y + 1/2 = (2y2 − 1)/(2y2 − 2) (4·7), that is, for y = (1 + √

17)/4.
For the inequality 2y < 2y2 − 1/2 it suffices now to observe that the zeros of the polyno-

mial 2y2 − 2y − 1/2 are smaller than (1 + √
17)/4.

For the final inequality we use that yx and hence the expression (yx −1)(4y2
x −3)+2y2

x is a
monotone decreasing function of x and larger than 3 for x � 1+√

5/2. Hence, yx(4y2
x −3) >

2y2
x = 2 + 1/(x − 1) � 2y by (ii).
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5. The bottom of the spectrum and spectral rigidity

In this section we prove the spectral rigidity of the 2233-Möbius groups with ε = 1
or, what is the same (Corollary 4·12(i)), the Fuchsian groups of signature (0; 2, 2, 3, 3; 0).
The remaining, rather simple, part of the proof of the main Theorem 1·3 is postponed to
Section 7. By Corollary 4·12, up to conjugation in Isom(H), any Fuchsian group of signature
(0; 2, 2, 3, 3; 0) is of the form G/±1, where G = G(x, y, z) is a marked 2233-matrix group
with parameters (x, y, z) ∈ F. Conversely, any (x, y, z) ∈ F belongs to such a group.

For the spectra we use the following notation. For X ∈ G we have the class c(X) of all
Y ∈ G which are conjugate to ±X in G, and the extended class c′(X) = c(X) � c(X−1).
We denote by P(G) (respectively P ′(G)) the set of all c(X) (respectively c′(X)), where X
is a hyperbolic primitive element of G, i.e. X is none of the elliptic elements of order 2 and
3 in G, and X is not of the form Y n for some Y ∈ G and n � 2. With this we consider the
following spectra:

�G = {|tr(X)| | c(X) ∈ P(G)} and �G = {|tr(X)| | c′(X) ∈ P ′(G)}.
The members of �G and �G will be called the (spectral) “lines”. A moment’s reflection
shows that for 2233-matrix groups G1, G2 we have

�G1 = �G2 ⇐⇒ TS(G1/±1) = TS(G2/±1)

�G1 = �G2 ⇐⇒ TS′(G1/±1) = TS′(G2/±1).

The goal of this section is to prove the following, where “G ∈ F ” is short hand for “G =
G(x, y, z) with (x, y, z) ∈ F”.

THEOREM 5·1. For G1, G2 ∈ F the following implications hold:
�G1 = �G2 =⇒ G1 = G2,

�G1 = �G2 =⇒ G1 = G2.

We will prove the theorem for �G and add the necessary modifications for �G at the end
of this section.

The next two theorems will allow us to work with a very restricted part of the spectrum.
In these theorems, �XY , for X, Y ∈ G, denotes the subsequence of all those lines in �G

whose extended class can be represented by a member of the subgroup HXY generated by
X , Y . In a joint sequence like �XY ��X ′Y ′ , a line that occurs in �XY and �X ′Y ′ is listed only
once. The proofs of the two theorems are postponed to Section 6.

THEOREM 5·2. For any (x, y, z) ∈ F the following statements hold:
(i) the first line in �G is either x or y;

(ii) the first two lines in �C D are x and x + 1/2; the third line in �C D is larger than
x + 1/2;

(iii) the first two lines in �AD � �BC are y and 2y2 − 1/2.

For the second theorem we introduce the following subsets of F (shaded areas in Figure 2),

Fa = {
(x, y, z) ∈ F | y > x + 1

2

}
,

Fc = {
(x, y, z) ∈ F | x, z > y + 1

2

}
, (5·1)

Fb = F � (Fa � Fc).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004107000758
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:54:30, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004107000758
https:/www.cambridge.org/core


Spectral rigidity and discreteness of 2233-groups 163

THEOREM 5·3. Any G = G(x, y, z) ∈ F has the following properties:
(a) if G ∈ Fa, then the first line in �G � �C D is y;
(b) if G ∈ Fb, then the first four lines in �G are among x, y, z, x + 1/2, x ′, z′;
(c) if G ∈ Fc, then the first two lines in �G � (�AD � �BC) are x and z.

We use this to characterize the sets Fa , Fb, Fc by an initial part of the spectrum.

LEMMA 5·4. Let (x, y, z) ∈ F and denote by �1, �2, �3 with �1 � �2 � �3 the values of
the first three lines in the spectrum of G(x, y, z). Then the following hold.

(x, y, z) ∈ Fa ⇐⇒ �1 <
1 + √

17

4
and �1 + 1

2
= �2 < �3,

(x, y, z) ∈ Fc ⇐⇒ �1 + 1

2
< �2.

Proof. Let us first take G ∈ Fa . By Theorem 5·2(ii), the first two lines in �C D are x and
x + 1/2, and the third line in �C D is larger than x + 1/2. By Theorem 5·3(a), the first line
outside �C D is y, where by hypothesis y > x + 1/2. This shows that �3 > �2 = �1 + 1/2.
The upper bound for �1 stems from Lemma 4·15(ii).

Now take G ∈ Fb. Then y � x + 1/2. In the case x � y we have by Theorem 5·2(i) that
�1 = x , and it follows that �2 � y � x +1/2 = �1+1/2 with equality only if y = x +1/2, in
which case we have �2 = �3 = �1 +1/2. In the case x � y we have again by Theorem 5·2(i)
that �1 = y. Since G � Fc, either x or z is � y +1/2, and therefore �2 � �1 +1/2. Together
with Lemma 4·15(iii)(iv), this shows that for G ∈ Fb we have �2 � �1 + 1/2 and equality
can only occur if either �2 = �3 or if �1 � (1 + √

17)/4.
Finally, take G ∈ Fc. Then �1 = y. By Theorem 5·2(iii), the first two lines in �AD � �BC

are y and 2y2 − 1/2 > y + 1/2. By Theorem 5·3(c), the first line outside �AD � �BC is x
or z and both are larger than y + 1/2. This completes the proof of the lemma.

Let us now take (x1, y1, z1), (x2, y2, z2) ∈ F and compare the groups

G1 = (x1, y1, z1), G2 = (x2, y2, z2)

under various spectral hypotheses. By Lemma 5·4, a first result is this:

LEMMA 5·5. If the first three lines of �G1 and �G2 coincide, then only three cases are
possible: either G1, G2 ∈ Fa or G1, G2 ∈ Fb or G1, G2 ∈ Fc.

LEMMA 5·6. If {x1, y1, z1} = {x2, y2, z2}, then G1 = G2.

Proof. 0 = P(x1, y1, z1) − P(x2, y2, z2) = (x1 − x2)/2 implies x1 = x2, and we have
y1 � z1, y2 � z2.

LEMMA 5·7. If G1, G2 ∈ Fa and the lines � y1 in �G1 and �G2 coincide, then G1 = G2.

Proof. By Theorem 5·2(i), �1 = x1 = x2. Since on F the traces of HC D are functions that
depend only on x , the parts �C D in the spectra of G1 and G2 coincide. Consequently, the
first line outside �C D is also the same for G1 and G2. Since for any group G the first line in
�C D is x (Theorem 5·2) and the first line outside is y (Theorem 5·3) we obtain x1 = x2 and
y1 = y2.

LEMMA 5·8. If G1, G2 ∈ Fc and the lines � max{x1, z1} in �G1 and �G2 coincide, then
G1 = G2.
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Proof. By Theorem 5·2(i) we have y1 = y2. As in the previous case we conclude that for
G1 and G2 the parts �AD � �BC of the spectra coincide. Using Theorem 5·3(c) we obtain
{x1, z1} = {x2, z2}, and Lemma 5·6 implies G1 = G2.

The remaining case to consider is G1, G2 ∈ Fb. Here we shall work with the set of lines{
x, y, z, x + 1

2
, x ′, z′

}
. (5·2)

For any G = G(x, y, z) we call the sequence of these lines arranged in increasing order
the string of G. To make the ordering unique we apply the notational convention that if two
lines are equal we use lexicographic order w.r.t the symbol list (5·2). Thus, in a statement
like “part of the string is y, z, x” we read the additional information that z is strictly smaller
than x .

Even though the remaining case only concerns couples in Fb, everything that follows (up
to Proposition 5·13) is true for any pair G1, G2 ∈ F.

We first make the following general observation:

OBSERVATION 5·9. For any G ∈ F, the first three lines in the string are in one of the
following orders:

(i) x y z (iv) y x x + 1
2

(ii) x x + 1
2 y (v) y z x

(iii) x y x + 1
2 (vi) y x z.

Proof. Lemma 4·15 shows that x ′ and z′ do not occur. For the remaining symbols any
order not in this list violates (4·7).

We apply this to G1 and G2 with the respective strings {x1, y1, z1, x1 + 1/2, x ′
1, z′

1} and
{x2, y2, z2, x2 + 1/2, x ′

2, z′
2}. For either string the initial triple is in one of the six possible

orders. The next lemma shows that only few combinations are possible.

LEMMA 5·10. If G1 � G2 and the first three lines in the strings of G1 and G2 coincide,
then the orders of the triples are in one of the following combinations: (ii)–(iv), (ii)–(vi),
(iii)–(v).

Proof. In column (i),(ii),(iii) of Observation 5·9 the pairings (i)–(i), (i)–(iii), (ii)–(ii), (iii)–
(iii) imply x1 = x2, y1, = y2 and are therefore excluded. (i)–(ii) cannot occur because in (i)
we have z � x + 1/2, while in (ii) we have y > x + 1/2, by the notational convention. For
the same reason, (ii)–(iii) is impossible.

In column (iv),(v),(vi) the pairings (iv)–(iv), (iv)–(vi), (v)–(v), (vi)–(vi) again imply G1 =
G2. Pairing (iv)–(v), say G1 with (iv) and G2 with (v), implies x2 = z2 + 1/2 so that by
Lemma 4·15(v) we have y2 = z2 and therefore y1 = x1, contrary to the notational convention.
Pairing (v)-(vi) is excluded by Lemma 5·6.

As for the combinations across the columns, (i)–(iv), say G1 with (i) and G2 with (iv),
is impossible because then z1 � x1 + 1/2 while x2 + 1/2 > y2 + 1/2. Lemma 5·6 further
excludes (i)–(v), (i)–(vi), and Lemma 5·11, below, excludes (ii)–(v), (iii)–(vi). Finally, (iii)–
(iv) is impossible because it implies x1 = y2 < x2 = x1.

LEMMA 5·11. If G1, G2 ∈ F and x1 = y2 < x2 = y1, then z1 < z2.
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Proof. By (4·5) we have z1, z2 � x1 y1 = x2 y2 . Furthermore, 0 = P(x2, y2, z2) −
P(x1, y1, z1) = z2

2 − z2
1 − 2x1 y1(z2 − z1) + (1/2)(x2 − x1) = (z2 − z1)(z2 + z1 − 2x1 y1) +

(1/2)(x2 − x1). Now (1/2)(x2 − x1) > 0 and z1 + z2 − 2x1 y1 � 0, hence z2 − z1 > 0.

To exclude the remaining cases we have to take a fourth spectral line into account.

OBSERVATION 5·12. If G1 � G2 and the first four lines in the strings coincide, then,
possibly after interchanging G1 and G2, these lines occur in one of the following pairs of
orders:

(ii.iv) x1 x1 + 1
2 y1 z1

y2 x2 x2 + 1
2 z2

(iii.v.i) x1 y1 x1 + 1
2 z1 (ii.vi.i) x1 x1 + 1

2 y1 z1

y2 z2 x2 x2 + 1
2 y2 x2 z2 x2 + 1

2

(iii.v.ii) x1 y1 x1 + 1
2 z1 (ii.vi.ii) x1 x1 + 1

2 y1 z1

y2 z2 x2 x ′
2 y2 x2 z2 x ′

2

(iii.v.iii) x1 y1 x1 + 1
2 z1 (ii.vi.iii) x1 x1 + 1

2 y1 z1

y2 z2 x2 z′
2 y2 x2 z2 z′

2

Proof. If x +1/2 is among the first four lines in the string of G ∈ F, then x ′ and z′ cannot
occur (Lemma 4·15(i)). Hence, in Observation 5·9.(ii),(iii) and(iv), the fourth line has to be
z. Otherwise the fourth line is among {x + 1/2, x ′, z′}. All other cases have already been
excluded by Lemma 5·10.

Now we exclude these cases as well.

Exclusion of combination (ii.iv): Here we have 0 = P(x1, y1, z1) − P(x2, y2, z2) =
P(y2, x2+1/2, z2)−P(x2, y2, z2) = P(y2, y2+1, z2)−P(y2+1/2, y2, z2) = y2+1/2−y2z2,
hence z2 = 1 + 1/(2y2). This implies z2 < 1 + y2 = x2 + 1/2, but z2 � x2 + 1/2.

Exclusion of (iii.v.i) and (ii.vi.i): Here 0 = P(x1, y1, z1) − P(x2, y2, z2) = P(y2, z2, y2 +
1) − P(y2 + 1/2, y2, z2) = y2 + 1/2 − y2z2, hence z2 = 1 + 1/(2y2). This implies 0 =
P(y2 + 1/2, y2, 1 + 1/(2y2)) = −(2y3

2 − 2y2
2 − 4y2 − 1)/(2y2)

2 and therefore 0 = (2y3
2 −

2y2
2 − 4y2 − 1) = −2y2

2(z2 − y2) − 3y2 − 1 < 0, a contradiction.

Exclusion of (iii.v.ii) and (ii.vi.ii): In these cases 0 = P(x1, y1, z1) − P(x ′
2, y2, z2) =

P(y2, z2, x ′
2) − P(x ′

2, y2, z2) = (1/2)(y2 − x ′
2), hence x ′

2 = y2 = z2 = x2 = y2 + 1/2,
impossible.

Exclusion of (iii.v.iii) and (ii.vi.iii): Observe that we have x2 = y2 + 1/2 . We will show,
using (4·5), that then x2 + 1/2 � z′

2:
In fact, z′

2 −(x2 +1/2) � x2 y2 −(x2 +1/2) = (y2 +1/2)y2 −(y2 +1) = y2
2 −(1/2)y2 −1. On

the other hand we have 0 � (x2
2 −1)(y2

2 −1)−(1/2)(x2 +1). This yields with x2 = y2 +1/2:
y2(2y2 + 3)(y2

2 − (1/2)y2 − 1)/2 � 0. Hence we get y2
2 − (1/2)y2 − 1 � 0.

Since none of the cases in Observation 5·12 is possible, we arrive at the following result.

PROPOSITION 5·13. If for two 2233-matrix groups (with ε = 1) the smallest four lines
among {x, y, z, x + 1/2, x ′, z′} coincide, then these groups are conjugate.
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With this proposition, the proof of Theorem 5·1 for �G is complete: Lemmata 5·5, 5·7
and 5·8 show that non-trivial isospectral pairs G1, G2 in F can only occur in Fb, but for
G1, G2 ∈ Fb, Theorem 5·3 and Proposition, 5·13 say that if the first four lines in the spectra
coincide, then G1 = G2.

The proof of Theorem 5·1 for �G goes along the same lines, with the reasoning made
simpler due to the slightly different multiplicities.

We observe that for X ∈ G the (non-extended) class contains X−1 if and only if X is of
the form X = Y1Y2, where Y1, Y2 are of order two. Thus, e.g. x counts as one line in �G ,
whereas y, z, x + 1/2 each counts as two lines.

By Theorem 5·2, the first line �′
1 in �G is still either x or y. By Lemma 5·4 the initial part

�′
1, �

′
2, �

′
3, �

′
4 (in increasing order) of �G looks therefore as follows.

G ∈ Fa =⇒ �′
1 = x, �′

2 = �′
3 = x + 1

2 , �′
4 > x + 1

2 ;

G ∈ Fc =⇒ �′
1 = �′

2 = y, �′
3 > y + 1

2 ;
G ∈ Fb & x � y =⇒ �′

1 = x, l ′
4 � x + 1

2 ;
G ∈ Fb & x > y =⇒ �′

1 = �′
2 = y, �′

3 < y + 1
2 .

This shows that for G1, G2 ∈ F, Lemma 5·5 holds also with respect to �G1 and �G2 , if
we spell it out for the first four lines.

The proof of Lemma 5·7 goes through without modifications, and so there are no isospec-
tral pairs in Fa . The same holds for Lemma 5·8 and Fc.

For the remaining possible pairs in Fb, we remark using Theorem 5·3(b) and Observation
5·9 that for G ∈ Fb the first five elements of �G are in one of the following orders.

�′
1 = x � �′

2 = �′
3 = y � �′

4 = �′
5 = z, �′

1 = �′
2 = y < �′

3 = x < �′
4 = �′

5 = x + 1
2

�′
1 = x < �′

2 = �′
3 = x + 1

2 < �′
4 = �′

5 = y, �′
1 = �′

2 = y � �′
3 = �′

4 = z < �′
5 = x

�′
1 = x � �′

2 = �′
3 = y � �′

4 = �′
5 = x + 1

2 , �′
1 = �′

2 = y < �′
3 = x � �′

4 = �′
5 = z.

The argument used in the proof of Lemma 5·10 shows that for G1 � G2 no pairing of
orderings in the same column is possible. But pairings across the columns are not possible
either, because in the left column the multiplicity of �′

1 is either 1 or 3 or � 5 while in the
right column it is either 2 or 4. This completes the proof of Theorem 5·1.

6. Geometric estimates

This section contains the proofs of Theorems 5·2 and 5·3.
We first observe that 5·2(i) is a consequence of the remaining parts of the two theorems:

For G ∈ Fa it is implied by 5·2(ii) and 5·3(a), for G ∈ Fc by 5·2(iii) and 5·3(c) (because
y � z (4·5)), and for G ∈ Fb by 5·3(b) and Lemma 4·15(i).

For the proof of Theorem 5·2(ii) we deal with the group HC D generated by C, D, using
Figure 3. In this figure, a, b, c, d are the fixed points of A, B, C, D, respectively, and γ is
the axis of AB = (C D)−1. The geodesics γ and D(γ ) are separated by the geodesic through
c, d and have positive distance.

Now consider the right angled geodesic hexagons Hd , Hc with centers c and d, bounded
by γ , D(γ ), D−1(γ ) and the common perpendiculars between these geodesics, respectively
by γ , C(γ ), C−1(γ ) = D(γ ) and their common perpendiculars. The sides of a hexagon on
γ , C(γ ), etc. are called sides of type γ , the remaining sides are called sides of type β.

We denote by x , η and σ the hyperbolic cosines (cosh) of the lengths of, respectively, a
side of type γ , a side of type β and the perpendicular from a side of type γ to an opposite
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Fig. 3.

side of type β (an altitude of the hexagon). Observe that indeed, x = −tr C D. The quantity
σ may also be characterized as follows

σ = cosh 1
2 dist(D−1(γ ), C(γ )).

From the trigonometry of hyperbolic polygons we have the following relations.

(x − 1)(η − 1) = 1, (6·1)

σ 2 = (x + 1)(η + 1) = 2x2

x − 1
+ 1 = 2η2

η − 1
+ 1. (6·2)

(To get (6·1), apply [7, formula 2·3·1(i)] to any of the six quadrilaterals built by the altitudes
of Hd ; to get (6·2), apply [7, formula 2·3·4(i)] to one of the two pentagons into which Hd is
decomposed by an altitude.)

We let T be the subset of the hyperbolic plane H covered by the images of Hd and Hc

under the group HC D . Likewise, T may be obtained by successively reflecting Hd across
sides of type β. The images of T under the action of G cover H without overlapping, hence
a tiling of H with hexagons that is invariant under the action of G. Part of this tiling is shown
schematically in Figure 4.

We use the following terminology. If g ∈ G is hyperbolic, then a geodesic arc ζ in H is
called a fundamental arc for g, if ζ lies on the axis αg of g and is a fundamental domain for
the action of the cyclic group 〈g〉 on αg. The length �(ζ ) satisfies

cosh 1
2�(ζ ) = |tr g|. (6·3)

We shall also say, more generally, that ζ is a fundamental arc for g if it is a fundamental arc
for some g̃ in the conjugacy class of g.

Any hyperbolic element in HC D can be represented in its extended conjugacy class by
some word

W = Cε1 Dδ1 · · · Cεn Dδn ,

where all εi , δi ∈ {−1, 1}. For the words with two letters we have the following traces,

x = −tr C D, x + 1
2 = tr C D−1.

Any other line in the spectrum �C D of HC D corresponds to a word W with at least four

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004107000758
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:54:30, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004107000758
https:/www.cambridge.org/core
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letters, where we claim that

|tr W | � 2x2 + x − 1
2 . (6·4)

For the proof we use that W has a fundamental arc ζ ⊂ T that crosses 2n hexagons having
its end points on sides of type β. Since W is primitive, not all exponents have the same
value and, accordingly, there exists an arc λ ⊂ ζ that crosses a pair of hexagons in such
a way that it connects opposite sides like arc λ0 in Hc � Hd ′ as shown in Figure 3. In this
figure λ0 is meant to be the shortest connection between the two sides in question, and we
have �(λ) � �(λ0). Together with the perpendicular from γ to C(γ ) it forms a crossed
right angled geodesic hexagon. By [7, formula 2·4·4] and using (6·1), we obtain cosh λ0 =
(x2 − 1)η + x2 = 2x2 + x .

If two non-overlapping arcs such as λ occur in ζ , then tr W � 2x2 + x . If only one such
arc occurs then, changing W in its extended conjugacy class, if necessary, we may assume
that W = Cε1 D−ε1(C D)n−1. The traces tn−1 in this case satisfy

t0 = x + 1
2 , t1 = −(

2x2 + x − 1
2

)
, tn = −2xtn−1 − tn−2, n = 2, 3, . . .

(use 2·2(i)), and their absolute values are monotone increasing with n. This proves (6·4) and
hence point (ii) in Theorem 5·2.

Point (iii) will be proved in a different way and is postponed to Section 7 (Proposition
7·1).

For the proof of Theorem 5·3 we make the following definition. Two boundary compon-
ents γ ′, γ ′′ of T are called neighbours (to each other) if there exists a hexagon of the tiling of
T with a side on γ ′ and another side on γ ′′. For example, D−1(γ ) and D(γ ) are neighbours,
but D−1(γ ) and C(γ ) are not.

LEMMA 6·1. If two boundary components γ ′, γ ′′ of T are not neighbours then we have
cosh(dist(γ ′, γ ′′)/2) � σ .

Proof. Consider the domains S′, S′′ formed by all the hexagons of the tiling that have a
side on γ ′, respectively on γ ′′. By hypothesis, S′ and S′′ do not overlap. Any curve from γ ′

to γ ′′ in T is therefore at least as long as twice the altitude of a hexagon.

LEMMA 6·2. For any (x, y, z) ∈ F we have σ � 2y. If min{x, z} � y + 1/2, then
σ � x, y, x + 1/2, z.

Proof. The first inequality follows from (6·2) and (4·7). If min{x, z} � y + 1/2 then by
Lemma 4·16(iv), 2y � x + 1/2, z, hence the remaining inequalities.

Let now g ∈ G be a primitive hyperbolic element. For the proof of Theorem 5·3 we first
deal with points (a) and (b). There are four cases to consider.

Case 1: g is conjugate to an element in HC D .
For (a) there is nothing to prove. For (b) we may assume g ∈ HC D . If g is conjugate to C D,

C D−1 or their inverses, then |tr g| is line x or x + 1/2. Otherwise, |tr g| � 2x2 + x − 1/2 >

x(x + 1/2) � xy � z (by (6·4) and (4·5)), and |tr g| is not among the first four lines. This
settles the case.

In the remaining cases the axis of g is not contained in T nor in any image of T under the
action of G. Since these images fill out H, it follows that g has a fundamental arc with an
end point on the boundary of T .
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Fig. 4.

Case 2: g has a fundamental arc ζ with both end points on the boundary of T .
By Lemma 6·1 and 6·2 we may assume that ζ connects neighbours. We may further

assume that ζ lies on the axis of g itself, and, using conjugation with a suitable element in
HC D , that the initial point of ζ lies on C−1(γ ). Since g sends this point to the endpoint of
ζ on γ , we have g(C−1(γ )) = γ . Now BC also sends C−1(γ ) to γ , and we have therefore
g(BC)−1(γ ) = γ and g(BC)−1(T ) = T . Since the maximal subgroup of G that preserves
γ and T is the cyclic group generated by AB, we conclude that for some n ∈ Z, g =
(AB)n BC .

LEMMA 6·3. Set τn = tr(AB)n BC. The function n �→ |τn|, n ∈ Z, is convex with a
minimum at n = 0. It is strictly decreasing in the range n � 0 and strictly increasing in the
range n � 1.

Proof. Recall thattr BC = −y. By 2·2(i),

τn+1 = −2xτn − τn−1.

For n = 0, 1, −1 the values are τ0 = −y, τ1 = z, τ−1 = 2xy − z = z′. By (4·5), y �
z � xy � z′. Since x > 1, we conclude that the signs of the τn are alternating and, hence,
|τn−1| + |τn+1| = 2x |τn| > 2|τn|. The lemma follows.

For n = 2 we compute |τ2| = 2xz − y � 2xy − z = z′. By Lemma 4·15(i), z′ � x, y, z.
From Lemma 6·3 we now obtain that if n � −1, 0, 1, then |tr g| � max{x, y, z, z′}. This
settles the proof of Theorem 5·3(a)(b) in Case 2.

Case 3: g has a fundamental arc ζ with end points on the boundary of T � A(T ). Here it
will turn out that we only need to know the shortest element.

Let T ′ = A(T ) and denote by γk , γ ′
k , k ∈ Z, the boundary components of T , respectively

T ′, as shown in Figure 4, where the labeling is such that

γ0 = (BC)−1(γ ), γ ′
0 = BC(γ ), γ ′

1 = (C B)−1(γ ), γ1 = C B(γ ),

and such that for any j ∈ Z, AB(γ j ) = γ j−2 and AB(γ ′
j ) = γ ′

j−2.
By Lemma 6·1 and 6·2 we have to consider only the case where in T and T ′ arc ζ connects

neighbours. Furthermore, we may assume that ζ lies on the axis of g itself and that for
some m ∈ Z it goes from either γ2m or γ2m+1 to either γ ′

0 or γ ′
1. Therefore, g has the form

g = BC δ(AB)k BCε(AB)m , with k, m ∈ Z and δ, ε ∈ {−1, 1}. (If, e.g. δ = ε = 1, then
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(BC)−1g and BC(AB)m both send γ2m to γ and T to T ′, which is only possible if (BC)−1g
and BC(AB)m differ by an element of 〈AB〉, etc.) Changing g in its equivalence class once
more, if necessary, we finally may assume that g has the following form, with k, m ∈ Z,

g = BC±1(AB)k BC(AB)m . (6·5)

LEMMA 6·4. Let δ = ±1, glm = BC δ(AB)δl BC(AB)m, l, m ∈ Z, and set tlm = |tr glm |.
For any l, the function m �→ tlm, m ∈ Z, is convex, strictly decreasing in the range m � 0,
and strictly increasing in the range m � 1. The same statement holds for the function
l �→ tlm for any given m.

Proof. Convexity in m for any fixed l and vice versa follows from 2·2(i) by the same
argument as in the proof of Lemma 6·3. To determine the minima we use a geometric con-
sideration.

For k ∈ Z we denote, respectively, by Hk , H ′
k the hexagons of the tilings of T , T ′ whose

sides are on γ and γk−1, γk , respectively γ ′
k−1, γ ′

k . By hk , h′
k we denote the altitudes of

these hexagons standing on γ . Finally we let ξ be the length of any side of type γ , so that
x = cosh ξ .

H0 is shifted towards H ′
−1 by some amount s that lies between 0 and ξ . To see this, we

consider the axes of BC and AC (dotted lines in Figure 4). They pass through the midpoint
of segment dc and through the centers of symmetry of H1 � H ′

0, respectively H0 � H ′
−1.

Together with γ they form a geodesic triangle with hyperbolic cosines of sides equal to
x, y, z. If we increase y (in F) keeping x fixed, then z decreases, by (4·6). We also know by
(4·5) that y � z. Therefore, the shift of H0 is in the direction of H ′

−1, and the amount s lies
between 0 and ξ .

We prove the lemma for the case δ = −1. For δ = +1 the proof is similar. Thus, let ζ be
the fundamental arc of glm going from an initial point p ∈ γ2m to the endpoint q = glm(p) ∈
γ ′

1. We let p̄, q̄ ∈ γ be the orthogonal projections of p, q upon γ . The points p, p̄, q̄, q form
a self crossing geodesic quadrilateral, and by [7, formula 2·3·2] we have

cosh �(ζ ) = u cosh( p̄q̄) + v,

where p̄q̄ is the distance from p̄ to q̄, and u = cosh(p p̄) cosh(qq̄), v = sinh(p p̄) sinh(qq̄).

If m � −1, we set p∗ = (AB)−1(p), p̄∗ = (AB)−1( p̄). Then gl,m+1(p∗) = glm(p) = q.
Since p p̄ lies between the altitudes h2m, h2m+1, and qq̄ between h′

1, h′
2, and since H0 is

shifted towards H ′
−1, we have p̄q̄ = 2|m|ξ+ρ, for some ρ > 0, and p̄∗q̄ = (2|m|−1)ξ+ρ <

p̄q̄ . By the above formula we also have p∗q < pq. Since for any hyperbolic transformation
the distance from a point to its image becomes minimal if the point lies on the axis of the
transformation, we conclude that tl,m+1 � cosh((1/2)p∗q) < cosh((1/2)pq) = tlm .

If m � 2, we set p∗ = (AB)(p), p̄∗ = (AB)( p̄) and get similarly, tl,m−1 < tlm . (In the
special case m = 2, the inequality p̄∗q̄ < p̄q̄ is deduced from the fact that p̄q̄ > 2ξ − s and
p̄∗q̄ < 2ξ − s.)

This proves the claimed monotonicities in m, for any given l. To prove the statement
with the roles of l and m reversed, we observe that BC−1(AB)−l BC(AB)m is conjugate to
BC(AB)m BC−1(AB)−1 and apply the same procedure to the latter.
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By Lemma 6·4, the shortest element in (6·5) is among those with 0 � l, m � 1. Here we
get five primitive equivalence classes. They are represented by the following:

g1 = BC BC AB

g2 = BC−1 BC

g3 = BC−1 BC AB

g4 = BC−1(AB)−1 BC

g5 = BC−1(AB)−1 BC AB.

We show that no absolute trace for this list is smaller than y, and if min{x, z} � y + 1/2,
then none goes below the forth line in �G . This will settle the proof of Theorem 5·3(a)(b) in
Case 3. The traces are computed via 2·2(i), and we obtain the following:

|tr g3| = −tr BC AC−1 = 2yz − x − 1
2 = x ′ � x, y, z,

|tr g1| = tr AC BC = 2tr AC tr BC −tr AB−1 = 2yz − x = x ′ + 1
2 ,

|tr g4| = −tr ABC B(BC)−1 = −2tr ABC Btr BC +tr ABC B2C

= 2yz′ − x − 1
2 � x ′,

|tr g2| = −tr C BC−1 B = −2tr C Btr C−1 B +tr C2 = 2y2 − 1
2 > y,

|tr g5| = −tr ABC A(BC)−1 = −tr D AD−1 A = −tr C BC−1 B = |tr g2|.
In the first line, |tr g3| is x ′, and the inequality is from Lemma 4·15(i). Now |tr g1| � y,

|tr g4| � y, and none of the two can get below the fourth line in �G . The same holds for
|tr g2| and |tr g5| because if min{x, z} � y + 1/2, then by Lemma 4·16(iv), 2y2 − 1/2 �
2y � x, y, z, x + 1/2.

Case 4: g has a fundamental arc ζ that crosses at least three copies of T .
Set r = (1/2) dist(γ, γ0). Then by (6·1) and the definition of η (see Figure 3) we have

cosh(2r) = η = 1 + 1/(x − 1) = 2y2
x − 1 (4·9), that is, yx = cosh r . Since (1/2)�(ζ ) � 3r ,

we obtain

|tr g| � cosh(3r) = 4y3
x − 3yx > η.

By Lemma 4·16(ii) we have η = 1 + 1/(x − 1) � 2y − 1 > y. This settles (a) in Theorem
5·3. If min{x, z} � y + 1/2, then by Lemma 4·16(iv), 4y3

x − 3yx � x, y, z, x + 1/2. This
settles (b).

The proofs of (a) and (b) in Theorem 5·3 are now complete. For the proof of (c) we use
similar arguments but with the roles of AB and BC reversed (albeit the new situation is not
entirely symmetric to the old one).

Thus, let β be the axis of BC = (D A)−1 and consider the hexagons Hc, H′
d built by β,

β0 � C(β), β1 � C−1(β) (and the common perpendiculars), respectively β, β ′
1 � D(β),

β ′
0 � D−1(β), (Figure 5). The images of Hc under HBC tile a simply connected domain T

and the images of H′
d under HAD tile a similar domain T′ adjacent to T along β. The images

of T � T′ under G tile H, but in contrast to the case studied before, there exists no element
in G that sends T to T′. We denote by βk = (BC)−k(β0), β ′

k = (BC)−k(β ′
0) the neighbours

of β on T and T′.
If g ∈ G is not conjugate to any element in HBC or HAD , then g has a fundamental arc

ζ on its axis that crosses a number of copies (under G) of T � T′, and we first consider the
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Fig. 5.

case where ζ crosses exactly one such copy and, moreover, such that in T as well as T′ it
connects neighbours. Here g is conjugate to one of the following hlm , where l, m ∈ Z,

hlm = A(BC)l B(BC)m . (6·6)

Note that hlm has a fundamental arc going from βm to β ′
0. Figure 5 shows these arcs

for h00 = AB, h01 = −AC and h−11 = A(C−1 BC). The axes of AB and A(C−1 BC) pass
through b and a, respectively b1 and a, where b1 = C−1(b) is the fixed point of C−1 BC .
Note also that x = |tr AB| = cosh dist(a, b) and x ′ = |tr A(C−1 BC)| = cosh dist(a, b1).

If in F we increase x keeping y fixed, then x ′ decreases and we always have x � x ′.
(Recall that x ′ = 2yz − x − 1/2 and z decreases by (4·6).) Hence, Hc is shifted towards
BC(H′

d) by an amount that lies between 0 and half the side of Hc on β. Using this we prove
in the same way as Lemma 6·4 the following.

LEMMA 6·5. For any l ∈ Z the function m �→ τlm = |tr hlm |, m ∈ Z, is convex. It is
strictly decreasing in the range m � −1 and strictly increasing in the range m � 1. The
same statement holds for the function l �→ τlm for any given m.

Using 2·2(i) we compute the following table. (Observe that for any l, m ∈ Z, hlm and
h−m,−l lie in the same extended conjugacy class. A convenient order of computation is this:
τ00 = x , τ−1,0 = τ01 = z, τ10 = τ0,−1 = z′, τ−1,−1 = τ11 = x + 1/2, τ−1,1 = x ′,
τ1,−1 = 2yz′ − (x + 1/2) � 2yz − x − 1/2 = x ′, τ−2,0 = τ02 = 2yz − x = x ′ + 1/2.)

τ02 = x ′ + 1
2

τ−1,1 = x ′ τ01 = z τ11 = x + 1
2

τ−2,0 = x ′ + 1
2 τ−1,0 = z τ00 = x τ10 = z′

τ−1,−1 = x + 1
2 τ0,−1 = z′ τ1,−1 � x ′.

By Lemma 4·15(i), x ′, z′ � max{x, z}. Since we assume x � y + 1/2 (because G ∈ Fc), it
follows from Lemma 4·16(iii) that x + 1/2 � z. Hence, the τlm computed in this table are
either equal to x or z ore else bounded below by max{x, z}. Using Lemma 6·5 we conclude
that the first two lines coming from the list (6·6) are x and z.

For the proof of Theorem 5·3(c), two cases remain: the case where g has a fundamental
arc ζ that does not connect neighbours, and the case where ζ crosses at least two copies of
T � T′. For the first case let u be the perpendicular geodesic segment from a to β ′

0, v the
segment ad and w the perpendicular segment from d to β. By u, v, w, we also denote the
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lengths of these segments. Note that u is also the length of the shortest connection from v to
β, so that u < w.

For fixed y, the maximal possible value of z (for (x, y, z) ∈ F), is reached when x is
minimal. In this extremal case, the axis of AC passes through the end point of u on β ′

0 and
the end point of w on β, as may be checked considering the images of these points under
C−1 A. Therefore, z < cosh(u + v + w). In a similar way we see that x < cosh(y/2 +
2u + y/2) < cosh(v + u + w). Assuming, for simplicity, that ζ crosses T � T′ but does
not connect neighbours on T′, we have that the length of ζ � T′ is at least two altitudes of a
hexagon, that is, at least 2w + 2v. Since u < w, the part ζ � T has length � 2u. Altogether,
|tr g| = cosh(�(ζ )/2) � cosh(u + v + w) > x, z, which settles the case.

Let us finally consider the case where g has a fundamental arc that crosses two or more
copies of T � T′. By what has just been shown, we may assume that ζ only connects neigh-
bours. For fixed y, the minimal possible value of x for (x, y, z) ∈ F is xy = (2y2−1)/(2y2−
2) (4·9). Since cosh(�(ζ )/2) � cosh(2 dist(β ′

0, β)), where cosh(dist(β ′
0, β)) = xy , we have

|tr g| � 2x2
y − 1. By Lemma 4·16(iii), 2x2

y − 1 � x, z.
The proof of Theorem 5·3 is now complete.

7. On the spectrum of HBC

The following arguments are due to Binotto [2]. They allow us to compute an initial part
of the trace spectrum of HBC and thus fill in the missing part (iii) in the proof of Theorem 5·2.

Here too the signs of the traces play an active role. The main tool is Lemma 2·2(i) which
we restate in the following form,

tr XY + tr XY −1 = 2tr X tr Y,

tr XY 2 + tr X = 2tr XY tr Y.

The general hypothesis in what follows is

B, C ∈ SL(2, R), B2 = C3 = −1, tr BC < −1. (7·1)

Apart from the powers Bl , C j , any element in the subgroup of SL(2, R) generated by B, C
is equivalent (i.e. conjugate or conjugate to the inverse) to a word BCi1 BCi2 · · · BCin for
some integer n and exponents ik ∈ {+1, −1}.

PROPOSITION 7·1. For words BCi1 BCi2 · · · BCin with B, C as in (7·1) the following
sign and monotonicity relations hold:

sgn( tr BCi1 BCi2 · · · BCin ) =
n∏

k=1

(−ik). (i)

For n � 2,

|tr BCi1 BCi2 · · · BCin−1 | < |tr BCi1 BCi2 · · · BCin |. (ii)

Proof. We prove these assertions simultaneously by induction over n using the above
trace relations. For n = 1, 2, the traces are

tr BC = −y, tr BC−1 = y,

tr BC BC = tr BC−1 BC−1 = 2y2 − 1, (iii)

tr BC BC−1 = tr BC−1 BC = −(
2y2 − 1

2

)
.
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Now let n � 2 and assume that (i) and (ii) hold for any word with a number of BCi -pairs
less than or equal n.

We first prove the sign rule for BCi1 · · · BCin BCin+1 .
(1) Assume two (cyclically) adjacent exponents are equal, i.e. ik = ik+1 or in+1 = i1.

As the sign rule is invariant under cyclic permutation, it suffices here to consider the case
in = in+1. In this case,

tr BCi1 · · · BCin BCin+1 = tr BCi1 · · · BCin−1(BCin )2

= 2tr BCin tr BCi1 · · · BCin −tr BCi1 · · · BCin−1 . (*)

By hypothesis, |tr BCi1 · · · BCin−1 | < |tr BCi1 · · · BCin |. Since also |tr BCin | > 1, the sub-
traction in the second line has no effect on the sign. Therefore

sgn( tr BCi1 · · · BCin BCin+1) = sgn( tr BCin ) sgn( tr BCi1 · · · BCin ),

and the sign rule follows.
(2) If we can’t find two exponents as in (1), then the word is conjugate to (BC BC−1)k ,

where the sign rule is well known from Chebyshev polynomials or powers of hyperbolic
elements.

For the proof of (ii) we consider three cases.
Case 1: in = in+1. Here the inequality follows from (*), |tr BCin | > 1 and because by

induction hypothesis, |tr BCi1 · · · BCin−1 | < |tr BCi1 · · · BCin |.
Case 2: i1 = in+1. This is done using Case 1,

|tr BCi1 · · · BCin | = |tr BCi2 · · · BCin BCi1 | = |tr BCi2 · · · BCin BCin+1 |
< |tr BCi2 · · · BCin+1 BCi1 |= |tr BCi1 · · · BCin BCin+1 |.

Case 3: i1 = in = −in+1. Using the observation C + C−1 = 1 we compute

BCi1 · · · BCin−1 BCi1 BC−i1

+ BCi1 · · · BCin−1 BCi1 BCi1 = BCi1 · · · BCin−1 BCi1 B.

Here the traces of the first and the second term have opposite signs, by (i). But the trace of
the sum and the trace of the first term have the same signs:

sgn( tr(BCi1 · · · BCin−1 BCi1 B)) = sgn( tr BCi2 · · · BCin−1 BC−i1)

= i1
∏n−1

k=2(−ik)

= sgn( tr BCi1 · · · BCin−1 BCi1 BC−i1).

Hence,

|tr BCi1 · · · BCin−1 BCi1 BCi1 | < |tr BCi1 · · · BCin−1 BCi1 BC−i1 |. (iv)

By Case 1,

|tr BCi1 · · · BCin−1 BCin | < |tr BCi1 · · · BCin−1 BCin BCi1 |,
and the inequality follows.

Returning to the missing point (iii) in the proof of Theorem 5·2, we note that Propo-
sition 7·1 holds, of course, also for HAD . Since y is the absolute trace of BC , and BC is in
the same extended conjugacy class as AD, this shows that the first two lines in �AD � �BC

are y and 2y2 − 1/2. This completes the proof of Theorem 5·2.
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Let us also complete the proof of the main result, Theorem 1·3: By Corollary 4·12, the
discrete groups with ε = −1 are the elementary group of order 6, whose spectrum is finite,
and the (2,3,n)-triangle groups which are of the form HBC . If n is finite, then |tr BC | =
cos(π/n) is the largest line < 1 in the spectrum, and if n = ∞, then by Proposition 7·1,
|tr BC | is the smallest line � 1. Hence these groups all have different spectra. Finally, zero,
the trace of the order 2 element, occurs with multiplicity 1 in the spectrum of a triangle
group but with multiplicity 2 in any 2233-Möbius group with ε = 1.

8. Two examples

For completeness we give here the parameters (x, y, z) ∈ F = F1 for the two examples
in [26]. We list, without giving proofs, the number field, the quaternion algebra and the two
non-conjugate maximal orders that give rise to these examples. A more thorough description
follows in the Appendix.

The examples are based on the totally real number field k = Q(φ), where φ is a root of
the polynomial t3 − 4t + 1. The ring of integers in k is

Rk = Z(φ) = Z + Zφ + Zφ2.

The quaternion algebra is A = H( a,b
k ) with a = −φ, b = −2 − φ. Thus A is the 4-

dimensional k-vector space

A = Q(φ)1 + Q(φ)I + Q(φ)J + Q(φ)K

endowed with the associative multiplication induced by

I 2 = a = −φ, J 2 = b = −2 − φ, K 2 = −ab = −2φ − φ2,

I ∗ J = −J ∗ I = K .

(1 is central.) A is a division algebra and the smallest root φ = −2.1149 . . . of t3 − 4t + 1
induces an embedding of A into M(2, R) given by

I �−→ √
a

(
1 0
0 −1

)
, J �−→ √

b

(
0 1
1 0

)
, K �−→ √

ab

(
0 1

−1 0

)
. (8·1)

Two non-conjugate maximal orders in A can be given as follows: The first order, O1, is the
Z(φ)-module generated by 1, A, B, η, where

A = − 1
2 J + 1

2 (2 − φ)K , B = 1
2 J + 1

2 (2 − φ)K , η = B ∗ A.

The corresponding group O1
1 of elements of norm 1 in O1 is generated by A, B, C, D, where

A and B are as just defined and

C = (2 − φ)φ(1 + η) − (φ − 1)B, D = C−1 ∗ B ∗ A.

(In the embedding (8·1) the resulting generators of the Fuchsian group do not have the
normalized position as in Section 3.)

The second order, O2, is the Z(φ)-module generated by K , P, Q, η′, where

P = 1 + J, Q = 1
2 1 + 1

2 I + 1
2 (φ + 1)(φ − 2)K , η′ = 1

2 (φ − 1)1 + 1
2φ J + 1

2 K .

As an alternative we may also take the Z(φ)-module generated by 1, P, Q, η′ with

P = 1
2 1 + 1

2 I + (φ2 − φ) 1
2 K , Q = 1

2 (φ
2 − 1)1 + 1

2 J − φ2 1
2 K , η′ = (φ − 2)K .
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Either way, the corresponding group O1
2 of elements of norm 1 in O2 is generated by

A′, B ′, C ′, D′, where

A′ = 1
2 (4 − φ − φ2)I + 1

2 (−2φ + φ2)(J + K )

B ′ = 1
2 (−1 − φ + φ2)(J + K )

C ′ = 1
2 + 1

2 I + (−2φ + φ2)J + 1
2 (2 − 3φ + φ2)K

D′ = C ′−1 ∗ B ′ ∗ A′.

The parameters of the corresponding arithmetic Fuchsian 2233-groups �1, �2, when φ is
interpreted as the smallest root of t3 − 4t + 1, are as follows.

For �1:

x = −tr η = 1
4 b − 1

4 (2 − φ)2(−ab) = 1
4 (−2 − φ + (2 − φ)2φ(φ + 2)) = − 1

2φ

= 1.0574 . . .

y = −φ + 1 = 3.1149 . . . z = xy = 1
2 (φ

2 − φ) = 3.2938 . . .

For �2:

x = y = z = − 1
2φ + 1

2 = 1.5574 . . .

The second example is depicted as point m2 on the boundary of the domain in Figure 2.
Point m1 corresponding to the first example lies on the first boundary arc but is outside
the scope of the figure. By Theorem 5·2, the smallest value of tr = (1/2)| trace | for the
hyperbolic elements in �1 is −(1/2)φ, while for �2 this value is −(1/2)φ + 1/2.

That −(1/2)φ occurs in one of the spectra but not in the other can also be seen by looking
at the quadratic field extension k(u), where u is a root of the polynomial t2 − φt + 1. This
is done in a more general analysis in the Appendix.

Appendix

The main result in [26] states:

THEOREM 9·1. There exists a pair of isospectral non-isometric hyperbolic 2-orbifolds
H2/�1, H2/�2 where �1, �2 have signature (0; 2, 2, 3, 3; 0).

In view of Theorem 1·3, this theorem cannot be correct. The method in the proof in
[26] was to use arithmetic Fuchsian groups. More precisely, it was a construction of a qua-
ternion algebra A which contained two non-conjugate maximal orders O1, O2 giving rise to
non-conjugate Fuchsian groups Pρ(O1

1), Pρ(O1
2). We then claimed that these groups were

isospectral, basing our claim on methods similar to those applied in [35, 36] where the fol-
lowing result is proved:

THEOREM 9·2. There exist pairs of isospectral non-isometric hyperbolic compact 2-
manifolds.

Unfortunately, our claim is false as the pair Pρ(O1
1), Pρ(O1

2) can be shown to be non-
isospectral. This was drawn to our attention by the first authors of this paper who directly
constructed these groups and used their geometric methods to show that they were not iso-
spectral. The error in our method is due to the existence of a subtle condition called selectiv-
ity concerning embeddings of commutative orders in maximal orders in quaternion algebras
and recently enunciated in [9]. Using this condition, it can be shown that our non-conjugate
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groups Pρ(O1
1), Pρ(O1

2) are forced to be non-isospectral. It is the purpose of this appendix
to clarify this aspect in a wider context than these two groups alone.

Recall that arithmetic Fuchsian groups arise as follows: let k be a totally real number field
and A a quaternion algebra over k which is ramified at all real places except one. Thus there
is a representation ρ : A → M(2, R). If O is an order in A and O1 denotes the elements of
norm 1 in O, then Pρ(O1) is a Fuchsian group which, furthermore, will be cocompact if A is
a division algebra. The set of all Fuchsian groups commensurable with some such Pρ(O1)

is the set of all arithmetic Fuchsian groups (see e.g. [36]). We recall that the isomorphism
class of a quaternion algebra A over k is determined by its ramification set Ram(A). This is
a finite subset of even cardinality of the set � of all places v of k defined by

Ram(A) = {v ∈ � | A ⊗k kv is a division algebra}
where kv is the completion of k at the valuation given by v. As noted above, for arithmetic
Fuchsian groups, all archimedean places of k are real and all but one of these belong to
Ram(A). Ram(A) may also, of course, contain P-adic places. We let Ram∞(A), Ram f (A)

denote the subsets of real and finite (P-adic) ramified places respectively.
We will assume throughout that A and k will be such that they define cocompact arithmetic

Fuchsian groups although most results given below hold in a wider context. Thus k will
be totally real, A will be ramified at all real places except one and A is a division algebra.
Suppose that Pρ(O1) has an element γ0 = Pρ(x0) and trace(x0) = t0. Then t0 ∈ Rk , the ring
of integers in k. Then if we define the quadratic extension L = k(u0) of k where u0 satisfies
x2 − t0x +1 = 0, there is an embedding σ : L → A induced by σ(u0) = x0. In general, there
are well-established necessary and sufficient conditions for a quadratic extension to embed
in a quaternion algebra (see e.g. [36, theorem 3·8]):

THEOREM 9·3. Let A be a quaternion algebra over the number field k and let L be a
quadratic extension of k. Then L embeds in A if and only if L ⊗k kv is a field for each
v ∈ Ram(A).

Let � denote the commutative Rk-order Rk + Rku0 so that � ⊂ L . With L ⊂ A, A =
La + Lb for some a, b ∈ A. Then RLa + RLb = I is an ideal in A. If O�(I ) denotes the
order on the left of I , i.e.

O�(I ) = {α ∈ A | α(I ) ⊂ I },
then � ⊂ RL ⊂ O�(I ) ⊂ O for some maximal order O. Thus the embedding σ : L →
A described above, yields σ(�) ⊂ O. Conversely, any embedding σ : L → A such that
σ(�) ⊂ O, yields an element in O1 of trace t0. If we denote this set of embeddings by
EO(L), then the number of conjugacy classes of elements in O1 of trace t0 is the cardinality
of the set EO(L)/O1 where O1 acts by conjugation. When γ0 is hyperbolic, this cardinality
is the multiplicity of the number �(γ0) in the spectrum of Pρ(O1).

The general problem of embedding commutative orders in maximal orders in a quaternion
algebra over a number field was solved in [9]. Restricted to the class of quaternion algebras
being considered here, the following theorem holds:

THEOREM 9·4. Let A be a quaternion algebra over the number field k. Let � be a com-
mutative Rk-order contained in A whose field of quotients L is a quadratic extension of
k. Then every maximal order O of A contains a conjugate of � except when the following
conditions both hold:
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(a) the extension L | k and the algebra A are unramified at all finite places and ramified at
exactly the same set of real places;

(b) all prime ideals dividing the relative discriminant ideal d�|Rk of � are split in L | k.

Now suppose that (a) and (b) hold. Then A has an even number of conjugacy classes of
maximal orders and the maximal orders containing some conjugate of � make up exactly
half of these classes.

Definition 9·5. If conditions (a) and (b) hold, then � is said to be selective for A.

Thus when � corresponds to a number in the spectrum, that number will appear in the
spectrum of each Pρ(O1) for O any maximal order, provided � is not selective for A. This
selective condition was not enunciated in [35, 36], and so certain results in [36], to quote [9],
“must be corrected to account for selective orders”. There are formulae in [36, section 5·5]
for counting the number of embeddings. Using this, or by a more direct method (see [25,
theorem 12·4·5]), we obtain:

THEOREM 9·6. Let A and � be as described in Theorem 9·4. Suppose that condition (a)
of selectivity fails to hold. Then the cardinality of the set EO(L)/O1 is independent of the
choice of maximal order.

THEOREM 9·7. Let A be a quaternion algebra over the field k. Let O1, O2 be maximal
orders in A. If A has finite ramification, then the orbifolds H2/Pρ(O1

1), H2/Pρ(O1
2) are

isospectral.

Proof. This follows immediately from Theorems 9·4 and 9·6 as condition (a) of selectiv-
ity fails under the assumption on A.

THEOREM 9·8. Let A be a quaternion algebra over the field k. Let O be a maximal
order in A. If Pρ(O1) does not contain elements of both orders 2 and 3, then A has finite
ramification.

Proof. Suppose that A has no finite ramification. Let ξ denote a primitive 4th or 6th root
of unity. Since k is totally real, k(ξ) ⊗k kv is a field for each v ∈ Ram∞(A) = Ram(A).
Thus, by Theorem 9·3, k(ξ) embeds in A and k(ξ) | k is ramified at every real place. Thus
condition (a) of selectivity fails, so that � = Rk(ξ) embeds in every maximal order. Thus
Pρ(O1) contains elements of order 2 and of order 3.

COROLLARY 9·9. Let A be a quaternion algebra over the field k and let O1, O2 be max-
imal orders in A. If Pρ(O1

1) is torsion free, then the hyperbolic 2-manifolds H2/Pρ(O1
1),

H2/Pρ(O1
2) are isospectral.

Proof. Note that, by the argument in the preceding theorem, if Pρ(O1
1) is torsion free, so

is Pρ(O1
2). The result then follows from Theorems 9·7 and 9·8.

To obtain Theorem 9·2 above, quaternion algebras were constructed in [35] such that the
groups Pρ(O1

1) were torsion free and the type number, i.e. the number of conjugacy classes
in A∗ of maximal orders in A, was greater than one. This then forces the groups Pρ(O1

1),
Pρ(O1

2), for O1, O2 from different conjugacy classes, to be non-conjugate. This method can
then be applied more generally to hyperbolic 2-orbifolds, provided the groups Pρ(O1) do
not contain elements of orders 2 and 3.
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Now consider the example used in [26]. Let k = Q(φ) where φ = x1 is a root of the
polynomial x3 − 4x + 1 which has 3 real roots x1, x2, x3 where

x1 < −2 < 0 < x2 < 1 < x3 < 2.

Note that φ, φ +2, φ −2 are all units and we can take φ, φ +2 as a fundamental system. Let
A be the quaternion algebra over k ramified only at the two real places v2, v3 corresponding
to the roots x2, x3. The type number of A works out to be 2.

Let L = k(u) where u satisfies x2 − φx + 1 = 0. The discriminant of this polynomial is
φ2 − 4, which is negative at v2, v3. Thus, by Theorem 9·3, L embeds in A and so � = Rk[u]
embeds in A. Note that, if y is the image of u, then γ = Pρ(y) is a hyperbolic element,
where ρ is a k-embedding of A in M(2, R). Now � is selective for A. This follows since
φ2 −4 is a unit in Rk so that L | k is unramified at all finite places as well as being ramified at
exactly the real places v2, v3. Since � = RL , no prime ideals divide the relative discriminant
ideal. Since the type number of A is 2, we choose O1, O2 to be non-conjugate maximal
orders. Now � embeds in exactly one of these, thus showing that Pρ(O1

1), Pρ(O1
2) are not

isospectral. In conclusion, note that these groups necessarily have elements of orders 2 and
3 and do not have any elements of higher order since 2 cos π/n � k for n � 4. In addition,
their covolume is given by the formula

8π

3/2
k ζk(2)

∏
P∈Ram f (A)(NP − 1)

(4π2)3

which can be computed as approximately 2π(0.3333) (e.g. using [10]). Thus their signature
must be (0; 2, 2, 3, 3; 0).
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