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ABSTRACT
This paper addresses the problem of joint decoding of stereo

JPEG image pairs. Such images typically contain a high de-

gree of redundancy. Predictive coding could efficiently cap-

ture this redundancy, but cameras would have to implement

proprietary encoding solutions in this case as no such stan-

dard technology is available. We propose to rather use the

popular JPEG compression tools in the cameras, and focus on

the joint decoding problem for quality enhancement. We for-

mulate this as a constrained optimization problem and show

how regularization leads to more consistent results. It is sim-

ilar to a distributed source coding framework, where the ex-

ploitation of the correlation at the decoder permits to save on

the overall bandwidth. Experiments on natural stereo images

show an improvement in both visual quality and PSNR when

compared to separate decoding.

1. INTRODUCTION

Stereo perception and 3D rendering are usually achieved

by simultaneously presenting two images of the same scene

taken from two slightly displaced positions to both eyes. We

will denote these two images with left (L) and right (R).
Because they both represent the same reality they are highly

redundant and accordingly we can expect significant com-

pression ratios to be achievable. The depth information

directly translates into the disparity that relates the two im-

ages and in the case of perfectly rectified views the possible

transformations reduce to horizontal shifts only. Therefore a

predictive coding scheme could be employed by intra coding

the first image, followed by the disparity field for a predictor

and the residue.

Such a traditional coding has previously been proposed

by Perkins [1] for example. But the proprietary transmission

format required by such an approach is unlikely to replace

established general purpose image formats and it is worth

investigating how much we could still improve without de-

parting from JPEG encoding. Indeed, today’s digital cam-

eras are widely equipped with a JPEG encoder and stereo-

scopic image pairs are encoded as separate JPEG images by

most applications, be it JPEG Stereo (JPS), Multi-Picture Ob-

ject (MPO) [2] or others; thus they directly double the band-

width requirements. Cameras also have a limited amount of

processing power when compared to the corresponding de-

coders; this further motivates a distributed coding scheme.

A joint decoding strategy is proposed in this paper, in or-

der to enhance the quality of the reconstructed image pairs

that have been compressed independently with JPEG. Over-

all, the joint decoder allows for a lower overall bitrate for

a given quality for both views. We cast the reconstruction

problem as a regularized convex optimization problem that

is constrained by consistent reconstruction conditions. We

show that regularization permits to increase the accuracy of

the disparity estimation, hence to obtain better reconstruction

quality.

In particular, we consider an asymmetric coding scheme

where one of the images is encoded at high quality, the other

one at a reduced quality. Such an asymmetric scheme is of

particular interest to applications where the second view is

not always required, notably if no stereo display is available.

In addition, controlled asymmetry does not really penalize 3D

perception. Studies by Seuntiens et al. [3] and others indicate

that the human brain can tolerate a fair amount of asymmet-

ric image quality for stereo viewing such that the perceived

quality lies between that of the two views.

This work is related to the distributed coding framework,

where joint decoding is used to reconstruct correlated signals

that have been independently encoded. However, we do not

work here on the coding strategy, but rather rely on joint de-

coding approaches of signals that have been encoded with

classical solutions. The joint reconstruction of compressed

images has been considered also in the compressed sensing

community, where different approaches have been proposed

to represent images or parts of them as a sparse linear com-

bination of other images assembled in a dictionary. If such

a representation exists, it can under some conditions also be

recovered in a stable way from linear projections onto a set of

random vectors that reduces its dimensionality. This has led

to applications in video coding where the dictionary is com-

posed of blocks from a previous frame [4], face recognition

where the candidate faces build the dictionary [5], or multi-

view representations [6]. In our solution a reconstructed block

will be based on local dictionaries of candidate blocks. Com-

pressed sensing in combination with total variation minimiza-

tion has also been used for the compression of depth maps [7].

Alternatively, super-resolution reconstruction from image se-
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quences has a similar objective of quality enhancement with

multiple compressed images. It tries to either estimate a dense

displacement field or to fuse different frames of a video to-

gether to enhance its quality. This is often formulated as an

inverse optimization problem with a smoothness constraint on

the displacement field (e.g. [8] and [9]), but unlike here more

than two images are usually involved where reconstruction at

higher resolution is the main target.

2. PROPOSED SCHEME

JPEG is a block-based still image compression scheme that

compacts the image energy in a small number of coefficients

and introduces losses mostly at high frequencies where they

are visually more acceptable [10]. This is done by apply-

ing the two-dimensional discrete cosine transform (DCT) de-

noted by D, followed by scalar quantization with up to ten

times bigger step sizes at the highest frequencies than for the

lower ones. The quantization step sizes are given by a table

q . If b is an image block and y = Db its representation

in the transform domain, then quantization can be written as

yi = qi [ yi/qi ] where [ · ] denotes rounding to the nearest in-

teger. Because of the lossy nature of JPEG encoding we have

a certain freedom to fill in the coarsely quantized coefficients

from the other image at higher quality.

In the following we will always use the left image as the

intra coded reference and the right one as the compressed im-

age that we want to enhance. We limit our studies to lumi-

nance images only, but this extends to the other color compo-

nents as well, because they are coded in the same fashion.

The compressed version of the right image defines a set of

possible solutions for approximating the original image ver-

sion, which are all consistent with respect to the compressed

one, meaning that they would yield exactly the same JPEG

bitstream after a recompression using the same quantization

matrix. This is the range we will operate in to reconstruct

the image. Although a midpoint or a centroid dequantization

followed by an inverse DCT will likely minimize the recon-

struction error if no further information is present, they are not

the only choices within the aforementioned admissible region.

Thus we will use the compressed image only to formulate a

constraint on the output image. Our scheme operates on the

blocks of 8×8 pixels defined by JPEG. We can formulate this

elementwise constraint in the transform domain as

∣∣D(b̂(i) − b(i))
∣∣ � 1

2
q , (1)

where b(i) is the ith block in the pixel domain after JPEG

compression, b̂(i) is the estimate of that block after enhance-

ment and the element-wise inequality |xj | ≤ yj ∀j is written

as |x | � y .

Now we build a dictionary Ψ(i) composed of possible

candidate blocks ψ
(i)
j from the reference image. Figure 1

illustrates the origin of the dictionary for block i. They are

Reference (left)
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Dictionary
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b
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b

Fig. 1. Schematic view of the proposed scheme. Illustrat-

ing the separate encoding (with a fine q ′ and a coarse q ), the

composition of the dictionary for a given block i from the ref-

erence view and the reconstruction of that block.

gathered from a range from 0 disparity up to the maximum

disparity Dh in horizontal direction around the location in

question. We further extend this range to 2Dv + 1 shifts in

the vertical direction to accommodate slight misalignments

of the two cameras. Each of the D = Dh(2Dv + 1) dic-

tionary elements ψ
(i)
j now has an associated disparity vector

d j ∈ {0, . . . , Dh}×{−Dv, . . . , Dv}. They will be used later

on to build the disparity fields vx and vy which associate to

each block a horizontal and vertical shift respectively.

We now want to represent a block b(i) as a linear com-

bination of dictionary elements with the coefficient vector

s(i) ∈ R
D as

b(i) ≈
∑
j

ψ
(i)
j s

(i)
j = Ψ(i)s(i).

In general it is not possible to find such a decomposition that

also satisfies (1). Thus we introduce the slack variables b̂(i)

that are constrained as above and approximated by a linear

combination over {ψ(i)
j }.

However, this inverse problem is still ill posed and we

can regularize it in two ways. First, only a small number of

the dictionary elements will contribute – ideally only a sin-

gle one – and we can thus require s to be sparse. Although

a high sparsity is best described with a low �0 pseudo-norm

‖s‖0 = |{sj |sj �= 0}| this is not a convex function and would

lead to a problem of combinatorial nature. Consequently we

approximate it by the convex �1 norm ‖s‖1 =
∑

j |sj | .

Second, we can assume the disparity field v to be piece-

wise smooth because disparity discontinuities will occur

only at object boundaries. Furthermore, not every block

contributes an equal amount of depth information. Hence

we can improve the reconstruction by enforcing a low to-

tal variation ‖ · ‖TV = 1
N

∑
j,k |(∇ · )j,k| of the dispar-

ity field v (i) = [v
(i)
x v

(i)
y ]T . We calculate v (i) for each

block as the weighted sum of the contributing disparities

v (i) =
∑

j d j s
(i)
j . This step makes our problem a global one

involving all blocks at once. In the following, all N blocks of

an image are concatenated such that bT = [b(1)T · · · b(N)T ]
and the transform D becomes a block diagonal matrix.
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Fig. 2. This experiment on a 288× 288 pixel image of Sekhmet taken with a commercial stereo camera illustrates our method.

Results for three different JPEG quality settings with and without enhancement are followed by the original left and right view

and enlarged details from the second image pair. We can improve the visual quality even if PSNR results drop and find less

blocking artifacts if the total variation of the disparity field is minimized. Compare these results with Fig. 3(a).

Putting it all together we obtain the objective function

L(b̂, s) =
∥∥∥b̂ −Ψs

∥∥∥
2

2
+λv

(‖vx‖TV + ‖vy‖TV

)
+λs ‖s‖1

b̂ = argmin
b̂,s

L(b̂, s) s.t.
∣∣∣D

(
b̂ − b

)∣∣∣ � 1

2
q . (2)

The parameter λv is the Lagrange multiplier weighting the

importance of a smooth disparity field. The second parameter

λs acts on the sparsity of the signal and trades off fidelity

versus sparsity. All three terms in (2) scale with the number

of blocks N , hence we can set the relative values of λs and

λv independently of the image size.

The choice of λs is crucial, because on one hand a big

value makes s approach 0 , while on the other hand a small

value can lead to a non-sparse s and a blurred result. We

choose it such that the terms of the objective function are of

similar magnitude and verify empirically that λs = 5× 10−2

leads to good results for the tested images and a dictionary of

size D = 13 × 9 = 117. The choice of λv is less critical

and we set it to λv = 1 × 10−2. All results presented in the

following were obtained with this same set of parameters.

In order to solve (2) we use the cvx package for Mat-

lab [11, 12] which applies an interior point method to it.

Larger images are further partitioned into independently

reconstructed regions of smaller size to keep the memory

requirements manageable. Solving this problem is quite in-

volved, but it scales linearly with the image size. An accurate

knowledge of the maximum disparity reduces the number of

variables and thus the runtime of the optimization.

3. EXPERIMENTAL RESULTS

We analyze in this section the performance of the joint de-

coding algorithm. As we can see from Fig. 2 we are able to

enhance an image with correctly positioned details even if the

right image is highly compressed. The ubiquitous blocking

artifacts introduced by JPEG disappear and texture is added.

Despite the small improvement in peak signal-to-noise ratio

(PSNR) at low bitrates, the visual quality of the images im-

proves clearly and in a consistent way. The enlarged areas

show that even small details can be recovered that would sim-

ply be blurred out by JPEG. For medium bitrates (JPEG qual-

ity around 50) the PSNR improves by about 1 dB on average

and more as the rate-distortion comparison in Fig. 3 high-

lights. In the optimal region we can accommodate a bitrate

saving of 20% and above for the right view at a similar de-

coding quality.

Regions that are occluded in the reference view cannot

possibly be reconstructed by this method. In the middle range

(Quality 50 – 75) only few blocks have a PSNR decrease and

they lie usually in such regions around disparity discontinu-

ities as well as the very right border of the image. Never-

theless, ghosting artifacts appear seldom. Even though the re-

sults shown here were obtained with well aligned image pairs,

additional experiments after multiple pixel shifts and a 2◦ ro-

tation still exhibit good performance.

Furthermore, we study the influence of the individual

parts of the optimization. First, we can set λv = 0 to remove

the regularization of the disparity field with a total variation

constraint. We find that at low bitrates the compressed image

2635



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
28

30

32

34

36

38

40

 10

 15

 20
 25

 50

 75

Rate [bpp]

D
is

to
rt

io
n:

 P
S

N
R

 [d
B

]

JPEG decoding
Enhanced decoding with TV regularization
Enhanced decoding with l1 minimization only
JPEG quality setting

left right

(a) The Sekhmet image from Fig. 2 (288× 288 pixels).
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(b) The Tsukuba stereo test set (192× 192 pixels).

Fig. 3. Rate-distortion comparison of JPEG ( ) and joint decoding ( ) for the right view of two image pairs. Also

shown is the curve for unconstrained �1 minimization ( ) given by Eq. (3).

might not contain enough details to reliably find a corre-

sponding block in the reference view and it is in this region

where the additional regularization of the disparity field leads

to a further improvement. Although the increase in PSNR is

only little, less artifacts are visible. The last part of Fig. 2

shows such a case. Second, we can also compare our method

with the unconstrained �1 minimization

b̂ = Ψŝ, ŝ = argmin
s

∥∥b −Ψs
∥∥2
2
+ λs ‖s‖1 . (3)

This gives an improvement at low rates as seen from Fig. 3,

but also tends to saturate at some PSNR level. We can expect

this since the output is a sparse linear combination over the

reference image which does not contain all the details. With

the consistency constraint (1) we can overcome this gap.

Finally, we should note that in these experiments the ref-

erence image was always given at full quality. If the reference

itself is compressed the improvements will naturally decrease;

however, reference images at a quality setting of 80 and 90

could still be used successfully, as it has been confirmed by

additional experiments.

4. CONCLUSIONS

We have presented a joint decoding solution for stereo image

pairs. This method permits to reduce the bitrate of one view

of a stereo image pair that is based on two separately coded,

standard compliant JPEG images, but produces visually much

better results than separate decoding. The only assumptions

we make about the image pair is a relatively good alignment

and a known maximum disparity. However both are only re-

quired to reduce the runtime of the algorithm.

We showed that it is possible to bring the quality of a sec-

ond view closer to that of the reference image and simultane-

ously mitigate the effect of JPEG compression artifacts. The

presented scheme provides good results for a viewing appli-

cation because the two images will be of comparable quality.

On the other hand it might not be a good preprocessing step

for vision applications although the coarse depth maps ob-

tained as a side product indicate that a fair amount of disparity

estimation can still be done after compression.
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