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ABSTRACT

Sets of multi-view images that capture plenoptic information from
different viewpoints are typically related by geometric constraints.
The proper analysis of these constraints is key to the definition of
consistent compact representations of such images. We propose
an algorithm for joint sparse approximation of multi-view images
driven by epipolar geometry considerations. We extend greedy pur-
suit algorithms, such that the representation of multi-view images
into linear combination of geometric atoms is able to balance ap-
proximation error and geometric consistency. We further add a rate
penalty constraint that favors representations with small entropy
towards efficient coding applications. Experimental results illustrate
the trade-off between approximation, geometry and rate constraints
in the representation of stereo omnidirectional images. In particular,
we show that geometry constraints lead to a consistent description
of the correlation among views, which is particularly beneficial for
scene analysis or view interpolation applications. At the same time,
we show that the rate constraint leads to compact representations,
possibly to the detriment of geometry consistency.

1. INTRODUCTION

Multi-view images obtained by camera networks represent a realis-
tic way of conveying 3D information, which is implicitly contained
in the geometric relations between correlated features in different
views. Because they capture the same scene, multi-view images
contain a lot of redundancy that should be exploited for building
compact representations. Lossy multi-view compression should rely
on the implicit geometry constraints and exploit the correlation be-
tween corresponding features. Since the underlying scene geometry
drives the redundancy within multiple views, geometry-based corre-
lation models lead to the construction of consistent representations
and efficient coding. Many 3D applications require the interpolation
of intermediate views, which relies on this geometric information. In
this case, preserving the geometric relations and finding true dispar-
ity is crucial, even if it comes at the cost of worse RD performance.

The most commonly used multi-view compression method is the
multi-view video coding standard (MVC) [1]. This method finds cor-
related blocks in two views under geometric constraints. However,
block-based matching limits the possible transforms between fea-
tures in multiple views to simple translations. Although translations
are usually sufficient to model temporal correlation, they are very
restrictive in the multi-view case and limit the cameras to inline and
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parallel arrangements. Other coding solutions based on dense depth
map or visual correspondences matching are often limited in cap-
turing the true 3D geometry in arbitrary camera arrangements [2],
or face the difficult problem of rate allocation between texture and
disparity or depth information [3].

We present a new method to compute sparse approximations
of pairs of stereo images, called Multi-view Matching Pursuit
(MVMP). The proposed method exploits the multi-view correla-
tion by finding a set of local transforms that relate pairs of geometric
features selected from an overcomplete dictionary of edge-like
atoms. To the best of our knowledge, MVMP is the first algo-
rithm that approximates multi-view images by finding sparse, local
transforms that satisfy the multi-view geometric constraints. The di-
versity of local transforms, such as translations, rotation and scaling,
makes MVMP more flexible than block-based matching for multi-
view coding. Another advantage of our algorithm over the existing
multi-view coding schemes is that it gives a simple way to trade off
approximation performance, geometric consistency, and coding rate
in the image representation, and to adapt it to the target application.
Experimental results show that geometric constraints in MVMP per-
mit to increase the consistency of the geometry estimation and also
reduce the total entropy of representation. On the other hand, rate
constraints lead to compact representations (small entropy) but sac-
rifice the geometric consistency. Therefore, plenoptic geometry is
certainly a very important constraint in building efficient multi-view
coding schemes, where classical rate-distortion (RD) optimization
fails to provide consistent descriptions of the 3D content.

2. MULTI-VIEW IMAGE MODEL

We first need to define the multi-view image model. For simplicity,
we consider two images vectorized into column vectors: the left im-
age yL and the right image yR, but the model can be generalized
to any number of images. The images yL and yR have m-sparse
approximations in dictionary Φ of size M , up to an approximation
error eL, resp. eR. Hence, we have:

yL = Φa + eL =

mX
k=1

alkφlk + eL

yR = Φb + eR =

mX
k=1

brk
φrk

+ eR, (1)

where the vectors a and b represent the coefficients for the left and
right image, respectively. The index sets L = {lk},R = {rk}, k =
1, ..., m label the atoms that participate in the sparse decompositions
of yL and yR, respectively. In other words, {lk}, {rk}, k = 1, ..., m
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denote the atoms with non-zero coefficients, i.e., alk �= 0 and brk
�=

0. This model assumes that both stereo images are composed of m

atoms, while the atoms in the left and the right image do not have
to be identical (L �= R). This is due to the fact that left and right
images record the visual information from the same 3D environment
and typically contain the image projections of the same number of
3D scene features recorded from different viewpoints. If the dic-
tionary consists of localized and oriented atoms that represent well
the edges and the objects geometry in general, stereo images are ap-
proximated with similar atoms, but locally transformed (shifted, ro-
tated, etc.). Since sparse approximations in overcomplete geometric
dictionaries result in atoms with a very small spatial overlap (dif-
ferent atoms approximate different scene features), it is reasonable
to assume that all these atoms can generally undergo different local
transforms1. Therefore, we further assume that signals yL and yR

are correlated in the following way:

yR =
mX

k=1

brk
φrk

+ eR =
mX

k=1

brk
Flkrk

(φlk) + eR, (2)

where Flkrk
(·) denotes a transform of an atom φlk in yL to an atom

φrk
in yR. The transform differs for each k = 1, ..., m.
Since the parametric dictionary is built on rotation, translation

and anisotropic scaling of the generating function, these are the types
of atom transforms that we consider in this paper. However, these
transforms are not arbitrary. As the corresponding atoms are im-
ages of the same feature in the 3D space, the atom transformations
have to satisfy multi-view epipolar geometry constraints. Let two
points v and u represent image projections of the same 3D point
p on the left and right camera, resp. We denote the relative orien-
tation between cameras as R ∈ SO(3) and the relative translation
T ∈ R

3. Let further v lie on the atom φl and u lie on the atom
φr = Flr(φl). In parametric dictionaries, transforming the atom
φl with Flr reduces to a linear transform of the coordinate system
Qlr(·), i.e., u = Qlr(v). The epipolar geometry constraint is then
[Qlr(v)]TT̂Rv = 0. The matrix T̂ is obtained by representing the
cross product of T with Rv as a matrix multiplication.

The epipolar constraint is usually evaluated with a certain er-
ror in practice, so we have dl = [Qlr(v)]TT̂Rv where dl �= 0.
Moreover, the epipolar constraint is not symmetric anymore, so dl �=

dr = [Q−1
lr (u)]

T

T̂Rv. The most likely transforms Qlr (and Flr)
in pairs of stereo images are the transforms that give small epipolar
errors on all points that lie on the spatial support of the atom (where
atom has values �= 0). We thus need to define the epipolar distance
between two atoms as:

Wlr =

qX
i=1

“
w

[i]
l (d

[i]
l )2 + w

[i]
r (d

[i]
l )2

”
, (3)

where q is the number of points (pixels) for which we calculate the
epipolar constraint. The role of the weights w

[i]
l , w

[i]
r is to select

the points that are on the spatial support of atoms. Moreover, they
can be chosen such that they give more importance to the epipolar
constraint for points where the epipolar estimation is more reliable.

1Note that the proposed model does not put an explicit assumption that
neighboring atoms would undergo similar transforms, i.e., it does not perform
any regularization. However, if such statistics exist in the space of transforms,
we expect them to be captured by geometric consistency.

3. MVMP ALGORITHM

We describe here an algorithm for the joint sparse approximation
of multi-view images, where geometric constraints can be enforced
for improved consistency in image representations. Finding the best
such approximation is a hard combinatorial problem, which requires
testing of all possible combinations of atoms in the image decompo-
sition. We propose to use a greedy approach based on a matching
pursuit (MP) algorithm that iteratively selects atoms from the dic-
tionary based on the constraint that the energy of the approximation
error is minimized [4]. MP algorithms are suboptimal algorithms
that are known to provide a good trade-off between approximation
performance and complexity.

In [5] we have shown that one can arrive to a simple energy func-
tional that trades off approximation performance A and geometry
consistency G, by maximizing the likelihood P (yL,yR, D = 0|Φ),
where a and b are hidden variables in the stereo image model in
Eq. (1), and D is the total epipolar error for all points in the images.
The general form of this energy can be written as E = A + λ · G,
where λ is a chosen trade-off parameter. We then define the multi-
view (stereo) MP as an algorithm that selects at each iteration a pair
of atoms (φl, φr) that give the minimal value of this energy. This
leads to a greedy algorithm that jointly selects in different views the
features that correspond to the same 3D features in space, because it
incorporates the geometric constraint in the atom selection process.

3.1. Joint sparse approximation with consistent geometry

The proposed greedy algorithm chooses at each iteration k the pair
of atoms φlk , φrk

that gives the minimal value of the energy E(k)

obtained from the ML objective in [5]. More formally, it chooses
φlk , φrk

such that:

(φlk , φrk
) = arg min

φl,φr

E
(k) = arg min

φl,φr

[(‖h
[k−1]
l − 〈h

[k−1]
l , φl〉φl‖

2
2 + ‖h[k−1]

r − 〈h[k−1]
r , φr〉φr‖

2
2)

+
λ

zD

Wlr +
λ

zC

(〈h[k−1]
r , φr〉 −

〈h
[k−1]
l , φl〉

Jlr

)2], (4)

where h
[k−1]
l and h

[k−1]
r are the residues of the left and right images

respectively, after k − 1 iterations, and Jlr is the Jacobian of the
transform Qlr. Initially, the residues are: h

[0]
L = yL and h

[0]
R = yR,

and they are updated at each step k as:

h
[k]
L = h

[k−1]
L − 〈h

[k−1]
L , φlk〉φlk ,

h
[k]
R = h

[k−1]
R − 〈h

[k−1]
R , φrk

〉φrk
. (5)

The coefficients alk and brk
are simply evaluated as:

alk = 〈h
[k−1]
L , φlk〉,

brk
= 〈h

[k−1]
R , φrk

〉. (6)

We refer to this algorithm as Multi-view Matching Pursuit (MVMP)2.
We can immediately see that MVMP is a special case of the class of
MP algorithms that we call the constrained MP. The convergence is
guaranteed for this type of algorithm, even if the algorithm is prone
to local minima. The convergence rate is typically smaller than the
convergence rate of the MP algorithm, and the rate penalty depends
on the weight λ for the additional constraint [5].

2Although we take here only two images, we can generalize the algorithm
to more than two images by pairwise image correspondence.
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Fig. 1. Original and MVMP approximated images for different values of λ and α. First two rows in each set are original images. Each two
successive rows represent MVMP approximations at iteration k.

3.2. Entropy-constrained approximation

The MVMP algorithm provides an approach for sparse approxima-
tion of multi-view images, but does not deal with the coding rate
constraints. In coding applications, however, it is important to con-
trol the total rate of data, R. The choice of atom pairs in MVMP
certainly influences the total rate, since the parameters of atoms in a
pair are correlated. The total rate to encode the parameters of both
atoms would consist of the rate needed to encode parameters of the
reference atom and the rate needed to encode the atom transform by
differential coding. If we want the MVMP algorithm to select ge-
ometrically correlated atom pairs under a certain rate constraint, it
should select at each iteration the atom pair that minimizes the en-
ergy E = A + λ · G + α · R. This amounts to adding a rate term
α ·R to the energy in Eq. (4). In this paper we do not fix an encoding
scheme to find the total rate, and instead evaluate the performance of
the MVMP algorithm by replacing the total rate by its entropy lower
bound H(φl) + H(φr|φl) in the case of differential coding.

4. EXPERIMENTAL RESULTS

Parameters λ and α in the energy functional permit to choose differ-
ent operating points of the MVMP algorithm, where each operating
point gives different performance in terms of rate, distortion and ge-
ometry matching. This section provides experimental results that
illustrate the performance of MVMP for different operating points.
The experiments are designed to give insights into the trade-offs that
occur for each point, but also to show how the geometric constraints
influence the behavior of MVMP in terms of rate or entropy. In par-
ticular, we are interested to see if imposing the geometry constraint
decreases the entropy of local atom transforms due to the consistency
of geometric correlation.

We have used two omnidirectional images from our ”Mede”
database, and performed MVMP on a set of 16 blocks from each
image. These blocks form two panoramas that are partially shown
in the first two rows in Fig. 1 a)-c) (only 10 blocks from each
panorama). Each block is of size 16 × 16 pixels, and thus the

maximum disparity that can be captured is 16 pixels. If higher
disparity is expected, one can choose a bigger block size, with the
expense of increased complexity. The rotation between cameras is
identity, and translation is T = [0 1 0]T. The dictionary is de-
fined on the sphere, and it is built on a generating function that is a
gaussian in one direction and its second derivative in the orthogonal
direction [6]. We have used 16 translations in each direction, 4
orientations, and 5 pairs of anisotropic scales. For each different
value of λ = {0, 1, 3, 5} in MVMP, we have used a different set of
anisotropic scales that are optimally learned for that particular value
of λ. This way we make sure that the results are not biased by a
fixed choice of the dictionary. The learning algorithm is explained
in [5].

Let us first look at the approximated images with MVMP, for
different values of λ and α. The pairs of rows Fig. (1) show the ap-
proximated left and right images at each iteration k = 1, ..., 5. Each
consecutive pair of rows adds one atom per block. In Fig. (1) a)
there is no geometry constraint and no rate constraint (λ = α = 0),
so this case reduces to classical MP. We can see that the atoms are
not selected in pairs of features that correspond to the same 3D fea-
tures. This is particularly evident on the bike wheel (outlined in
red). Fig. (1) b) shows the approximated images when λ = 0 and
α = 0.05, i.e., there is no geometry constraint, but there is a con-
straint on the rate. This forces MVMP to select pairs of correlated
atoms, but these pairs do not necessarily reflect the image geometry
(see blocks 1 and 2 from the left). Finally, Fig. (1) c) shows the im-
ages when both geometry and rate constraints are included, λ = 1
and α = 0.05. In this case MVMP selects correlated atoms that also
reflect the image geometry.

In order to quantitatively evaluate the rate-geometry-distortion
trade-offs, we have calculated the approximation error (distortion),
the epipolar distance, and the total entropy that includes the entropy
of atom parameters in the first (reference) image and the entropy of
transforms. Transform parameters are simply calculated as a dif-
ference between atom parameters in yL and yR. The entropy is
calculated as the first order empirical entropy. We have evaluated
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Fig. 2. MVMP performance: entropy vs distortion, k = 8.

these quantities for λ = {0, 1, 3, 5} and α = {0, 0.01, 0.05}. We
first show the distortion-entropy curves in Fig. 2, where each curve
corresponds to a different value of α. Each point on the curves cor-
responds to a different value of λ, i.e., from left to right λ changes
from 0 to 5. Hence, the first points on each curve correspond to
the case where no geometry constraint is included in MVMP. What
we see from this graph is that increasing λ from 0 to 1 reduces the
entropy even if we do not have any rate constraint (α = 0). This con-
firms our intuition that the geometric constraint leads MVMP to find
correlated image features. However, the distortion has to increase
as a trade-off to geometry. When we increase α to impose rate con-
straints, the entropy for λ = 0 approaches the entropy of λ = 1 and
becomes equal to it for α = 0.05, while having a smaller distortion.
In this case, having no geometry constraint is better in terms of RD
performance.
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Fig. 3. MVMP performance: epipolar distance vs distortion, k = 8.

Independently of the value of α, cases where λ = 0 give worse
epipolar matching, i.e., give higher epipolar distance than λ > 0.
This is shown in Fig. 3, where we plot the distortion vs the epipolar
distance between all pairs of atoms (sum of Wlr for all atom pairs).
The curves are traced by changing the value of λ, similarly to Fig. 2.
It is obvious that increasing λ from 0 to 1 decreases the epipolar
distance drastically and thus improves the epipolar matching.

Finally, we want to show that increasing the weight on the ge-
ometrical part of the energy function actually contributes to a better
geometric estimation from atom pairs. Therefore, we use the com-
puted atom pairs to estimate the relative pose (rotation R and trans-
lation T ) between two cameras from which the images were taken.
The pose is estimated using the eight-point algorithm [7] from the
coordinates of atom centers. Since the ground truth rotation between
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Fig. 4. Translation estimation error vs λ, k = 8.

the cameras is identity, its estimation is usually good, so we do not
report the errors on estimating R. The translation vector is harder
to estimate, so we evaluate the estimation error in terms of the solid
angle between the ground truth T and its estimate Te. The angu-
lar error for different λ and α is shown in Fig. 4. We can clearly see
that imposing geometry constrained (i.e., λ > 0) leads to multi-view
image representations with meaningful geometrical information.

5. CONCLUSION

We have introduced a new multi-view image approximation algo-
rithm MVMP, which exploits the geometric correlation of corre-
sponding features in different views. MVMP can operate in different
regimes, and the choice of a particular regime depends on the target
application. If we are primarily concerned in the RD performance,
without interest in geometry, then the geometric weight constraint
should be dropped. On the other hand, if the target application in-
cludes any type of geometric estimation, we should impose a ge-
ometry constraint. MVMP is then able to simultaneously provide a
sparse approximation of image pairs and a consistent description of
the underlying geometry.
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