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H
uge amounts of high-dimensional 
information are captured every second 
by diverse natural sensors such as the 
eyes or ears, as well as artificial sensors 
like cameras or microphones. This 

information is largely redundant in two main aspects: it 
often contains multiple correlated versions of the same 

physical world and each version is usually densely sampled 
by generic sensors. The relevant information about the 

underlying processes that cause our observations is generally of 
much reduced dimensionality compared to such recorded data sets. 

The extraction of this relevant information by identifying the generat-
ing causes within classes of signals is the central topic of this article. We 

present methods for determining the proper representation of data sets by means of 
reduced dimensionality subspaces, which are adaptive to both the characteristics of the signals and the 
processing task at hand. These representations are based on the principle that our observations can be 
described by a sparse subset of atoms taken from a redundant dictionary, which represents the causes of 
our observations of the world. We describe methods for learning dictionaries that are appropriate for the 
representation of given classes of signals and multisensor data. We further show that dimensionality 
reduction based on dictionary representation can be extended to address specific tasks such as data analy-
sis or classification when the learning includes a class separability criteria in the objective function. The 
benefits of dictionary learning clearly show that a proper understanding of causes underlying the sensed 
world is key to task-specific representation of relevant information in high-dimensional data sets.

WHAT IS THE GOAL OF DIMENSIONALITY REDUCTION?
Natural and artificial sensors are the only tools we have for sensing the world and gathering information 
about physical processes and their causes. These sensors are usually not aware of the physical process 
underlying the phenomena they “see,” hence they often sample the information with a higher rate than 
the effective dimension of the process. However, to store, transmit or analyze the processes we observe, 
we do not need such abundant data: we only need the information that is relevant to understand the 
causes, to reproduce the physical processes, or to make decisions. In other words, we can reduce the 
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dimension of the sampled data to the effective dimension of the 
underlying process without sensible  penalty in the subsequent 
data analysis procedure. 

An intuitive way to approach this dimensionality reduction 
problem is first to look at what generates the dimensionality 
gap between the physical processes and the observations. The 
most common reason for this gap is the difference between the 
 representation of data defined by the sensor and the representa-
tion in the physical space. In some cases, this discrepancy is, for 
example, a simple linear transform of the representation space, 
which can be determined by the well-known principal compo-
nent analysis (PCA) [1] method. It may however happen that the 
sensors observe simultaneously two or more processes with 
causes lying within different subspaces. Other methods such as 
independent component analysis (ICA) [2] are required to 
understand the different processes behind the observed data. 
ICA is able to separate the different causes or sources by analyz-
ing the statistical characteristics of the data set and minimizing 
the mutual information between the observed samples. 
However, ICA techniques respect some orthogonality conditions 
such that the maximal number of causes is often limited to the 
signal dimension. In Figure 1(a), we show some examples of 
noisy images whose underlying causes are linear combinations 
of two English letters chosen from a dictionary in Figure 1(b). 
These images are 4 3 4 pixels, hence their dimensionality in 
the pixel space is 16, while the number of causes is 20 (total 
number of letters). When applied to 5,000 randomly chosen 
noisy samples of these letters, PCA finds a linear transform of 
the pixels space into another 16-dimensional space represented 
by vectors in Figure 1(c). This is done by finding the directions 
in the original space with the largest variance. However, this 
representation does not identify the processes that generate the 
data, i.e., it does not find our 20 letters. ICA [2] differs from PCA 
because it is able to separate sources not only with respect to 
the second order correlations in a data set, but also with respect 
to higher order statistics. However, since the maximal number 
of causes is equivalent to the signal dimension in the standard 
ICA, the subspace vectors found by ICA in the example of Figure 
1(d) do not explain the underlying letters. 

The obvious question is: Why should we constrain our sen-
sors to observe only a limited number of processes? Why do we 
need to respect orthogonality constraints in the data represen-
tation subspace? There is no reason to believe that the number 
of all observable processes in nature is smaller than the maxi-
mal dimension in existing sensors. If we look for an example in 
a 128 3 128 dimensional space of face images for all the people 
in the world, we can imagine that all the images of a single per-
son belong to the same subspace within our 16,384-dimensional 
space, but we cannot reasonably accept that the total number of 
people in the world is smaller than our space dimension. We 
conclude that the representation of data could be overcomplete, 
i.e., that the number of causes or the number of subspaces used 
for data description can be greater than the signal dimension. 

Where does the dimensionality reduction occur in this 
case? The answer to this question lies in one of the most 
important principles in sensory coding—efficiency, as first 
outlined by Barlow [3]. Although the number of possible pro-
cesses in the world is huge, the number of causes that our sen-
sors observe at a single moment is much smaller: the observed 
processes are sparse in the set of all possible causes. In other 
words, although the number of representation subspaces is 
large, only few ones will contain data samples from sensor 
measurements. By identifying these few subspaces, we find the 
representation in the reduced space. 

An important question arises here: given the observed data, 
how to determine the subspaces where the data lie? The choice 
of these subspaces is crucial for efficient dimensionality reduc-
tion, but it is not trivial. This question has triggered the emer-
gence of a new and promising research field called dictionary 
learning. It focuses on the development of novel algorithms for 
building dictionaries of atoms or subspaces that provide efficient 
representations of classes of signals. Sparsity constraints are keys 
to most of the algorithms that solve the dictionary learning 
problems; they enforce the identification of the most important 
causes of the observed data and favor the accurate representation 
of the relevant information. Figure 1(e) shows that one of the 
first dictionary learning methods called sparse coding [4] suc-
ceeds in learning all 20 letters that generate 5,000  observations 

(a) (b) (c) (d) (e) (f)

[FIG1] Learning underlying causes from a set of noisy observations of English letters. A subset of 20 noisy 4 3 4 images is shown in 
(a). These samples have been generated as linear combinations of two letters randomly chosen from the alphabet in (b), and they have 
been corrupted by additive Gaussian noise. When run of 5,000 such samples, PCA and ICA find the same number of components as the 
dimension of the signal. Therefore, they cannot find the underlying 20 letters. Sparse coding [4] learns an overcomplete dictionary of 
20 components, thus it can separate these causes and find all 20 letters from the original alphabet. K-SVD [5] performs similarly, i.e., it 
finds almost all of the letters. However, since the implementation of K-SVD [5] uses MP for the sparse approximation step, it converges 
to a local minimum resulting in some repeated letters in the learned dictionary. (a) Noisy samples; (b) original causes; (c) PCA; (d) ICA; 
(e) sparse coding; and (f) KSVD.



IEEE SIGNAL PROCESSING MAGAZINE   [29]   MARCH 2011

in our simple example. In the course of the last decade, diction-
ary optimization has led to significant performance improve-
ments in high-dimensional signal processing tasks such as 
audio, image, multiview, and multimodal data analysis. 

This article presents the main challenges in the field of dic-
tionary learning for dimensionality reduction. We first present a 
brief description of sparse approximations. Next, we give a tuto-
rial overview of the main algorithms that permit the construc-
tion of dictionaries for the sparse representation of given classes 
of signals, possibly with properties such as large incoherence or 
model-based structures. In the section “Applications of 
Dictionary Learning,” we present a few signal processing appli-
cations where the objectives of the learning algorithms is adapt-
ed to specific problems such as the joint analysis of correlated 
signals like audio-visual signals and stereo images. We later 
show in the section “Learning for Classification” that the con-
struction of dictionaries can also be constrained in order to sat-
isfy discriminative objectives; the dimensionality reduction 
steps not only lead to good approximation but also efficient clas-
sifications of signals. 

SPARSE APPROXIMATIONS
The goal of sparse representation is to express a given signal y of 
dimension n as a linear combination of a small number of sig-
nals taken from a “resource” database, which is called the dic-
tionary. Elements of the dictionary are typically unit norm 
functions called atoms. Let us denote the dictionary as D and 
the atoms as fk, k5 1, c, N, where N is the size of the dic-
tionary. The dictionary is overcomplete 1N . n 2  when it spans 
the signal space and its atoms are linearly dependent. In that 
case, every signal can be represented as a linear combination of 
atoms in the dictionary 

 y5Fa5 a
N

k51
akfk. (1)

Because the dictionary is overcomplete, a is not unique. This is 
where the sparsity constraint comes into play. To achieve efficient 
and sparse representations, we generally relax the requirement for 
finding the exact representation. We look for a sparse linear expan-
sion with an approximation error h of bounded energy P. The 
objective is now to find a sparse vector a that contains a small 
number of significant coefficients, while the rest of the coefficients 
are close or equal to zero. In other words, we want to minimize 
the resources (atoms) that we use to accomplish the task of signal 
representation. This optimization problem can be formulated as 
follows: 

 min
a

 ||a||0  subject to y5Fa1h  and  ||h||2
2 , P, (2)

where || # ||p denotes the lp norm. Unfortunately, this problem 
is NP-hard. However, there exist polynomial time approximation 
algorithms that find a suboptimal solution for the sparse vector a. 
These algorithms can be classified in two main groups. The first 
group includes greedy algorithms such as the matching pursuit 
(MP) [6] and the orthogonal MP (OMP) [7], which iteratively select 

locally optimal basis vectors. In the second group, we find algo-
rithms based on convex relaxation methods such as the basis pur-
suit denoising [8] or least absolute shrinkage and selection 
operator (LASSO) [9], which solve the following problem: 

 min
a

 1 ||y2Fa||2
21l||a||1 2 . (3)

The convex relaxation permits to replace the nonconvex l0 norm 
in the original problem by the convex l1 norm. The l0 norm of a 
vector is equal to the number of nonzero elements in that vector. 
It is called a “norm” because it is the limit of p-norms as p 
approaches zero. However, note that it is not a true norm, unlike 
the l1 norm that has all properties of a norm. Besides pursuit algo-
rithms, there exist other sparse approximation algorithms such as 
the focal underdetermined system solver (FOCUSS) [10] and 
sparse Bayesian learning [11], for example. A recent review of the 
sparse recovery algorithms can be found in [12]. The performance 
of these algorithms in terms of the approximation quality and the 
sparsity of the coefficient vector a depends not only on the signal 
itself, but also on the overcomplete dictionary D. Once the algo-
rithms are used on a specific class of signals y, we easily under-
stand that not all dictionaries provide the same approximation 
performance. There exist dictionaries that are more likely to lead 
to sparse solutions than others. These are the dictionaries that 
include atoms explaining best the causes of the target data set. It is 
exactly the goal of dictionary learning methods to find such opti-
mized dictionaries. 

DICTIONARY LEARNING METHODS
The research in dictionary learning has followed three main direc-
tions that correspond to three categories of algorithms: i) the 
probabilistic learning methods; ii) the learning methods based on 
clustering or vector quantization; and iii) the methods for learning 
dictionaries with a particular construction. This construction is 
typically driven by priors on the structure of the data or to the tar-
get usage of the learned dictionary. This section presents the main 
principles of representative algorithms in each of these three dic-
tionary learning categories. 

PROBABILISTIC METHODS
Representation and coding of images have always been a great 
challenge for researchers because of the high dimensionality and 
complex statistics of such signals. Thus, it is not surprising that 
one of the earliest works addressing the problem of learning over-
complete dictionaries appeared exactly for image representation. 
In 1997, Olshausen and Field [4] developed a maximum likelihood 
(ML) dictionary learning method for natural images under the 
sparse approximation assumption. Their method is called sparse 
coding. The goal of the work was to give evidence that the coding 
in the primary visual area V1 in the human cortex probably fol-
lows a sparse coding model. In other words, their hypothesis was 
that the visual cortex reduces the high-dimensional representa-
tion of each retinal image into a reduced space defined by the 
receptive fields of a small number of active neurons. Given the lin-
ear generative image model in (1), the objective of the ML 
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 learning method is to maximize the likelihood that natural images 
have efficient, sparse representations in a redundant dictionary 
given by the matrix F. Formally, the goal of learning is to find the 
overcomplete dictionary F* such that 

 F*5 arg max
F

3log P 1y|F 2 4
 5 arg max

F
c log3

a
P 1y|a,F 2P 1a 2da d . (4)

For high-dimensional vectors a, the computation of the integral 
in (4) is extremely difficult. To simplify the problem and solve 
the ML optimization, Olshausen and Field introduced two main 
assumptions. First, the distribution P 1a 2  is assumed to be a 
product of Laplacian distributions for each coefficient, or equiv-
alently that the coefficients ai are independent. The Laplacian 
distribution is peaked at zero and presents a heavy tail, which 
nicely fits the probability distributions of coefficients ai when 
the signal decomposition is sparse. Choosing the prior distribu-
tion on a to be tightly peaked at zero permits to approximate 
the integral in (4) only by its value at the maximum of 
P 1y|a,F 2P 1a 2 . The second assumption is that the approxima-
tion noise h can be modeled as a Gaussian zero-mean noise. 
Under these two assumptions, the optimization problem in (4) 
can be reduced to an energy minimization problem 

 F*5 arg min
F,a

 E 1y,a|F 2
 5 arg min

F, a
3 ||y2Fa||2

21l||a||1 4, (5)

where the energy function is defined as E 1y,a|F 2 5
2log 3P 1y|a,F 2P 1a 2 4. To take into account statistics of differ-
ent images, the dictionary is usually learned by minimizing an 
average energy 8E 1yi,ai |F 2 9 over a set of randomly  chosen 
images 5yi6. The casted optimization problem can be solved by 
iterating between two steps. In the first step, F is kept con-
stant and the energy function is minimized with respect to a 
set of coefficient vectors 5ai6. This inference step is essentially 
the sparse approximation problem defined by (3). It can be 
solved by convex optimization for each yi. The second step is 
called the learning step. It keeps the coefficients 5ai6 constant, 
while performing the gradient descent on F to minimize the 
average energy. Since the first step is computationally expen-
sive, the probabilistic dictionary learning methods usually 
work with small image patches, i.e., the size of yi is typically 
below 32 3 32 pixels. The algorithm iterates between the 
sparse approximation and the dictionary learning steps until 
convergence. This alternating optimization process does not 
necessarily find the global optimum solution of the considered 
problem. However, it has been shown to converge to a diction-
ary with atoms that resemble the receptive fields of simple 
neurons in V1. A ten times overcomplete dictionary learned on 
16 3 16 image patches [13] is illustrated in Figure 2. The big-
gest part of the learned dictionary consists of atoms that are 
localized, oriented and bandpass. Interestingly, these types of 
features represent well the oriented edges in images. 

Moreover, the dictionary contains atoms that are center-sur-
round and gratings, which better approximate textures in 
images. Dictionary learning here clearly meets our objectives: 
it identifies the most important building blocks in natural 
images, which permit to approximate the signals by a sparse 
series of causes or components. It also permits to build an 
interesting bridge between sparse image representation meth-
ods and the properties of the human visual cortex, which is 
undoubtedly a very efficient encoder for natural images. 

The probabilistic inference approach in overcomplete dic-
tionary learning has subsequently been adopted by other 
researchers. The two-step optimization structure has been 
preserved in most of these works, and the modifications usu-
ally appeared in either the sparse approximation step, or the 
dictionary update step, or in both. For example, the method 
of optimal directions (MOD) algorithm [14] optimizes itera-
tively the same objective ML function as in sparse coding. 
However, it uses the OMP algorithm to find a sparse vector a 
and introduces a closed-form solution for the dictionary 
update step. The two modifications render the MOD approach 
faster compared to the method of Olshausen and Field, but 
still does not guarantee to find the globally optimal solution. 
Moreover, it is not guaranteed to converge, neither to 
decrease the objective function at each iteration. The maxi-
mum a posteriori (MAP) dictionary learning method [15] 
belongs also to the family of two-step iterative algorithms 
based on probabilistic inference. Instead of maximizing the 
likelihood P 1y|F 2 , the MAP method maximizes the posterior 
probability P 1F, a|y 2 . This essentially reduces to the same 
two-step algorithm, where dictionary update includes an addi-
tional constraint on the dictionary that can be for example 
the unit Frobenius norm of F or the unit l2 norm of all atoms 
in the dictionary. The sparse approximation step is here per-
formed with FOCUSS [10]. Finally, the majorization method 
can also be used to minimize the objective function in both 
sparse approximation and dictionary update steps [16]. The 
sparse approximation step then reduces to the use of an itera-
tive thresholding algorithm. 

Naturally, the two assumptions introduced in the sparse 
coding method represent constraints that can be modified or 
even removed to learn better dictionaries or to extend the 
method to other signal models. Lewicki and Sejnowski have 
modified the first assumption and proposed a new way to 
approximate the integral in (4) with a Gaussian around the 
posterior estimate of the coefficient vector a . This changes the 
update rule in the learning step [17]. They have shown that 
the ML dictionary learning method with the new estimate for 
P 1y|F 2  learns dictionaries that improve the efficiency of 
sparse coding. The efficiency is measured here in terms of the 
entropy of data given the overcomplete dictionary. This meth-
od actually represents a generalization of the independent 
component analysis (ICA) method to overcomplete dictionar-
ies. On the other hand, one can also modify the second 
assumption on the existence of Gaussian noise. When the 
noise term is zero (i.e., h5 0 ), the sparse representation step 
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is performed using the exact ,1 sparse optimization [18]. In 
general, convergence is not guaranteed for the ,1-constrained 
methods, although it can be proved in some conditions [19]. 
One could also  introduce smoother sparsity priors to obtain 
more stable solutions. For example, the ,1 constraint is 
replaced by a Kullback-Leibler (KL) divergence in [20], which 
shows that the sparsity is preserved, while the KL-regularization 
leads to efficient convex inference and stable coefficient vec-
tors (i.e., stable representations). 

Finally, fast online learning algorithms have been proposed 
recently [19]. As most of the learning methods based on alter-
nate solutions of the sparse coding and dictionary updates 
steps use the whole training set at each iteration, these algo-
rithms become rapidly expensive when the data set is large 
and mostly inappropriate for dynamic systems where data 
evolve over time. Online learning overcomes this limitation by 
increasing progressively the training set. An alternate optimi-
zation of sparse coding and dictionary update steps is per-
formed with a subset of the training data. This subset is then 
augmented with a new training sample. The alternate optimi-

zation is run again on the new training data with the outcome 
of the previous iteration as initialization. The online algorithm 
repeats these iterations until all training data have been used. 
The resulting solution converges with efficient learning per-
formance and drastically lower computational complexity. 

CLUSTERING-BASED METHODS
A slightly different family of dictionary learning techniques is 
based on vector quantization (VQ) achieved by K-means cluster-
ing. The VQ approach for dictionary learning has been first pro-
posed by Schmid-Saugeon and Zakhor in MP-based video coding 
[21]. Their algorithm optimizes a dictionary given a set of image 
patches by first grouping patterns such that their distance to a 
given atom is minimal, and then by updating the atom such that 
the overall distance in the group of patterns is minimal. The 
implicit assumption here is that each patch can be represented 
by a single atom with a coefficient equal to one, which reduces 
the learning procedure to a K-means clustering. Since each 
patch is represented by only one atom, the sparse approximation 
step becomes trivial. 

[FIG2] Overcomplete dictionary learned with sparse coding from a large data set of 16 3 16 natural image patches. [Used with 
permission from SPIE (B. A. Olshausen, C. F. Cadieu, and D. K. Warland, “Learning real and complex overcomplete representations from 
the statistics of natural images,” Proc. SPIE, vol. 7446, 2009).] 
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A generalization of the K-means algorithm for dictionary 
learning, called the K-SVD algorithm, has been proposed by 
Aharon et al. [5]. After the sparse approximation step with 
OMP, the dictionary update is performed by sequentially 
updating each column of F using a singular value decomposi-
tion (SVD) to minimize the approximation error. The update 
step is hence a generalized K-means algorithm since each 
patch can be represented by multiple atoms and with different 
weights. This  algorithm is not guaranteed to converge in gen-
eral. However, in practice, dictionaries learned with K-SVD 
have shown excellent performance in image denoising. 
Figure 1(f) shows how K-SVD finds almost all 20 letters as the 
underlying causes of noisy letter samples. In this example, the 
sparse approximation step has been implemented by OMP, so it 
converges to a local minimum where letters “R” and “P” are 
not successfully separated. 

LEARNING DICTIONARIES WITH SPECIFIC STRUCTURES
Many applications do not necessitate general forms of dictionary 
atoms but can rather benefit from a dictionary that is a set of para-
metric functions. In contrary to the generic dictionaries above, the 
advantages of parametric dictionaries reside in the short descrip-
tion of the atoms. The generating function and the atom parame-
ters are sufficient for building the dictionary functions. This is 
quite beneficial in terms of memory requirements, communica-
tion costs or implementation complexity in practical applications. 

Such generating functions can be built on prior knowl-
edge about the form of signal causes or the target task. For 

example, some perceptual criteria can drive the choice of the 
generating functions in building the dictionary atoms, when 
the objective is to reconstruct data that are eventually per-
ceived by the human auditory or visual system. Learning in 
such parametric dictionaries reduces to the problem of 
learning the parameters for one or more generating func-
tions. Equivalently, it consists in finding a good discrete 
parametrization that leads to efficient sparse signal approxi-
mations. Parametric dictionaries are usually structured, so 
one can enforce some desired dictionary properties during 
learning such as minimal dictionary coherence; for example, 
one can optimize a parametric dictionary such that it gets 
close to an equiangular tight frame (ETF). In [22], a diction-
ary for audio signals is learned based on a Gammatone gen-
erating function, which has been shown to have similarities 
with the human auditory system. The method learns a 
 dictionary with good coherence properties, which tiles the 
time-frequency plane more uniformly than the original 
Gammatone filter bank. The resulting dictionaries are shown 
in Figure 3. 

Priors or models of the underlying signal causes can also lead 
to imposing properties such as shift-invariance [23] or multiscale 
[24] characteristics of the atoms. Such constraints typically limit 
the search space in the dictionary optimization problem, but lead 
to more accurate or task-friendly representations. Similarly, the 
target dictionary might present  specific characteristics in par-
ticular recovery problems, such as a block-based structure [25], 
or orthogonality between subspaces [26]. These requirements 
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[FIG3] Time-frequency representations of structured dictionaries for audio signal representation. It can be observed that the learned 
dictionary (b) provides a more uniform tiling of the time-frequency plane than the original dictionary (a) designed from a Gammatone 
filter bank. This corresponds to a smaller coherence than in the original dictionary. Figure used with permission from [22].
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considerably affect the design of learning strategies as well as the 
approximation performance. 

APPLICATIONS OF DICTIONARY LEARNING
Dictionary learning for sparse signal approximation has found 
successful applications in several domains. For example, it has 
been applied to medical imaging and representation of audio 
and visual data. We overview here some of the main applica-
tions in these directions. 

MEDICAL IMAGING
Dictionary learning has the interesting potential to reveal a prio-
ri unknown statistics of certain types of signals captured by dif-
ferent measurement devices. An important example are medical 
signals, such as electroencephalogram (EEG), electrocardiogra-
phy (ECG), magnetic resonance imaging (MRI), functional MRI 
(fMRI), and ultrasound tomography (UST) where different 
 physical causes produce the observed signals. It is crucial, how-
ever, that representation, denoising, and analysis of these signals 
are performed in the right signal subspace, such that the under-
lying physical causes of the observed signals can be identified. 
Learning of components in ECG signals facilitates ventricular 
cancellation and atrial modeling in the ECG of patients suffering 
from atrial fibrillation [27]. Overcomplete dictionaries learned 
from MRI scans of breast tissues have been shown to provide an 
excellent representation space for reconstructing images of 
breast tissue obtained by the UST scanner [28], which drastically 
reduces the imaging cost compared to MRI. Moreover, standard 
breast screening techniques, such as the X-ray projection mam-
mography and computed tomography can potentially exploit 
highly sparse representations in learned dictionaries [29]. 
Analysis of other signals, such as neural signals obtained by 
EEG, multielectrode arrays, or two-photon microscopy could 
also largely benefit from adapted representations obtained by 
dictionary learning methods. 

REPRESENTATION OF 
AUDIO AND VISUAL DATA
Dictionary learning has introduced significant progress in 
denoising of speech [30] and images [5], and in audio coding 
and source separation [16], [31], where it is very important to 
 capture the underlying causes or the most important constitu-
tive components of the target signals. The probabilistic diction-
ary learning framework has been also proposed for modeling 
natural videos. These methods explicitly model the separation 
of the invariant signal part given by the image content and the 
varying part represented by the motion. Learning under these 
separation constraints can be achieved using the bilinear 
model [32], [33], or the phase coding model [34]. In addition to 
learning the dictionary elements for the visual content, these 
methods also learn the sparse components of the invariant part 
(e.g., translational motion). 

There exist many examples in nature where a physical 
process is observed or measured under different conditions. 
This results in sets of correlated signals whose common part 

corresponds to the underlying physical cause. However, dif-
ferent observation conditions introduce variability in the 
measured signals, such that the common cause is usually dif-
ficult to extract. Dictionary learning methods based on ML 
and MAP can be extended by modifying the objective function 
such that the learning procedures identify the proper sub-
space for the joint analysis of multiple signals. This permits 
to learn the underlying causes under different observation 
conditions. Such modified learning procedures have been 
applied to audio-visual signals [35] and to multiview imaging 
[36]. The synchrony between audio and visual signals is 
exploited in [35] to extract and learn the components of their 
generating cause that is human speech. A multimodal dic-
tionary is learned with elements that have an audio part and 
a video part corresponding to the movement of the lips that 
generate the audio signal. An example of the learned atom for 
the word “one” is shown in Figure 4. One important contri-
bution of this work certainly lies in its benefits towards 
understanding and modeling the integration of audio and 
visual sensory information in the cortex. 

In stereo vision, the same three-dimensional (3-D) scene is 
observed from different viewpoints, which produce correlated 
multiview images. Due to the projective properties of light rays, 
the correlation between multiview images has to comply with 
epipolar geometry constraints. Dictionaries can be learned such 
that they efficiently describe the content of natural stereo imag-
es and si multaneously permit to capture the geometric correla-
tion between multiview images [36]. The correlation between 
images is modeled by the local atom transforms, which is made 
feasible by the use of geometric dictionaries built on scaling, 
rotation and shifts of a generating function. Learning is based 
on an ML objective that includes the probability that left image 
yL and right image yR are well represented by a dictionary F, 
and the probability that corresponding image components in 
different views satisfy the epipolar constraint 

 F*5 arg max
F

3log P 1yL, yR, D5 0|F 2 4, (6)

where D5 0 denotes the event when the epipolar geometry is 
satisfied. This ML objective leads to an energy minimization 
learning method, where the energy function has three terms: 
image approximation error term (for both stereo images), the 
sparsity term, and the multiview geometry term. Dictionary 
learning is performed in two steps: sparse approximation step 

Audio

Video

Word “One”

Time

[FIG4] Learned audio-visual atom representing the word ”one." 
Figure used with permission from [35].
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with the multiview MP algorithm [36], and dictionary update 
step with the conjugate gradient method. An illustrative exam-
ple of a sparse decomposition of two stereo image patches with 
three correlated learned stereo atoms is shown in Figure 5. 
Learned stereo dictionaries can be applied to the joint or dis-
tributed coding of multiple correlated views or to the analysis 
and understanding of the geometry in 3-D scenes [36]. 

The above illustrations demonstrate the benefits of sparse 
approximations with learned dictionaries in very diverse appli-
cations. One of the main advantages of dictionary learning is 
that it allows for representing the underlying causes of signals 
or the main components of data. This is very important for 
proper understanding and analysis of data that are often the 
result of noisy measurements of physical processes. 

LEARNING FOR CLASSIFICATION

DIMENSIONALITY REDUCTION 
AND CLASSIFICATION
Dimensionality reduction has been described so far from a pure 
approximation perspective, where a subspace or a dictionary is 
computed to explain the observed data with a sparse representa-
tion. Alternatively, dimensionality reduction can also target the 
analysis of data with the objective of distinguishing between dif-
ferent classes of signals or physical processes and to beat the 
curse of dimensionality and scale. Low-dimensional problems 
generally involve less complex and more efficient algorithms. 
The reduced subspace emphasizes in this case the most relevant 
information in the signal and permits to distinguish between 
different classes of observations. 

Dimensionality reduction for signal analysis finds numerous 
applications in diverse domains such as sensor networks, com-
puter vision, data mining, machine learning, or information 
retrieval. We can distinguish two main types of algorithms for 
computing the reduced subspace: the discriminative methods 
and the reconstructive methods that are illustrated in Figure 6. 
The main objective of the discriminative method is to find a 
mapping or an embedding between the original data space and a 
reduced dimension subspace, where data can then be efficiently 
analyzed or classified. This mapping can be either linear (e.g., 

linear discriminant analysis (LDA) [37]) or nonlinear (e.g., 
locally linear embedding (LLE) [38], Isomap [39]). The objective 
of the mapping is to clearly separate the data from different 
classes in the low-dimensional subspaces. The discriminative 
methods however aim at pure discrimination objectives and do 
not necessarily rely on the computation of meaningful features 
or specific components of the signal. These methods become 
unfortunately quite vulnerable to noise in the data, to missing 
data, or to imperfect testing conditions. 

The reconstructive methods try to compute representa-
tions that enable analysis and labeling of the data and simul-
taneously capture its constitutive components to provide 
robustness to impairments. We focus here on representations 
that use linear subspaces as opposed to more generic mani-
fold methods. The most common low-rank approximation 
methods used in signal analysis are based on ICA, PCA, or 
part-based representations such as nonnegative matrix factor-
ization (NMF) algorithms [40]. The role of a dimensionality 
reduction algorithm consists here in simplifying the signal to 
its most meaningful components, such that it can be effi-
ciently characterized in the reduced subspace. For example, 
PCA maximizes the variance of the data projected on the 
reduced subspace, which eventually reinforces the discrimina-
tion capabilities of the subspace representation. In most 
reconstructive methods, the projected data are eventually 
labeled based on nearest neighbor or nearest subspace crite-
ria. However, the basis vectors that define the reduced dimen-
sion subspace might unfortunately be holistic, of global 
support, or with long description length. In the next sections, 
we describe methods that build linear subspaces from redun-
dant dictionaries of functions with fine adaptation to the data 
under consideration toward effective signal classification. 

SUBSPACE SELECTION FOR CLASSIFICATION
Dimensionality reduction can first be achieved by selecting a 
subset of functions from a large, fixed dictionary that is used for 
the analysis of particular signals. These functions then deter-
mine a subspace of reduced dimension, where classification can 
be performed by computing the nearest neighbor points among 
the projected data. A simple method to build such a subspace 
consists in modifying the sparse approximation methods 
described in the previous sections, such that the objective func-
tion is augmented with a discrimination term that represents 
the separability properties of the projection subspace. One can 
thus select a subset of functions in a dictionary (represented by 
the matrix F), which approximate the data samples and simul-
taneously encourage the separability of data in different classes. 
In other words, the reduced subspace can be computed by solv-
ing a problem like 

 a*5 arg min
a
3 ||y2Fa||2

21gJ 1F,a 2 4, (7)

where the term J 1F,a 2  measures the separability of the differ-
ent classes when data is represented by atoms in F and 
 coefficients a. It typically tries to maximize the variance 

= b1⋅ + b2⋅ + b3⋅

= a1⋅ + a2⋅ + a3⋅ + ηL

+ ηR

(a)

(b)

[FIG5] Sparse decomposition of a stereo image pair with three 
correlated learned stereo atoms. (a) Left image and its atoms. (b) 
Right image and its atoms. Stereo atoms in the two views (three 
right-most columns) are correlated by local geometric transforms 
that obey epipolar geometry constraints.
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between the active atoms from F that represent signals in dif-
ferent classes. The reduced subspace used for classification is 
finally formed by the subset of atoms in F whose correspond-
ing coefficients in a* are nonzero. The subset selection prob-
lem can be interpreted as the inference step in the dictionary 
learning methods when the objective function is modified to 
include a discriminative term. Finally, the weight parameter g 
controls the tradeoff between approximation and classification 
performance in the reduced dimension subspace. A subset of 
F that solves the problem posed in (7) can be determined by 
iterative supervised atom selection built on OMP for example 
[41]. The idea mainly consists in selecting greedily the atoms 
from the dictionary that lead to the best tradeoff between 
approximation of the training data and discrimination 
between classes. 

The minimum of the joint objective function above can 
be achieved with several distinct sets of functions: finding 
the best subspace for classification becomes nontrivial due 
to the redundancy of the dictionary. However, good subspac-
es for reconstructive dimensionality reduction are charac-
terized by sparsity properties, where only a few significant 
components participate in the representation of the data. 
The method of sparse representation for signal classification 
in [42] thus explicitly includes sparsity constraints in the 
dimensionality reduction process. The reduced subspace is 
determined here by a simultaneous sparse approximation 
algorithm built on OMP, where the data separability term 
J 1F,a 2  is given by a Fisher’s discrimination criterion used in 
LDA. The reduced dimensionality subspace is therefore cho-
sen as a compromise between approximation of data within 
classes, discrimination of data in different classes, and spar-
sity of the data representation as determined by an optimiza-
tion problem of the following generic form: 

 a*5 arg min
a
3 ||y2Fa||2

21g1||a||01g2   
J 1F, a 2 4. (8)

SUPERVISED DICTIONARY LEARNING
An important advantage of redundant dictionaries for classifi-
cation is that signal analysis can be performed with functions 
that are likely to match the data characteristics in different 
classes of signals. Similarly to data approximation problems, 
data analysis applications can further benefit from dictionary 
learning methods. The previous section describes subspace 
selection methods from predefined dictionaries. However, 
learning can improve the classification performance, as it 
leads to a better adaptation of the dictionary by enforcing 
sparsity in the representation of data in the different classes. 
The atoms in a dictionary D that is computed with dictionary 
learning methods generally capture the most important con-
stitutive components of the signals. They naturally permit to 
classify the data into the corresponding linear subspace as 
shown in [5], for example. However, there is no guarantee 
that the subspace built on a learned dictionary F is truly opti-
mal for classification, as it targets efficient representation but 

not necessarily class separability. For example, one may define 
a set of functions that are good to (sparsely) approximate sig-
nals in a face image data set. However, there is no good rea-
son why this same set of functions is also the best one for 
distinguishing different persons in this data set. 
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[FIG6] Illustration of dimensionality reduction of a two-class data 
set, by projection on a linear subspace defined by vectors 1v1,v2 2. 
(a) Purely reconstructive methods compute a representative 
subspace where the projections of the data are close to the 
original data points. The approximation of data by their 
projections is optimized, but the classification of the projected 
data is not trivial. (b) Purely discriminative methods compute the 
reduced dimensionality subspace so that the classification can be 
done efficiently from the data projections. Data approximation is 
quite poor in this case, which results in low robustness to data 
impairments. The optimal subspace has to be the result of a 
tradeoff between approximation and separability.
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Dictionary learning methods should rather be modified so 
that they become simultaneously reconstructive (for robustness 
to noise) and discriminative (for efficient classification with the 
learned dictionary). The addition of a discriminative term into 
the dictionary learning algorithms requires supervision, where 
labels of training data are used to ensure that the data represen-
tation is sufficiently different in each class. It can be achieved by 
modifying the sparse coding step in the learning algorithms, so 
that it optimizes an objective function that favors the sparsest 
representation of a given signal and simultaneously the repre-
sentation that is also the most different from the one of signals 
in other data classes. The supervised dictionary learning prob-
lem can be cast as a mixed formulation that minimizes the aver-
age value of the sparse approximation errors over different 
classes and also enforces discrimination between classes. For 
example, the dictionary optimization problem can be written as 

 F*5 arg min
F, a

3 ||y2Fa||2
21g1||a||11g2C 1a, F, u 2 4, (9)

where the function C 1a, F, u 2  is a discrimination term that 
depends on the dictionary, the coefficient vectors, and the 
parameters u of the model used for classification. Since the 
dictionary is learned, alternate inference and learning steps 
have to be used in solving (9). In contrary, the subspace selec-
tion problem in the section “Classification Subspace Selection” 
is solved only within the inference step. Note that the discrimi-
nation term is specific to the chosen classifier through the 
parameters u so that the learning problem becomes highly 
dependent on the classification method and unfortunately non-
convex. Still, it can be solved efficiently by fixed-point continu-
ation methods [43] when the classifier is based on logistic 
regression methods. 

The use of one learned dictionary for all the data classes 
leads to a straightforward classification stage where the diction-
ary vectors and the coefficients in the signal representation are 
used directly to make classification decisions. Alternatively, one 
may want to improve the discrimination by building a distinc-
tive projection subspace for each data class. Classification is 
then performed by selecting the subspace that is the nearest to 
the test signal, or equivalently the subspace that leads to the 
best representation of the test signal. A simple way to build 
adaptive dictionaries for each class is to use the signals in the 
training set for the class dictionary. Sparsity constraints are 
then rather applied within the classification process, where the 
sparsest representation of the test signal determines its class 
label. For example, Wright et al. [44] have proposed a face rec-
ognition method that uses training face images as dictionaries 
and an l1 sparse optimization method in the classification stage. 
The authors show that the recognition task can be successfully 
accomplished even using random features at first. Furthermore, 
the algorithm is robust to a certain amount of noise due to the 
sparsity constraints. 

It is often preferable, however, to construct adapted dic-
tionaries that can lead to an efficient classification process 
based on simple subspace projections. The construction of 

class dictionaries can be performed with learning methods 
where the sparse coding step in the iterative learning 
 algorithms is modified, so that sparse coding is computed 
independently within each class. Such a sparse coding stage 
can be implemented by class-supervised versions of simultane-
ous pursuit algorithms, for example, where a joint sparse rep-
resentation of the training data is selected independently in 
each class. The subsequent dictionary update step further 
favors the reconstruction of signals with the functions selected 
in the modified sparse coding step. If the update step is based 
on an SVD algorithm, it simply leads to a supervised version of 
the K-SVD algorithm [45], where the K-SVD learning algo-
rithm becomes adapted to classification tasks. As supervised 
dictionary learning should intuitively lead to subspaces that 
are good for approximating data in their own class but bad for 
representing data from any other class, the subspaces can also 
be computed with a hierarchical process that ensures that fea-
tures selected in different dictionaries have only a minimal 
correlation [46]. Alternatively, global softmax discriminative 
functions can enforce that the learned dictionaries are better 
for representing data of their classes than data from any other 
classes. Such a discrimination can be achieved by modifying 
the dictionary update steps in the learning process with a 
modified version of MOD/K-SVD algorithm whose role is thus 
extended to ensuring data separability with the updated dic-
tionary in addition to good approximation properties [47]. 

Finally, discrimination in dictionary learning can also be 
achieved by enforcing incoherency between the subspaces that 
represent data in different classes and not only by minimizing 
the correlation between the features in different subspaces. It 
relies on the intuition that some features might be relatively 
good in representing data in different classes, but several fea-
tures taken together form a subspace that is mostly good in 
approximating data from the corresponding class. For example, 
the subspace formed by noses and eyes of persons in different 
classes are incoherent, even if these persons have similar eyes or 
the same nose. With the assumption that the residue of the sub-
space projection is minimal in the correct class, incoherent sub-
spaces can be designed by an alternate projection method [48]. 
It builds on the natural conditions that the interplay between 
features of different classes should be small, while the 
 interaction of training data with features in the correct class 
should be clearly higher than the interaction with features rep-
resenting any other class (see Figure 7). With minimal assump-
tions on the signal models or sparsity features, such a dictionary 
learning method reaches state-of-the-art performance on a face 
classification experiment. 

CONCLUSIONS
The goal of dimensionality reduction is to find efficient, low-
dimensional data representations within the large dimensional 
space where the observed data lies. This article has presented 
some of the recent results supporting the idea that these repre-
sentations are sparse within an overcomplete dictionary of 
atoms or subspaces. In this context, the methods for dictionary 
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learning have much to offer since they are able to adapt the data 
representation to the underlying causes of the observations. We 
have given a broad overview of the main dictionary learning 
algorithms and shown their usage in various applications, such 
as audio-visual coding and stereo image approximation. We 
have also discussed the discriminative power of sparse represen-
tations and outlined the large potential benefits of  dictionary 
learning in classification and face recognition  applications. 

Many challenges are still open in dictionary learning. 
Understanding the underlying causes of signals or the relevant 
information in observations becomes more challenging when 
the training samples are imperfect. In many applications, the 
training samples are noisy, distorted by the sensing process, or 
simply incomplete like in the case of occlusions in multiview 
imaging. The last example particularly makes us question the 
validity of linear representation models in vision where we usu-
ally encounter nonlinearities such as occlusions. Linear models 
also become invalid in advanced applications like medical imag-
ing where the acquisition methods are typically nonlinear. In all 
these situations, dictionary learning still faces critical research 
questions. Similarly, signal analysis may require more complex 
models than linear subspaces for efficient  classification. One can 
build dictionaries to be used in the definition of manifold mod-
els or graph-based representations that could potentially handle 

transformation-invariant classifications problems. In general, 
dictionaries offer a very flexible and  powerful way to represent 
relevant information in high-dimensional signals. However, the 
proper modeling of the complex underlying causes of observa-
tions poses many exciting questions about the proper construc-
tion of these dictionaries. 
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