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Abstract

The sparse linear model has seen many suc-
cessful applications in Statistics, Machine
Learning, and Computational Biology, such
as identification of gene regulatory networks
from micro-array expression data. Prior work
has either approximated Bayesian inference
by expensive Markov chain Monte Carlo, or
replaced it by point estimation. We show how
to obtain a good approximation to Bayesian
analysis efficiently, using the Expectation
Propagation method. We also address the
problems of optimal design and hyperparam-
eter estimation. We demonstrate our frame-
work on a gene network identification task.

1 Introduction

We consider the linear model

u = Xa + ε, ε ∼ N(0, σ2I), (1)

where X ∈ R
m,n is the design matrix, u ∈ R

m the
reponses, and a ∈ R

n is the vector of parameters (or
weights). X , u are being observed. In the applica-
tions we consider, sparsity of a is a key prior assump-
tion: elements of a should be set to zero, whenever
they are not required to describe the data well. On the
other hand, elements which are required, should be al-
lowed to be big if necessary. Many sparsity-favouring
priors have been suggested in Statistics. In this pa-
per, we concentrate on Laplace distribution priors of
the form

P (a) =
∏

i

P (ai), P (ai) =
τ

2
e−τ |ai|. (2)

A key advantage of this choice over others is log-
concavity, which implies important computational ad-
vantages (more details about this point are given in

[16]). We refer to the linear model with a Laplace prior
as sparse linear model. It is important to note that the
linear model is typically employed with a Gaussian

prior P (a), which due to conjugacy allows for simple
analytic treatment (see [9], Chap. 9). However, such a
prior fails to encode sparsity1 as a property of a, jus-
tifying the complications of using a Laplace prior (see
also Section 6).

In this paper, we show how to perform accurate ap-
proximate Bayesian inference for a in the sparse linear
model, using the Expectation Propagation (EP) algo-
rithm. One of our main interests here is in the area
of optimal design (see Section 2), where decisions have
to be taken based on very few observations. To this
end, the ability of encoding prior knowledge and valid
estimation of uncertainty are vital, and these come
natural in a Bayesian framework. While Bayesian in-
ference can be performed using Markov chain Monte
Carlo [12], our approach is much more efficient and
can be applied to large problems of interest in Machine
Learning. The application of EP to the sparse linear
model proves challenging, due to the underdetermined
nature of the likelihood, and some novel techniques are
introduced here in order to obtain a numerically stable
algorithm.

The structure of this paper is as follows. In Section 2, a
key application of the sparse linear model is described.
In Section 3, we show how to do approximate inference
using the Expectation Propagation method. Optimal
design is discussed in Section 4, and an approximation
to the marginal likelihood is given in Section 5. We
present experimental results in Section 6, Section 7
refers to related work and concludes the paper.

Efficient and extendable code for the sparse linear
model will be put in the public domain. Some details
had to be omitted from this short paper, they can be
found in the longer report [16]. For example, there are
two regimes which require different treatments: the de-

1See [19] for a good discussion of this point.
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generate where n > m, and the non-degenerate with
n ≤ m. The former is harder to deal with and of prime
interest in the context here, so details for the latter are
omitted here and are given in [16].

2 Gene Network Identification

Measuring m-RNA expression levels for many genes
in parallel is affordable and widely done today using
DNA micro-arrays [3]. One goal of such efforts is to
recover regulatory networks. For example, some genes
may code for transcription factor proteins, which up-
/downregulate the expression of other genes. In an
active approach to network recovery, the evolution of
expression levels of n genes is modeled by a system of
ordinary differential equations, which is linearized at
its steady state:

ẋ(t) = Ax(t) − u(t) + ε(t),

where x(t) is the deviation in expression from steady
state, and ε(t) is white noise. A ∈ R

n,n is the system
matrix, whose non-zero entries represent the edges of
the network. Note that A is square, and for a sta-
ble steady state, it is nonsingular. u(t) is an external
control, allowing the active user to probe the unknown
A. It is generally assumed that u(t) is small enough
not to drive the system out of its linearity region. Due
to the very noisy environment, it is typical to restrict
controls to be constant, u(t) ≡ u, and to measure
the new steady state limt→∞ x(t) [17]. Such distur-
bances u may be implemented biologically using gene
switches [4], which puts further restrictions on allow-
able controls.

The linear model of Eq. 1 captures this setup as fol-
lows. Suppose that m observations D = {xi, ui} have
been made, where ui is an external control, and xi is
a corresponding difference between new and old (un-
perturbed) steady state expression levels. We write
U = (ui)

T ∈ R
m,n, X = (xi)

T ∈ R
m,n. We have that

ui ∼ N(Axi, σ
2I). If a(i) is the i-th row of A, this

Gaussian likelihood decomposes into n factors, one for
each a(i). If the coefficients of A are assumed to be in-
dependent Laplacian a priori, the posterior factorizes
accordingly: P (A|D) =

∏

j P (a(j)|D),

P (a(j)|D) ∝ N(U ·,j |Xa(j), σ2I)
∏

i

P (aj,i).

Thus, we have n independent sparse linear models, on
which inference is done separately.

Since biological experiments involving gene switches
are very expensive, a key requirement is to perform
with as few data as possible, which is possible if biolog-
ical prior knowledge is encoded in P (A). Importantly,

regulatory networks are observed to be sparsely con-
nected, i.e. plausible A are sparse, a property which
is directly represented in the sparse linear model. A
principled way of saving on the number of expensive
experiments is optimal design, which in a special case
of interest here boils down to the question: given the
current posterior belief and a set of candidate controls
u∗, which of these experiments renders most new in-
formation about A? Thus, a “value of information” is
sought which can be computed for each candidate u∗
without doing the corresponding experiment. Optimal
design is well developed within Bayesian analysis [6],
and access to this methodology is a key motivation for
developing a good inference approximation here.

3 Expectation Propagation

Exact Bayesian inference is not analytically tractable
for the sparse linear model. In this Section, we show
how to apply the recently proposed Expectation Prop-

agation (EP) method [8, 11] to this problem, circum-
venting some caveats we have not seen being addressed
before. EP computes a Gaussian approximation Q(a)
to the posterior P (a|D) ∝ N(u|Xa, σ2I)P (a). In
order to motivate such, note that log P (a) is concave,
since log P (ai) = −τ |ai| + C is (see Eq. 2). Since the
likelihood is a Gaussian function of a, the log pos-
terior log P (a|D) is concave as well, thus unimodal,
and a Gaussian approximation seems sensible. Other
sparsity priors suggested in the context of robust re-
gression, such as the Student-t or the “spike and slab”
distribution2, are not log-concave, and accurate ap-
proximate inference is very hard due to posterior mul-
timodality.

If P (0) = P (u|X , a) is the Gaussian likelihood, the
true posterior is P (a|D) ∝ P (0)(a)

∏

i ti(ai), where
ti(ai) = (τ/2) exp(−τ |ai|). We refer to ti as sites, and
to P (0) as “base distribution”, even though it cannot
be normalized as probability distribution if n > m.
An optimal Gaussian posterior approximation Q(a)
would be obtained by setting its mean and covari-
ance to the true posterior statistics. This requires a
n-dimensional non-Gaussian integration, which is in-
tractable. However, we are able to do one-dimensional
integrals involving a single site ti(ai), and EP makes
use of such iteratively in order to approximate the de-
sired moments. The posterior approximation has the
form Q(a) ∝ P (0)(a)

∏

i t̃i(ai), where t̃i(ai|bi, πi) are
Gaussian functions, called site approximations. The
b, π ∈ R

n are site parameters which are adjusted
through EP. An EP update consists of computing the
Gaussian cavity distribution Q\i ∝ Qt̃−1

i and the non-

Gaussian tilted distribution P̂ ∝ Q\iti, then updating

2A mixture of a narrow and a wide Gaussian.



bi, πi such that the new Q′ has the same mean and
covariance as P̂ . This is iterated in some random or-
dering until convergence.

Denote the family of unnormalized Gaussians by

NU (z |r , R) = exp

(

−
1

2
zT Rz + rT z

)

, (3)

R being positive semidefinite. Note that some mem-
bers are not probability distributions, in that they
cannot be normalized. The family of proper Gaus-
sian distributions is denoted by N(. . . ), and is a

strict subset. Now, P (0)(a) = NU (a|b(0),Π(0)) with

Π(0) = σ−2XT X , b(0) = σ−2XT u. The site approx-
imations3 are t̃i(ai) = NU (ai|bi, πi), so that Q is a
Gaussian. One can show that as a consequence of the
log concavity of ti, we have that πi ≥ 0 for all i at all
times.

In the particular case we are interested in, namely
n > m, the standard application of EP fails, because
the base distribution P (0) is not a proper Gaussian, it
cannot be normalized and has infinite variance along
almost all directions. We will refer to P (0) as “degen-
erate” in this case4. Furthermore, an efficient repre-
sentation of Q is sought which scales with m, rather
than with n.

3.1 Posterior Representation

In this Section, we present a representation of the pos-
terior approximation Q(a) = N(h,Σ), which allows
efficient access to entries of h, diagΣ (marginal mo-
ments), and which can be updated robustly and effi-
ciently for single site parameter changes. In the case
n > m, Q is well-defined only if all πi > 0, because
P (0) cannot be normalized. For stability, we require
that πi ≥ κ at all times, where κ > 0 is a small con-
stant. While EP is usually started from the base dis-
tribution, i.e. setting all site parameters to zero, we
start with πi = ε > 0, bi = 0. Setting ε = τ2/2
ensures that ti(ai) and t̃i(ai) have the same variance
(and mean).

Since πi > 0, we can use the Sherman-Morrison-
Woodbury formula [14] to write

Σ =
(

σ−2XT X + Π
)−1

= Π−1 − Π−1XT
(

σ2I + XΠ−1XT
)−1

XΠ−1,

3The fact that t̃i depends on ai only, is a consequence
of ti = ti(ai) and the way EP works, it is not a restricting
assumption.

4Importantly, it is not the posterior over
�

matrices
which is degenerate, and certainly the matrices

�
sam-

pled from Q(
�

) are square (by definition) and nonsingular
almost surely, even for m = 1.

where Π = diag π . We represent this by

LLT = σ2I + XΠ−1XT ,

where L ∈ R
m,m is the lower triangular Cholesky

factor with positive diagonal. Furthermore, let γ =

L−1XΠ−1(b(0) + b), whence

h = Π−1
(

b(0) + b − XT L−T γ
)

,

thus both h and Σ are represented by L, γ .

For not too small κ (we used 10−8), this represen-
tation is numerically stable. After an EP update
bi → b′i, πi → π′

i, the representation can be modified
in O(m2), using a rank one Cholesky update of L, γ .
Details are given in [16].

3.2 EP Updates

We motivated the EP update above as matching mo-
ments between a tilted and the new posterior distribu-
tion. For an update at site i, we require the marginal
Q(ai) = N(hi, ρi) only (details about EP in our no-
tation can be found in [15]). If v = L−1XT

·,i, then

ρi = π−1
i (1−π−1

i ‖v‖2) and hi = π−1
i (b

(0)
i + bi−vT γ ).

Normally, cavity and tilted distribution would be com-
puted from there in order to obtain the new π′

i, b′i.
However, again the degenerate base distribution causes
trouble. Recall from Section 3.1 that it is chiefly the
positive πi which keeps the variance of Q(ai) finite.
Since Q\i(ai) ∝ Q(ai)t̃i(ai)

−1, the cavity distribu-
tion is obtained by setting πi = 0. The variance of
Q\i(ai) is finite iff ai is coupled to the other com-
ponents of a through P (0). In our main application,
however, this coupling is weak, resulting in Q\i(ai)
having huge variance. Since the tilted distribution is
P̂ (ai) ∝ Q\i(ai)ti(ai), we have to compute moments
of the product of a very wide and a quite narrow func-
tion, which is numerically unstable. A way to circum-
vent this problem is to employ fractional EP updates
(these have been introduced in a different context in
[7]), which can be understood by imagining the site ti

being replaced by q fractional replicas fi = t
1/q
i . The

corresponding site approximation replicas f̃i = t̃
1/q
i

have tied parameters. Namely, if Q\i ∝ Qf̃−1
i and

P̂ ∝ Q\ifi, we choose the new site parameters b′i, π′
i

such that the moments of P̂ and ∝ Q\if̃ ′
i match.

Now, the tilted distribution is obtained by dividing
out a fraction of t̃i and multiplying in a fraction of
ti only, which alleviates the problem just mentioned.
If ti(ai) = exp(−τ |ai|) (dropping the normalization),
this is reduced to the standard EP update by substi-
tuting b̃i = bi/q, π̃i = πi/q, and τ̃ = τ/q. For example,



if Q\i(ai) = N(h\i, ρ\i), then

ρ\i = π−1
i q

(

q

π−1
i ‖v‖2 + q − 1

− 1

)

,

h\i = π−1
i q

(

b
(0)
i − vT γ

π−1
i ‖v‖2 + q − 1

+ bi/q

)

.

Matching moments results in new values π̃′
i, b̃′i. Rather

than setting π′
i = qπ̃′

i, we use a damped update,
π′

i = (1 − 1/q)πi + π̃′
i, b′i = (1 − 1/q)bi + b̃′i, which

has the desirable effect that P̂ and the new Q′ do have
the same moments [7]. This can be understood by
remembering the q replica interpretation of fractional
updates: we move only by a fraction 1/q into the di-
rection of new site parameters, accounting for the fact
that we impose the change uniformly on all q replicas
of f̃i.

The moments of P̂ (ai) can be computed analytically,
but it is fairly challenging to do this in a numerically
stable manner. Some details are given in the appendix,
and the complete derivation is given in [16]. Note
that in the case of the sparse linear model with under-
determined likelihood (m < n), it is crucially impor-
tant to compute EP updates very accurately, in spite
of the fact that the posterior is log-concave (and uni-
modal)5. In applications where the Gaussian coupling
potential P (0) is clearly non-degenerate, EP updates
may be done to lesser accuracy, say by using Gaussian
quadrature.

Finally, our experimental design application to gene
network identification requires updating the posterior
factors Q(a(j)) in a sequential manner, including new
observations (x∗, u∗) one at a time. For a single factor,
we first update the base distribution P (0) through a
rank one Cholesky update of the representation, cost-
ing O(m2) [16]. This followed by updating the site
parameters b, π through an EP sweep over all sites.

4 Sequential Optimal Design

The role of sequential optimal design for saving on
expensive experiments has already been motivated in
Section 2. In the sparse linear model, the general de-
sign problem can be formulated as follows. A com-
plete observation is given by (x∗, u∗), and a candi-

date can be seen as incomplete observation. For ex-
ample, in the standard design setup, a candidate is
given by x∗, with u∗ unknown, while in our setup of
interest, u∗ is given and x∗ unknown. Now, given a
set of candidates, the design problem requires to de-
cide which of these should be queried next, meaning

5A reason may be that the Laplace density is “just
about log-concave”: ∝ exp(−| · |α) is not for any α < 1.

that a value for the unknown part is sampled from the
true underlying distribution (sometimes called the “or-
acle”). The goal here is to obtain as much new infor-
mation about the unknown a as possible. Assuming
(for the moment) that (x∗, u∗) is completely known
for a candidate, natural design scores quantify the de-
crease in posterior uncertainty or gain in information
from the current posterior Q to the novel Q′,obtained
by including (x∗, u∗) into the data D. In this paper,
we concentrate on the information gain6 D[Q′ ‖Q] =
EQ′ [log Q′ − log Q]. A large information gain means
that Q′ is different from Q, thus much novel informa-
tion is gained from (x∗, u∗). Now, (x∗, u∗) is not fully
known for any candidate. Bayesian methodology dic-
tates that any uncertainty in (x∗, u∗) is averaged over
its current predictive distribution. For example, in the
standard design setup, where x∗ is given, we would
use Q(u∗|x∗, D) =

∫

P (u∗|x∗, a)Q(a|D) da, which is
Gaussian, and a score for x∗ would be the expected
information gain EQ(u∗|x∗,D)[D[Q′ ‖Q]], which could
easily be approximated using Gaussian quadrature.

Now, optimal design for the gene network application
of Section 2 differs from the standard design setup, in
that a candidate is given by u∗, and x∗ is unknown.
However, we can still use the same argumentation to
arrive at a design score. First, (x∗, u∗) renders in-
formation for n independent posterior factors Q(a(j)),
thus the (complete) information gain score is the sum
of D[Q′ ‖Q] over these factors, where (x∗, u∗,j) is in-
cluded for the j-th factor. Next, the predictive dis-
tribution Q(x∗|u∗, D) =

∫

P (x∗|u∗, A)Q(A|D) dA is
not a simple distribution (like a Gaussian), but we can
easily sample from it by first drawing A ∼ Q(A|D),
then7 x∗ = A−1(u∗ − ε), ε ∼ N(0, σ2I). Our in-

formation gain score in the gene network application
is

S(u∗; D) = EQ(x∗|u∗,D) [D[Q′ ‖Q]] ,

where the expectation is approximated by using a
number of independent samples x∗.

Note that for fixed (x∗, u∗), Q′ is obtained from Q by
first modifying the base distribution P (0) correspond-
ing to the inclusion, then updating the site parameters
b, π . The latter requires EP updates until new conver-
gence is established, which is fairly expensive and may
prevent us scoring many candidate pairs. A simpler
alternative is to approximate D[Q′ ‖Q] by modifying
P (0) only, but keeping the old site parameters, when
defining Q′ for scoring. In this paper, we concentrate
on this simpler alternative. Details for the full infor-

6We also did experiments with the entropy reduction
EQ′ [log Q′]−EQ[log Q], which did not lead to significantly
different results.

7We use a LU decomposition of
�

. The same set of
decomposed

�
’s can be used to score all candidates.



mation gain criterion are given in [16]. Note that the
latter score is much harder to compute in a stable man-
ner, and it did not result in significant improvements
in preliminary experiments. The relative entropy be-
tween Gaussians is well known, and we exploit the fact
that (Σ′)−1 = Σ−1 + σ−2x∗xT

∗ , using the Sherman-
Morrison-Woodbury formula in order to compute the
score in O(m2). Details can be found in [16].

5 The Marginal Likelihood

Apart from a, the linear model comes with additional
hyperparameters, namely σ2, τ , and free parameters
in X . A powerful empirical Bayesian way of estimat-
ing such hyperparameters works by maximizing the
marginal likelihood

P (D) =

∫ n
∏

i=1

ti(ai)P
(0)(a) da.

The computation of P (D) is intractable for the sparse
linear model, but an approximation of it may be ob-
tained within the EP framework. While we do not use
the marginal likelihood in our experiments here, we
provide a derivation for future use.

Recall that EP works by matching moments of first
and second order between marginals Q(ai) and tilted
distributions P̂ (ai). In order to approximate the nor-
malization constant P (D), we match zero-order mo-
ments as well. To this end, we replace ti(ai) by
Ci t̃i(ai), t̃i(ai) = NU (ai|bi, πi), and we set the Ci

such that Q(ai) and P̂ (ai) have the same normaliza-
tion constant as well: log Ci = log Zi − log Z̃i, where
Zi = EQ\i [ti(ai)], Z̃i = EQ\i [t̃i(ai)]. This can be com-
puted in a final sweep, once EP has converged. Plug-
ging in Ci t̃i(ai) for ti(ai) results in the following ap-
proximation of log P (D):

L =

n
∑

i=1

log Ci + Φ[Q] −
1

2σ2
‖u‖2

where Φ[N(h,Σ)] = (1/2) log |2πΣ| + (1/2)hTΣ−1h

is the log partition function of a Gaussian. Further-
more, if θ(0) are parameters of P (0), then ∇

θ(0)L =

EQ[∇
θ(0) log P (0)(a)]. It is important to note that

once approximate inference has been done to obtain Q,
the gradient computation scales linearly in the number
of hyperparameters, thus L can in principle be opti-
mized over many of these. A derivation of these facts
is given in [15]. A concrete expression for L and its
gradient are given in [16].

Note that the computation of L and its gradient re-
quires doing full (non-fractional) EP updates until con-
vergence, because the derivation of either uses the fact
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Figure 1: An example network with random gene

names. Undirected edges in the plot correspond to a

bidirectional relationship in the true network.

that an EP fixed point has been reached. Recall from
Section 3.2 that in the presence of a degenerate P (0),
fractional updates may be required for stable compu-
tation. If P (0) is strongly degenerate, such as in the
regulatory networks setup with few experiments done
(m � n), full EP updates cannot be done properly
even at the fractional stationary point. In these cases,
L cannot be computed. Finding an approximation of
log P (D) for the fractional case is subject to future
work. For other P (0), full EP updates can be done
after a few initial fractional ones. Preliminary experi-
ments indicate that an application to sparse coding of
natural images (see Section 7) is of this kind.

6 Experiments

The application of the sparse linear model to active
regulatory network recovery was motivated in Sec-
tion 2. Here, we describe some preliminary experi-
ments. All our results are averaged over 100 runs. In
one run, we first generate a graph and matrix A as fol-
lows. Biological networks are found to be sparsely con-
nected and showing small-world properties [20]. We
sample such networks with n = 50 nodes, using an al-
gorithm described in [1], the average number of parents
being 2.4. An example network is shown in Figure 1.
Given the graph, the non-zero values ai,j ∼ U [−1, 1]
independently. Given A, we sample 1000 candidate
controls u∗ and corresponding experimental outcomes
x∗. Since up-/downregulating a specific gene is an ex-
pensive procedure, we focus on sparse controls u∗ for
biological relevance, setting 3 randomly selected en-
tries to ± 1√

3
(at random), so that u∗ has norm one.



x∗ is sampled from the model8, where the noise stan-
dard deviation is σ = 0.01. In general, σ2 has to be
determined from biological prior knowledge or exper-
iments on related systems. Here, we consider σ to be
known.

Several methods, to be described shortly, are now com-
pared on this pool of (x∗, u∗) pairs. A method has
access to all u∗ values, and may sequentially request
x∗ for some u∗, one in each iteration. Each method
is tested after each iteration, by comparing its predic-
tion against the true A. We allow for 50 iterations,
as many as there are nodes, after which we would
expect a well-performing method to reconstruct the
graph fairly reliably. Recall that we have a continu-
ous posterior over A, from which we need to output
a prediction of the graph. For some small ρ (we use
ρ = 0.1; while the prediction depends on ρ, it is sta-
ble except for extreme choices), we predict an edge
(i, j) iff Q({|ai,j| > ρ}) is larger than some threshold.
By varying the threshold, we can perform a standard
ROC analysis. Since networks of interest are sparse,
the number of false positives is potentially large, which
is why only the leftmost part of the ROC curve is in-
teresting. The evaluation score we use, called iAUC,
is the area under the ROC curve up to a number of
false positives equal to the true number of edges, nor-
malized to lie in [0, 1]. The hyperparameter τ was set
using the following heuristic: under the Laplace prior,
the expected number of parents predicted per gene is
n exp(−τρ). Given the true average number of par-
ents d̄, we set τ = −ρ−1 log(d̄/n). In our experiments,
d̄ is known. In practice, it could be estimated from
networks of similar type9.

The methods we consider here all use (approximate)
Bayesian inference in the linear model. We compare
using Laplace against Gaussian priors on A, and ran-
dom inclusions versus active design choices. For ran-
dom inclusions, the pool of candidates u∗ is sampled
without replacement, and active design is done using
the information gain score. When using a Gaussian
prior, we choose its variance such that P ({|ai,j | > ρ})
is the same as for the Laplace prior, so that the differ-
ence is merely in the shape of the priors. Results are
shown in Figure 2.

From these results, it is clear that using a Laplace prior
instead of a Gaussian one pays off significantly, even if
only random inclusions are done. This means that the

8More realistic experiments, where �∗ is obtained by
forward simulation of a biologically motivated nonlinear
ODE system, have been obtained and been submitted for
publication.

9Our method is fairly robust to different τ around this
estimate, but the number of required experiments increases
sharply if τ is chosen far from the heuristic estimate.
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Figure 2: Network recovery using different methods:

Laplace versus Gaussian prior, optimal design versus

random selection. Mixed method: first 20 controls

drawn randomly, optimal design for the rest.

sparse linear model is clearly superior to the standard
normal linear model, even in situations where experi-
ments are not actively designed. Both methods with
Gaussian prior do not attain maximum iAUC scores
(meaning reliable recostruction of the whole network)
even with 50 experiments. We should note that deal-
ing with a Laplace prior is more costly than using the
standard Gaussian one, but only by a small constant
factor in our experience so far. One run with “Laplace
Design” (50 inclusions, 1000 candidates, 20 samples of
A per information gain score) takes about 6 minutes
on a Desktop PC (2 GHz Pentium III).

Comparing random versus designed inclusions, it is
also clear in both cases (Laplace and Gaussian) that
the latter performs much better. In the Laplace case,
the whole network is reliably recovered after about 35
experiments with designed inclusions, while random
inclusions only attain iAUC = 0.9 after all 50 inclu-
sions. An interesting effect, pronounced more in the
Laplace case, is that active design seems to hurt ini-
tially, until about 25 = 50/2 experiments have been
done. While we do not have a conclusive explana-
tion for this observation, we note that active design
on the basis of a very uncertain posterior is consid-
ered unreliable in general. It is encouraging though
that the active Laplace variant steeply recovers beyond
25 inclusions and is not harmed by the initial under-
performance. We also tested a mixed variant, called
“Laplace Mix” in Figure 2, for which the first 20 in-
clusions were selected at random, the remaining ones
were chosen actively. There is no significant under-



performance anywhere for this method.

Note that in the experimental design setup we con-
sidered here, n inclusions have to be decided upon.
After each inclusion, we have to update n posterior
factors over n variables each, and an EP sweep for one
of these factors costs O(n3) during later stages. These
update sweeps clearly dominate the computational ef-
fort. Thus, a straightforward implementation (as used
here) requires O(n5) time. We also need n posterior
representations, so O(n3) memory. For large n (say
beyond 400), a more careful implementation may be
necessary. First, we can parallelize the posterior repre-
sentations and EP update computations up to a factor
of n. Next, doing EP updates for all sites after each in-
clusion is very conservative. An immediate idea would
be to identify, for each factor i separately, those sites
j whose marginals Q(aj) change most upon the inclu-
sion of a point (x∗, u∗,i) into the likelihood part P (0)

(but before any EP updates), then do EP updates for
these sites only. This would cut down the computa-
tional cost by a factor up to n. The LU decomposi-
tions of sampled A (required to compute the design
scores, see Section 4) may also become problematic,
although they only contribute O(n3) for each inclu-
sion. We would recommend to sparsify A in this case,
and use sparse decomposition code.

7 Discussion

We have shown how to perform accurate approximate
Bayesian inference in the linear model with a Laplace
prior very efficiently, and how this can be used to ad-
dress tasks such as optimal design and hyperparameter
estimation. These capabilities were demonstrated on
an application to identification of gene regulatory net-
works.

The idea of L1 regularization has been used in very
many contexts. The maximum a posteriori (MAP)
treatment of the sparse linear model has been proposed
as Lasso [18] and as basis pursuit [2]. The linear model
can be configured with other sparsity-inducing priors,
in order to obtain robust variants of linear regression.
The prime advantage of an MAP treatment is that
the fitting to data can be done very efficiently. On the
other hand, MAP as an approximation to Bayesian in-
ference is poor in this case. We have demonstrated a
few advantages of going the full Bayesian way in this
paper, such as optimal design based on uncertainty
estimates, or marginal likelihood hyperparameter esti-
mation. The MAP approximation for the sparse linear
model has been applied to the gene network identifi-
cation problem in [13], but they do not address the
problem of optimal design.

An approximate Bayesian method for the linear model

with Student-t prior has been given in [19]. In
their case, the posterior is not log-concave and multi-
modal10. Furthermore, their family in which Gaussian
posterior approximations live, has less variational pa-
rameters than the one used by EP, which may lead to
less accurate approximations. A Markov chain Monte
Carlo treatment of the sparse linear model is proposed
in [12], where the Laplace distribution is written as
scale mixture of Gaussians, and a block Gibbs sam-
pler is developed. While this approach has the po-
tential of being exact in the limit of large running
time11, it is still much slower than our approximate
method and may not be applicable to many large
tasks addressed in Machine Learning. Furthermore,
the marginal likelihood may not be obtained directly
from their method. Comparing our approach to these
approximate Bayesian alternatives, none of which con-
sider experimental design, is subject to future work.

More realistic experiments for gene network recovery
are in preparation, using ODE generators in order to
simulate from a network. In this context, more elabo-
rate noise modeling, dynamic aspects, and other real-
istic types of external control will be looked into.

We also plan to apply our method to the problem of
learning and analyzing image codes [10, 5], with the
aim of understanding properties of visual neurons in
the brain. In this context, the sparse linear model
has been proposed as a realistic model, in which codes
can be learned by maximizing the marginal likelihood.
The marginal likelihood approximation of Section 5 is
potentially more accurate than the one used in [5], and
it will be interesting to test their hypothesis using our
framework.

The Bayesian sparse linear model may have many
other applications, given that its MAP variants (Lasso,
basis pursuit) are very widely used. For example, EP
has been applied to approximate inference in gener-
alized linear models (GLMs) with a Gaussian prior,
while our application here is to a linear model with
a Laplace prior. An application to a GLM with a
Laplace prior is subject to future work.

8 Appendix

The EP update for Laplace sites ti(a) =
exp(−τ |a|), τ > 0 can be done analytically, but
the numerically stable computation is fairly involved.
We present the main points of our approach here,
a complete exposition is given in [16]. We need the

10Their approach can be applied to the linear model with
Laplace prior, by using the scale mixture decomposition
given in [12].

11The log-concavity of the posterior should translate into
fairly fast mixing.



moments Ik = EN(h,ρ)[a
kti(a)], k = 0, 1, 2, where

a = ai, h = h\i, ρ = ρ\i. Assume for now that τ = 1.

Then, I0 = Ĩ0(h) + Ĩ0(−h), where

Ĩ0(h) = E
[

I{a≥0}e
−a
]

= exp(ρ/2 − h)(1 − Φ(ρ1/2 − hρ−1/2)).

Here, Φ is the cumulative distribution function of
N(0, 1). Now, we easily see that Ĩ0(|h|) ≥ Ĩ0(−|h|),
so that

log I0 = log Ĩ0(|h|) + log

(

1 +
Ĩ0(−|h|)

Ĩ0(|h|)

)

permits a stable computation. We now use the well
known asymptotic expansion

1 − Φ(x) ∼ N(x)x−1
(

1 − 1x−2
(

1 − 3x−2(. . . )
))

.

If F (x) = log(1 − Φ(x)), we use this expansion up to
1 − 7x−2 for x > 5, but compute F (x) exactly other-
wise12. We have that log Ĩ0(|h|) = ρ/2−|h|+F (ρ1/2−
|h|ρ−1/2), and

R :=
Ĩ0(−|h|)

Ĩ0(|h|)
= exp

(

2|h|+ F (ρ1/2 + |h|ρ−1/2)

− F (ρ1/2 − |h|ρ−1/2)
)

,

which gives log I0. The computation of I1, I2 uses the
same ideas, it is given in [16]. The mean of P̂ (a) is

ĥ = I1/I0, the variance is ρ̂2 = I2/I0 − ĥ2. If τ 6= 1,
we simply plug in h = τh\i, ρ = τ2ρ\i above, and

multiply ĥ by τ , ρ̂ by τ2. Finally, a fractional EP
update is done by simply scaling τ accordingly.
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Biologic Cybernetics, Tübingen, Germany, 2006. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.

[17] J. Tegnér, M. Yeung, J. Hasty, and J. Collins.
Reverse engineering gene networks: Integrating ge-
netic perturbations with dynamical modeling. PNAS,
100(10):5944–5949, 2003.

[18] R. Tibshirani. Regression shrinkage and selection via
the Lasso. J. Roy. Stat. Soc. B, 58:267–288, 1996.

[19] Michael Tipping. Sparse Bayesian learning and the
relevance vector machine. J. M. Learn. Res., 1:211–
244, 2001.

[20] Duncan J. Watts and Steven H. Strogatz. Collec-
tive dynamics of ’small-world’ networks. Nature,
393(6684):440, 1998.


