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Abstract

Generalized linear models are the most commonly used tools to describe the stim-
ulus selectivity of sensory neurons. Here we present a Bayesian treatment of such
models. Using the expectation propagation algorithm, we are able to approximate
the full posterior distribution over all weights. In addition, we use a Laplacian
prior to favor sparse solutions. Therefore, stimulus features that do not critically
influence neural activity will be assigned zero weights and thus be effectively
excluded by the model. This feature selection mechanism facilitates both the in-
terpretation of the neuron model as well as its predictive abilities. The posterior
distribution can be used to obtain confidence intervals which makes it possible
to assess the statistical significance of the solution. In neural data analysis, the
available amount of experimental measurements is often limited whereas the pa-
rameter space is large. In such a situation, both regularization by a sparsity prior
and uncertainty estimates for the model parameters are essential. We apply our
method to multi-electrode recordings of retinal ganglion cells and use our uncer-
tainty estimate to test the statistical significance of functional couplings between
neurons. Furthermore we used the sparsity of the Laplace prior to select those
filters from a spike-triggered covariance analysis that are most informative about
the neural response.

1 Introduction

A central goal of systems neuroscience is to identify the functional relationship between environ-
mental stimuli and a neural response. Given an arbitrary stimulus we would like to predict the neural
response as well as possible. In order to achieve this goal with limited amount of data, it is essential
to combine the information in the data with prior knowledge about neural function. To this end,
generalized linear models (GLMs) have proven to be particularly useful as they allow for flexible
model architectures while still being tractable for estimation.

The GLM neuron model consists of a linear filter, a static nonlinear transfer function and a Poisson
spike generating mechanism. To determine the neural response to a given stimulus, the stimulus
is first convolved with the linear filter (i.e. the receptive field of the neuron). Subsequently, the
filter output is converted into an instantaneous firing rate via a static nonlinear transfer function,
and finally spikes are generated from an inhomogeneous Poisson-process according to this firing
rate. Note, however, that the GLM neuron model is not limited to describe neurons with Poisson
firing statistics. Rather, it is possible to incorporate influences of its own spiking history on the
neural response. That is, the firing rate is then determined by a combination of both the external

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147968025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


stimulus and the spiking-history of the neuron. Thus, the model can account for typical effects
such as refractory periods, bursting behavior or spike-frequency adaptation. Last but not least, the
GLM neuron model can also be applied for populations of coupled neurons by making each neuron
dependent not only on its own spiking activity but also on the spiking history of all the other neurons.

In previous work (Pillow et al., 2005; Chornoboy et al., 1988; Okatan et al., 2005) it has been
shown how point-estimates of the GLM-parameters can be obtained using maximum-likelihood (or
maximum a posteriori (MAP)) techniques. Here, we extend this approach one step further by using
Bayesian inference methods in order to obtain an approximation to the full posterior distribution,
rather than point estimates. In particular, the posterior determines confidence intervals for every
linear weight, which facilitates the interpretation of the model and its parameters. For example, if
a weight describes the strength of coupling between two neurons, then we can use these confidence
intervals to test whether this weight is significantly different from zero. In this way, we can readily
distinguish statistical significant interactions between neurons from spurious couplings.

Another application of the Bayesian GLM neuron model arises in the context of spike-triggered
covariance analysis. Spike-triggered covariance basically employs a quadratic expansion of the
external stimulus parameter space and is often used in order to determine the most informative
subspace. By combining spike-triggered covariance analysis with the Bayesian GLM framework,
we will present a new method for selecting the filters of this subspace.

Feature selection in the GLM neuron model can be done by the assumption of a Laplace prior over
the linear weights, which naturally leads to sparse posterior solutions. Consequently, all weights
are equally strongly pushed to zero. This contrasts the Gaussian prior which pushes weights to zero
proportional to their absolute value. In this sense, the Laplace prior can also be seen as an efficient
regularizer, which is well suited for the situation when a large range of alternative explanations for
the neural response shall be compared on the basis of limited data. As we do not perform gradient
descent on the posterior, differentiability of the posterior is not required.

The paper is organized as follows: In section 2, we describe the model, and the “expectation prop-
agation” algorithm (Minka, 2001; Opper & Winther, 2000) used to find the approximate posterior
distribution. In section 3, we estimate the receptive fields, spike-history effects and functional cou-
plings of a small population of retinal ganglion cells. We demonstrate that for small training sets,
the Laplace-prior leads to superior performance compared to a Gaussian-prior, which does not lead
to sparse solutions. We use the confidence intervals to test whether the functional couplings between
the neurons are significant.

In section 4, we use the GLM neuron model to describe a complex cell response recorded in macaque
primary visual cortex: After computing the spike-triggered covariance (STC) we determine the
relevant stimulus subspace via feature selection in our model. In contrast to the usual approach, the
selection of the subspace in our case becomes directly linked to an explicit neuron model which also
takes into account the spike-history dependence of the spike generation.

2 Generalized Linear Models and Expectation Propagation

2.1 Generalized Linear Models

Let Xt ∈ Rd, t ∈ [0, T ] denote a time-varying stimulus and Di = {ti,j} the spike-times of i =
1, . . . , n neurons. Here Xt consists of the sensory input at time t and can include preceeding input
frames as well. We assume that the stimulus can only change at distinct time points, but can be
evaluated at continous time t. We would like to incorporate spike-history effects, couplings between
neurons and dependence on nonlinear features of the stimulus. Therefore, we describe the effective
input to a neuron via the following feature-map:

ψ(t) = ψst (Xt)
⊕

i

ψsp({ti,j ∈ Di : ti,j < t}),

where ψsp represents the spike time history and ψst the possibly nonlinear feature map for the
stimulus. That is, the complete feature vector ψ contains possibly nonlinear features of the stimulus
and the spike history of every neuron. Any feature which is causal in the sense that it does not
depend on future events can be used. We model the spike history dependence by a set of small time
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windows [t− τl, t− τ ′l ) in which occuring spikes are counted.

(ψsp,i({ti,j ∈ Di : ti,j < t}))l =
∑

j:ti,j<t

1[t−τl,t−τ ′l )
(ti,j) ,

where 1[a,b)(t) denotes the indicator function which is one if t ∈ [a, b) and zero otherwise. In other
words, for each neuron there is a set of windows l = 1, . . . , L with time-lags τl and width τl − τ ′l
describing its spiking history. More precisely, the rate can only change if the stimulus changes
or a spike leaves or enters one of these windows. Thus, we obtain a sequence of changepoints
0 = t̃0 < t̃1 < · · · < t̃j < · · · < T , where each feature ψi(t) is constant in [t̃j−1, t̃j), attaining the
value ψi,j . In the GLM neuron model setting the instantanious firing rate of neuron i is obtained by
a linear filter of the feature map:

p(spike|Xt, {ti,j ∈ D : ti,j < t}) = λ(wT
i ψ(t)), (1)

where λ is the nonlinear transfer function. Following general point process theory (Snyder & Miller,
1991) and using the fact that the features stay constant between two changepoints we can write down
the likelihood P (D|{w}) =

∏n
i=1 Li(wi), where each Li(wi) has the form

Li(wi) ∝
∏
j

φi,j(ui,j), ui,j = wT
i ψj ,

φi,j(ui,j) = λi(ui,j)
P

t∈Di
δ(t−t̃j) exp(−λi(ui,j)(t̃j − t̃j−1)) .

The function δ(.) in the second equation is defined to be one if and only if its argument equals zero.
The sum therfore is 1 iff a spike of neuron i occurs at changepoint t̃j . Note that the changepoints
t̃j depend on the spikes and therefore, the process is not Poissonian, as it might be suggested by the
functional form of the likelihood.

As it has been shown in (Paninski, 2004), the likelihood is log-concave in wi if λi(·) is both convex
and log-concave. We are using the transfer function λi(u) = eu which, in particular, gives rise to a
log-linear point process model. Alternatively, one could also use λi(u) = eu1u<0 + (1 + u)1u≥0,
which grows only linearly (cf. Harris et al. (2003); Pillow et al. (2005)).

While we require all rates λi(t) to be piecewise constant, it should be noted that we do not restrict
ourselves to a uniform quantization of the time axis. In this way, we achieve an efficient architecture
for which the density of change points automatically adapts to the speed with which the input signal
is changing.

The choice of the prior distribution can play a central role when coping with limited amount of data.
We use a Laplace prior distribution over the weights in order to favor sparse solutions over those
which explain the data equally well but require more weights different from zero (c.f. Tibshirani
(1996)):

P (wi) ∝
∏
k

e−ρk|wk,i|. (2)

Thus, prior factors have the form φi,k(ui,k) = ρk

2 exp(−ρk|ui,k|) with ψk = (1l=k)l and ui,k =
wT

i ψk as above. In our applications, we allowed the prior variance 2
ρ2

k
of the stimulus-dependent

features to be different from the variance of the spike-history features. The posterior takes the form:

P (w|D) ∝
∏
i,j

φi,j(ui,j),

where each φi,j individually instantiates a Generalized Linear Model (either corresponding to a
likelihood factor or to a prior factor). As the posterior factorizes over neurons, we can perform
our analysis for each neuron seperately. Therefore, for simplicity we drop the subscript i in the
following.

Our model does not assume or require any specific stimulus distribution. In particular, it is not
limited to white noise stimuli or elliptically contoured distributions but it can be used without mod-
ification for other stimulus distributions such as natural image sequences. Finally, this framework
allows exact sampling of spike trains due to the piecewise constant rate.
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2.2 Expectation Propagation

As exact Bayesian inference is intractable in our model, we seek to find a good approximation to the
full posterior. In our case all likelihood and prior factors are log-concave. Therefore, the posterior is
unimodal and a Gaussian approximation is well suited. A frequently used technique for this purpose
is the Laplace-approximation which computes a quadratic approximation to the log-posterior based
on the Hessian around the maximum. For the Laplacian prior, however, this approach falls short
since the distribution is not differentiable at zero. Instead, we employ the Expectation Propagation
(EP) algorithm (Minka, 2001; Opper & Winther, 2000). In this approximation technique, each factor
(also called site) φj of the posterior is replaced by an unnormalised Gaussian:

NU (uj |bj , πj) = exp(−1
2
πju

2
j + bjuj) =: φ̂(uj), πj ≥ 0

where the bj , πj are called the site parameters. The approximation aims at minimizing the Kullback-
Leibler divergence between the full posterior P (w|D) and the approximation, Q(w) ≈

∏
j φ̂(uj).

The log-concavity of the model implies that all πj ≥ 0, which supports the numerical stability of
the EP algorithm. Some of the πj may even be 0, as long as Q(w) is a (normalizable) Gaussian. An
EP update at j consists of computing the Gaussian cavity distribution Q\j ∝ Qφ̂−1

j and the non-
Gaussian tilted distribution P̂ ∝ Q\jφj , then updating bj , πj such that the new Q′ has the same
mean and covariance as P̂ (moment matching). This is iterated in random order over the sites until
convergence.

We omit the detailed update schemes here and refer to (Seeger et al., 2007; Seeger, 2005). Conver-
gence guarantees for EP applied to non-Gaussian log-concave models have not been shown so far.
Nevertheless it is reported that at least in the log-concave case EP behaves stable (e.g., Rasmussen
& Williams (2006)), and we observe quick convergence in our case ( ≤ 20 iterations over all sites
are required). The model still contains hyperparameters, namely the prior variances 2

ρ2
k

. In each ex-
periment, these were determined via a standard crossvalidation procedure (80% training data, 10%
validation, 10% test).

3 Modeling retinal ganglion cells: Which cells are functionally coupled?

We applied the GLM neuron model to multi-electrode recordings of three rabbit retinal ganglion
cells. The stimulus consisted of 32767 frames each of which showing a random 16×16 checkerboard
pattern with a refresh rate of 50 Hz (data provided by G. Zeck, see (Zeck et al., 2005)).

First, in order to investigate the role of the
Laplace prior, we trained a single cell GLM neu-
ron model on datasets of different sizes with ei-
ther a Laplace prior or a Gaussian prior. The
models, which have the same number of param-
eters, were compared by evaluating their nega-
tive log-likelihood on an independent test set. As
can be seen on the right the choice of prior be-
comes less important for large training sets as the
weights are sufficiently constrained by the data.
For each training set size a separate crossvalida-
tion was carried out. Errorbars were obtained by
drawing 100 samples from the posterior. training data-set size (% of complete dataset)
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Fig. 1 shows the spatiotemporal receptive field of each neuron, as well as the filters describing
the influence of spiking history and input from other cells. For conciseness, we only plot the filters
for 80 and 120 ms time lags, but the fitted model included 60 and 140 ms time lags as well. The
strongly positive weights on the diagonal of figure 1(c) for the spiking history can be interpreted
as “self-excitation”. In this way, it is possible to model the bursting behavior exhibited by the cells
in our recordings (see also Fig. 2). The strongly negative weights at small time lags represent re-
fractory periods. The red lines correspond to 3 standard deviations of the posterior. The first neuron
seems to elicit ”bursts” at lower frequencies. Note the different scaling of the y-axis for diagonal and
off-diagonal terms. By analyzing the coupling terms, we can see that there is significant interaction
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between cells 2 and 3, but not between any other pair of cells. As our prior assumption is that the
couplings are 0, this interaction-term is not merely a consequence of our choice of prior. As a result
of our crossvalidation it turns out that the prior variance for spike history weights should be set to
very large values (ρ= 0.1, variance = 2 1

ρ2 ) meaning that these are well determinated by the data. In
contrast, prior variances for the stimulus weights should be more strongly biased towards zero (ρ =
150).

(a) GLM (b) STA

(c)

Figure 1: (a): Stimulus dependence inferred by the GLM for the three neurons (columns) at different
time lags (rows). 2 of 4 time lags are plotted (60, 140 ms not shown). (b): Spike-triggered average
for the same neurons and time lags as in (a). (c): Causal dependencies between the three neurons.
Each plot shows the value of the linear weight as a function of increasing time lag τl (in ms). Shown
are posterior mean and three std. dev. (indicated in red). Different scaling of the y-axis is used for
diagonal and off-diagonal plots.

STA GLM GLM with couplings
Neuron 1 0.2199 0.2442 0.3576
Neuron 2 0.1746 0.2348 0.3320
Neuron 3 0.1828 0.3319 0.4202

Mean 0.1924 0.2703 0.3699

Table 1: Predictions performance of different models. Entries correspond to the correlation coef-
ficient between the predicted rate of each model and spikes on a test set. Both rate and spikes are
binned in 5 ms bins. The first GLM models neither connections nor self-feedback.

Because of the regularization by the prior the spatio-temporal receptive fields are much smoother
than the spike-triggered average ones, see Fig. 1(a). The receptive fields of the STA seems to be
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Figure 2: Predicted rate for the GLM neuron model with and without any spike history and the
predicted rate for the STA for the same neurons as in the other plots. For the STA the linear response
is rectified. Rate for the GLM with spike dependence is obtained by averaging over 1000 sampled
spike-trains. Rates are rescaled to have the same standard deviation.

more smeared out which might be due to the fact that it cannot model bursting behavior. The more
conservative estimate of the sparse neuron model should increase the prediction performance. To
verify this, we calculated the linear response from the spike-triggered average and the rate of our
GLM neuron model. In order to have the same number of parameters we neglected all connections.
As a model free performance measure we used the correlation coefficient between the spike trains
and the rates (each are binned in 5 ms bins). For the GLM with couplings, rates were estimated
by sampling 1000 spike trains with the posterior mean as linear weights. As our model explicitly
includes the nonlinearity during fitting, the rate is more sharply peaked around the spikes, see Fig. 2.
The prediction performance can be increased even further by modeling couplings between neurons
as summarized in Tab. 1.

4 Modeling complex cells: How many filters do we need?

Complex cells in primary visual cortex exhibit strongly nonlinear response properties which cannot
be well described by a single linear filter, but rather requires a set of filters. A common approach
for finding these filters is based on the covariance of the spike-triggered ensemble: Eigenvectors of
eigenvalues that are much bigger (or smaller) than the eigenvalues of the whole stimulus ensemble
indicate directions in stimulus space to which the cell is sensitive to. Usually, a statistical hypothesis
test on the eigenvalue-spectrum is used to decide how many of the eigenvectors ei are needed to
model the cells (Simoncelli et al., 2004; Touryan et al., 2002; Rust et al., 2005; Steveninck & Bialek,
1988). Here, we take a different approach: We use the confidence intervals of our GLM neuron
model to determine the relevant dimensions within the subspace revealed by STC. We first apply
STC to find the space spanned by a set of eigenvectors that is substantially larger than the expected
dimensionality of the relevant subspace. Next, we fit a nonlinear function ni to the filter-outputs
fi(Xt) = 〈Xt, ei〉. Finally, we linearly combine the ni(t), resulting in a model of the same form as
equation (1) with (ψst)i(Xt) = ni(fi(Xt))
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(a) (b)

Figure 3: (a): 24 out of 40 Filters estimated by STC. The filters are ordered according to their log-
ratio of their eigenvalue to the corresponding eigenvalue of the complete stimulus ensemble (from
left to right). Highlighted filter are those with significant non-zero weights, red indicating excitatory
and blue inhibitory filters. (b) Upper: Posterior mean +/- 3 std. dev. Filter indices are ordered in the
same way as in (a). Lower: Predicted rate on a test set for STC and for the GLM neuron model with
spike history dependence on a test set.

As the model is linear in the weights wi, we can use the GLM neuron model to fit these weights
and obtain confidence intervals. If a filter fi(t) is not needed for explaining the cells response, its
corresponding weight wi will automatically be set to zero by the model due to the sparsity prior.
This provides an alternative, model-based method of determining the number of filters required to
model the cell. The significance of each filter is not determined by a separate hypothesis test on
the spectrum of the spike-triggered covariance, but rather by assessing its influence on the neural
activity within the full model.

As in the previous application, we can model the spike history effects with an additional feature
vector ψsp to take into account temporal dynamics of single neurons or couplings.

Before applying our method to real data, we tested it on data generated from an artificial complex cell
similar to the one in (Rust et al., 2005). On this simulated data we were able to recover the original
filters. We then fitted this GLM neuron model to data recorded from a complex cell in primary visual
cortex of an anesthetized macaque monkey (same data as in (Rust et al., 2005)). We first extracted
40 filters which eigenvalues were most different to their corresponding eigenvalues of the complete
stimulus ensemble. Any nonlinear regression procedure could be used to fit a nonlinearity to each
filter output. We used a simple quadratic regression technique. Having fixed the first nonlinearity
we approximated the posterior as above. The resulting confidence intervals for the linear weights
are plotted in Fig. 3(b). The filters with significant non-zero weights are highlighted in Fig. 3(a).
Red indicates exitatory and blue inhibitory effects on the firing rate. Using 3 std. dev. confidence
intervals 9 excitatory and 8 inhibitory filters turned out to be significant in our model. The number
of filters is similar to that reportet in Rust et al., who regarded 7 excitatory and 7 inhibitory filters as
significant (Rust et al., 2005). The rank order of the linear weights is closely related but not identical
to the order of eigenvalues, as can be seen in Fig. 3(b), top.

5 Summary and Conclusions

We have shown how approximate Bayesian inference within the framework of generalized linear
models can be used to address the problem of identifying relevant features of neural data. More
precisely, the use of a sparsity prior favors sparse posterior solutions: non-zero weights are assigned
only to those features which which are critical for explaining the data. Furthermore, the explicit
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uncertainty information obtained from the posterior distribution enables us to identify ranges of sta-
tistical significance and therefore facilitates the interpretation of the solution. We used this technique
to determine couplings between neurons in a multi-cell recording and demonstrated an increase in
prediction performance due to regularization by the sparsity prior. Also, in the context of spike-
triggered covariance analysis, we used our method to determine the relevant stimulus subspace
within the space spanned by the eigenvectors. Our subspace selection method is directly linked
to an explicit neuron model which also takes into account the spike-history dependence of the spike
generation.
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