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Abstract

We propose a highly efficient framework for penalized likelbd kernel methods applied to multi-
class models with a large, structured set of classes. Assggpto many previous approaches
which try to decompose the fitting problem into many smalleesy we focus on a Newton opti-
mization of the complete model, making use of model strgctaurd linear conjugate gradients in
order to approximate Newton search directions. Crucially, learning method is based entirely
on matrix-vector multiplication primitives with the kernmatrices and their derivatives, allow-
ing straightforward specialization to new kernels, andufieg code optimization efforts to these
primitives only.

Kernel parameters are learned automatically, by maxirgithie cross-validation log likelihood
in a gradient-based way, and predictive probabilities atenated. We demonstrate our approach
on large scale text classification tasks with hierarchicatsure on thousands of classes, achieving
state-of-the-art results in an order of magnitude less tivaa previous work.

Parts of this work appeared in the conference paper See@@r)2
Keywords: multi-way classification, kernel logistic regression,rarehical classification, cross
validation optimization, Newton-Raphson optimization

1. Introduction

In recent years, machine learning researchers starteddiessdproblems with kernel machines
which require models with a large number of dependent viesaland whose fitting demand train-
ing samples with very many cases. For example, for multi-elagsification models with a hierar-
chically structured label space (Cai and Hofmann, 2004 )Jeno applications call for predictions
on thousands of classes, and very large data sets becontebbazaiHowever, ifn andC denote
data set size and number of classes respectively, nonpai@kernel methods liksupport vector
machinegSVMs) orGaussian processé&Ps) typically scale super-linearly irC, if dependencies
between the latent class functions are represented pyoperl

Furthermore, most large scale kernel methods proposed sefifain from solving the problem
of learning hyperparameters (kernel or loss function patars), also known as “learning the ker-
nels”. The user has to run cross-validation schemes eabgfiby hand”, which is not suitable for
learning more than a few hyperparameters. However, manelmdor modern applications come
with a large number of hyperparameters (for example to sgmtedependencies through “mixing”
as in independent components analysis), and adjusting timemgh optimization must make use
of gradients.
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We propose a general framework for learning in probabilig&rnel classification models.
While the models treated here are not novel, a major featuogioapproach is the high compu-
tational efficiency with which the primary fitting (for fixed/herparameters) is done. For example,
our framework applied to hierarchical classification witmdreds of classes and thousands of data
points requires a few minutes for fitting. The central idetoistep back from what seems to be
the dominating approach in machine learning at the momeamety to solve a large convex opti-
mization problem by iteratively solving very many small ené popular approach for these small
steps is to minimize the criterion w.r.t. a few variablesypkkeping the other ones fixed, and many
variations of this theme have been proposed. In this papefpous on the opposite approach of
trying to find directions which lead to fast descent, no nmiatev many of the variables are in-
volved. This is essentially Newton’s method, and one aspkour work is to find approximate
Newton directions very efficiently, making use of model stame and linear conjugate gradients in
order to reduce the computation to standard linear algetimgitives on large contiguous chunks
of memory. Interestingly, such global approaches are géigdavoured in the optimization com-
munity for problems (such as kernel methods fitting) whichnza be decomposed naturally into
parts. While other gradient-based optimizers such asdécalrjugate gradients could be used as
well, they require more fine-tuning (for example, precaoding) to the specific problem they are
applied to, while Newton’s method is closer to a “black bogttinique and can be transferred to
novel situations without many changes.

For multi-way classification, our primary fitting method Esalinearly inC, and depends on
mainly via a fixed number afatrix-vector multiplicationgMVM) with n x n kernel matrices. In
many situations, these MVM primitives can be computed vdfigiently, often without having to
store the kernel matrices themselves.

We also show how to choose hyperparamegetematicallyby maximizing the cross-validation
log likelihood, making use of our primary fitting technologg inner loop in order to compute the
CV criterion and its gradient. It is important to note that byperparameter learning method works
by gradient-based optimization, where the dominating pathe gradient computation does not
scale with the number of hyperparameters at dlhe gradient computation also requires a number
of MVMs with derivatives of kernel matrices, which can be uwedd to kernel MVMs for many
frequently used kernels (see Section 7.3). Therefore, maroach can in principle be used to learn
a large number of hyperparameters without user interaction

We apply our framework to hierarchical classification wittamg classes. The hierarchy is
represented through an ANOVA setup. While thdatent class functions are fully dependent
priori, the scaling of our method stays close to what unstructutat) ¢lassification withC classes
would require. We test our framework on the same tasks tdayeCai and Hofmann (2004),
achieving comparable results in at least an order of madmiess time.

Our proposal to use approximate Newton methods is not nevalieh. The Newton method, or
a variant of it called Fisher scoring, is the standard apgrder fitting generalized linear models in
statistics (Green and Silverman, 1994, McCullach and Nelt#83), at least if parametric models
are fitted to moderately sized samples. Our primary fittinghoe for flat multi-way classification
(see Section 2) appeared in Williams and Barber (1998). Mew&e demonstrate the usefulness
of this principle on a much larger scale, showing how modelcstire can (and has to) be exploited

1. Such scaling behaviour is fairly standard in Gaussiangg®marginal likelihood maximization techniques (Witis
and Barber, 1998), but has only recently been brought tataitein the SVM community (Keerthi et al., 2007).
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in this context. Furthermore, we demonstrate how the sesgndsk of hyperparameter learning
can be reduced to the same underlying primitives.

The structure of the paper is as follows. Our model and metiqhrameter fitting is given
in Section 2. An extension to hierarchical classificatioprgvided in Section 3, and in Section 4
we give our automatic hyperparameter learning procedusseiiiial computational details are dis-
cussed in Section 5. Experimental results on a very largafaieical text classification and several
standard machine learning problems are given in Sectione&clgge with a discussion in Section 7,
relating our global direction approach to popular blockrdamate descent techniques in Section 7.2,
and pointing out future work in Section 7.4.

Optimized C++ software for our framework is available ag pathe LHOTSE toolbox for adap-
tive statistical models, which is freely available for noommercial purpos€sThe implementation
contains the linear kernel case used in Section 6.1 (seendippB.3), as well as a generic represen-
tation described in Appendix D.1, with which the experinsgntSection 6.2, Section 6.3 have been
done. ltis fairly simple to include new kernels or (approate) kernel MVM implementations.

2. Penalized Multiple Logistic Regression

In this section, we introduce our framework on a multi-wagssification model witlC classes,
where structure between classes is not modelled. We retbistsetup aflat classification in that

the label set is flat (unstructured).
latent
@ ] independent

functions

." "prior" mixing (optional)

latent
] dependent
likelihood functions
coupling penalization

log P(y | u) log P(u)

Figure 1: Structure of penalized likelihood optimization.

In general, our framework is applicable to models of the folepicted in Figure 1. A set of
latent (unobserved) functiong(-) is fitted to observed data by penalized likelihood maxindrat
For many models, the penalisation term (also called reigeligrcorresponds to the logarithm of a
prior density over thei(-). This primary fitting step corresponds to a convex optiniiaproblem
over finitely many variables. Structure in such models isesgnted either as couplings in the log

2. Available atwwv. kyb. t uebi ngen. npg. de/ bs/ peopl e/ seeger/ | hot se/ .
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likelihood function, or in the penalisation (or log priogrin. The latter can be realized through the
linear mixing ofa priori independent functions,(-), in other words the penaliser over the latter
decouples w.r.tp (our main example of such mixing is hierarchical classifarat developed in
Section 3).

We now apply this general framework to flat classificationevety € {1,...,C} is to be pre-
dicted fromx € X, given some i.i.d. dat® = {(x,yi)|i = 1,...,n}. Our notation convention for
vectors and matrices is detailed in Appendix A, where we @bdlect all major notational definitions
in a table. We codg, asy; € {0,1}<, 17y, = 1 (zero-one coding).We employ thenultiple logistic
regression modelconsisting ofC latent class functions.(-) feeding into the multiple logistic (or
softmax) likelihoodP(yic = 1|x;,ui(-)) = €%X) /(5 o e X)),

We write uc(-) = fc() + b for intercept (or bias) parametes € R and functionsfc(-) living
in a reproducing kernel Hilbert space (RKHS) with kerké = K(©)(...) (Scholkopf and Smola,
2002), and consider theenalized negative log likelihood

n C
P=- _;Iog P(yilui) +(1/2) lel fe()Z+(1/2)a 2[Ib]%, Ui = (Ue(x))e € RS,

which we minimize for primary fitting. Here - || is the RKHS norm for kemneK(©. The idea

is that deviations irf; from desired functional properties encodedit? are penalized by a large
| fc(-)||2. For example, for the Gaussian kernel (7), non-smdgtre penalized, and for the linear
kernel (Appendix D.3)/|f.(-)||? is the squared norm of the weight vector. Details on perdilize
likelihood kernel methods and RKHS penalisation can beddorGreen and Silverman (1994) and
Scholkopf and Smola (2002).

The model can also be understood in a Bayesian context, whengenalisation terms come
from zero mean Gaussian process priors on the funcfigns andb has a zero mean Gaussian prior
with varianceo?. From this viewpoint, we do a maximum a-posteriori (MAP) apgmation here,
without however taking covariances into account propesligi¢ch would be much more expensive
to do). Details on Gaussian processes for machine learr@ngoe found in Seeger (2004) and
Rasmussen and Williams (2006).

Since the likelihood depends on thg(-) only through the valued.(x;) at the data points,
every minimizer of® must be a kernel expansioriz(-) = 5; aicK(©(-,x). This fact is known as
representer theorem (Green and Silverman, 1994, Wahb8).18ugging this in, the regulariser
becomeg1/2)aKa + (1/2)a2||b||?, whereK(© = (K© (x;,x;))i j € R™, andK = diag(K(©)). is
block-diagonal. The kernel§© can in general be different, although sharing kernels anctasses
can lead to computational savings, in that some of the bléXsare identical. Our implementation
of block sharing is described in Appendix D.1.

We show in Section 5.1.1 that th® may be eliminated ab = 0%(1 ® 1")a. Thus, ifK =
K4 0?%(I ®1)(I ®1"), then our criteriord becomes

1 +- ~
CD:CDm—i—E(XTKG, Oh=-y u+1"l, I =logl"expu), u=Ka. 1)

@ is strictly convex ina, being a sum of linear, quadratic, atahsumexpterms of the form
log 1" exp(u;) (Boyd and Vandenberghe, 2002), so it has a unique minimumt goi The corre-

3. We switch between the formags y;. Note thatyic denotes a component yn= (Vic)c.
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sponding kernel expansions are
Oc(-) = 3 Gic (KO (-,%) +07).
|

Estimates of the conditional probability on test poirtsare obtained by plugging:(x.) into the
likelihood. These estimates are asymptotically consistthough better finite sample estimates
could probably be obtained by a more Bayesian treatment.

We note that this setup is related to the multi-class SVM if@reer and Singer, 2001), where
—logP(yi|ui) is replaced by the margin lossuy, (X ) + max{Uc(X) +1— 8¢y }. Heredap = Iz
The negative log multiple logistic likelihood has similaioperties, but is smooth as a function of
u, and the primary fitting ofx does not require constrained convex optimization. Funtioee,
universal consistency for estimatesRify.|x.) can be established for the multiple logistic loss, but
fails to hold for the SVM variant (Bartlett and Tewari, 2004)

We will minimize @ using theNewton-RaphsofNR) algorithm. The computation of Newton
search directions requires solving a system with the Hessia the gradient oP, which we will
do approximately using thiinear conjugate gradientfl CG) algorithm. This can be done without
fully computing, storing, or inverting the Hessian, all ofiwh would not be possible for largeC.

In fact, the task is reduced to computikgk; +2) MVMs with K, wherek; is the number of NR
iterations k, the number of LCG steps for computing each Newton direct®nce NR is a second-
order convergent methok is generally smallk, determines the quality of each Newton direction,
and again, fairly small values seem sufficient (see Sectibn Betails are provided in Section 5.1.

Finally, some readers may wonder why we favour the NR algarihere, which in practice can
be fairly complicated to implement, while we could do a siemgiradient-based optimization of
w.r.t. a, for example by scaled (non-linear) conjugate gradien®3 The problem is that on tasks
of the size we want to address, non-invariant methods su8Cé&stend to fail completely if not
properly preconditioned, and we experienced exactly thptéliminary experiments. In contrast to
that, NR is invariant to the choice of optimization variahleo does not have to be preconditioned.
It is by far the preferred method in the optimization litewrat (Bertsekas, 1999, Boyd and Vanden-
berghe, 2002), and many ideas for preconditioning or QNagiton try to approximate the NR
directions. We think that a proper SCG implementation caatleast as efficient as NR, but needs
fine-tuning to the specific problem, which in the case of hehigal classification (discussed next)
is already quite difficult. More details on this point aregyivn Section 5.4 and also Section 7.2.

3. Hierarchical Classification

So far we dealt with flat classification, the classes beingpetideng priori, with block-diagonal
kernel matrixk . However, if the label set has a known structtisee can benefit from representing
it in the model. Here we focus on hierarchical classificatibe label se{1,...,C} being the leaf
nodes of a tree. Classes with lower common ancestor shoutbbeclosely related. In this section,
we propose a model for this setup and show how it can be detiltinvour framework with minor
modifications and reasonable extra cost.

In flat classification, the latent class functiong-) are modelled aa priori independent, in
that the penaliser (or the log prior in the GP view) is a summdiiidual terms for each, without

4. Learning an unknown label set structure may be achievexkpgctation maximization techniques, but this is subject
to future work.
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Us = Ug + U,
Figure 2: Example of a tree-structured target space, whbedd correspond to leaf nodes (shaded).

interaction terms. Analysis of variance (ANOVA) models ggybnd such independent designs, they
have previously been applied to text classification by Cditldofmann (2004), see also Shahbaba
and Neal (2007). Le{0,...,P} be the nodes of the tree, O being the root, and the numbers are
assigned breadth first (@,... are the root’s children). The tree is determinedPbgndng, p =
0,...,P, the number of children of node. LetL be the set of leaf nodef,| = C. Assign apair

of latent functionsup, Up to each node, except the root. Tiyeare assumed priori independent,

as in flat classificationuy, is the sum ofuy, wherep' is running over the nodes (including on

the path from the root tp. An example is given in Figure 2. The class functions to beifeal

the classification likelihood are thg ) of the leafs. This setup represents similarities according
to the hierarchy. For example, if leakgc), L(c') have the common parem, thenu ) = up +

Ui (¢), U (¢) = Up+ ULy, SO the class functionsharethe effectu,. Since regularisation forces all
independent effectsy to be smooth, the classesc’ are urged to behave similaréypriori.

Letu= (up(X))i.p, U= (Up(X))i,p € R™. The vectors are linearly relatedas- (¢ ® 1)U, ® €
{0,1}PP, a special case of the mixing of Figure 1. Importantlyhas a simple structure which
allows MVM with ® or @ to be computed easily i@(P), without having to compute or store
explicitly. Letcs, = ¥ y.pny, and defined, € R4, d = cs, + np, to be the upper left block of
®, so that® = ®p. If pis a leaf node, the®, = ®,_;. Otherwise ®,, is obtained fromd,_1 by
attaching rowgd,®p 1,8 ), j = 1,...,np, whered, @, 1 is the p-th row of ®p_;. This is because
Ues,+j = Up + Ucs, +j for the functions of the children gd. Formally,

®,1 O
®p = < Tp >7
P=\ 18Ty g |

where the lower right € R"". Note that® is lower triangular with diag> = |. This recursive
definition directly implies simple methods for computing- ®v andv — ®Tv.

Under the hierarchical model, the class functiopg, are strongly dependeat priori. Rep-
resenting this prior coupling in our framework amounts to@y plugging in the implied kernel
matrix

K= (o)K@ ®l), (2)
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into the flat classification model of Section 2. Here, the irfaés block-diagonal, while in the flat
model,K itself had this property. In the hierarchical cakeis not sparse and certainly not block-
diagonal, but we are still able to compute kernel MVMs effitig pre- and post-multiplying byp

is very cheap, anH is block-diagonal just as in the flat case.

In fact, the step from flat to hierarchical classificationuiegs minor modifications of existing
code only. If code for representing a block-diagoials available, we can use it to represent
the innerK, just replacingC by P. This simplicity carries through to the hyperparameterrizay
method (see Section 4). The cost of a kernel MVM is increabga factorP /C < 2, which in most
hierarchies in practice is close to 1.

However, it would be wrong to claim that hierarchical cléisation in general comes as cheap
as flat classification. In fact, primary fitting becomes maustly, precisely because there is more
coupling between the variables. In the flat case, the Hessign (1) is close to block-diagonal.
The LCG algorithm to compute Newton directions convergesldy because it nearly decom-
poses intoC independent ones, and fewer NR steps are required. In thard¢ical case, this
“near-decomposition” does not hold, and both LCG and NR meerk iterations to attain the same
accuracy, although each LCG step comes at about the samasdoghe flat case.

In numerical mathematics, much work has been done to appat&ly decouple linear systems
by preconditioning. In some of these strategies, knowledgrit the structure of the system matrix
(in our case: the hierarchy) can be used to drive precomdiigo An important point for future re-
search is to find a good preconditioning strategy for theesggb). However, in all our experiments
so far the fitting of the hierarchical model took less tharceathe time required for the flat model
on the same task.

4. Hyperparameter Learning

Our framework comes with an automatic method for setting frgperparametefs, by gradient-
based maximization of the cross-validation (CV) log likelod. Our primary fitting method of
Section 2 is used here as principal subroutine. Such a setigmimonplace in Bayesian statistics,
where (marginal) inference is typically employed as sutineuin parameter learning.

Recall that primary fitting works by minimizin@ (1) w.r.t.a. Let{lx} be a partition of the data
setranggl,...,n}, with Jy = {1,...,n}\ I, and let

Dy = U[TJk] (1/2)ap) —Ys) + 1M (%]

be the negative log likelihood of the subsktof the data. Hereyy,; = KJKGM. Theay, are
independent variablespt part of a commoha. The cross-validation criterion is

W= Z‘Hk, W= —yiug + 15, ugg =Ky 300, 3)

whereay, is the minimizer of®;, . Since for eaclk, we fit and evaluate the likelihood on disjoint
parts ofy, W is an unbiased estimator of the true negative expectedKelijiood.

In order to adjush, we pick a fixed partition at random, then do gradient-basgidhnization of
Ww.r.t.h. To this end, we maintain the sgd|;, } of primary variables, and iterate between re-fitting

5. Nodes with a single child only can be pruned from the hamar Note that our formalism does not require all leaf
nodes to have the same depth.
6. Which is why they are not referred to ag .
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those for each fol#, and computindg and,W. The gradient can be determined analytically, using
a computation which is equivalent to the Newton directiompatations for ;, meaning that the
same code can be used. Details are given in Section 5.2. hait® is not a convex objective.

As for computational complexity, suppose there arfelds. The update of the,; requires
q primary fitting applications, but since they are initiatizevith the previous values|,, they do
converge very rapidly, especially during later iteratior@omputing¥ based on thex;, comes
basically for free. The gradient computation decompostestimo parts: accumulation, and kernel
derivative MVMs. The accumulation part requires solvipgystems of siz¢(q— 1)/g)nC, thus
gks kernel MVMs on theRJk if linear conjugate gradients (LCG) is usdd,being the number of
LCG steps. We also need two buffer matriges= of gnC elements each. Note that the accumu-
lation step isndependentf the number of hyperparameters. The second part congistgernel
derivative MVMs for each independent componenhof his second part is much simpler than the
accumulation one, consisting entirely of large matrix aegiens, which can be run very efficiently
using specialized numerical linear algebra code. The ndetbiocomputing® and 0,W can be
plugged into a custom gradient-based optimizer, such asiiewton or conjugate gradients, in
order to learrh.

As shown in Section 5.3, the extension of hyperparametenileg to the hierarchical case of
Section 3 is done by wrapping the accumulation part WittMVMs, the coding and additional
memory effort being minimal.

We finally note from our findings in practice (see Section &3} on large tasks, our automatic
method can require some fine-tuning. This is due to the delaependencies between the different
approximations used. The accuracyWfand O0,W depends on how accurate the inner NR opti-
mizations foray,, turn out, and the latter depend on how many iterations of L&3lane in order
to compute search directions. Fortunatdhy, and its gradient w.r.uj;; can be computed exactly
in order to assess inner optimization convergence, so we @@ast know when things go wrong.
In our implementation, we deem an evaluatiordofind Ly W usable if the average ¢y, ®s||
over folds is below a threshold, which depends on the protaathon time constraints. A failed
evaluation leads to a right bracket there for the outer dp#tion line search, in that step sizes
beyond the failed one are not accessed. We can now tune tiweriasing time parameteig, ko
so thatW evaluations do not fail too often. In this context, it is innfamt to regard theay,, } as
aninner statealongside the hyperparameter vedtoAlthough inner optimizations are convex, for
large problems and reasonalide ko, successive minima are attained only when we start from the
previous best inner state. This is true especially duritey ltages, where for certain problems (see
Section 6.3 attends “extreme” values and the inner optimizations becquite hard. Therefore,
the inner state used to initialize a gividhevaluation is the final one for the last recentccessful
evaluatiorf Inner states attained during failed evaluations are dischr

7. Although inner optimizations are convex, speed of caymece of NR depends strongly on the valuehof For
“extreme” values, the Newton direction computation by L&GGharder, and search directions can become large in
early NR iterations. The latter may be because we wotkrather tharo space, but only the former is really feasible.

8. Within outer line searches, we ugej;,} from the last recent successful evaluationthe left(along the search
direction).
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5. Computational Details

In this section, we provide details for the material abovee fechniques given here do characterize
our framework, they are novel in this combination, and sofiteem may be useful in other contexts
as well. More specific details of our implementation can hetbin Appendix D.

5.1 Details for Flat Classification

In this section, we provide details for the primary fittingtiogization in the case of flat multi-way
classification, introduced in Section 2. Note that thisfgtmethod appeared in Williams and Barber
(1998) in the context of approximate Gaussian processantey, although some fairly essential
ideas here are novel to our knowledge (symmetrisation oftbiewystem, pair optimization line
search, numerical stability considerations).

Recall that we want to minimize the strictly convex criter@® (1) w.r.t. a, using the Newton-
Raphson (NR) method. Modern variants of this algorithmaitedine searches along tiNewton
directions—H ~1g, whereg, H are gradient and Hessian ®fat the currenti. We will start with
the Newton direction computation in Section 5.1.1, comingndn the line searches afterwards in
Section 5.1.2 (it turns out that it basically comes for fre&h overview of the fitting algorithm is
given in Section 5.1.3.

5.1.1 GOMPUTING THENEWTON DIRECTION

Recall® and related variables from (1). Lat = P(yic = 1|uj), T=exp(u— 1®1), and recall that
@y, is the likelihood part ird. Now,

g =00y =1—y, W:=0O0P =D —DP¢sD, Pgs= (l®|)(lT ®|).

Here,D = diagr, and gradient and Hessian are taken wur(notw.r.t. a). Our convention fonC
vectors and matrices and the usezas explained in Appendix A. The form &Y can be understood
by noting thatV is block-diagonal in @ifferentordering, which uses (classes) as inner anddata
points) as outer index, then switching to our standard ander

It is easy to compute gradient and Hessiarfowv.r.t. a, b. A full (classical) Newton step is
given by the system

(1 +WK)a'+W(l ® 1)b' =Wu-—g,
(Io1MHWKd +(1o1"NWI @) +0 2 = (1 @1T)(Wu—g),

and the Newton search direction is obtained as the differahe a, b’ —b. Subtracting(l ® 1)
times the first from the second, we obtain= 0(I ® 17)a’, and plugging this into the first equation,
we have

(I +W (K +0%Pgata) ) o' =WuU—g, Pgata= (121)(121"). (4)

Note thatPyaa@ = (31 & )i, which does the same &g;s, but on index rather tharc. We denote
K=K+ 02Pdata>

noting that this corresponds %9 = KO + 02117, The correct way of incorporating intercept
parameters is to add the constafto the kernels, then to obtaiiy = 02 5; ajc. This is the meaning
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of “eliminating b” in Section 2. While we could optimize? as a hyperparameter, we consider it
fixed and given for simplicity. In the sequel, we considérbeing eliminated from the model by
replacingk — K everywhere. We have = Ka.

We can solve the system (4) exactly if we can tolerate a sgafi®(n®>C) andO(n>C) memory.
Note that this scaling is linear rather than cubi€inThe exact solution is derived in Appendix C.
It is efficient for moderaten, and generally useful for code debugging, and is supporyeduio
implementation. In the remainder of this section, we foaugpproximate computations.

Although we could solve the system using a bi-conjugateigrasl solver, we can do much bet-
ter by transforming it into symmetric positive definite farirst, note thatV is positive semidef-
inite, but singular. This can be seen by noting that the patarization of our likelihood in terms
of u; is overcomplete, in that; + k1 gives the same likelihood values for all We could fix one
of the u; components, which would however lead to subtle depender@éveen the remaining
C — 1 functionsuc(-). In order to justify oura priori independent treatment of these functions,
we have to retain the overcomplete likelihood. The nullspee\V is given by{(d):|d € R"}
and has dimension. This can be seen by noting thata= 0 iff a = (&), a= Jya®). W has
rank n(C —1). We havea € ranW iff y.al® = (1" ®@1)a = 0 (recall that kew/ and raiW are
orthogonal, and their direct sum R"®). From (4) we see that’ + g lies in rarWW. Note that
5.0 = 5,(® —y©) =11 =0, thereforeg € ranW, thusa’ € ranW. We see that the dual
coefficients must fulfill the constraint € ranW. Note that ralV is in fact independent d. What-
ever starting value is used for, it should be projected onto ravi, which is done by subtracting
C1Pys0. The NR updates then make sure that the constraint remafitigdi

Next, we need a decompositi=V VT of W. Such &/ exists (becausé is positive semidef-
inite). In fact,

W =ADA"T, A=1|—-DPgs.

This follows easily from(1" @ 1)D(1®1) = T D) =I. Thus,W =V VT with V = ADY2. The
matrix A has fixed points raW/, namely ifa € ranW, then(lT ®l)a=0, so thatha= a.
Since there exists sonvg(fiot unique) s.ta’ = WV, we can rewrite the system (4) as

V(I+VTRV)VTI=V (VTu-7),

whered'is s.t.g =V {§ (such a vector exists becauge ranW). This suggests the following proce-
dure for findinga’:
(1+VTKV)B=VTu-§, o =Vp. (5)

To see the validity of this approach, simply multiply botdes of (5) byV from the left, which
shows tha¥/ 3 solves the original system. Since the latter has a uniqugigol(strict convexity!),
we must havé/ § = o’. Finally, we note thaj= D~%/2g does the job, becauseD1/2g=Ag=g.
The latter follows becausg e ranWw.

Thus, in exact arithmetic, the Newton direction computai® implemented in a three-stage
procedure. First, compuig= D~Y/2g. Second, solve the system (5) #r This is a symmetric
positive definite system with the typically well-conditiesh matrix| +VTKV, and can be solved
efficiently using the linear conjugate gradients (LCG) alllpomn (Saad, 1996). The cost of each step
is dominated by the MVM/ — Kv, which scales linearly i, due to the block-diagonal structure
of K. Third, seta’ =V 3. The Newton direction is obtained a5— a.

9. In our experience so far, a good values8fis fairly robust across different tasks for the same problemmay differ
strongly between different problems. It can be chosen basebme initial experiments.
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We can start the LCG run from a good guess as follows.oLeé the current dual vector which
solved the last recent system. We would like to initialgs.t.a =V = ADY2p. If we assume
thatDY/2B e ranW, thena = D¥/2p. Therefore, a good initialization B = D~/2a. Alternatively,
we may also retaifs from the last recent system.

Issues of numerical stability are addressed in AppendixiBthermore, the LCG algorithm is
hardly ever run without some sort of preconditioning. Ourgant implementation uses diagonal
preconditioning, as described in Appendix B. We have alemated in Section 3 that a non-
diagonal preconditioning strategy could be valuable, bigtis subject to future work.

5.1.2 THE LINE SEARCH

The classical NR algorithm proceeds doing full staps> o/, but modern variants typically employ

a line search along the Newton directiah—a. In the non-convex case, this ensures global con-
vergence, and even for our convex objectivga line search saves time and leads to numerically
more stable behaviour. Interestingly, the special strectd our problem leads to the fact that line
searches essentially come for free, certainly compared thé effort of obtaining Newton direc-
tions. We refer to this simple idea pair optimization the reader may be reminded of similar tricks
in primal-dual schemes for SVM.

Lets=a’—a be the NR direction, computed as shown above, andgt&ia. The line search
minimizes (or sufficiently decrease®)on the line segmerto+As, A € (0, 1], starting withA =1
(which is the classical Newton step). The idea is to treats a function of the paifu,a), where
u=Ka. The corresponding line segmentis= up + A8, 3 = Ks, requiring a single kernel MVM
for computings: Let j = argmax$;|. For an evaluation ob atu, we reconstruch = (uj — Ug j)/$;
anda = dg+As, then

d=u"((1/2)a—y)+1"l, Ob=m-y+a,

so that an evaluation comes at the cO$hC) and does not require additional kernel MVM ap-
plications. We now do the line minimization df in the variableu. The driving feature of pair
optimization is that we can go back and forth betweeandu without significant cost, once the
search direction is known w.r.t. both variables.

5.1.3 OVERVIEW OF THE OPTIMIZATION ALGORITHM

In Algorithm 1, we give a schematic overview of the primaryirig algorithm, written in terms of a
MVM primitive v — Kv. For simplicity, we do not include the measures discussetppendix B
to increase numerical stability.

5.2 Details for Hyperparameter Learning

In this section, we provide details for the CV hyperparamktarning scheme, introduced in Sec-
tion 4. The gradient of the CV criterio# (3) is computed as follows¥ is a sum of term&/,, one
for each fold. We focus on a single term and wtite Iy, J = J. ajy is determined by the stationary
equationay + gjy = O (all terms of subscripil] are as in Section 5.1.1, but for the subdeff the
data, and w.r.toa(y)). Taking derivatives gives

day = Wy ((dKy)ap +Ky(dagy))
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Algorithm 1 Newton-Raphson optimization to find posterior made
Require: Starting values foo, b. Targetsy.
a=a-Cyeal®), sothatr € ranW. u=Ka.
repeat
Computd , log(1t) from u. Computed.
if relative improvement i® small enougtihen
Terminate outer loop.
else ifmaximum number of iterations dotieen
Terminate outer loop.
end if
Initialize B = D~Y/2a. Compute rh.ss =VTu—§, § =D /2g.
Compute preconditioner diéig-VTKV).
Run preconditioned CG algorithm in order to solve the syg@rmapproximately. The CG code
is configured by a primitive to compute— (1 +VTKV )v, which in turn calls the primitive for
Vi— Kv.
Computea’ = ADY2p.
Do line search along = o’ — a. This is done iru, alongs'= Ks.
Assign line minimizer tax, u.
until forever

sincedgy = W 5 duy. We obtain a system fatay which is symmetrised as in Section 5.1.1:

<| —|—VF:]]KJV[J])B:—V-[S](dKJ)(X[J], dG[J] :V[J]B-

Also,
] )
dWi = () — i) ((dKig)a +Kiy(dag)).
With

71 ~
f =Ly —y) — LoV (1 VRV ) VR (=),

we have thatl¥, = (1. ja(y))" (dK)f.
If we collect these vectors as columnskfF € R"¢4, g the number of folds, we have that

d¥ =trET (dK)F (6)

for the complete criterion. The computation Bf F was called “accumulation” in Section 4. It
involves a loop over folds, in which,; is determined by NR optimization, starting from its pre-
vious value, therf (column ofF) is computed by solving one more system of the same form as
is required to compute Newton directions. Importantlys taccumulation phase is independent of
the number of hyperparameters. The gradient computatiem rbquires to compute (6) for each
component, using kernel derivative MVMs. First of alk /oh;, is block-diagonal just ak, and

for many standard kernels, it is a simple expression, inuglK itself (see Section 7.3), so one
may be able to share computations between the differeniegtadomponents. Importantly, the
computation of (6) is easily broken down into large numeriiceear algebra primitives, for which
very efficient code may be used (see Section 7.2). This isnéfisignt advantage in the presence of
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many hyperparameters. For moderately many hyperparasnéteraccumulation clearly dominates
the CV criterion and gradient computation.

The dominating part of the accumulation is the re-optinmsadf theay, which are done by
calling the optimized code for primary fitting (Section 5d9 subroutine. Here, a feature of our
implementation becomes important. Instead of represgrtathK ; separately, we represent the
full K only for all subset kernel MVMs. The representation depermtshe covariance function,
and in general on how kernel MVMs are actually done. A genexpresentation is described in
Appendix D.1. In order to work on the data subdgtwe shufflethe representation such that in the
permuted kernel matriXS; forms the upper left corner. This means that linear algebraitves
with K3 can be run without mapping matrix coordinates through axnahich would be many
times slower. Details on “covariance shuffling” are givem\ppendix D.2.

As mentioned in Section 5.1.1 and detailed in Appendix C, arealso compute Newton direc-
tions exactly inO(C ?) in the flat classification case. This exact treatment can tendrd to the
computation o and its gradient, as is shown in Appendix C. Exact computatiead to more
robust behaviour, and may actually run faster for small talenaten. Exact computations are also
useful for debugging purposes.

5.3 Details for Hierarchical Classification

In this section, we provide details for hierarchical clisation method, introduced in Section 3.
Recall thatu = (P ® 1)U for an indicator matrixp of simple structure, and that MVM witth or ®7
can be computed easily @(P), without having to storeb. Since theu,(-) are given independent
priors (or regularisers), the corresponding kernel mariis block-diagonal. The induced covari-
ance matrixK overup is given by (2), and hierarchical classification differsnfrohe flat variant
only in that this non-block-diagonal matrix is used.

The MVM primitive v — Kv is computed in three steps. MVM wittt, . ® 1) and(d)[_ ®l)
works by computings — S®, S S®T for Se R"P. In between, MVM withK has to be done in
the same way as for flat classification, only tKahasP rather tharC diagonal blocks.

The diagonal preconditioning of LCG (see Appendix B) regsithe computation of didg €
R"C. We have

Kicic = (81 P 0 8 )K (B8, @ &) = 8 d(diagK(*)) )08y, p=L(0),

whereéLCD is the p-th row of ®. From the recursive structure @f we know that ifn, > 0, then

T T T - -
6csp+jd>:6p¢+6csp+j, j=1,...,np, soif

di(CSPJFj) = dip + Ri(C%—H)’ =1, -5 Np,
then diadk =d,.

Hyperparameter learning (see Section 5.2) is easily egtétathe hierarchical case, recalling
(2) and the fact tha® does not depend on hyperparameters. Ddfine ((D[, ®1)E e R"PA, F

accordingly, withE, F given in Section 5.2. The gradient components (6) tranmnhdiT(dR)lf,
whereK is block-diagonal as before. In our implementation, wemeseuffer space foE, F, yet
build E, F there during accumulation. We then transform thefa t& using in-place computations.
The step from flat to hierarchical classification requirely aninor modifications of existing
code. Wrappers for MVM and the other primitives essentiplig- and post-multiply their input
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with @ and®" respectively, calling the existing “flat” primitives fd in between (block-diagonal
with P rather tharC blocks).

5.4 Why Newton Raphson?

Why do we propose to use the second-order NR method for nemmi®, instead of using a
simpler gradient-based technique such as scaled conjggadéents (SCG)? We already motivated
our choice at the end of Section 2, but give more details coing this important point here.

The convex problems we are interested in here live in ver-dignensional spaces and come
with complicated couplings between the components whicimagbe characterized simply. Cer-
tainly, there is no simple decomposition into parts. It idlwaown in the optimization literature
(Bertsekas, 1999) that simple gradient-based techniquesas SCG require well-chosen precon-
ditioning in order to work effectively in such cases.

For example, we could optimizé (1) w.r.t.a directly, the gradient requires a single MVM with
K rather than solving a system. However, this problem is viégonditioned, the Hessian being
KWK +K (large kernel matrices are typically very ill-conditionethd here we deal witk?), and
SCG runs exceedingly slowly to the point of being essentiadleless (as we determined in exper-
iments). It can be saved (to our knowledge) only by precaomlitg, which in our case requires
to solve a system again. Another idea is to optintzev.r.t. u by SCG, which works better. The
Hessian iV + K !, whose condition number is similar #. In preliminary direct comparisons,
the NR method still works more efficiently, meaning that SC@uld require additional precon-
ditioning specific to the problem at hand, which would liké&ly different for flat and hierarchical
classification. From our experience, and also from the prélance of NR in the optimization
literature, we opted for this method which comes with seffitg capabilities, making it easier to
transfer the framework to novel problems.

6. Experiments

In this section, we provide experimental results for ourhmdton a range of flat and hierarchical
classification tasks.

6.1 Hierarchical Classification: Patent Texts

We use the WIPO-alpha collectidf,many thanks to L. Cai, T. Hofmann for providing us with
the count data and dictionary. We did Porter stemming, stoyglwemoval, and removal of empty
categories. The attributes are bag-of-words over theodiati. All input vectorsg were scaled to
unit norm. Many thanks to Peter Gehler for helping us withgheprocessing.

These tasks have previously been studied by Cai and Hofn2&@4), where patents (title and
claim text) are to be classified w.r.t. the standard taxondR(, a tree with 4 levels and 5229
nodes. Sections A, B,., H form the first level. As in Cai and Hofmann (2004), we coricatie
on the 8 subtasks rooted at the sections, ranging in size Bom= 114Q C = 160, P = 187)
to B (n=9794 C = 1172 P = 1319). We use linear kernels (see Appendix D.3) with vaganc
parameters..

All experiments are averaged over three training/testssgiifferent methods using the same
ones. The CV criterio! is used with a different (randomly drawn) 5-partition pectsmn and

10. Available atww. wi po. i nt/t ool s/ en/ dbi ndex. ht nl, or google for “Data Collections hosted by WIPO”.
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split, the same across all methods. Our method outputs &pveddistributionp; € RC for each
test casej. The standard predictioy(x;) = argmax, pjc maximizes expected accuracy, classes are
ranked agj(c) < rj(c) iff pjc > pjo, whererj(c) € {1,...,C} is the rank of class for casex;.
Lety; denote the true label fotj. The test scores we use here are the same as in Cai and Hofmann
(2004): accuracy(acc)m 1 Y i liy(xj)=y; 1 Precision(prec) m-1 Yirily )~1, parent accuracy(pacc)
m‘lzj | {party(x;))=pary;)}» PaI(C) being the parent of leaf nodg(c) (recall thatl(c) corresponds to
classc). Here,mis the test set size. L&(c,c’) be half the length of the shortest path between
leafsL(c), L(c'). Thetaxo-loss(taxo) ism™1y jA(Y(X;),Yj). These scores are motivated in Cai and
Hofmann (2004). For taxo-loss and parent accuracy, werbgttosey(X;) to minimize expected
lossIt which is different in general than the standard predictithve (atter maximizes expected
accuracy and precision).

We compare methods F1, F2, H1, H2 (F: flat, not using IPC; Hanohical). F1: all; shared
(1); H1: v; shared across each level of the tree (3). F2, ¥{Xhared across each subtree rooted
at root’s children (A: 15, B: 34, C: 17, D: 7, E: 7, F: 17, G: 12,%). The numbers in parentheses
are the total number of hyperparameters. Recall that ther¢haee parameters determining the
running time (see Section 2, Section 4). For hyperparantedening: ky = 8, ko = 4, ks = 15 (F1,
F2): ki = 10,ko = 4,ks = 25 (H1, H2)1? For the final fitting (after hyperpars have been learned):
ki =25k, =12 (F1, F2)k, = 30,kp =17 (H1, H2). The optimization is started from= 5 for all
methods. We sei? = 0.01 throughout. Results are given in Table 1.

The hierarchical model outperforms the flat one consisteedipecially w.r.t. taxo-loss and par-
ent accuracy. Also, minimizing expected loss is consiltdgtter than using the standard rule for
the latter, although the differences are not significantahid H2 do not perform differently: choos-
ing many different/. in the linear kernel seems no advantage here (but see S6c2piThe results
are quite similar to the ones of Cai and Hofmann (2004), abthiwith a support vector machine
variant. However, for our method, the recommendation inaa Hofmann (2004) to use = 1
(not further motivated there) leads to significantly worssutts in all scores. The chosen by our
method are generally larger. Note that their code has nat bele publicly available, so a direct
comparison with “all other things equal” could not be done.

In Table 2, we present running timédor the final fitting and for a single fold during hyper-
parameter optimization (5 of these are required'¥oriJ,W). In comparison, a final fitting time
of 220Gs on the D section is quoted in Cai and Hofmann (2004), using & $¥&riant, while we
require 118 (more than six times fastet}. It is precisely this high efficiency of primary fitting,
which allows us to use it as inner loop for automatic hypeapeater learning (Cai and Hofmann,
2004, do not adjust hyperparameters to the data). Possifdmms for the performance difference
are given in Section 7.2.

11. For parent accuracy, letj) be the node with maximal mass (undg) of its children which are leafs, theyfx;)
must be a child op(j).

12. Except for section C, whekg = 14 k, = 6,k3 = 35.

13. Processor time on 64bit3GHz AMD machines.

14. Cai and Hofmann average over three training/test splitee timing figure 2209in their paper is for three splits
(thanks to one of the reviewers to point this out).
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acc (%) prec (%) taxo

F1 H1 F2 H2| F1 H1 F2 H2| F1 H1 F2 H2
40.6 419 405 419|516 534 514 534|127 1.19 129 1.19
32.0 329 31.7 327|418 43.8 41.6 43.7| 152 1.44 155 144
33.7 34.7 34.1 345|452 46.6 454 46.4| 134 126 135 1.27
40.0 40.6 39.7 408|524 541 522 543|119 1.11 1.18 1.11
33.0 34.2 328 34.1/451 47.1 450 47.1|139 1.31 138 131
314 324 314 325|428 449 428 45.0|1.43 134 143 134
40.1 40.7 40.2 40.7|51.2 525 513 525|132 126 1.32 1.26
39.3 39.6 394 39.7|524 533 525534|117 115 1.17 1.14

taxo[0-1] pacc (%) pacc[0-1] (%)

F1 H1I F2 H2] F1 H1 F2 H2| F1 Hl1 F2 H2
128 119 129 1.18|58.9 61.6 58.2 615/ 57.2 61.3 56.9 61.4
154 144 156 144|53.6 56.4 527 56.6|51.9 559 514 559
133 126 132 1.26|58.9 62.6 585 620|586 61.8 589 61.6
1.20 112 122 1.12|64.6 67.0 644 67.1|63.5 67.1 62.6 67.0
143 133 144 1.34|56.0 59.1 56.2 59.2|54.0 58.2 53.5 57.9
143 134 144 1.34|56.8 59.7 56.8 59.8| 54.9 58.7 54.6 58.9
132 126 1.32 1.26|58.0 59.7 57.6 59.6| 56.8 59.2 56.6 58.9
1.19 116 1.19 1.15|61.6 625 61.8 625|599 61.6 60.0 61.8

ITOTMmMOOwm>

IOTMmMOOwW>»

Table 1: Results on patent text classification tasks A-H.hdes F1, F2 flat, H1, H2 hierarchical.
taxo[0-1], pacc[0-1] for argmapjc standard prediction rule, rather than minimization of
expected loss.

Final NR (s) | CV Fold (s) Final NR (s) | CV Fold (s)

F1 H1| F1 H1 F1 H1| F1 H1
2030 3873 573 598 1315 203.4| 32.2 49.6
3751 8657 873 1720 1202 2871| 426 568
4237 7422| 719 1326 1342 2947\ 232 579
56.3 118.5/ 9.32 20.2 971.7 1052 146 230

o0 wm >
ITIOTm

Table 2: Running times for tasks A-H. Method F1 flat, H1 hiehgzal. Final NR: Final fitting with
Newton-Raphson. CV Fold: Re-optimizationaf; and gradient accumulation for single
fold J.
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6.2 Flat Classification: Remote Sensing

We use thesatimageremote sensing task from trsatlog repositoryt® This task has been used
in the extensive SVM multi-class study of Hsu and Lin (2002here it is among the data sets on
which the different methods show the most variance. Ithas4435 training,m= 2000 test cases,
andC = 6 classes. Covariateshave 36 attributes with values §0,...,255}. No preprocessing
was done.

We use the isotropiGaussian(RBF) covariance function

W,
K (x,X) = voexp( =2 lx =X |[2) . Ve,wc> 0. (7)

We compare the methodasc-sep(ours with separate kernels for each class; 12 hyperpaeasyet
mc-tied (ours with a single shared kernel; 2 hyperparameteng)y,semi(ours with single kernel
M@, but differentve; 7 hyperparameters)rest(one-against-rest; 12 hyperparameters). Fest

C binary classifiers are fitted on the tasks of separating cl&ssn all others. They are combined
afterwards by the rulg, — argmax P.(+1|x.), whereP;(+1|x.) is the predictive probability esti-
mate of thec-classifiet® Note thatlrestis arguably the most efficient method, in that its binary
classifiers can be fitted separately and in parallel. EvammifsequentiallyLresttypically requires
less memory by a factor @ than a joint multi-class method, although this is not truthé ker-
nel matrices are dominating the memory requirements angddhe shared between classes in a
multi-class method (as imc-tiedandmc-semhere).

We use our 5-fold CV criteriod for each method. Results here are averaged over ten randomly
drawn 5-partitions of the training set (the same partitiares used for the different methods). All
optimizations are started from = 10, we = (3 Var[x;j]) ! = 0.017, Var(x;] being the empirical
variance of attributg. We seta? = 16 throughout. The parameters determining the running time
(see Section 2, Section 4) are sekic= 13 k, = 25, k3 = 40 during hyperparameter learning, and
ki1 = 30, ko = 50 for final fitting (these are very conservative settingsjoEreject curves are shown
in Figure 3.

Test errors are .95%(+0.15%) for mc-sep 8.00%(+0.10%) for 1rest 8.10%(+0.13%) for
mc-semiand 835%(-£0.20%) for mc-tied Therefore, using a single fixed kernel for KNI® does
significantly worse than allowing for an individu(® per class. The test error difference between
mc-sepand lrestis not significant here, but the error-reject curve is sigaifily better for our
methodmc-septhan for one-against-rest, especially in the doneain [0.025 0.25], arguably most
important in practice (where the rejection of a small fractof test cases may often be an option).
This indicates that the predictive probability estimatesrf our method are better than from one-
against-rest, at least w.r.t. their ranking property. Theves formc-semi mc-tiedare closer to
1rest underlining that different kerneké(© should be used for each class. The resulnficrseps
state-of-the-art. The best SVM technique tested in Hsu anq2002) attained .65% (no error-
reject curves were given there), and SVM one-against-téshad 83% in this study. To put this
into perspective, note that extensive hyperparametectssieby cross-validation is done in Hsu
and Lin (2002), in what seems to be a quite user-intensivegss) while our method is completely
automatic.

15.AvaHabk3ahttpi//www.niaad.liacc.up.pt/old/statlog/.
16. Asymptotically,P;(+1|x,) converges to the truB(y, = c|x.), and this combination rule is optimal. We use our
method withC = 2 in order to implement the binary classifiers.
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Figure 3: Error-reject curves (averaged over 10 runs) fifer@int methods on theatimagetask.
Curve obtained by allowing the method to abstain from pteaticon fractiona of test
set, counting errors for predictions only. Depends on mamkif test points. Ranking
score (over test points): max.P(y, = c|x,) (mc-sepmc-semimce-tied, max, Po(+1x,)
(1res).

6.3 Flat Classification: Handwritten Digits

We use thdJSPShandwritten digits recognition task (LeCun et al., 1989heTcovariatex are
16x 16 gray-scale images with values{ibek+ 15|k = 0,...,30}. The task has = 7291 training,
m = 2007 test cases, a@l= 10 classes. No preprocessing was done.

We use Gaussian kernels (7) once more, different ones fdr elass. We do not optimize
the 5-fold CV criterionW using the full training set, but subsets of size= 2000. Our results are
averaged over five runs with different randomly drawn tragnsubsets for hyperparameter learning,
while we use the full training set for final fitting. All optiations are started from = 10, w, =
(3jVarlxj])~* = 0.0166, and we set” = 4 throughout. The parameters determining the running
time arek; = 25, k, = 35, k3 = 40 during hyperparameter learning (@n= 2000 points), an#t; =
45, k, = 80 for final fitting (onn = 7291 points). The settings for hyperparameter learningjaite
conservative, and the final fitting ones were sufficient fanvesgence on three of the five runs,
whereas on two we had to add anothker= 25 iterations withk, = 90. An error-reject curve is
shown in Figure 4.
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Figure 4: Error-reject curves (averaged over 5 runs) fded#ht methods on thdSPSask. Curve
obtained by allowing the method to abstain from predictionfi@ction a of test set,
counting errors for predictions only. Depends on rankingest points.

Test errors are .47%(+0.18%). These results are state-of-the-art for kernel classiicat
Seeger (2003) reports3B% for the IVM (Sect. 4.8.4), where hyperparameters amnéshauto-
matically. Csatb (2002) states15% for his sparse online method with multiple sweeps over th
data (Sect. 5.2). Results for the support vector machingiges in Scholkopf and Smola (2002),
Table 18.1, method SV-254, where a combination heurisgeth®n kernel PCA was used to attain
a test error of 4%. Crammer and Singer (2001) quote a test error.88%, kernel parameters
having been selected by 5-fold cross-validation. All thesed the Gaussian kernel as well. The
latter studies do not quote fluctuations w.r.t. choices @ascthe fold partition in CV, which is not
negligible in our case here. The SVM-based methods do rerhatttest set rankings or predictive
probability estimation, and the corresponding studies aioshow error-reject (or ROC) curves.
Seeger (2003) gives an error-reject curve, which is veryiairto ours here.

Note that the harder settings ki, k, for the final fitting are necessary due to the problem size,
and are motivated in Section 4. There are 72910 parametet$ha hyperparameters found through
optimizing W spread by 3 orders of magnitude, so that the correspondiatyfiitng problems are
computationally hard to solve without a good initializatiof a (in the absence of such, we start with
a = 0). If we solve for Newton directions using too few LCG stethg approximations often do not
lead to much (or any) descent. Such “stalling” of NR line shas does happen now and then even
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afterk, = 80 LCG steps. Lessons learned from these large scale experiments are eai@anon
in Section 4. There are delicate dependencies betkgedsn and the running time to convergence,
which need to be explored in large scale settings, but thssneadone thoroughly here.

7. Discussion

We have presented a general framework for learning kerasdb penalized likelihood classification
methods from data. A central feature of the framework is iggh fromputational efficiency, even
though all classes are treated jointly. This is achievedryleying approximate Newton-Raphson
optimization for the parameter fitting, which requires fegle steps only for convergence. These
steps are reduced to matrix-vector multiplication (MVMinpitives with kernel matrices. For gen-
eral kernels, these MVM primitives can be reduced to largmerical linear algebra primitives,
which can be computed very efficiently on modern computehitactures. This is very much

in contrast to many chunking algorithms for kernel methatihfit which have been proposed in
machine learning, and the advantages of our approach aiedein Section 7.2. Dependencies
between classes can be encodegriori with minor additional efforts, as has been demonstrated
for the case of hierarchical classification. Our method jgles estimates of predictive probabilities
which are asymptotically correct. Hyperparameters candpgsted automatically, by optimizing a
cross-validation log likelihood score in a gradient-basshner, and these computations are once
more reduced to the same MVM primitives. This means thatiwitiur framework, all code opti-
mization efforts can be concentrated on these essentialtjppes (see also Section 7.3), rather than
having to tune a set of further heuristics.

7.1 Related Work

Our primary fitting optimization for flat multi-way classiiion appeared in Williams and Barber
(1998), although some fairly essential features are neere.hThey also did not consider large scale
problems or class structures. Empirical Bayesian criteuigh as the marginal likelihood are rou-
tinely used for hyperparameter learning in Gaussian psonesdels (Williams and Barber, 1998,
Williams and Rasmussen, 1996). However, in cases otheréggassion estimation with Gaussian
noise, the marginal likelihood for a GP model cannot be cdeganalytically, and approxima-
tions differ strongly in terms of accuracy and computatiammnplexity. For the multi-class model,
Williams and Barber (1998) use an MAP approximation for fikggerparameters, just as we do,
but their second-order approximation to the marginalililad is quite different from our criterion,
conceptually as well as computationally (see below). Aginately solving large linear system
by linear conjugate gradients (LCG) is standard in numéritathematics, and has been used in
machine learning as well (Gibbs, 1997, Williams and Barbh888, Keerthi and DeCoste, 2005).

The idea of optimizing approximations to a cross-validataore for hyperparameter learning
is not novel (Craven and Wahba, 1979, Qi et al., 2004). Ouragmh is different to these, in that the
CV score and gradient computations are reduced to elenyestegs of the primary fitting method,

17. We cannot obtain a good initial value from the final;, of hyperparameter learning, because this is done on
training subsets only. Moreover, in our implementatiorg tbtalling” (no improvement) of a NR step means that
LCG is restarted from its last recefit so that eventually an improvementdnis still obtained. Of course, the stalled
NR iterations counts as such, and wekgaterations in total.
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so both can be done with the same c&¥én contrast, scores like GCV (Craven and Wahba, 1979)
or second order marginal likelihood (Williams and Barb&98) come in terms of the form#t—?

or log|H| for the HessiarH of sizenC. There are approximate reductions of computing these
terms to solving linear systems (randomized trace estimbsmczos), but they rely on additional
sampling of Gaussian noise, which introduces significaatdaracies. In practice, optimizing such
“noisy” criteria is quite difficult, whereas our criterioe be optimized using standard optimization
code. Qi et al. (2004) propose an interesting approach abappating leave-one-out CV using
expectation propagation, see also Opper and Winther (200Bgy use a sparse approximation
for efficiency, but they deal with a single-process modelyo@ = 1), and it is not clear how
to implement EP efficiently (scaling linearly @) for the multi-class model. Interestingly, they
observe that optimizing their approximate CV score is molrist to overfitting than the marginal
likelihood. Finally, none of these papers propose (or aghia complete reduction to kernel MVM
primitives only, nor do they deal with representing classcttires or work on problems of the scale
considered here.

Many different multi-class SVM technigues have been predpsee Crammer and Singer
(2001) and Hsu and Lin (2002) for references. These can lieirgl joint (“all-together”) and
decomposition methods. The latter reduce the multi-clasblem to a set of binary ones (“one-
against-rest” of Section 6.2 is a prominent example), withadvantage that good code is available
for the binary case. The problem with these methods is trebthary discriminants are fitted
separately without knowledge of each other, or of their mlthe final multi-way classifier, so in-
formation from data is wasted. Also, their post-hoc comtiamainto a multi-way discriminant is
heuristic. Joint methods are like ours here, in that allsdasare jointly represented. Fitting is a
constrained convex problem, and often fairly sparse smiatimany zeros i) are found. How-
ever, in difficult structured label tasks, the degree of sipars usually not high, and in these cases,
commonly used chunking algorithms for multi-class SVM canvbry inefficient (see Section 7.2).
We should note that our approach here cannot be appliedigiteanulti-class SVMs, since they
require the solution of a constrained convex problem, beptinciples used here should hold there
as well. Some novel suggestions here appear independari€lgerthi et al. (2007). SVM methods
typically do not come with efficient automatic kernel paréendearning schemes, and they do not
provide estimates of predictive probabilities which angnagtotically correct.

On the other hand, in a direct comparison our implementationld still be slower than the
highly optimized multi-class SVM code of Crammer and Sin(@01), at least on standard non-
structured tasks such as USPS (Section 6.3) or MNIST. Ealpheoin the latter, sparsity i is
clearly present, and years of experience with the SVM prolkd to very effective ways of ex-
ploiting it. In contrast,a in our approach is not sparse, and it is not our goal here toefigiolarse
approximation. Hyperparameters are selected “by handidir tnethod, not via gradient-based op-
timization. For a small number of hyperparameters, thiditiaal approach is often faster than our
optimization-based one here, and importantly, it can blg fodrallelized. However, our approach
is still workable in situations with many dependent hypeapzeters (for example, Section 7.4.1),
where CV by hand simply cannot be done.

Our ANOVA setup for hierarchical classification is propodey Cai and Hofmann (2004),
whose use it within a SVM “all-together” method. We compaoe method against theirs in Sec-

18. A small drawback of our approach is that our CV sc$relepends on a partitioning of the training set. In our
experiments here, we chose this at random. Leave-one-QO)ICV does not depend on a partitioning, but it is not
clear how to reduce LOO CV to solving a small number of lingatams.
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tion 6.1, achieving quite similar results in an order of magte less time. They also do not address
the problem of hyperparameter learning.

7.2 Global versus Decomposition Methods

In most kernel methods proposed so far in machine learnimgptimary fitting to data (for fixed
hyperparameters) translates to a convex minimizationlenopbwhere the penalisation terms cor-
respond to quadratic expressions with kernel matrices.laNdeirnel matrices may show a rapidly
decaying eigenvalue spectrum, they certainly do coupleptienization variables strongly. While

a convex function can be optimized by any method which juatgntees descent in each step, there
are huge differences in how fast the minimum is attained tesareld accuracy. In fact, in the ab-
sence of local minima, the speed of convergence becomesdbkeimportant characteristic of a
method, besides robustness and ease of implementation.

In machine learning, the most dominant technique for laogdes(structured label) kernel clas-
sification is what optimization researchers datick coordinate descent method®CD), see Bert-
sekas (1999, Sect. 2.7). The idea is to minimize the obgeetivt. a few variables at a time, keeping
all others fixed, and to iterate this process using some stihgdover the variables. Each step is
convex agairf® yet much smaller than the whole, and often the steps can bedsahalytically.
Ignoring the aspect of scheduling, such methods are siropieglement.

A complementary approach is to find search directions whéel to as fast a descent as possi-
ble, these directions typically involve all degrees of ffe of the optimization variables. If local
first and second order information can be computed, the apspearch direction is Newton’s, which
has to be corrected if constraints are present (conditgnaalient or gradient projection methods). If
the Newton direction cannot be computed feasibly, apprations may be used. Such Newton-like
methods are certainly vastly preferred in the optimizatommunity, due to superior convergence
rates, but also because features of modern computer atchés are used more efficiently, as is
detailed below. In this paper, we advocate to follow thisfgnmence for kernel machine fitting in
machine learning. We are encouraged not only by our own expEgs, but can refer to the fact that
(approximate) Newton methods are standard for fitting geized linear models in statistics, and
that such methods are also routinely used for Gaussianggocedels (Williams and Barber, 1998,
Rasmussen and Williams, 2006), albeit typically on prolderhsmaller scale than treated here.

The dominance of BCD methods for kernel machine fitting, e/isibmewhat surprising, can
be attributed to early success stories with SVM trainingmaoating in the SMO algorithm (Platt,
1998), where only two variables are changed at a time. If aM $\fitted to a task with low noise,
the solution can be highly sparse, and if the active set ggstt vectors” is detected early in the
optimization process, methods like SMO can be very efficiémtportantly, SMO or other BCD
methods are easily implemented. On the other hand, as SV&mereasingly applied to hard
structured label problems which usually do not have verysspsolutions, or whose active sets are
hard to find, weaknesses of BCD methods become apparent.

Block coordinate descent methods are often referred toiag tiee “divide-and-conquer” prin-
ciple, but this is not the case for kernel method fitting. BCEtineds “are often useful in contexts
where the cost function and the constraints have a partigitpmposable structure with respect to

19. An almost low-rank kernel matrix translates into a cougplof a simple structure, but the dominant couplings are
typically strong and not sparse.
20. If f(x) is convex, so i (Ax) for any matrixA. The same is true for linear constraints.
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the problem’s optimization variables” (Bertsekas, 199269). In kernel methods, such a decom-
posable structure is not present, because the penaligatims couple all variables strongly via the
kernel matrices. In such cases, chunking techniglidge without conqueringoften running for
very many steps, because improvements w.r.t. some blockriaibles tend to erase earlier improve-
ments. This central problem of block coordinate descenhaukst is well known as “zig-zagging”
in optimization. It occurs whenever variables not in the sdolock are significantly coupled, a sit-
uation which is to be expected for kernel machines in gendifa situation is similar to a number
of cases in machine learning and statistics. Iterativegtamal fitting (Della Pietra et al., 1997) is
a BCD method for learning the potentials of an undirecteglgial model (Markov random field),
which is all but superseded now by modern global directiothods such as limited memory Quasi-
Newton, running orders of magnitude faster. Gibbs sampsirgbasic Markov chain Monte Carlo
technique for approximate Bayesian inference, which glpids very simple to implement, but is
exceedingly slow in the presence of many coupled variabiésdern techniques such as Hybrid
Monte Carlo, or Swendsen-Wang can be seen as “global dirgotariants of “block coordinate”
Gibbs sampling, and while they are harder to implement, tipically run orders of magnitude
faster.

Another significant problem with BCD methods may come mora sasrprise, namely because
it concerns a characteristic which is often sold as adventdghese methods: they make each
step as small as possible. Such small steps can often bendéme#tnalytically, or by using simple
methods. This characteristic certainly makes BCD methedy & implement. However, in light
of modern computer architectures, the advice must be to madle step aksrge as possiblewith
the aim of requiring fewer steps. Modern systems use maeynak parallelisms and hierarchies
of caching, with the aim of processing vector operationsynamnes faster than an equivalent loop
over scalar operations, and large global steps do make ubesd features. In contrast, a method
which calls very many small steps in a non-linear orderingsrcontrary to these mechanisms. For
example, data transfer between cache levels is done indloickignificant sizes, and a method
which accesses memory element-wise from all over the plae€s to inefficiencies up to cache

In well-designed global direction methods, the bottlenepkrations (where almost all real-
world running time is spent) are large vectorised mappingglvaccess memory contiguously.
Even better, these operations should lie in a standard, d@sshich highly optimized implemen-
tations are readily available. In our case here, the b&tleperations are numerical linear algebra
primitives from thebasic linear algebra subroutine@BLAS), a standardized interface for high-
performance dense linear algebra code. Very efficient imptgations of the BLAS are available
for all computer architectures.

In this paper, we advocate to take a step back and to use globation methods as approx-
imation to Newton’s method for kernel machine fitting. Thegpect seems daunting, since there
are many thousands of variables with complicated couplingd the reader may be reminded of
early disastrous trials of applying off-the-shelf QP pasito SVM fitting, or of ongoing efforts
to formulate otherwise tractable machine learning proklamsemidefinite programs and “solving”
them usingO(n’) SDP packages. This association is wrong. Our advice @Epfmoximatethe
global Newton direction, making use of all structure in thedal in order to gain efficiency, which
is exactly the opposite of running a black box solver or impating Newton’s method straight

21. ATLAS, a  self-tuning BLAS implementation, is available as free software, see
http://math-atl as. sourceforge. net/.
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out of a textbook. In the context of kernel machines, whergtogs through large unstructured
matrices are present, the large steps of approximating #vetdh direction should be reduced to
standard linear algebra primitives on dense or sparsegaatroperating on contiguous chunks of
memoryas large as possibjesince highly optimized code for such primitives is readilsilable.

7.3 Matrix-Vector Multiplication

The computational load in our framework is determined byliappons of the MVM primitives

v — K©v andv — (9K(© /ah,)v. A user only needs to provide those for a kernel of choice. The
generic representation of Appendix D.1 applies to genesahigance functions, but much more
efficient alternatives may be used in special cases (seertippB.3).

If the cost for a direct evaluation of these primitives ishpbitive, several well-known approx-
imations may be applied. Its has been suggested to use limgtidata structures to approximate
MVM with matrices from isotropic kernels (Yang et al., 20@hen et al., 2006) such as the Gaus-
sian one (7). For such kernels, the derivative MVM can ofteratidressed using the same tech-
niques. For the Gaussian kernel, we hive: vexp(wA), A = (—(1/2)||x —x;||2)i j, in which case
(0K /dlogv) = K and(0K /dlogw) = wK o A, whereo denotes component-wise product. Since the
specialized data structures concentrate on approximatinigey apply to all required MVM vari-
ants. Our public code could fairly easily be extended, gsfeecialized approximate kernel MVM
code is available.

7.4 Extensions and Future Work

Some concrete extensions are mentioned just below. In glervee think that many structured
label kernel methods proposed in the SVM context can be asedein our framework as well.
For example, the kernel conditional random field (CRF) (kdjf et al., 2004) for label sequence
learning can be treated by recognizing that MVM with the hssf the CRF log likelihood can be
implemented efficiently using the method described in Paater (1994). We also plan to address
hierarchical multi-label problems, which differ from héechical multi-class in that each instance
can have multiple associated labels.

7.4.1 MODELLING DEPENDENCIES BETWEENCLASSES

In the flat classification application of Section 2, we do nqilieitly represent dependencies be-
tween classes. This is done in the hierarchical classiicatpplication of Section 3, but the depen-
dency structure is fixed priori. In this section, we motivate how dependencies betweesadasan
be learned from data.

Let B € RSC be a nonsingular coupling matrix, which will be a part of thedal. In fact,
B should be regarded as hyperparameters. In the flat modelaweuh= f; 4+ b, which is now
replaced by =Bf; +b, or

u=Bel)Ka+bx 1l
This is the same modification which led to the hierarchicaéesion, only that the fixed coupling
matrix @ is replaced by the variabE. Therefore, the same modification of our method can be done,

replacingk by K® = (B@ 1)K (BT @1). Again, MVM with K(®) is of the same complexity as with
K, because MVM with B® 1) can be done it©(C?n). Note thatB representgonditional depen-
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dencies between the(-), its role is comparable to the “mixing matrix” in indepentieamponents
analysis.

We are also interested in learniy whose elements are taken as hyperparameters. The cor-
responding gradient ¢ is obtained in the same way as described in Section 5.2, batylKg
now further decomposes into parts f@B and fordK. Note that learning® by non-automatic
cross-validation would not be possible, due to the largebarmof components.

Consider the case where we have many cla€sdsut not much data for most of them. We
can postulate the assumptions that the behaviour o€thkass functionau(-) is represented by
p < C underlying latent factors, which are then modelled as irddpnt. This is achieved in our
framework by having a non-square mixing matgix R P (the “factor loadings”). It is not hard to
adapt our framework to this case, in which it is obviouslyessary to learB as hyperparameters
from data. A related model in a Bayesian context was corsiter Teh et al. (2005).

7.4.2 UNCERTAIN TARGETS INHIERARCHICAL CLASSIFICATION

Recall the hierarchical classification setup of Sectionuipdse that for some pattemsthe target
is unknown, but we know that the path from its class to the gm®s through an inner node
Denote byl , the set of leaf nodes of the subtree rooteg,ato thatl, = { p} for a leaf nodepc L,
andLgo=L.

We can allow for such uncertain target information by usisgumo-targety; € {1,...,P}. If
Vi ¢ L, itis the lowest inner node we are certain about. The coomdipg likelihood factor is

P(yi = clu).

cely

Note that the log likelihood is not a concave function anyeevheneveflg | > 1, and in the pres-

ence of such factors, primary fitting is not a convex problelowever, an expectation-maximization
(EM) (Dempster et al., 1977) approach can be used to dealumitkrtain targets. Namely, in “E
steps” we compute

Oic U I{CGLyi}P(yi =clu)

for the currentuc(-), whereg; = (gic)c are distributions. “M steps” consists of Newton-Raphson
iterations as before, but usirg giclogP(y; = c|u;) as log likelihood factors. To this end, we just
have to replace the vectgre R"C by g. Importantly, we only used the propertieSyl=1, y. >0
above (but not thayic € {0,1}), which are true foq just as well.

7.4.3 Low RANK APPROXIMATIONS

Our generic kernel matrix representation is described ipefglix D.1. If the data set sizds large,
we may not be able to keep the correlation matridés in memory, and MVM with them becomes
prohibitively expensive. We can use standard low rank mapiproximations to deal with this
problem (see also Section 7.3). Namely, supposeNHitis approximated by )LOLOTpOT,
whereP!) is a permutation matrix, and!) € R™% for d < n. Denotel; C {1,...,n} the active set
of sized,. The approximation may be obtained by an incomplete Chylésttorizatiort? (ICF),
which has the special property that only a small sed, afolumns ofVi() (along with its diagonal)

22. Matlab code for ICF (in the form required here) can be doaded from
http: //ww. kyb. t uebi ngen. npg. de/ bs/ peopl e/ seeger/ sof t ware. ht ni
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ever have to be evaluated (Bach and Jordan, 2002). In thes b%%dh_ is the lower triangular

Cholesky factor oM € R9:4, so thatP®)TM() =LOLY , T. Note that in the ICF case, we have
that
diag(p(|)T|\/|(|)p(|) _ L<I>L<I>T) >0

point-wise, because the elements are simply the squarets g a potential continuation of the
factorization (which has been stopped afiesteps). Therefore, we can correct the approximation
by replacing the diagonal af'’L")T by the true one, ending up with the approximation

MO ~ @Y = (diagM") + PO (L<')L<'>T — (diag? L(')L(')T)) piIT,

Snelson and Ghahramani (2006) motivate this diagonal ciwrein another context. It is clear that
MVM with M can be done iID(nd).
If x indexes test points different from the training pointsntkiee test-training correlation matrix
is
| PN _
ML =ML ) TLOTROT,
We can also learn parameters of té) functions in this low rank setup by gradient-based opti-

mization, assuming that the choicelpfioes not depend on these kernel parameters, but this is not
discussed here.
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Appendix A. Notation

In this section, we describe the notation used in this paperdenote vectors and matrices by bold-
face lower-case and upper-case letters, scalars and $gatdions are set normally. Subscripts
select parts of objects, they can be single indexes or inelesx §or examplea = (&); is a vector
with componentsy;, A = (& j)i,j @ matrix with entriess; ;. We also writea = (&), A= (&) if
the indexes are clear from conteX.; is thei-th column ofA (“-” is short for the full index set).
® denotes the Kronecker produét® B = (& ;B); j, 1 (0) the vector of all ones (vector/matrix of
all zeros),| the identity matrix, and; = (l;i_j;)i (columns ofl). For a matrixA, diagA = (& )i
extracts the diagonal. For a vecter diagv is the corresponding diagonal matrix. We also use
this for matrix-valued vectors, an example is the diagormah&l matrixK = diag(K(C))C in flat
classification.

Many vectors and matrices are indexed by data poijtand classesc] at the same time, for
exampleu = (ui) € R"C. We use double indexss for these, which are flattened &s (c— 1)n,
so the component orderifiis u = (uU11,Up1,...,Un1,U12,...). In this context, selection index sets

23. InMat | ab, reshape(u, n, C) would give a matrix ifR"C.
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| are applied to the (data point) index onlyu, = (Uic)icic € RI'C, Kronecker product notation
works nicely with this double index convention.Afg B is applied tau, A hasC, B ncolumns. We
frequently us€1” @ 1)u = 5.u(®, whereu® = (uc); € R", or (L®1)v for v € R, which stacks/
on top of each otheE times. The matriPys = (1®1)(17 ® 1) (introduced in Section 5.1) combines
these operations:

x| X|

PClSX = C> X= z X(C)v
C

andPgya4 does the same, but operating on thather than the index.

All major notational definitions are listed in Table 3 for eefnce. For kernel matrices (for
example,K(©), we do not list the kernel functions (heré&:(©), and for evaluation vectors (for
exampleu), we do not list the underlying functions (herg® (.)).

n Number data points 2| LCG Linear Conjugate Gradients 2
C Number classes 2| P Number nodes (hierarchy) 3
y Targets (zero-one) 2| L Leaf nodes (hierarchy) 3
Xi Input points 2 |0 Latent output (before mixing) 3
u Latent output (after mixing) 2 | ® Hierarchy mixing matrix 3

b Intercepts 2 | K Kernel matrix (before mixing) (2
02 Penalizing constant fdy 2 | Ik, Jk Partitions for CV criterion 4
O] Criterion for primary fitting 2 | W CV criterion 4

a Dual variables 219 Number of folds 4

K Kernel matrix (after mixing) 2 | h Hyperparameters 4
K(©  Kernel matrix block 2 | ks Complexity parameter 4
K Kernel matrix p eliminated) 2 | g,W Gradient, Hessia®y, 5.1

I Logsumexp vector (1) Pgs  Sum-distribute matrix 51
ki,k» Complexity parameters 2| Pgata Sum-distribute matrix 5.1
NR Newton-Raphson 2| E,F Accumulation matrices 5.2

Table 3: Reference for notational definitioks.Section of definition{k): Equation of definition.

Appendix B. Details for Primary Fitting Algorithm

In this section, we discuss further details of the primarynfit algorithm of Section 2, in addition
to Section 5.1.

We need to counter the problem that roundoff errors may leatuimerical instabilities. The
criterion we minimize is strictly convex, even if the kermahtrix K is singular (or nearly so).
However, problems could arise from componentstibecoming very small. Recall that log =
Uic — li. We make use of a threshakd< 0 and define

I ={(i,c)| logTic <K, Vic >0}, lo={(i,c)|logm <K, yic = 0}.

The indices inl can be problematic due to the corresponding compogent )7ic/rrilc/2 becoming
large. Note that this happens only(¥,y;) is a strong outlier w.r.t. the current predictor. Now, from
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the system (5) we see thBt/?pf = DAT (u—Ka') —g. Therefore, if(i,c) € I, then(DY2B);. ~
—0ic = Yic. The idea is to solve the reduced system on the componentsfan (Dl/ZB)\, and to
plug in (DY?B), =y,. Finally, within\I, the components iy may be problematic when computing
the starting valu@ = D—Y/2a for the CG run. However, in this casg % 0, leading tdic ~ 0 from
(5). The corresponding components in the starting vBlaan therefore be set to zero.

Next, the LCG algorithm for solving systems of the form (S)ede to be precondltloned Sup-
pose we want to solvdx = b. If we have an approximatioA to A so thatv — A~ 'y can be
computed efficiently (essentially in linear time in the sifev), the preconditioned CG algorithm
solves the systerA "Ax = A 'b instead. The idea is th& "A typically has a lower condition
number tharA, and LCG converges faster and less erratically. Our imphtaten does precondi-
tioning with the diagonal of the system mattix-VTKV. Note thatV 3. = quc/z( —T§) ® &, SO
that

(1 +VTRV) o = 1+ T <(1 21 (K + 02 +qu(d >

Therefore, the diagonal can be computed based on th&¢fagectors. If the joint kernel matrix
K is not block-diagonal (as in hierarchical classificatioee Section 3), diag is not sufficient
for computing the system matrix diagonal. Lhet R"C be defined viav, = K;15, whereK; =
(128 )K(1®8) € RSC. Then, the system matrix diagonal has elements

14T (Kic+02_2Wic+Tﬁ'TWi), W =V + G°TL.

Appendix C. Solving Systems Exactly

In this section, we show how to implement our flat multi-clasfeme using exact rather than
approximate solutions of linear systems, yet still scalingarly inC (at present, we do not know
how to implement hierarchical classification exactly wititis scaling).

For a Newton step, we need to SO(\l'eI—WIZ)O(’ =r withW =D — DP¢sD. This can be written
as

(A-uVT)D Y20’ =D ¥?r, A=1+DY?KD"?
U=DY2(1®l), V=(A-1)U.
We now use the Sherman-Morrison-Woodbury formula togetligrthe fact that) TU = Se D =
| to obtain
o' =DY? (A*1+A*1U UTA ) IUT(1 A ) D Vor.
We used that TA~1 =UT (I — A™1). Note thatA~! is block-diagonal, and that
UTAflU — Z D(C)l/ZA(C)le(C)l/Z.
C

We maintain Cholesky factors of al®, as well as the Cholesky decompositidAA~*U = RR'
(WwhereA© -1 are obtained from the Cholesky factors).

For hyperparameter learning, we consider the partitipry sequentially. Since the; are dif-
ferent across folds, we cannot obtain teg, H 5 as parts of underlying common matrices. Recall
Section 5.20[3] +g[3] =0 giveSHm (dG[J]) = _W[J](dKJ)a[J]. With

=11 = y) = LW H 5 K (1 = y0),
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we have thatl¥; = (1. ;a)" (dK) f. Again, these vectors are accumulated in matriees. Solv-

ing a system wittH [TJ] is an obvious variant of the procedure discussed above.

Appendix D. Further Details of the Implementation

Our implementation is designed to be as efficient as possiditde still being general and easy
to extend to novel situations. This is achieved mainly byakiey down the problems to calling
sequences of MVM primitives. These are then reduced to latgeerical linear algebra primi-
tives, where matrices are organized contiguously in mejmorgrder to exploit modern caching
architectures (see Section 7.2).

D.1 A Generic Kernel Matrix Representation

A kernel matrix representation is some data structure wélickvs to compute kernel matrix MVMs
v — Ky efficiently, being the principal primitives of our primaryting method. Further require-
ments arise if additional features of our framework are usest example, if hyperparameters are
to be learned as well, derivative MVMs— (9K (® /ah,)v are required as well, and “covariance
shuffling” should be possible (see Section 5.2).

An efficient representation depends strongly on the coreeidunction used, and also on whether
kernel matrix MVMs are approximated rather than computesttyx For example, for linear ker-
nels a special representation is used (see Appendix D.3)hidrsection, we describe a generic
representation, which is part of our implementation.

The generic representation can be used with any covariancédn, in that no special structure
is assumed. It requires kernel matrices to be stored ettpligihich may not be possible for very
largen. In general, we allow for different covariance functiok&®) for each class, although
sharing of kernels is supported, in tHe)(-,-) = veM{<)(.,.) andv; > 0. Here,l. = |y is allowed
for c £ ¢’. The matriced V) are stored explicitly. Note that the flexibility of using féifent variance
parameters/. with the sameM(!) does come at no extra cost, except for the fact that thesetbave
be adjusted individually.

Since theM) are symmetric, two can be stored each im>an block, say the odd-numbered
ones in the lower triangles. Here, the diag’ are stored separately, and whenever a spédificis
required explicitly, the diagonal is copied into the blotkis important to note that the BLAS (see
Section 7.2) directly supports symmetric matrices whigstored in the lower or upper triangle of
a rectangular block.

The reader may wonder whether space could be saved by siotengnediates of thé/()
instead. For example, if thd(!) are isotropic kernels of the forfi") (||x — X||), we could store the
inner product matri>(xiij )i,j only. In practice, this turns out to be significantly slowly & factor),
the reason being that the optimized BLAS primitives are miamgs more efficient than applying
a non-linear functiorf(!) point-wise to a matrix, even if the matrix is stored contigsiy. For the
same reason, computing MVMs on the fly without storing magriis even more costly.

D.2 Shuffling the Kernel Matrix Representation

Covariance matrix shuffling has been motivated in Secti@nIbis required during hyperparameter
optimization, because the MVM primitives for sub-matri¢es have to be driven by a single rep-
resentation of the completé (note that eack;, is of sizen(q—1)/q, thus almost as large &S).
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A simple approach would be to use sub-indexed matrix-veoigtiplication code, but this is very
inefficient (usually more than one order of magnitude sloian the flat BLAS functions).

Instead, when dealing with folk, we shuffle the representation so tKaf moves to the upper
left corner of the matrix. How this is done, depends on theesgntation. In this context, it is
important to note that the underlying BLAS explicitly allewvorking on sub-matrices within upper
left corners of larger frames, with virtually no loss in eiffiscy?* In the generic representation of
Appendix D.1, we simply permute the kernel matrigé® using the indexJx, k). A corresponding
de-shuffling operation has to restore the old represent#iok .

D.3 The Linear Kernel

Our application described in Section 6.1 uses the lineareté© (x,x') = vex' X, wherex is very
high-dimensional (word counts over a dictionary), but astvemely sparse (by far the most entries
are zero). The linear kernel fits the setup of Appendix D.hwaisingleM® = X XT, whereX ¢ R™d

is the design matrixX is very sparse, and in our implementation is representewwsistandard
sparse matrix format.

An MVM is done asv — V(X XTv), whereX is sparse. More generally, we &®— XX'S
with large matricess. Kernel matrix shuffling (Appendix D.2) is implemented byngily reordering
the non-zero positions faX. In this context, it is interesting to remark a finding whichder-
lines the arguments in Section 7.2. The sparse matrix foisatich thatX XS is reduced to
so-calleddaxpyoperations & = a + ab) on therows of S. By Fortran (and BLAS) conventiorg
is stored in column-order, so that rows can only be accessedlg by using a striding value- 1
(the distance between consecutive vector elements in ny@mbd/e added a simple trick (called
dimension flippiny to the implementation, which in essence switches our dtefadering ofCn
vectorsv = (Vi1,Va1,Va1,...)" t0 (V11,V12,V13,...)" before major kernel MVM computations are
done. This simple modification led to a direct five-times sige which underlines the importance
of contiguous memory access in the bottleneck computatibrasmethod (which allows optimal
usage of cache hierarchies).
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