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Abstract
We propose a highly efficient framework for penalized likelihood kernel methods applied to multi-
class models with a large, structured set of classes. As opposed to many previous approaches
which try to decompose the fitting problem into many smaller ones, we focus on a Newton opti-
mization of the complete model, making use of model structure and linear conjugate gradients in
order to approximate Newton search directions. Crucially,our learning method is based entirely
on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allow-
ing straightforward specialization to new kernels, and focusing code optimization efforts to these
primitives only.

Kernel parameters are learned automatically, by maximizing the cross-validation log likelihood
in a gradient-based way, and predictive probabilities are estimated. We demonstrate our approach
on large scale text classification tasks with hierarchical structure on thousands of classes, achieving
state-of-the-art results in an order of magnitude less timethan previous work.

Parts of this work appeared in the conference paper Seeger (2007).
Keywords: multi-way classification, kernel logistic regression, hierarchical classification, cross
validation optimization, Newton-Raphson optimization

1. Introduction

In recent years, machine learning researchers started to address problems with kernel machines
which require models with a large number of dependent variables, and whose fitting demand train-
ing samples with very many cases. For example, for multi-wayclassification models with a hierar-
chically structured label space (Cai and Hofmann, 2004), modern applications call for predictions
on thousands of classes, and very large data sets become available. However, ifn andC denote
data set size and number of classes respectively, nonparametric kernel methods likesupport vector
machines(SVMs) orGaussian processes(GPs) typically scale super-linearly innC, if dependencies
between the latent class functions are represented properly.

Furthermore, most large scale kernel methods proposed so far refrain from solving the problem
of learning hyperparameters (kernel or loss function parameters), also known as “learning the ker-
nels”. The user has to run cross-validation schemes essentially “by hand”, which is not suitable for
learning more than a few hyperparameters. However, many models for modern applications come
with a large number of hyperparameters (for example to represent dependencies through “mixing”
as in independent components analysis), and adjusting themthrough optimization must make use
of gradients.
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We propose a general framework for learning in probabilistic kernel classification models.
While the models treated here are not novel, a major feature of our approach is the high compu-
tational efficiency with which the primary fitting (for fixed hyperparameters) is done. For example,
our framework applied to hierarchical classification with hundreds of classes and thousands of data
points requires a few minutes for fitting. The central idea isto step back from what seems to be
the dominating approach in machine learning at the moment, namely to solve a large convex opti-
mization problem by iteratively solving very many small ones. A popular approach for these small
steps is to minimize the criterion w.r.t. a few variables only, keeping the other ones fixed, and many
variations of this theme have been proposed. In this paper, we focus on the opposite approach of
trying to find directions which lead to fast descent, no matter how many of the variables are in-
volved. This is essentially Newton’s method, and one aspectof our work is to find approximate
Newton directions very efficiently, making use of model structure and linear conjugate gradients in
order to reduce the computation to standard linear algebra primitives on large contiguous chunks
of memory. Interestingly, such global approaches are generally favoured in the optimization com-
munity for problems (such as kernel methods fitting) which cannot be decomposed naturally into
parts. While other gradient-based optimizers such as scaled conjugate gradients could be used as
well, they require more fine-tuning (for example, preconditioning) to the specific problem they are
applied to, while Newton’s method is closer to a “black box” technique and can be transferred to
novel situations without many changes.

For multi-way classification, our primary fitting method scales linearly inC, and depends onn
mainly via a fixed number ofmatrix-vector multiplications(MVM) with n×n kernel matrices. In
many situations, these MVM primitives can be computed very efficiently, often without having to
store the kernel matrices themselves.

We also show how to choose hyperparametersautomaticallyby maximizing the cross-validation
log likelihood, making use of our primary fitting technologyas inner loop in order to compute the
CV criterion and its gradient. It is important to note that our hyperparameter learning method works
by gradient-based optimization, where the dominating partof the gradient computation does not
scale with the number of hyperparameters at all.1 The gradient computation also requires a number
of MVMs with derivatives of kernel matrices, which can be reduced to kernel MVMs for many
frequently used kernels (see Section 7.3). Therefore, our approach can in principle be used to learn
a large number of hyperparameters without user interaction.

We apply our framework to hierarchical classification with many classes. The hierarchy is
represented through an ANOVA setup. While theC latent class functions are fully dependenta
priori , the scaling of our method stays close to what unstructured (flat) classification withC classes
would require. We test our framework on the same tasks treated by Cai and Hofmann (2004),
achieving comparable results in at least an order of magnitude less time.

Our proposal to use approximate Newton methods is not novel as such. The Newton method, or
a variant of it called Fisher scoring, is the standard approach for fitting generalized linear models in
statistics (Green and Silverman, 1994, McCullach and Nelder, 1983), at least if parametric models
are fitted to moderately sized samples. Our primary fitting method for flat multi-way classification
(see Section 2) appeared in Williams and Barber (1998). However, we demonstrate the usefulness
of this principle on a much larger scale, showing how model structure can (and has to) be exploited

1. Such scaling behaviour is fairly standard in Gaussian process marginal likelihood maximization techniques (Williams
and Barber, 1998), but has only recently been brought to attention in the SVM community (Keerthi et al., 2007).
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in this context. Furthermore, we demonstrate how the secondary task of hyperparameter learning
can be reduced to the same underlying primitives.

The structure of the paper is as follows. Our model and methodof parameter fitting is given
in Section 2. An extension to hierarchical classification isprovided in Section 3, and in Section 4
we give our automatic hyperparameter learning procedure. Essential computational details are dis-
cussed in Section 5. Experimental results on a very large hierarchical text classification and several
standard machine learning problems are given in Section 6. We close with a discussion in Section 7,
relating our global direction approach to popular block coordinate descent techniques in Section 7.2,
and pointing out future work in Section 7.4.

Optimized C++ software for our framework is available as part of theLHOTSE toolbox for adap-
tive statistical models, which is freely available for non-commercial purposes.2 The implementation
contains the linear kernel case used in Section 6.1 (see Appendix D.3), as well as a generic represen-
tation described in Appendix D.1, with which the experiments in Section 6.2, Section 6.3 have been
done. It is fairly simple to include new kernels or (approximate) kernel MVM implementations.

2. Penalized Multiple Logistic Regression

In this section, we introduce our framework on a multi-way classification model withC classes,
where structure between classes is not modelled. We refer tothis setup asflat classification, in that
the label set is flat (unstructured).

log P(y | u) log P(u)

likelihood
coupling

u1 u2 uC
. . .

latent
dependent
functions

"prior" mixing (optional)

latent
independent
functions

+

penalization

. . .u1 u2 uP

( ( (

Figure 1: Structure of penalized likelihood optimization.

In general, our framework is applicable to models of the formdepicted in Figure 1. A set of
latent (unobserved) functionsuc(·) is fitted to observed data by penalized likelihood maximization.
For many models, the penalisation term (also called regulariser) corresponds to the logarithm of a
prior density over theuc(·). This primary fitting step corresponds to a convex optimization problem
over finitely many variables. Structure in such models is represented either as couplings in the log

2. Available atwww.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.
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likelihood function, or in the penalisation (or log prior) term. The latter can be realized through the
linear mixing ofa priori independent functions ˘up(·), in other words the penaliser over the latter
decouples w.r.t.p (our main example of such mixing is hierarchical classification, developed in
Section 3).

We now apply this general framework to flat classification, wherey ∈ {1, . . . ,C} is to be pre-
dicted fromx ∈ X , given some i.i.d. dataD = {(xi,yi) | i = 1, . . . ,n}. Our notation convention for
vectors and matrices is detailed in Appendix A, where we alsocollect all major notational definitions
in a table. We codeyi asyi ∈ {0,1}C, 1Tyi = 1 (zero-one coding).3 We employ themultiple logistic
regression model, consisting ofC latent class functionsuc(·) feeding into the multiple logistic (or
softmax) likelihoodP(yic = 1|xi ,ui(·)) = euc(xi)/(∑c′ e

uc′ (xi)).
We writeuc(·) = fc(·)+ bc for intercept (or bias) parametersbc ∈ R and functionsfc(·) living

in a reproducing kernel Hilbert space (RKHS) with kernelK(c) = K(c)(·, ·) (Schölkopf and Smola,
2002), and consider thepenalized negative log likelihood

Φ = −
n

∑
i=1

logP(yi|ui)+ (1/2)
C

∑
c=1

‖ fc(·)‖
2
c +(1/2)σ−2‖b‖2, ui = (uc(xi))c ∈ R

C,

which we minimize for primary fitting. Here,‖ · ‖c is the RKHS norm for kernelK(c). The idea
is that deviations infc from desired functional properties encoded inK(c) are penalized by a large
‖ fc(·)‖2

c. For example, for the Gaussian kernel (7), non-smoothfc are penalized, and for the linear
kernel (Appendix D.3),‖ fc(·)‖2

c is the squared norm of the weight vector. Details on penalized
likelihood kernel methods and RKHS penalisation can be found in Green and Silverman (1994) and
Schölkopf and Smola (2002).

The model can also be understood in a Bayesian context, wherethe penalisation terms come
from zero mean Gaussian process priors on the functionsfc(·), andb has a zero mean Gaussian prior
with varianceσ2. From this viewpoint, we do a maximum a-posteriori (MAP) approximation here,
without however taking covariances into account properly (which would be much more expensive
to do). Details on Gaussian processes for machine learning can be found in Seeger (2004) and
Rasmussen and Williams (2006).

Since the likelihood depends on thefc(·) only through the valuesfc(xi) at the data points,
every minimizer ofΦ must be a kernel expansion:fc(·) = ∑i αicK(c)(·,xi). This fact is known as
representer theorem (Green and Silverman, 1994, Wahba, 1990). Plugging this in, the regulariser
becomes(1/2)αTKα +(1/2)σ−2‖b‖2, whereK(c) = (K(c)(xi,x j))i, j ∈ R

n,n, andK = diag(K(c))c is
block-diagonal. The kernelsK(c) can in general be different, although sharing kernels amongclasses
can lead to computational savings, in that some of the blocksK(c) are identical. Our implementation
of block sharing is described in Appendix D.1.

We show in Section 5.1.1 that thebc may be eliminated asb = σ2(I ⊗ 1T)α. Thus, if K̃ =
K + σ2(I ⊗1)(I ⊗1T), then our criterionΦ becomes

Φ = Φlh +
1
2

αTK̃α, Φlh = −yTu+1T l , l i = log1T exp(ui), u = K̃α. (1)

Φ is strictly convex inα, being a sum of linear, quadratic, andlogsumexpterms of the form
log1T exp(ui) (Boyd and Vandenberghe, 2002), so it has a unique minimum point α̂. The corre-

3. We switch between the formatsyi , yi . Note thatyic denotes a component inyi = (yic)c.
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sponding kernel expansions are

ûc(·) = ∑
i

α̂ic(K
(c)(·,xi)+ σ2).

Estimates of the conditional probability on test pointsx∗ are obtained by plugging ˆuc(x∗) into the
likelihood. These estimates are asymptotically consistent, although better finite sample estimates
could probably be obtained by a more Bayesian treatment.

We note that this setup is related to the multi-class SVM (Crammer and Singer, 2001), where
− logP(yi |ui) is replaced by the margin loss−uyi (xi)+maxc{uc(xi)+1−δc,yi}. Here,δa,b = I{a=b}.
The negative log multiple logistic likelihood has similar properties, but is smooth as a function of
u, and the primary fitting ofα does not require constrained convex optimization. Furthermore,
universal consistency for estimates ofP(y∗|x∗) can be established for the multiple logistic loss, but
fails to hold for the SVM variant (Bartlett and Tewari, 2004).

We will minimize Φ using theNewton-Raphson(NR) algorithm. The computation of Newton
search directions requires solving a system with the Hessian and the gradient ofΦ, which we will
do approximately using thelinear conjugate gradients(LCG) algorithm. This can be done without
fully computing, storing, or inverting the Hessian, all of which would not be possible for largenC.
In fact, the task is reduced to computingk1(k2 + 2) MVMs with K , wherek1 is the number of NR
iterations,k2 the number of LCG steps for computing each Newton direction.Since NR is a second-
order convergent method,k1 is generally small.k2 determines the quality of each Newton direction,
and again, fairly small values seem sufficient (see Section 6.1). Details are provided in Section 5.1.

Finally, some readers may wonder why we favour the NR algorithm here, which in practice can
be fairly complicated to implement, while we could do a simpler gradient-based optimization ofΦ
w.r.t. α, for example by scaled (non-linear) conjugate gradients (SCG). The problem is that on tasks
of the size we want to address, non-invariant methods such asSCG tend to fail completely if not
properly preconditioned, and we experienced exactly that in preliminary experiments. In contrast to
that, NR is invariant to the choice of optimization variables, so does not have to be preconditioned.
It is by far the preferred method in the optimization literature (Bertsekas, 1999, Boyd and Vanden-
berghe, 2002), and many ideas for preconditioning or Quasi-Newton try to approximate the NR
directions. We think that a proper SCG implementation can beat least as efficient as NR, but needs
fine-tuning to the specific problem, which in the case of hierarchical classification (discussed next)
is already quite difficult. More details on this point are given in Section 5.4 and also Section 7.2.

3. Hierarchical Classification

So far we dealt with flat classification, the classes being independenta priori, with block-diagonal
kernel matrixK . However, if the label set has a known structure,4 we can benefit from representing
it in the model. Here we focus on hierarchical classification, the label set{1, . . . ,C} being the leaf
nodes of a tree. Classes with lower common ancestor should bemore closely related. In this section,
we propose a model for this setup and show how it can be dealt with in our framework with minor
modifications and reasonable extra cost.

In flat classification, the latent class functionsuc(·) are modelled asa priori independent, in
that the penaliser (or the log prior in the GP view) is a sum of individual terms for eachc, without

4. Learning an unknown label set structure may be achieved byexpectation maximization techniques, but this is subject
to future work.
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Figure 2: Example of a tree-structured target space, where labels correspond to leaf nodes (shaded).

interaction terms. Analysis of variance (ANOVA) models go beyond such independent designs, they
have previously been applied to text classification by Cai and Hofmann (2004), see also Shahbaba
and Neal (2007). Let{0, . . . ,P} be the nodes of the tree, 0 being the root, and the numbers are
assigned breadth first (1,2, . . . are the root’s children). The tree is determined byP andnp, p =
0, . . . ,P, the number of children of nodep. Let L be the set of leaf nodes,|L| = C. Assign apair
of latent functionsup, ŭp to each node, except the root. The ˘up are assumeda priori independent,
as in flat classification.up is the sum of ˘up′ , wherep′ is running over the nodes (includingp) on
the path from the root top. An example is given in Figure 2. The class functions to be fedinto
the classification likelihood are theuL(c) of the leafs. This setup represents similarities according
to the hierarchy. For example, if leafsL(c), L(c′) have the common parentp, thenuL(c) = up +
ŭL(c), uL(c′) = up + ŭL(c′), so the class functionssharethe effectup. Since regularisation forces all
independent effects ˘up′ to be smooth, the classesc, c′ are urged to behave similarlya priori.

Let u = (up(xi))i,p, ŭ = (ŭp(xi))i,p ∈ R
nP. The vectors are linearly related asu = (Φ⊗ I)ŭ, Φ ∈

{0,1}P,P, a special case of the mixing of Figure 1. Importantly,Φ has a simple structure which
allows MVM with Φ or ΦT to be computed easily inO(P), without having to compute or storeΦ
explicitly. Let csp = ∑p′<pnp′ , and defineΦp ∈ R

d,d, d = csp + np, to be the upper left block of
Φ, so thatΦ = ΦP. If p is a leaf node, thenΦp = Φp−1. Otherwise,Φp is obtained fromΦp−1 by
attaching rows(δT

pΦp−1,δT
j ), j = 1, . . . ,np, whereδT

pΦp−1 is thep-th row ofΦp−1. This is because
ucsp+ j = up + ŭcsp+ j for the functions of the children ofp. Formally,

Φp =

(

Φp−1 0
1δT

pΦp−1 I

)

,

where the lower rightI ∈ R
np,np. Note thatΦ is lower triangular with diagΦ = I . This recursive

definition directly implies simple methods for computingv 7→ Φv andv 7→ ΦTv.
Under the hierarchical model, the class functionsuL(c) are strongly dependenta priori. Rep-

resenting this prior coupling in our framework amounts to simply plugging in the implied kernel
matrix

K = (ΦL,·⊗ I)K̆(ΦT
L,·⊗ I), (2)
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into the flat classification model of Section 2. Here, the inner K̆ is block-diagonal, while in the flat
model,K itself had this property. In the hierarchical case,K is not sparse and certainly not block-
diagonal, but we are still able to compute kernel MVMs efficiently: pre- and post-multiplying byΦ
is very cheap, and̆K is block-diagonal just as in the flat case.

In fact, the step from flat to hierarchical classification requires minor modifications of existing
code only. If code for representing a block-diagonalK is available, we can use it to represent
the innerK̆ , just replacingC by P. This simplicity carries through to the hyperparameter learning
method (see Section 4). The cost of a kernel MVM is increased5 by a factorP/C < 2, which in most
hierarchies in practice is close to 1.

However, it would be wrong to claim that hierarchical classification in general comes as cheap
as flat classification. In fact, primary fitting becomes more costly, precisely because there is more
coupling between the variables. In the flat case, the Hessianof Φ (1) is close to block-diagonal.
The LCG algorithm to compute Newton directions converges quickly, because it nearly decom-
poses intoC independent ones, and fewer NR steps are required. In the hierarchical case, this
“near-decomposition” does not hold, and both LCG and NR needmore iterations to attain the same
accuracy, although each LCG step comes at about the same costas in the flat case.

In numerical mathematics, much work has been done to approximately decouple linear systems
by preconditioning. In some of these strategies, knowledgeabout the structure of the system matrix
(in our case: the hierarchy) can be used to drive preconditioning. An important point for future re-
search is to find a good preconditioning strategy for the system (5). However, in all our experiments
so far the fitting of the hierarchical model took less than twice the time required for the flat model
on the same task.

4. Hyperparameter Learning

Our framework comes with an automatic method for setting free hyperparametersh, by gradient-
based maximization of the cross-validation (CV) log likelihood. Our primary fitting method of
Section 2 is used here as principal subroutine. Such a setup is commonplace in Bayesian statistics,
where (marginal) inference is typically employed as subroutine in parameter learning.

Recall that primary fitting works by minimizingΦ (1) w.r.t.α. Let{Ik} be a partition of the data
set range{1, . . . ,n}, with Jk = {1, . . . ,n}\ Ik, and let

ΦJk = uT
[Jk]

((1/2)α[Jk]−yJk
)+1T l [Jk]

be the negative log likelihood of the subsetJk of the data. Here,u[Jk] = K̃Jk
α[Jk]. The α[Jk] are

independent variables,not part of a common6 α. The cross-validation criterion is

Ψ = ∑
k

ΨIk, ΨIk = −yT
Iku[Ik] +1T l [Ik], u[Ik] = K̃ Ik,Jk

α[Jk], (3)

whereα[Jk] is the minimizer ofΦJk . Since for eachk, we fit and evaluate the likelihood on disjoint
parts ofy, Ψ is an unbiased estimator of the true negative expected log likelihood.

In order to adjusth, we pick a fixed partition at random, then do gradient-based minimization of
Ψ w.r.t.h. To this end, we maintain the set{α[Jk]} of primary variables, and iterate between re-fitting

5. Nodes with a single child only can be pruned from the hierarchy. Note that our formalism does not require all leaf
nodes to have the same depth.

6. Which is why they are not referred to asαJk .
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those for each foldk, and computingΨ and∇hΨ. The gradient can be determined analytically, using
a computation which is equivalent to the Newton direction computations forα[Jk], meaning that the
same code can be used. Details are given in Section 5.2. Note thatΨ is not a convex objective.

As for computational complexity, suppose there areq folds. The update of theα[Jk] requires
q primary fitting applications, but since they are initialized with the previous valuesα[Jk], they do
converge very rapidly, especially during later iterations. ComputingΨ based on theα[Jk] comes
basically for free. The gradient computation decomposes into two parts: accumulation, and kernel
derivative MVMs. The accumulation part requires solvingq systems of size((q− 1)/q)nC, thus
qk3 kernel MVMs on theK̃Jk

if linear conjugate gradients (LCG) is used,k3 being the number of
LCG steps. We also need two buffer matricesE, F of qnC elements each. Note that the accumu-
lation step isindependentof the number of hyperparameters. The second part consists of q kernel
derivative MVMs for each independent component ofh. This second part is much simpler than the
accumulation one, consisting entirely of large matrix operations, which can be run very efficiently
using specialized numerical linear algebra code. The method for computingΨ and∇hΨ can be
plugged into a custom gradient-based optimizer, such as Quasi-Newton or conjugate gradients, in
order to learnh.

As shown in Section 5.3, the extension of hyperparameter learning to the hierarchical case of
Section 3 is done by wrapping the accumulation part withΦ MVMs, the coding and additional
memory effort being minimal.

We finally note from our findings in practice (see Section 6.3)that on large tasks, our automatic
method can require some fine-tuning. This is due to the delicate dependencies between the different
approximations used. The accuracy ofΨ and∇hΨ depends on how accurate the inner NR opti-
mizations forα[Jk] turn out, and the latter depend on how many iterations of LCG are done in order
to compute search directions. Fortunately,ΦJk and its gradient w.r.t.u[Jk] can be computed exactly
in order to assess inner optimization convergence, so we do at least know when things go wrong.
In our implementation, we deem an evaluation ofΨ and∇hΨ usable if the average of‖∇u[Jk]

ΦJk‖
over folds is below a threshold, which depends on the problemand on time constraints. A failed
evaluation leads to a right bracket there for the outer optimization line search, in that step sizes
beyond the failed one are not accessed. We can now tune the basic running time parametersk1, k2

so thatΨ evaluations do not fail too often. In this context, it is important to regard the{α[Jk]} as
an inner statealongside the hyperparameter vectorh. Although inner optimizations are convex, for
large problems and reasonablek1, k2, successive minima are attained only when we start from the
previous best inner state. This is true especially during later stages, where for certain problems (see
Section 6.3)h attends “extreme” values and the inner optimizations become quite hard.7 Therefore,
the inner state used to initialize a givenΨ evaluation is the final one for the last recentsuccessful
evaluation.8 Inner states attained during failed evaluations are discarded.

7. Although inner optimizations are convex, speed of convergence of NR depends strongly on the value ofh. For
“extreme” values, the Newton direction computation by LCG is harder, and search directions can become large in
early NR iterations. The latter may be because we work inu rather thanα space, but only the former is really feasible.

8. Within outer line searches, we use{α[Jk]} from the last recent successful evaluationto the left(along the search
direction).
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5. Computational Details

In this section, we provide details for the material above. The techniques given here do characterize
our framework, they are novel in this combination, and some of them may be useful in other contexts
as well. More specific details of our implementation can be found in Appendix D.

5.1 Details for Flat Classification

In this section, we provide details for the primary fitting optimization in the case of flat multi-way
classification, introduced in Section 2. Note that this fitting method appeared in Williams and Barber
(1998) in the context of approximate Gaussian process inference, although some fairly essential
ideas here are novel to our knowledge (symmetrisation of Newton system, pair optimization line
search, numerical stability considerations).

Recall that we want to minimize the strictly convex criterion Φ (1) w.r.t. α, using the Newton-
Raphson (NR) method. Modern variants of this algorithm iterate line searches along theNewton
directions−H−1g, whereg, H are gradient and Hessian ofΦ at the currentα. We will start with
the Newton direction computation in Section 5.1.1, commenting on the line searches afterwards in
Section 5.1.2 (it turns out that it basically comes for free). An overview of the fitting algorithm is
given in Section 5.1.3.

5.1.1 COMPUTING THE NEWTON DIRECTION

RecallΦ and related variables from (1). Letπic = P(yic = 1|ui), π = exp(u−1⊗ l ), and recall that
Φlh is the likelihood part inΦ. Now,

g := ∇Φlh = π −y, W := ∇∇Φlh = D−DPclsD, Pcls = (1⊗ I)(1T ⊗ I).

Here,D = diagπ, and gradient and Hessian are taken w.r.t.u (not w.r.t. α). Our convention fornC
vectors and matrices and the use of⊗ is explained in Appendix A. The form ofW can be understood
by noting thatW is block-diagonal in adifferentordering, which usesc (classes) as inner andi (data
points) as outer index, then switching to our standard ordering.

It is easy to compute gradient and Hessian ofΦ w.r.t. α, b. A full (classical) Newton step is
given by the system

(I +W K)α′ +W(I ⊗1)b′ = W u−g,

(I ⊗1T)W Kα′ +(I ⊗1T)W(I ⊗1)b′ + σ−2b′ = (I ⊗1T)(W u−g),

and the Newton search direction is obtained as the difference α′−α, b′−b. Subtracting(I ⊗1T)
times the first from the second, we obtainb′ = σ2(I ⊗1T)α′, and plugging this into the first equation,
we have

(

I +W
(

K + σ2Pdata
))

α′ = W u−g, Pdata = (I ⊗1)(I ⊗1T). (4)

Note thatPdataa = (∑i′ ai′)i , which does the same asPcls, but on indexi rather thanc. We denote

K̃ = K + σ2Pdata,

noting that this corresponds tõK (c)
= K(c) + σ211T . The correct way of incorporating intercept

parameters is to add the constantσ2 to the kernels, then to obtainbc = σ2 ∑i αic. This is the meaning
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of “eliminating b” in Section 2. While we could optimizeσ2 as a hyperparameter, we consider it
fixed and given for simplicity.9 In the sequel, we considerb being eliminated from the model by
replacingK → K̃ everywhere. We haveu = K̃α.

We can solve the system (4) exactly if we can tolerate a scaling of O(n3C) andO(n2C) memory.
Note that this scaling is linear rather than cubic inC. The exact solution is derived in Appendix C.
It is efficient for moderaten, and generally useful for code debugging, and is supported by our
implementation. In the remainder of this section, we focus on approximate computations.

Although we could solve the system using a bi-conjugate gradients solver, we can do much bet-
ter by transforming it into symmetric positive definite form. First, note thatW is positive semidef-
inite, but singular. This can be seen by noting that the parameterization of our likelihood in terms
of ui is overcomplete, in thatui + κ1 gives the same likelihood values for allκ. We could fix one
of the ui components, which would however lead to subtle dependencies between the remaining
C− 1 functionsuc(·). In order to justify oura priori independent treatment of these functions,
we have to retain the overcomplete likelihood. The nullspace kerW is given by{(d)c |d ∈ R

n}
and has dimensionn. This can be seen by noting thatW a= 0 iff a = (ā)c, ā = ∑c′ a

(c′). W has
rank n(C− 1). We havea ∈ ranW iff ∑ca(c) = (1T ⊗ I)a = 0 (recall that kerW and ranW are
orthogonal, and their direct sum isRnC). From (4) we see thatα′ + g lies in ranW. Note that
∑cg(c) = ∑c(π(c) − y(c)) = 1− 1 = 0, thereforeg ∈ ranW, thusα′ ∈ ranW. We see that the dual
coefficients must fulfill the constraintα ∈ ranW. Note that ranW is in fact independent ofD. What-
ever starting value is used forα, it should be projected onto ranW, which is done by subtracting
C−1Pclsα. The NR updates then make sure that the constraint remains fulfilled.

Next, we need a decompositionW =VVT of W. Such aV exists (becauseW is positive semidef-
inite). In fact,

W = ADAT , A = I −DPcls.

This follows easily from(1T ⊗ I)D(1⊗ I) = ∑c′ D
(c′) = I . Thus,W = VVT with V = AD1/2. The

matrix A has fixed points ranW, namely ifa ∈ ranW, then(1T ⊗ I)a = 0, so thatAa= a.
Since there exists some ˜v (not unique) s.t.α′ = Wṽ, we can rewrite the system (4) as

V
(

I +VTK̃V
)

VT ṽ = V
(

VTu− g̃
)

,

whereg̃ is s.t.g = Vg̃ (such a vector exists becauseg ∈ ranW). This suggests the following proce-
dure for findingα′:

(

I +VT K̃V
)

β = VTu− g̃, α′ = Vβ. (5)

To see the validity of this approach, simply multiply both sides of (5) byV from the left, which
shows thatVβ solves the original system. Since the latter has a unique solution (strict convexity!),
we must haveVβ = α′. Finally, we note that ˜g = D−1/2g does the job, becauseV D−1/2g = Ag= g.
The latter follows becauseg ∈ ranW.

Thus, in exact arithmetic, the Newton direction computation is implemented in a three-stage
procedure. First, compute ˜g = D−1/2g. Second, solve the system (5) forβ. This is a symmetric
positive definite system with the typically well-conditioned matrixI +VTK̃V , and can be solved
efficiently using the linear conjugate gradients (LCG) algorithm (Saad, 1996). The cost of each step
is dominated by the MVMv 7→ Kv, which scales linearly inC, due to the block-diagonal structure
of K . Third, setα′ = Vβ. The Newton direction is obtained asα′−α.

9. In our experience so far, a good value ofσ2 is fairly robust across different tasks for the same problem, but may differ
strongly between different problems. It can be chosen basedon some initial experiments.
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We can start the LCG run from a good guess as follows. Letα be the current dual vector which
solved the last recent system. We would like to initializeβ s.t. α = Vβ = AD1/2β. If we assume
thatD1/2β ∈ ranW, thenα = D1/2β. Therefore, a good initialization isβ = D−1/2α. Alternatively,
we may also retainβ from the last recent system.

Issues of numerical stability are addressed in Appendix B. Furthermore, the LCG algorithm is
hardly ever run without some sort of preconditioning. Our present implementation uses diagonal
preconditioning, as described in Appendix B. We have already noted in Section 3 that a non-
diagonal preconditioning strategy could be valuable, but this is subject to future work.

5.1.2 THE L INE SEARCH

The classical NR algorithm proceeds doing full stepsα → α′, but modern variants typically employ
a line search along the Newton directionα′−α. In the non-convex case, this ensures global con-
vergence, and even for our convex objectiveΦ, a line search saves time and leads to numerically
more stable behaviour. Interestingly, the special structure of our problem leads to the fact that line
searches essentially come for free, certainly compared with the effort of obtaining Newton direc-
tions. We refer to this simple idea aspair optimization, the reader may be reminded of similar tricks
in primal-dual schemes for SVM.

Let s= α′−α be the NR direction, computed as shown above, and setα0 to α. The line search
minimizes (or sufficiently decreases)Φ on the line segmentα0 + λs, λ ∈ (0,1], starting withλ = 1
(which is the classical Newton step). The idea is to treatΦ as a function of the pair(u,α), where
u = K̃α. The corresponding line segment isu = u0 + λs̃, s̃ = K̃s, requiring a single kernel MVM
for computings̃. Let j = argmax|s̃j |. For an evaluation ofΦ atu, we reconstructλ = (u j −u0, j)/s̃j

andα = α0 + λs, then

Φ = uT ((1/2)α −y)+1T l , ∇Φ = π −y+ α,

so that an evaluation comes at the costO(nC) and does not require additional kernel MVM ap-
plications. We now do the line minimization ofΦ in the variableu. The driving feature of pair
optimization is that we can go back and forth betweenα andu without significant cost, once the
search direction is known w.r.t. both variables.

5.1.3 OVERVIEW OF THE OPTIMIZATION ALGORITHM

In Algorithm 1, we give a schematic overview of the primary fitting algorithm, written in terms of a
MVM primitive v 7→ Kv. For simplicity, we do not include the measures discussed inAppendix B
to increase numerical stability.

5.2 Details for Hyperparameter Learning

In this section, we provide details for the CV hyperparameter learning scheme, introduced in Sec-
tion 4. The gradient of the CV criterionΨ (3) is computed as follows.Ψ is a sum of termsΨIk, one
for each fold. We focus on a single term and writeI = Ik, J = Jk. α[J] is determined by the stationary
equationα[J] +g[J] = 0 (all terms of subscript[J] are as in Section 5.1.1, but for the subsetJ of the
data, and w.r.t.α[J]). Taking derivatives gives

dα[J] = −W[J]

(

(dKJ)α[J] + K̃J(dα[J])
)

,
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Algorithm 1 Newton-Raphson optimization to find posterior modeα̂.
Require: Starting values forα,b. Targetsy.

α = α −C−1(∑c′ α(c′))c, so thatα ∈ ranW. u = K̃α.
repeat

Computel , log(π) from u. ComputeΦ.
if relative improvement inΦ small enoughthen

Terminate outer loop.
else ifmaximum number of iterations donethen

Terminate outer loop.
end if
Initialize β = D−1/2α. Compute r.h.s.r = VTu− g̃, g̃ = D−1/2g.
Compute preconditioner diag(I +VTK̃V ).
Run preconditioned CG algorithm in order to solve the system(5) approximately. The CG code
is configured by a primitive to computev 7→ (I +VT K̃V )v, which in turn calls the primitive for
v 7→ Kv.
Computeα′ = AD1/2β′.
Do line search alongs = α′−α. This is done inu, alongs̃ = K̃s.
Assign line minimizer toα, u.

until forever

sincedg[J] = W[J]du[J]. We obtain a system fordα[J] which is symmetrised as in Section 5.1.1:

(

I +VT
[J]K̃JV [J]

)

β = −VT
[J](dKJ)α[J], dα[J] = V [J]β.

Also,
dΨI =

(

π[I ] −yI

)T
((dKI ,J)α[J] + K̃ I ,J(dα[J])).

With

f = I ·,I (π[I ] −yI)− I ·,JV [J]

(

I +VT
[J]K̃JV [J]

)−1
VT

[J]K̃J,I (π[I ] −yI ),

we have thatdΨI = (I ·,Jα[J])
T(dK) f .

If we collect these vectors as columns ofE, F ∈ R
nC,q, q the number of folds, we have that

dΨ = trET(dK)F (6)

for the complete criterion. The computation ofE, F was called “accumulation” in Section 4. It
involves a loop over folds, in whichα[Jk] is determined by NR optimization, starting from its pre-
vious value, thenf (column ofF ) is computed by solving one more system of the same form as
is required to compute Newton directions. Importantly, this accumulation phase is independent of
the number of hyperparameters. The gradient computation then requires to compute (6) for each
component, using kernel derivative MVMs. First of all,∂K/∂hp is block-diagonal just asK , and
for many standard kernels, it is a simple expression, involving K itself (see Section 7.3), so one
may be able to share computations between the different gradient components. Importantly, the
computation of (6) is easily broken down into large numerical linear algebra primitives, for which
very efficient code may be used (see Section 7.2). This is a significant advantage in the presence of
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many hyperparameters. For moderately many hyperparameters, the accumulation clearly dominates
the CV criterion and gradient computation.

The dominating part of the accumulation is the re-optimisation of theα[J], which are done by
calling the optimized code for primary fitting (Section 5.1)as subroutine. Here, a feature of our
implementation becomes important. Instead of representing eachKJk separately, we represent the
full K only for all subset kernel MVMs. The representation dependson the covariance function,
and in general on how kernel MVMs are actually done. A genericrepresentation is described in
Appendix D.1. In order to work on the data subsetJk, weshufflethe representation such that in the
permuted kernel matrix,KJk forms the upper left corner. This means that linear algebra primitives
with KJk can be run without mapping matrix coordinates through an index, which would be many
times slower. Details on “covariance shuffling” are given inAppendix D.2.

As mentioned in Section 5.1.1 and detailed in Appendix C, we can also compute Newton direc-
tions exactly inO(Cn3) in the flat classification case. This exact treatment can be extended to the
computation ofΨ and its gradient, as is shown in Appendix C. Exact computations lead to more
robust behaviour, and may actually run faster for small to moderaten. Exact computations are also
useful for debugging purposes.

5.3 Details for Hierarchical Classification

In this section, we provide details for hierarchical classification method, introduced in Section 3.
Recall thatu = (Φ⊗ I)ŭ for an indicator matrixΦ of simple structure, and that MVM withΦ or ΦT

can be computed easily inO(P), without having to storeΦ. Since the ˘up(·) are given independent
priors (or regularisers), the corresponding kernel matrixK̆ is block-diagonal. The induced covari-
ance matrixK over uL is given by (2), and hierarchical classification differs from the flat variant
only in that this non-block-diagonal matrix is used.

The MVM primitive v 7→ Kv is computed in three steps. MVM with(ΦL,·⊗ I) and(ΦT
L,·⊗ I)

works by computingS 7→ SΦ, S 7→ SΦT for S∈ R
n,P. In between, MVM withK̆ has to be done in

the same way as for flat classification, only thatK̆ hasP rather thanC diagonal blocks.
The diagonal preconditioning of LCG (see Appendix B) requires the computation of diagK ∈

R
nC. We have

Kic,ic = (δT
pΦ⊗δT

i )K̆(ΦTδp⊗δi) = δT
pΦ(diag(K̆

(p′)
i )p′)ΦTδp, p = L(c),

whereδT
pΦ is the p-th row of Φ. From the recursive structure ofΦ we know that ifnp > 0, then

δT
csp+ jΦ = δT

pΦ + δT
csp+ j , j = 1, . . . ,np, so if

di(csp+ j) = dip + K̆
(csp+ j)
i , j = 1, . . . ,np,

then diagK = dL.
Hyperparameter learning (see Section 5.2) is easily extended to the hierarchical case, recalling

(2) and the fact thatΦ does not depend on hyperparameters. DefineẼ = (ΦT
L,·⊗ I)E ∈ R

nP,q, F̃

accordingly, withE, F given in Section 5.2. The gradient components (6) translateto trẼT
(dK̆)F̃ ,

whereK̆ is block-diagonal as before. In our implementation, we reserve buffer space for̃E, F̃ , yet
build E, F there during accumulation. We then transform them toẼ, F̃ using in-place computations.

The step from flat to hierarchical classification requires only minor modifications of existing
code. Wrappers for MVM and the other primitives essentiallypre- and post-multiply their input
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with Φ andΦT respectively, calling the existing “flat” primitives for̆K in between (block-diagonal
with P rather thanC blocks).

5.4 Why Newton Raphson?

Why do we propose to use the second-order NR method for minimizing Φ, instead of using a
simpler gradient-based technique such as scaled conjugategradients (SCG)? We already motivated
our choice at the end of Section 2, but give more details concerning this important point here.

The convex problems we are interested in here live in very high-dimensional spaces and come
with complicated couplings between the components which cannot be characterized simply. Cer-
tainly, there is no simple decomposition into parts. It is well known in the optimization literature
(Bertsekas, 1999) that simple gradient-based techniques such as SCG require well-chosen precon-
ditioning in order to work effectively in such cases.

For example, we could optimizeΦ (1) w.r.t.α directly, the gradient requires a single MVM with
K rather than solving a system. However, this problem is very ill-conditioned, the Hessian being
K̃WK̃ + K̃ (large kernel matrices are typically very ill-conditioned, and here we deal withK2), and
SCG runs exceedingly slowly to the point of being essentially useless (as we determined in exper-
iments). It can be saved (to our knowledge) only by preconditioning, which in our case requires
to solve a system again. Another idea is to optimizeΦ w.r.t. u by SCG, which works better. The
Hessian isW + K̃−1, whose condition number is similar toK . In preliminary direct comparisons,
the NR method still works more efficiently, meaning that SCG would require additional precon-
ditioning specific to the problem at hand, which would likelybe different for flat and hierarchical
classification. From our experience, and also from the predominance of NR in the optimization
literature, we opted for this method which comes with self-tuning capabilities, making it easier to
transfer the framework to novel problems.

6. Experiments

In this section, we provide experimental results for our method on a range of flat and hierarchical
classification tasks.

6.1 Hierarchical Classification: Patent Texts

We use the WIPO-alpha collection,10 many thanks to L. Cai, T. Hofmann for providing us with
the count data and dictionary. We did Porter stemming, stop word removal, and removal of empty
categories. The attributes are bag-of-words over the dictionary. All input vectorsxi were scaled to
unit norm. Many thanks to Peter Gehler for helping us with thepreprocessing.

These tasks have previously been studied by Cai and Hofmann (2004), where patents (title and
claim text) are to be classified w.r.t. the standard taxonomyIPC, a tree with 4 levels and 5229
nodes. Sections A, B,. . . , H form the first level. As in Cai and Hofmann (2004), we concentrate
on the 8 subtasks rooted at the sections, ranging in size fromD (n = 1140, C = 160, P = 187)
to B (n = 9794, C = 1172, P = 1319). We use linear kernels (see Appendix D.3) with variance
parametersvc.

All experiments are averaged over three training/test splits, different methods using the same
ones. The CV criterionΨ is used with a different (randomly drawn) 5-partition per section and

10. Available atwww.wipo.int/tools/en/dbindex.html, or google for “Data Collections hosted by WIPO”.
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split, the same across all methods. Our method outputs a predictive distributionp j ∈ R
C for each

test casex j . The standard predictiony(x j) = argmaxc p jc maximizes expected accuracy, classes are
ranked asr j(c) ≤ r j(c′) iff p jc ≥ p jc′ , wherer j(c) ∈ {1, . . . ,C} is the rank of classc for casex j .
Let y j denote the true label forx j . The test scores we use here are the same as in Cai and Hofmann
(2004): accuracy(acc)m−1∑ j I{y(x j )=yj}, precision(prec)m−1∑ j r j(y j)

−1, parent accuracy(pacc)
m−1∑ j I{par(y(x j ))=par(yj )}, par(c) being the parent of leaf nodeL(c) (recall thatL(c) corresponds to
classc). Here,m is the test set size. Let∆(c,c′) be half the length of the shortest path between
leafsL(c), L(c′). Thetaxo-loss(taxo) ism−1∑ j ∆(y(x j),y j). These scores are motivated in Cai and
Hofmann (2004). For taxo-loss and parent accuracy, we better choosey(x j) to minimize expected
loss,11 which is different in general than the standard prediction (the latter maximizes expected
accuracy and precision).

We compare methods F1, F2, H1, H2 (F: flat, not using IPC; H: hierarchical). F1: allvc shared
(1); H1: vc shared across each level of the tree (3). F2, H2:vc shared across each subtree rooted
at root’s children (A: 15, B: 34, C: 17, D: 7, E: 7, F: 17, G: 12, H: 5). The numbers in parentheses
are the total number of hyperparameters. Recall that there are three parameters determining the
running time (see Section 2, Section 4). For hyperparameterlearning:k1 = 8,k2 = 4,k3 = 15 (F1,
F2); k1 = 10,k2 = 4,k3 = 25 (H1, H2).12 For the final fitting (after hyperpars have been learned):
k1 = 25,k2 = 12 (F1, F2);k1 = 30,k2 = 17 (H1, H2). The optimization is started fromvc = 5 for all
methods. We setσ2 = 0.01 throughout. Results are given in Table 1.

The hierarchical model outperforms the flat one consistently, especially w.r.t. taxo-loss and par-
ent accuracy. Also, minimizing expected loss is consistently better than using the standard rule for
the latter, although the differences are not significant. H1and H2 do not perform differently: choos-
ing many differentvc in the linear kernel seems no advantage here (but see Section6.2). The results
are quite similar to the ones of Cai and Hofmann (2004), obtained with a support vector machine
variant. However, for our method, the recommendation in Caiand Hofmann (2004) to usevc = 1
(not further motivated there) leads to significantly worse results in all scores. Thevc chosen by our
method are generally larger. Note that their code has not been made publicly available, so a direct
comparison with “all other things equal” could not be done.

In Table 2, we present running times13 for the final fitting and for a single fold during hyper-
parameter optimization (5 of these are required forΨ, ∇hΨ). In comparison, a final fitting time
of 2200s on the D section is quoted in Cai and Hofmann (2004), using a SVM variant, while we
require 119s (more than six times faster).14 It is precisely this high efficiency of primary fitting,
which allows us to use it as inner loop for automatic hyperparameter learning (Cai and Hofmann,
2004, do not adjust hyperparameters to the data). Possible reasons for the performance difference
are given in Section 7.2.

11. For parent accuracy, letp( j) be the node with maximal mass (underp j ) of its children which are leafs, theny(x j)
must be a child ofp( j).

12. Except for section C, wherek1 = 14,k2 = 6,k3 = 35.
13. Processor time on 64bit 2.33GHz AMD machines.
14. Cai and Hofmann average over three training/test splits. The timing figure 2200s in their paper is for three splits

(thanks to one of the reviewers to point this out).
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acc (%) prec (%) taxo
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 40.6 41.9 40.5 41.9 51.6 53.4 51.4 53.4 1.27 1.19 1.29 1.19
B 32.0 32.9 31.7 32.7 41.8 43.8 41.6 43.7 1.52 1.44 1.55 1.44
C 33.7 34.7 34.1 34.5 45.2 46.6 45.4 46.4 1.34 1.26 1.35 1.27
D 40.0 40.6 39.7 40.8 52.4 54.1 52.2 54.3 1.19 1.11 1.18 1.11
E 33.0 34.2 32.8 34.1 45.1 47.1 45.0 47.1 1.39 1.31 1.38 1.31
F 31.4 32.4 31.4 32.5 42.8 44.9 42.8 45.0 1.43 1.34 1.43 1.34
G 40.1 40.7 40.2 40.7 51.2 52.5 51.3 52.5 1.32 1.26 1.32 1.26
H 39.3 39.6 39.4 39.7 52.4 53.3 52.5 53.4 1.17 1.15 1.17 1.14

taxo[0-1] pacc (%) pacc[0-1] (%)
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 1.28 1.19 1.29 1.18 58.9 61.6 58.2 61.5 57.2 61.3 56.9 61.4
B 1.54 1.44 1.56 1.44 53.6 56.4 52.7 56.6 51.9 55.9 51.4 55.9
C 1.33 1.26 1.32 1.26 58.9 62.6 58.5 62.0 58.6 61.8 58.9 61.6
D 1.20 1.12 1.22 1.12 64.6 67.0 64.4 67.1 63.5 67.1 62.6 67.0
E 1.43 1.33 1.44 1.34 56.0 59.1 56.2 59.2 54.0 58.2 53.5 57.9
F 1.43 1.34 1.44 1.34 56.8 59.7 56.8 59.8 54.9 58.7 54.6 58.9
G 1.32 1.26 1.32 1.26 58.0 59.7 57.6 59.6 56.8 59.2 56.6 58.9
H 1.19 1.16 1.19 1.15 61.6 62.5 61.8 62.5 59.9 61.6 60.0 61.8

Table 1: Results on patent text classification tasks A-H. Methods F1, F2 flat, H1, H2 hierarchical.
taxo[0-1], pacc[0-1] for argmaxc p jc standard prediction rule, rather than minimization of
expected loss.

Final NR (s) CV Fold (s) Final NR (s) CV Fold (s)
F1 H1 F1 H1 F1 H1 F1 H1

A 2030 3873 573 598 E 131.5 203.4 32.2 49.6
B 3751 8657 873 1720 F 1202 2871 426 568
C 4237 7422 719 1326 G 1342 2947 232 579
D 56.3 118.5 9.32 20.2 H 971.7 1052 146 230

Table 2: Running times for tasks A-H. Method F1 flat, H1 hierarchical. Final NR: Final fitting with
Newton-Raphson. CV Fold: Re-optimization ofα[J] and gradient accumulation for single
fold J.
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6.2 Flat Classification: Remote Sensing

We use thesatimageremote sensing task from thestatlog repository.15 This task has been used
in the extensive SVM multi-class study of Hsu and Lin (2002),where it is among the data sets on
which the different methods show the most variance. It hasn = 4435 training,m= 2000 test cases,
andC = 6 classes. Covariatesx have 36 attributes with values in{0, . . . ,255}. No preprocessing
was done.

We use the isotropicGaussian(RBF) covariance function

K(c)(x,x′) = vcexp
(

−
wc

2
‖x−x′‖2

)

, vc,wc > 0. (7)

We compare the methodsmc-sep(ours with separate kernels for each class; 12 hyperparameters),
mc-tied(ours with a single shared kernel; 2 hyperparameters),mc-semi(ours with single kernel
M(1), but differentvc; 7 hyperparameters),1rest(one-against-rest; 12 hyperparameters). For1rest,
C binary classifiers are fitted on the tasks of separating classc from all others. They are combined
afterwards by the rulex∗ 7→ argmaxc P̂c(+1|x∗), whereP̂c(+1|x∗) is the predictive probability esti-
mate of thec-classifier.16 Note that1rest is arguably the most efficient method, in that its binary
classifiers can be fitted separately and in parallel. Even if run sequentially,1resttypically requires
less memory by a factor ofC than a joint multi-class method, although this is not true ifthe ker-
nel matrices are dominating the memory requirements and they are shared between classes in a
multi-class method (as inmc-tiedandmc-semihere).

We use our 5-fold CV criterionΨ for each method. Results here are averaged over ten randomly
drawn 5-partitions of the training set (the same partitionsare used for the different methods). All
optimizations are started fromvc = 10, wc = (∑ j Var[x j ])

−1 = 0.017, Var[x j ] being the empirical
variance of attributej. We setσ2 = 16 throughout. The parameters determining the running time
(see Section 2, Section 4) are set tok1 = 13, k2 = 25, k3 = 40 during hyperparameter learning, and
k1 = 30, k2 = 50 for final fitting (these are very conservative settings). Error-reject curves are shown
in Figure 3.

Test errors are 7.95%(±0.15%) for mc-sep, 8.00%(±0.10%) for 1rest, 8.10%(±0.13%) for
mc-semi, and 8.35%(±0.20%) for mc-tied. Therefore, using a single fixed kernel for allK(c) does
significantly worse than allowing for an individualK(c) per class. The test error difference between
mc-sepand 1rest is not significant here, but the error-reject curve is significantly better for our
methodmc-septhan for one-against-rest, especially in the domainα ∈ [0.025,0.25], arguably most
important in practice (where the rejection of a small fraction of test cases may often be an option).
This indicates that the predictive probability estimates from our method are better than from one-
against-rest, at least w.r.t. their ranking property. The curves formc-semi, mc-tiedare closer to
1rest, underlining that different kernelsK(c) should be used for each class. The result formc-sepis
state-of-the-art. The best SVM technique tested in Hsu and Lin (2002) attained 7.65% (no error-
reject curves were given there), and SVM one-against-rest attained 8.3% in this study. To put this
into perspective, note that extensive hyperparameter selection by cross-validation is done in Hsu
and Lin (2002), in what seems to be a quite user-intensive process, while our method is completely
automatic.

15. Available athttp://www.niaad.liacc.up.pt/old/statlog/.
16. Asymptotically,P̂c(+1|x∗) converges to the trueP(y∗ = c|x∗), and this combination rule is optimal. We use our

method withC = 2 in order to implement the binary classifiers.
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Figure 3: Error-reject curves (averaged over 10 runs) for different methods on thesatimagetask.
Curve obtained by allowing the method to abstain from prediction on fractionα of test
set, counting errors for predictions only. Depends on ranking of test points. Ranking
score (over test pointsx∗): maxc P̂(y∗ = c|x∗) (mc-sep, mc-semi, mc-tied), maxc P̂c(+1|x∗)
(1rest).

6.3 Flat Classification: Handwritten Digits

We use theUSPShandwritten digits recognition task (LeCun et al., 1989). The covariatesx are
16×16 gray-scale images with values in{16k+15|k = 0, . . . ,30}. The task hasn = 7291 training,
m= 2007 test cases, andC = 10 classes. No preprocessing was done.

We use Gaussian kernels (7) once more, different ones for each class. We do not optimize
the 5-fold CV criterionΨ using the full training set, but subsets of sizen′ = 2000. Our results are
averaged over five runs with different randomly drawn training subsets for hyperparameter learning,
while we use the full training set for final fitting. All optimizations are started fromvc = 10, wc =
(∑ j Var[x j ])

−1 = 0.0166, and we setσ2 = 4 throughout. The parameters determining the running
time arek1 = 25, k2 = 35, k3 = 40 during hyperparameter learning (onn′ = 2000 points), andk1 =
45, k2 = 80 for final fitting (onn= 7291 points). The settings for hyperparameter learning arequite
conservative, and the final fitting ones were sufficient for convergence on three of the five runs,
whereas on two we had to add anotherk1 = 25 iterations withk2 = 90. An error-reject curve is
shown in Figure 4.
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Figure 4: Error-reject curves (averaged over 5 runs) for different methods on theUSPStask. Curve
obtained by allowing the method to abstain from prediction on fraction α of test set,
counting errors for predictions only. Depends on ranking oftest points.

Test errors are 4.77%(±0.18%). These results are state-of-the-art for kernel classification.
Seeger (2003) reports 4.98% for the IVM (Sect. 4.8.4), where hyperparameters are learned auto-
matically. Csató (2002) states 5.15% for his sparse online method with multiple sweeps over the
data (Sect. 5.2). Results for the support vector machine aregiven in Schölkopf and Smola (2002),
Table 18.1, method SV-254, where a combination heuristic based on kernel PCA was used to attain
a test error of 4.4%. Crammer and Singer (2001) quote a test error of 4.38%, kernel parameters
having been selected by 5-fold cross-validation. All theseused the Gaussian kernel as well. The
latter studies do not quote fluctuations w.r.t. choices suchas the fold partition in CV, which is not
negligible in our case here. The SVM-based methods do not attempt test set rankings or predictive
probability estimation, and the corresponding studies do not show error-reject (or ROC) curves.
Seeger (2003) gives an error-reject curve, which is very similar to ours here.

Note that the harder settings ofk1, k2 for the final fitting are necessary due to the problem size,
and are motivated in Section 4. There are 72910 parameters, and the hyperparameters found through
optimizing Ψ spread by 3 orders of magnitude, so that the corresponding final fitting problems are
computationally hard to solve without a good initialization of α (in the absence of such, we start with
α = 0). If we solve for Newton directions using too few LCG steps,the approximations often do not
lead to much (or any) descent. Such “stalling” of NR line searches does happen now and then even
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afterk2 = 80 LCG steps.17 Lessons learned from these large scale experiments are commented on
in Section 4. There are delicate dependencies betweenk1, k2 and the running time to convergence,
which need to be explored in large scale settings, but this was not done thoroughly here.

7. Discussion

We have presented a general framework for learning kernel-based penalized likelihood classification
methods from data. A central feature of the framework is its high computational efficiency, even
though all classes are treated jointly. This is achieved by employing approximate Newton-Raphson
optimization for the parameter fitting, which requires few large steps only for convergence. These
steps are reduced to matrix-vector multiplication (MVM) primitives with kernel matrices. For gen-
eral kernels, these MVM primitives can be reduced to large numerical linear algebra primitives,
which can be computed very efficiently on modern computer architectures. This is very much
in contrast to many chunking algorithms for kernel method fitting, which have been proposed in
machine learning, and the advantages of our approach are detailed in Section 7.2. Dependencies
between classes can be encodeda priori with minor additional efforts, as has been demonstrated
for the case of hierarchical classification. Our method provides estimates of predictive probabilities
which are asymptotically correct. Hyperparameters can be adjusted automatically, by optimizing a
cross-validation log likelihood score in a gradient-basedmanner, and these computations are once
more reduced to the same MVM primitives. This means that within our framework, all code opti-
mization efforts can be concentrated on these essential primitives (see also Section 7.3), rather than
having to tune a set of further heuristics.

7.1 Related Work

Our primary fitting optimization for flat multi-way classification appeared in Williams and Barber
(1998), although some fairly essential features are novel here. They also did not consider large scale
problems or class structures. Empirical Bayesian criteriasuch as the marginal likelihood are rou-
tinely used for hyperparameter learning in Gaussian process models (Williams and Barber, 1998,
Williams and Rasmussen, 1996). However, in cases other thanregression estimation with Gaussian
noise, the marginal likelihood for a GP model cannot be computed analytically, and approxima-
tions differ strongly in terms of accuracy and computational complexity. For the multi-class model,
Williams and Barber (1998) use an MAP approximation for fixedhyperparameters, just as we do,
but their second-order approximation to the marginal likelihood is quite different from our criterion,
conceptually as well as computationally (see below). Approximately solving large linear system
by linear conjugate gradients (LCG) is standard in numerical mathematics, and has been used in
machine learning as well (Gibbs, 1997, Williams and Barber,1998, Keerthi and DeCoste, 2005).

The idea of optimizing approximations to a cross-validation score for hyperparameter learning
is not novel (Craven and Wahba, 1979, Qi et al., 2004). Our approach is different to these, in that the
CV score and gradient computations are reduced to elementary steps of the primary fitting method,

17. We cannot obtain a good initialα value from the finalα[Jk] of hyperparameter learning, because this is done on
training subsets only. Moreover, in our implementation, the “stalling” (no improvement) of a NR step means that
LCG is restarted from its last recentβ, so that eventually an improvement inΦ is still obtained. Of course, the stalled
NR iterations counts as such, and we dok1 iterations in total.
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so both can be done with the same code.18 In contrast, scores like GCV (Craven and Wahba, 1979)
or second order marginal likelihood (Williams and Barber, 1998) come in terms of the form trH−1

or log|H | for the HessianH of size nC. There are approximate reductions of computing these
terms to solving linear systems (randomized trace estimator, Lanczos), but they rely on additional
sampling of Gaussian noise, which introduces significant inaccuracies. In practice, optimizing such
“noisy” criteria is quite difficult, whereas our criterion can be optimized using standard optimization
code. Qi et al. (2004) propose an interesting approach of approximating leave-one-out CV using
expectation propagation, see also Opper and Winther (2000). They use a sparse approximation
for efficiency, but they deal with a single-process model only (C = 1), and it is not clear how
to implement EP efficiently (scaling linearly inC) for the multi-class model. Interestingly, they
observe that optimizing their approximate CV score is more robust to overfitting than the marginal
likelihood. Finally, none of these papers propose (or achieve) a complete reduction to kernel MVM
primitives only, nor do they deal with representing class structures or work on problems of the scale
considered here.

Many different multi-class SVM techniques have been proposed, see Crammer and Singer
(2001) and Hsu and Lin (2002) for references. These can be split into joint (“all-together”) and
decomposition methods. The latter reduce the multi-class problem to a set of binary ones (“one-
against-rest” of Section 6.2 is a prominent example), with the advantage that good code is available
for the binary case. The problem with these methods is that the binary discriminants are fitted
separately without knowledge of each other, or of their rolein the final multi-way classifier, so in-
formation from data is wasted. Also, their post-hoc combination into a multi-way discriminant is
heuristic. Joint methods are like ours here, in that all classes are jointly represented. Fitting is a
constrained convex problem, and often fairly sparse solutions (many zeros inα) are found. How-
ever, in difficult structured label tasks, the degree of sparsity is usually not high, and in these cases,
commonly used chunking algorithms for multi-class SVM can be very inefficient (see Section 7.2).
We should note that our approach here cannot be applied directly to multi-class SVMs, since they
require the solution of a constrained convex problem, but the principles used here should hold there
as well. Some novel suggestions here appear independently in Keerthi et al. (2007). SVM methods
typically do not come with efficient automatic kernel parameter learning schemes, and they do not
provide estimates of predictive probabilities which are asymptotically correct.

On the other hand, in a direct comparison our implementationwould still be slower than the
highly optimized multi-class SVM code of Crammer and Singer(2001), at least on standard non-
structured tasks such as USPS (Section 6.3) or MNIST. Especially on the latter, sparsity inα is
clearly present, and years of experience with the SVM problem led to very effective ways of ex-
ploiting it. In contrast,α in our approach is not sparse, and it is not our goal here to finda sparse
approximation. Hyperparameters are selected “by hand” in their method, not via gradient-based op-
timization. For a small number of hyperparameters, this traditional approach is often faster than our
optimization-based one here, and importantly, it can be fully parallelized. However, our approach
is still workable in situations with many dependent hyperparameters (for example, Section 7.4.1),
where CV by hand simply cannot be done.

Our ANOVA setup for hierarchical classification is proposedby Cai and Hofmann (2004),
whose use it within a SVM “all-together” method. We compare our method against theirs in Sec-

18. A small drawback of our approach is that our CV scoreΨ depends on a partitioning of the training set. In our
experiments here, we chose this at random. Leave-one-out (LOO) CV does not depend on a partitioning, but it is not
clear how to reduce LOO CV to solving a small number of linear systems.
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tion 6.1, achieving quite similar results in an order of magnitude less time. They also do not address
the problem of hyperparameter learning.

7.2 Global versus Decomposition Methods

In most kernel methods proposed so far in machine learning, the primary fitting to data (for fixed
hyperparameters) translates to a convex minimization problem, where the penalisation terms cor-
respond to quadratic expressions with kernel matrices. While kernel matrices may show a rapidly
decaying eigenvalue spectrum, they certainly do couple theoptimization variables strongly.19 While
a convex function can be optimized by any method which just guarantees descent in each step, there
are huge differences in how fast the minimum is attained to a desired accuracy. In fact, in the ab-
sence of local minima, the speed of convergence becomes the most important characteristic of a
method, besides robustness and ease of implementation.

In machine learning, the most dominant technique for large scale (structured label) kernel clas-
sification is what optimization researchers callblock coordinate descent methods(BCD), see Bert-
sekas (1999, Sect. 2.7). The idea is to minimize the objective w.r.t. a few variables at a time, keeping
all others fixed, and to iterate this process using some scheduling over the variables. Each step is
convex again,20 yet much smaller than the whole, and often the steps can be solved analytically.
Ignoring the aspect of scheduling, such methods are simple to implement.

A complementary approach is to find search directions which lead to as fast a descent as possi-
ble, these directions typically involve all degrees of freedom of the optimization variables. If local
first and second order information can be computed, the optimal search direction is Newton’s, which
has to be corrected if constraints are present (conditionalgradient or gradient projection methods). If
the Newton direction cannot be computed feasibly, approximations may be used. Such Newton-like
methods are certainly vastly preferred in the optimizationcommunity, due to superior convergence
rates, but also because features of modern computer architectures are used more efficiently, as is
detailed below. In this paper, we advocate to follow this preference for kernel machine fitting in
machine learning. We are encouraged not only by our own experiences, but can refer to the fact that
(approximate) Newton methods are standard for fitting generalized linear models in statistics, and
that such methods are also routinely used for Gaussian process models (Williams and Barber, 1998,
Rasmussen and Williams, 2006), albeit typically on problems of smaller scale than treated here.

The dominance of BCD methods for kernel machine fitting, while somewhat surprising, can
be attributed to early success stories with SVM training, culminating in the SMO algorithm (Platt,
1998), where only two variables are changed at a time. If an SVM is fitted to a task with low noise,
the solution can be highly sparse, and if the active set of “support vectors” is detected early in the
optimization process, methods like SMO can be very efficient. Importantly, SMO or other BCD
methods are easily implemented. On the other hand, as SVMs are increasingly applied to hard
structured label problems which usually do not have very sparse solutions, or whose active sets are
hard to find, weaknesses of BCD methods become apparent.

Block coordinate descent methods are often referred to as using the “divide-and-conquer” prin-
ciple, but this is not the case for kernel method fitting. BCD methods “are often useful in contexts
where the cost function and the constraints have a partiallydecomposable structure with respect to

19. An almost low-rank kernel matrix translates into a coupling of a simple structure, but the dominant couplings are
typically strong and not sparse.

20. If f (x) is convex, so isf (Ax) for any matrixA. The same is true for linear constraints.
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the problem’s optimization variables” (Bertsekas, 1999, p. 269). In kernel methods, such a decom-
posable structure is not present, because the penalisationterms couple all variables strongly via the
kernel matrices. In such cases, chunking techniquesdivide without conquering, often running for
very many steps, because improvements w.r.t. some block of variables tend to erase earlier improve-
ments. This central problem of block coordinate descent methods is well known as “zig-zagging”
in optimization. It occurs whenever variables not in the same block are significantly coupled, a sit-
uation which is to be expected for kernel machines in general. The situation is similar to a number
of cases in machine learning and statistics. Iterative proportional fitting (Della Pietra et al., 1997) is
a BCD method for learning the potentials of an undirected graphical model (Markov random field),
which is all but superseded now by modern global direction methods such as limited memory Quasi-
Newton, running orders of magnitude faster. Gibbs samplingis a basic Markov chain Monte Carlo
technique for approximate Bayesian inference, which typically is very simple to implement, but is
exceedingly slow in the presence of many coupled variables.Modern techniques such as Hybrid
Monte Carlo, or Swendsen-Wang can be seen as “global direction” variants of “block coordinate”
Gibbs sampling, and while they are harder to implement, theytypically run orders of magnitude
faster.

Another significant problem with BCD methods may come more asa surprise, namely because
it concerns a characteristic which is often sold as advantage of these methods: they make each
step as small as possible. Such small steps can often be dealtwith analytically, or by using simple
methods. This characteristic certainly makes BCD methods easy to implement. However, in light
of modern computer architectures, the advice must be to makeeach step aslarge as possible, with
the aim of requiring fewer steps. Modern systems use many internal parallelisms and hierarchies
of caching, with the aim of processing vector operations many times faster than an equivalent loop
over scalar operations, and large global steps do make use ofthese features. In contrast, a method
which calls very many small steps in a non-linear ordering, runs contrary to these mechanisms. For
example, data transfer between cache levels is done in blocks of significant sizes, and a method
which accesses memory element-wise from all over the place,leads to inefficiencies up to cache
thrashing, where the majority of cache accesses are misses (see Appendix D.3 for an example).

In well-designed global direction methods, the bottleneckoperations (where almost all real-
world running time is spent) are large vectorised mappings which access memory contiguously.
Even better, these operations should lie in a standard class, for which highly optimized implemen-
tations are readily available. In our case here, the bottleneck operations are numerical linear algebra
primitives from thebasic linear algebra subroutines(BLAS), a standardized interface for high-
performance dense linear algebra code. Very efficient implementations of the BLAS are available
for all computer architectures.21

In this paper, we advocate to take a step back and to use globaldirection methods as approx-
imation to Newton’s method for kernel machine fitting. The prospect seems daunting, since there
are many thousands of variables with complicated couplings, and the reader may be reminded of
early disastrous trials of applying off-the-shelf QP packages to SVM fitting, or of ongoing efforts
to formulate otherwise tractable machine learning problems as semidefinite programs and “solving”
them usingO(n7) SDP packages. This association is wrong. Our advice is toapproximatethe
global Newton direction, making use of all structure in the model in order to gain efficiency, which
is exactly the opposite of running a black box solver or implementing Newton’s method straight

21. ATLAS, a self-tuning BLAS implementation, is available as free software, see
http://math-atlas.sourceforge.net/.
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out of a textbook. In the context of kernel machines, where couplings through large unstructured
matrices are present, the large steps of approximating the Newton direction should be reduced to
standard linear algebra primitives on dense or sparse matrices, operating on contiguous chunks of
memoryas large as possible, since highly optimized code for such primitives is readilyavailable.

7.3 Matrix-Vector Multiplication

The computational load in our framework is determined by applications of the MVM primitives
v 7→ K(c)v andv 7→ (∂K(c)/∂hp)v. A user only needs to provide those for a kernel of choice. The
generic representation of Appendix D.1 applies to general covariance functions, but much more
efficient alternatives may be used in special cases (see Appendix D.3).

If the cost for a direct evaluation of these primitives is prohibitive, several well-known approx-
imations may be applied. Its has been suggested to use specialized data structures to approximate
MVM with matrices from isotropic kernels (Yang et al., 2005,Shen et al., 2006) such as the Gaus-
sian one (7). For such kernels, the derivative MVM can often be addressed using the same tech-
niques. For the Gaussian kernel, we haveK = vexp(wA), A = (−(1/2)‖xi −xj‖

2)i, j , in which case
(∂K/∂ logv) = K and(∂K/∂ logw) = wK ◦A, where◦ denotes component-wise product. Since the
specialized data structures concentrate on approximatingA, they apply to all required MVM vari-
ants. Our public code could fairly easily be extended, givenspecialized approximate kernel MVM
code is available.

7.4 Extensions and Future Work

Some concrete extensions are mentioned just below. In general, we think that many structured
label kernel methods proposed in the SVM context can be addressed in our framework as well.
For example, the kernel conditional random field (CRF) (Lafferty et al., 2004) for label sequence
learning can be treated by recognizing that MVM with the Hessian of the CRF log likelihood can be
implemented efficiently using the method described in Pearlmutter (1994). We also plan to address
hierarchical multi-label problems, which differ from hierarchical multi-class in that each instance
can have multiple associated labels.

7.4.1 MODELLING DEPENDENCIES BETWEENCLASSES

In the flat classification application of Section 2, we do not explicitly represent dependencies be-
tween classes. This is done in the hierarchical classification application of Section 3, but the depen-
dency structure is fixeda priori. In this section, we motivate how dependencies between classes can
be learned from data.

Let B ∈ R
C,C be a nonsingular coupling matrix, which will be a part of the model. In fact,

B should be regarded as hyperparameters. In the flat model, we haveui = f i + b, which is now
replaced byui = B f i +b, or

u = (B⊗ I)Kα +b⊗1.

This is the same modification which led to the hierarchical extension, only that the fixed coupling
matrixΦ is replaced by the variableB. Therefore, the same modification of our method can be done,
replacingK by K(B) = (B⊗ I)K(BT ⊗ I). Again, MVM with K(B) is of the same complexity as with
K , because MVM with(B⊗ I) can be done inO(C2n). Note thatB representsconditionaldepen-
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dencies between theuc(·), its role is comparable to the “mixing matrix” in independent components
analysis.

We are also interested in learningB, whose elements are taken as hyperparameters. The cor-
responding gradient ofΨ is obtained in the same way as described in Section 5.2, only that dK[B]

now further decomposes into parts fordB and for dK. Note that learningB by non-automatic
cross-validation would not be possible, due to the large number of components.

Consider the case where we have many classesC, but not much data for most of them. We
can postulate the assumptions that the behaviour of theC class functionsuc(·) is represented by
p≪C underlying latent factors, which are then modelled as independent. This is achieved in our
framework by having a non-square mixing matrixB ∈ R

C,p (the “factor loadings”). It is not hard to
adapt our framework to this case, in which it is obviously necessary to learnB as hyperparameters
from data. A related model in a Bayesian context was considered in Teh et al. (2005).

7.4.2 UNCERTAIN TARGETS IN HIERARCHICAL CLASSIFICATION

Recall the hierarchical classification setup of Section 3. Suppose that for some patternsxi , the target
is unknown, but we know that the path from its class to the rootgoes through an inner nodep.
Denote byLp the set of leaf nodes of the subtree rooted atp, so thatLp = {p} for a leaf nodep∈ L,
andL0 = L.

We can allow for such uncertain target information by using pseudo-targets ˜yi ∈ {1, . . . ,P}. If
ỹi 6∈ L, it is the lowest inner node we are certain about. The corresponding likelihood factor is

∑
c∈Lỹi

P(yi = c|ui).

Note that the log likelihood is not a concave function anymore, whenever|Lỹi | > 1, and in the pres-
ence of such factors, primary fitting is not a convex problem.However, an expectation-maximization
(EM) (Dempster et al., 1977) approach can be used to deal withuncertain targets. Namely, in “E
steps” we compute

qic ∝ I{c∈Lỹi }
P(yi = c|ui)

for the currentuc(·), whereqi = (qic)c are distributions. “M steps” consists of Newton-Raphson
iterations as before, but using∑cqic logP(yi = c|ui) as log likelihood factors. To this end, we just
have to replace the vectory ∈ R

nC by q. Importantly, we only used the properties 1Tyi = 1, yi ≥ 0
above (but not thatyic ∈ {0,1}), which are true forq just as well.

7.4.3 LOW RANK APPROXIMATIONS

Our generic kernel matrix representation is described in Appendix D.1. If the data set sizen is large,
we may not be able to keep the correlation matricesM(l) in memory, and MVM with them becomes
prohibitively expensive. We can use standard low rank matrix approximations to deal with this
problem (see also Section 7.3). Namely, suppose thatM(l) is approximated byP(l)L(l)L(l)TP(l)T ,
whereP(l) is a permutation matrix, andL(l) ∈ R

n,dl for dl ≪ n. DenoteIl ⊂ {1, . . . ,n} the active set
of sizedl . The approximation may be obtained by an incomplete Cholesky factorization22 (ICF),
which has the special property that only a small set ofdl columns ofM(l) (along with its diagonal)

22. Matlab code for ICF (in the form required here) can be downloaded from
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/software.html.
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ever have to be evaluated (Bach and Jordan, 2002). In this case, L(l)
1...dl ,·

is the lower triangular

Cholesky factor ofM(l)
Il

∈ R
dl ,dl , so thatP(l)TM(l)

·,Il
= L(l)L(l)

1...dl ,·
T . Note that in the ICF case, we have

that
diag

(

P(l)TM(l)P(l) −L(l)L(l)T
)

≥ 0

point-wise, because the elements are simply the squared pivots for a potential continuation of the
factorization (which has been stopped afterdl steps). Therefore, we can correct the approximation
by replacing the diagonal ofL(l)L(l)T by the true one, ending up with the approximation

M(l) ≈ M̃ (l) := (diag2M(l))+P(l)
(

L(l)L(l)T − (diag2 L(l)L(l)T)
)

P(l)T .

Snelson and Ghahramani (2006) motivate this diagonal correction in another context. It is clear that

MVM with M̃ (l) can be done inO(ndl ).
If ∗ indexes test points different from the training points, then the test-training correlation matrix

is
M(l)

∗,· = M(l)
∗,I (L

(l)
1...dl ,·

)−TL(l)TP(l)T .

We can also learn parameters of theM(l) functions in this low rank setup by gradient-based opti-
mization, assuming that the choice ofIl does not depend on these kernel parameters, but this is not
discussed here.
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Appendix A. Notation

In this section, we describe the notation used in this paper.We denote vectors and matrices by bold-
face lower-case and upper-case letters, scalars and scalarfunctions are set normally. Subscripts
select parts of objects, they can be single indexes or index sets. For example,a = (ai)i is a vector
with componentsai , A = (ai, j )i, j a matrix with entriesai, j . We also writea = (ai), A = (ai, j ) if
the indexes are clear from context.A·,i is the i-th column ofA (“ ·” is short for the full index set).
⊗ denotes the Kronecker product,A⊗B = (ai, j B)i, j , 1 (0) the vector of all ones (vector/matrix of
all zeros),I the identity matrix, andδ j = (I{i= j})i (columns ofI ). For a matrixA, diagA = (ai,i)i

extracts the diagonal. For a vectorv, diagv is the corresponding diagonal matrix. We also use
this for matrix-valued vectors, an example is the diagonal kernel matrixK = diag(K(c))c in flat
classification.

Many vectors and matrices are indexed by data points (i) and classes (c) at the same time, for
exampleu = (uic) ∈ R

nC. We use double indexesic for these, which are flattened asi +(c−1)n,
so the component ordering23 is u = (u11,u21, . . . ,un1,u12, . . . ). In this context, selection index sets

23. InMatlab, reshape(u,n,C) would give a matrix inRn,C.
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I are applied to thei (data point) index only:uI = (uic)i∈I ,c ∈ R
|I |C. Kronecker product notation

works nicely with this double index convention. IfA⊗B is applied tou, A hasC, B ncolumns. We
frequently use(1T ⊗ I)u = ∑cu(c), whereu(c) = (uic)i ∈ R

n, or (1⊗ I)v for v ∈ R
n, which stacksv

on top of each otherC times. The matrixPcls = (1⊗ I)(1T ⊗ I) (introduced in Section 5.1) combines
these operations:

Pclsx =







x̄
x̄
...

















C, x̄ = ∑
c

x(c),

andPdata does the same, but operating on thei rather than thec index.
All major notational definitions are listed in Table 3 for reference. For kernel matrices (for

example,K(c)), we do not list the kernel functions (here:K(c)), and for evaluation vectors (for
example,u), we do not list the underlying functions (here:u(c)(·)).

n Number data points 2 LCG Linear Conjugate Gradients 2
C Number classes 2 P Number nodes (hierarchy) 3
y Targets (zero-one) 2 L Leaf nodes (hierarchy) 3
xi Input points 2 ŭ Latent output (before mixing) 3
u Latent output (after mixing) 2 Φ Hierarchy mixing matrix 3
b Intercepts 2 K̆ Kernel matrix (before mixing) (2)
σ2 Penalizing constant forb 2 Ik,Jk Partitions for CV criterion 4
Φ Criterion for primary fitting 2 Ψ CV criterion 4
α Dual variables 2 q Number of folds 4
K Kernel matrix (after mixing) 2 h Hyperparameters 4
K(c) Kernel matrix block 2 k3 Complexity parameter 4
K̃ Kernel matrix (b eliminated) 2 g,W Gradient, HessianΦlh 5.1
l Logsumexp vector (1) Pcls Sum-distribute matrix 5.1
k1,k2 Complexity parameters 2 Pdata Sum-distribute matrix 5.1
NR Newton-Raphson 2 E,F Accumulation matrices 5.2

Table 3: Reference for notational definitions.k: Section of definition;(k): Equation of definition.

Appendix B. Details for Primary Fitting Algorithm

In this section, we discuss further details of the primary fitting algorithm of Section 2, in addition
to Section 5.1.

We need to counter the problem that roundoff errors may lead to numerical instabilities. The
criterion we minimize is strictly convex, even if the kernelmatrix K is singular (or nearly so).
However, problems could arise from components inπ becoming very small. Recall that logπic =
uic − l i. We make use of a thresholdκ < 0 and define

I = {(i,c) | logπic < κ, yic > 0} , I0 = {(i,c) | logπic < κ, yic = 0} .

The indices inI can be problematic due to the corresponding component ˜gic ≈ yic/π1/2
ic becoming

large. Note that this happens only if(xi ,yi) is a strong outlier w.r.t. the current predictor. Now, from
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the system (5) we see thatD1/2β = DAT(u− K̃α′)− g. Therefore, if(i,c) ∈ I , then(D1/2β)ic ≈
−gic ≈ yic. The idea is to solve the reduced system on the components in\I for (D1/2β)\I and to
plug in(D1/2β)I = yI . Finally, within\I , the components inI0 may be problematic when computing
the starting valueβ = D−1/2α for the CG run. However, in this case ˜gic ≈ 0, leading toβic ≈ 0 from
(5). The corresponding components in the starting valueβ can therefore be set to zero.

Next, the LCG algorithm for solving systems of the form (5) needs to be preconditioned. Sup-
pose we want to solveAx = b. If we have an approximatioñA to A so thatv 7→ Ã

−1
v can be

computed efficiently (essentially in linear time in the sizeof v), the preconditioned CG algorithm
solves the system̃A

−1
Ax = Ã

−1
b instead. The idea is that̃A

−1
A typically has a lower condition

number thanA, and LCG converges faster and less erratically. Our implementation does precondi-
tioning with the diagonal of the system matrixI +VTK̃V . Note thatVδic = π1/2

ic (δc−πi)⊗ δi, so
that

(

I +VT K̃V
)

ic,ic = 1+ πic

(

(1−2πic)(K
(c)
i + σ2)+∑

c′
π(c′)2

i (K(c′)
i + σ2)

)

.

Therefore, the diagonal can be computed based on the diagK(c) vectors. If the joint kernel matrix
K is not block-diagonal (as in hierarchical classification, see Section 3), diagK is not sufficient
for computing the system matrix diagonal. Letv ∈ R

nC be defined viavi = Kiπi , whereKi =
(I ⊗δT

i )K(I ⊗δi) ∈ R
C,C. Then, the system matrix diagonal has elements

1+ πic
(

Kic + σ2−2wic + πT
i wi
)

, w = v+ σ2π.

Appendix C. Solving Systems Exactly

In this section, we show how to implement our flat multi-classscheme using exact rather than
approximate solutions of linear systems, yet still scalinglinearly inC (at present, we do not know
how to implement hierarchical classification exactly with such scaling).

For a Newton step, we need to solve(I +WK̃)α′ = r with W = D−DPclsD. This can be written
as

(

A−UVT)D−1/2α′ = D−1/2r , A = I +D1/2K̃D1/2,

U = D1/2(1⊗ I), V = (A− I)U .

We now use the Sherman-Morrison-Woodbury formula togetherwith the fact thatUTU = ∑cD(c) =
I to obtain

α′ = D1/2(A−1+A−1U (UTA−1U )−1UT(I −A−1)
)

D−1/2r .

We used thatVTA−1 = UT(I −A−1). Note thatA−1 is block-diagonal, and that

UTA−1U = ∑
c

D(c)1/2A(c)−1D(c)1/2.

We maintain Cholesky factors of allA(c), as well as the Cholesky decompositionUTA−1U = RRT

(whereA(c)−1 are obtained from the Cholesky factors).
For hyperparameter learning, we consider the partitions(I ,J) sequentially. Since theα[J] are dif-

ferent across folds, we cannot obtain theA[J], H [J] as parts of underlying common matrices. Recall
Section 5.2.α[J] +g[J] = 0 givesH [J](dα[J]) = −W[J](dKJ)α[J]. With

f = I ·,I (π[I ] −yI)− I ·,JW[J]H
−T
[J] K̃J,I (π[I ] −yI),
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we have thatdΨI = (I ·,Jα[J])
T(dK) f . Again, these vectors are accumulated in matricesE, F . Solv-

ing a system withHT
[J] is an obvious variant of the procedure discussed above.

Appendix D. Further Details of the Implementation

Our implementation is designed to be as efficient as possible, while still being general and easy
to extend to novel situations. This is achieved mainly by breaking down the problems to calling
sequences of MVM primitives. These are then reduced to largenumerical linear algebra primi-
tives, where matrices are organized contiguously in memory, in order to exploit modern caching
architectures (see Section 7.2).

D.1 A Generic Kernel Matrix Representation

A kernel matrix representation is some data structure whichallows to compute kernel matrix MVMs
v 7→ K(c)v efficiently, being the principal primitives of our primary fitting method. Further require-
ments arise if additional features of our framework are used. For example, if hyperparameters are
to be learned as well, derivative MVMsv 7→ (∂K(c)/∂hp)v are required as well, and “covariance
shuffling” should be possible (see Section 5.2).

An efficient representation depends strongly on the covariance function used, and also on whether
kernel matrix MVMs are approximated rather than computed exactly. For example, for linear ker-
nels a special representation is used (see Appendix D.3). Inthis section, we describe a generic
representation, which is part of our implementation.

The generic representation can be used with any covariance function, in that no special structure
is assumed. It requires kernel matrices to be stored explicitly, which may not be possible for very
large n. In general, we allow for different covariance functionsK(c) for each classc, although
sharing of kernels is supported, in thatK(c)(·, ·) = vcM(lc)(·, ·) andvc > 0. Here,lc = lc′ is allowed
for c 6= c′. The matricesM(l) are stored explicitly. Note that the flexibility of using different variance
parametersvc with the sameM(l) does come at no extra cost, except for the fact that these haveto
be adjusted individually.

Since theM(l) are symmetric, two can be stored each in an×n block, say the odd-numbered
ones in the lower triangles. Here, the diagM(l) are stored separately, and whenever a specificM(l) is
required explicitly, the diagonal is copied into the block.It is important to note that the BLAS (see
Section 7.2) directly supports symmetric matrices which are stored in the lower or upper triangle of
a rectangular block.

The reader may wonder whether space could be saved by storingintermediates of theM(l)

instead. For example, if theM(l) are isotropic kernels of the formf (l)(‖x−x′‖), we could store the
inner product matrix(xT

i x j)i, j only. In practice, this turns out to be significantly slower (by a factor),
the reason being that the optimized BLAS primitives are manytimes more efficient than applying
a non-linear functionf (l) point-wise to a matrix, even if the matrix is stored contiguously. For the
same reason, computing MVMs on the fly without storing matrices is even more costly.

D.2 Shuffling the Kernel Matrix Representation

Covariance matrix shuffling has been motivated in Section 5.2. It is required during hyperparameter
optimization, because the MVM primitives for sub-matricesKJk have to be driven by a single rep-
resentation of the completeK (note that eachKJk is of sizen(q−1)/q, thus almost as large asK ).
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A simple approach would be to use sub-indexed matrix-vectormultiplication code, but this is very
inefficient (usually more than one order of magnitude slowerthan the flat BLAS functions).

Instead, when dealing with foldk, we shuffle the representation so thatKJk moves to the upper
left corner of the matrix. How this is done, depends on the representation. In this context, it is
important to note that the underlying BLAS explicitly allows working on sub-matrices within upper
left corners of larger frames, with virtually no loss in efficiency.24 In the generic representation of
Appendix D.1, we simply permute the kernel matricesK(c) using the index(Jk, Ik). A corresponding
de-shuffling operation has to restore the old representation for K .

D.3 The Linear Kernel

Our application described in Section 6.1 uses the linear kernel K(c)(x,x′) = vcxTx′, wherex is very
high-dimensional (word counts over a dictionary), but alsoextremely sparse (by far the most entries
are zero). The linear kernel fits the setup of Appendix D.1 with a singleM(1) = XXT , whereX ∈R

n,d

is the design matrix.X is very sparse, and in our implementation is represented using a standard
sparse matrix format.

An MVM is done asv 7→ vc(X XTv), whereX is sparse. More generally, we doS 7→ XXTS
with large matricesS. Kernel matrix shuffling (Appendix D.2) is implemented by simply reordering
the non-zero positions forX. In this context, it is interesting to remark a finding which under-
lines the arguments in Section 7.2. The sparse matrix formatis such thatXXTS is reduced to
so-calleddaxpyoperations (a = a+ αb) on therowsof S. By Fortran (and BLAS) convention,S
is stored in column-order, so that rows can only be accessed directly by using a striding value> 1
(the distance between consecutive vector elements in memory). We added a simple trick (called
dimension flipping) to the implementation, which in essence switches our default ordering ofCn
vectorsv = (v11,v21,v31, . . . )

T to (v11,v12,v13, . . . )
T before major kernel MVM computations are

done. This simple modification led to a direct five-times speedup, which underlines the importance
of contiguous memory access in the bottleneck computationsof a method (which allows optimal
usage of cache hierarchies).
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