
Comfusy: A Tool for Complete
Functional Synthesis

Tool Presentation

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter?

firstname.lastname@epfl.ch

Swiss Federal Institute of Technology (EPFL), Switzerland

Abstract. Synthesis of program fragments from specifications can make
programs easier to write and easier to reason about. We present Comfusy,
a tool that extends the compiler for the general-purpose programming
language Scala with (non-reactive) functional synthesis over unbounded
domains. Comfusy accepts expressions with input and output variables
specifying relations on integers and sets. Comfusy symbolically computes
the precise domain for the given relation and generates the function from
inputs to outputs. The outputs are guaranteed to satisfy the relation
whenever the inputs belong to the relation domain. The core of our syn-
thesis algorithm is an extension of quantifier elimination that generates
programs to compute witnesses for eliminated variables. We present ex-
amples that demonstrate software synthesis using Comfusy and illustrate
how synthesis simplifies software development.

1 Introduction

Synthesis is among the most ambitious techniques for building correct computer
systems [4]. Recently, we have seen advances of synthesis for finite-state reactive
systems [6, 1]. In this paper, we describe a step in another direction: synthesis
for infinite-state non-reactive software systems [2]. Our goal is to gradually in-
troduce synthesis into software development by supporting new programming
language constructs that leverage synthesis in delimited portions of the pro-
gram. Specifically, we introduce a programming language construct, choose. The
choose construct accepts a parameterized predicate P . It synthesizes a function
that maps the parameters to output values satisfying P . We restrict the language
of predicates to a decidable logic, and provide a complete synthesis procedure:
whenever a value satisfying the predicate exists, the synthesized function will
compute one such value.

We continue by illustrating our system through examples. We then define
our synthesis problem more precisely and describe our implementation.1

? The author list has been sorted according to the alphabetical order; this should
not be used to determine the extent of authors’ contributions. Ruzica Piskac was
supported in part by the SNF Grant SCOPES IZ73Z0 127979. Philippe Suter was
supported by the SNF Grant 200021 120433.

1 For further details, see [2] and http://lara.epfl.ch/dokuwiki/comfusy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147967999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://lara.epfl.ch/~kuncak
http://people.epfl.ch/mikael.mayer
http://icwww.epfl.ch/~piskac
http://lara.epfl.ch/~psuter
http://lara.epfl.ch/dokuwiki/comfusy

2 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter

2 Examples

Linear arithmetic. As a first example, consider the problem of decomposing a
number of seconds into hours, minutes and the leftover seconds. We can specify
this problem as follows:

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) ⇒ (
h ∗ 3600 + m ∗ 60 + s == totsec && 0 ≤ m && m < 60 && 0 ≤ s && s < 60))

On this example, Comfusy generates the following code:2

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)
(loc1, loc2, loc3)
}

Arithmetic pattern matching. We also found synthesis for linear arithmetic to be
useful for extending pattern-matching in a way that is similar to, but goes beyond
Haskell (n+k)-patterns. The following code implements the fast exponentiation
algorithm:

def pow(base : Int, p : Int) = {
def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒ m
case 2∗j ⇒ fp(m, b∗b, j)
case 2∗j+1 ⇒ fp(m∗b, b∗b, j)
}
fp(1,base,p)
}

The third pattern, for instance, will match the integer i if there exists an integer
j such that i == 2 * j + 1. The pattern also works as a binder, and the value
computed for j is thus available on the right hand side. Comfusy checks that the
match expression is exhaustive and that no pattern is subsumed by the previous
ones, and emits a warning if it can find a value matched by no pattern or if a
pattern in unreachable.

Parametrized linear arithmetic. The previous two examples are in standard lin-
ear arithmetic. Comfusy can also handle constraints expressed in parametrized
linear arithmetic, that is, constraints that are not linear at compile-time but
become linear at run-time, when some of the values are known. For example,
the following code computes, if it exists, the integer ratio between two numbers
a and b:

val ratio = choose((r: Int) ⇒ a == r ∗ b || b == r ∗ a)

2 The div operator computes the floored integer division. For example −1 div 2 = −1.

http://lara.epfl.ch/~kuncak
http://people.epfl.ch/mikael.mayer
http://icwww.epfl.ch/~piskac
http://lara.epfl.ch/~psuter

Comfusy: A Tool for Complete Functional Synthesis 3

Although the term r ∗ b, for instance, is not linear at compile-time, the value of
b is known at run-time at the point where the value of r needs to be computed.
The synthesized code thus needs to handle all possible values of the parameters
a and b.

Set constraints. Finally, Comfusy can be used to synthesize code handling sets.
Consider the following example:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 ++ a2 == s && a1 ** a2 == Set.empty

&& a1.size − a2.size ≤ 1 && a2.size − a1.size ≤ 1)

Here, ++ and ** denote set union and intersection respectively. The generated
code constructs two sets a1 and a2 such that they form a partition of the existing
set s, with the additional constraint that the sizes of a and b should not differ
by more that 1. Note that requiring that their sizes be identical would result in
an unsatisfiable set of constraints whenever the size of s is odd.

3 Definition and Algorithm for Synthesis in Comfusy

Definitions. Let FV(q) denotes the set of free variables in a formula or term q. If
x = (x1, . . . , xn) then xs denotes the set of variables {x1, . . . , xn}. If q is a term
or formula, x = (x1, . . . , xn) a vector of variables and t = (t1, . . . , tn) a vector
of terms, then q[x := t] denotes the term resulting from substituting in q free
variables x1, . . . , xn with terms t1, . . . , tn, respectively.

Definition 1 (Synthesis Procedure). A synthesis procedure takes as input a
formula F and a vector of variables x and outputs a pair of

1. a precondition formula pre with FV(pre) ⊆ FV(F) \ xs

2. a tuple of terms Ψ with FV(Ψ) ⊆ FV(F) \ xs

such that the following two implications are valid:

∃x.F → pre
pre→ F [x := Ψ]

Algorithms. Our core specification language is quantifier-free Boolean Algebra
with Presburger Arithmetic (BAPA) [3].3 Our procedure for integer linear arith-
metic synthesis is related to the Omega-test algorithm [7]. One of the key dif-
ferences is that our procedure computes witness terms for eliminated variables.
Additionally, in the parametrized arithmetic case, some choices in the algorithm
need to be delayed until the run-time values are known; the synthesized code
must account for these choices by generating different cases for different signs of
coefficients and by, e.g., invoking a GCD algorithm in the generated code. The
algorithm for constraints on sets is based on a witness-generating version of [3].
3 We currently do not support quantifiers in the specification predicates. Quantifiers do

not increase the set of definable relations, because BAPA has quantifier elimination
[3]. We could support quantifiers by running the quantifier elimination algorithm
first, then invoking our synthesis procedure.

4 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter

4 Implementation

Comfusy scalac

scala class..
code generation

parsing,
name analysis,
type-checking

optimization,

Fig. 1. Interaction of Comfusy with scalac, the Scala compiler. Comfusy takes
as an input the abstract syntax tree of a Scala program and rewrites calls to
choose to syntax trees representing the synthesized function.

We have implemented Comfusy as a plugin for the Scala compiler (scalac),
adding a phase to the standard compilation process (see Figure 1). During this
phase, our plugin extracts calls to the choose function and arithmetic patterns
and replaces them by code that computes the appropriate values. The input
and output of Comfusy are thus abstract syntax trees in the internal format of
scalac. The compiler then proceeds as usual, so all further optimizations are ap-
plied to the synthesized code as well. Comfusy supports synthesis for predicates
expressed in integer linear arithmetic, parametrized linear arithmetic, and set
algebra with size constraints, as well as linear arithmetic patterns. Comfusy can
also check whether the synthesis predicates are always satisfiable (for all possible
run-time values of the program variables) or whether they describe unique so-
lutions, and emit compile-time warnings with counter-examples when necessary.
We use an off-the-shelf decision procedure for these checks [5]. In our experience,
the execution time of the synthesized code is similar to equivalent hand-written
code. We also found the compile-time overhead to be negligible.

References

1. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property
synthesis. In: Computer Aided Verification (CAV). LNCS, vol. 4590 (2007)

2. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
ACM Conf. Programming Language Design and Implementation (PLDI) (2010)

3. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with
Presburger Arithmetic. Journal of Automated Reasoning 36(3), 213–239 (2006)

4. Manna, Z., Waldinger, R.J.: Toward automatic program synthesis.
Communications of the ACM 14(3), 151–165 (1971)

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. LNCS, vol.
4963 (2008)

6. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symp.
Principles of Programming Languages (POPL) (1989)

7. Pugh, W.: A practical algorithm for exact array dependence analysis.
Communications of the ACM 35(8), 102–114 (1992)

http://lara.epfl.ch/~kuncak
http://people.epfl.ch/mikael.mayer
http://icwww.epfl.ch/~piskac
http://lara.epfl.ch/~psuter

	Comfusy: A Tool for Complete Functional Synthesis
	Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, Philippe Suter

