
Softw Syst Model (2008) 7:399–422
DOI 10.1007/s10270-008-0083-2

SPECIAL SECTION PAPER

Semantics of OCL specified with QVT

Slaviša Marković · Thomas Baar

Received: 19 March 2007 / Revised: 23 January 2008 / Accepted: 29 January 2008 / Published online: 11 March 2008
© Springer-Verlag 2008

Abstract The Object Constraint Language (OCL) has been
for many years formalized both in its syntax and seman-
tics in the language standard. While the official definition
of OCL’s syntax is already widely accepted and strictly sup-
ported by most OCL tools, there is no such agreement on
OCL’s semantics, yet. In this paper, we propose an approach
based on metamodeling and model transformations for for-
malizing the semantics of OCL. Similarly to OCL’s official
semantics, our semantics formalizes the semantic domain of
OCL, i.e. the possible values to which OCL expressions can
evaluate, by a metamodel. Contrary to OCL’s official seman-
tics, the evaluation of OCL expressions is formalized in our
approach by model transformations written in QVT. Thanks
to the chosen format, our semantics definition for OCL can be
automatically transformed into a tool, which evaluates OCL
expressions in a given context. Our work on the formaliza-
tion of OCL’s semantics resulted also in the identification
and better understanding of important semantic concepts, on
which OCL relies. These insights are of great help when OCL
has to be tailored as a constraint language of a given DSL.
We show on an example, how the semantics of OCL has to
be redefined in order to become a constraint language in a
database domain.

Communicated by Prof. Oscar Nierstrasz.

This work was supported by Swiss National Scientific Research Fund
under reference number 200020-109492/1.

S. Marković (B) · T. Baar
École Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences,
1015 Lausanne, Switzerland
e-mail: slavisa.markovic@epfl.ch

T. Baar
e-mail: thomas.baar@epfl.ch

Keywords QVT · OCL Semantics ·
Graph-transformations · DSL

1 Introduction

The OCL has proved to be a very versatile constraint lan-
guage that can be used for different purposes in different
domains, e.g., for restricting metamodel instances [1], for
defining UML profiles [2], for specifying business rules [3],
for querying models [4,5] or databases [6].

Due to the lack of parsers, OCL was used in its early days
often in an informal and sketchy style, what had serious and
negative consequences as Bauerdick et al. have shown in
[7]. Nowadays, a user can choose among many OCL parsers
(e.g. OSLO [8], Eclipse Model Development Tool (MDT) for
OCL [9], Dresden OCL Toolkit [10], OCTOPUS [11], USE
[12], OCLE [13]), which strictly implement the abstract syn-
tax of OCL defined in the OCL standard [14].

The situation is less satisfactory when it comes to the sup-
port of OCL’s semantics by current OCL tools. While most of
the tools now offer some kind of evaluation of OCL expres-
sions in a given system state, none of the tools is fully com-
pliant with the semantics defined in the OCL standard. We
believe that the lack of semantic support in OCL tools is due
to the lack of a clear and implementation-friendly specifica-
tion of OCL’s semantics. Interestingly, the normative seman-
tics of OCL1 given in the language standard [14], Section 10:
Semantics Described using UML is also formalized in form
of a metamodel, but, so far, this metamodel seems to be poorly
adopted by tool builders.

1 There is also an informative semantics given in Annex A of [14],
which is formulated in a set-theoretical style and goes back to the dis-
sertation of Richters [15].

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147967464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

400 S. Marković, T. Baar

In this paper we present an new approach for formulating
a metamodel-based semantics of OCL. Defining a semantics
for OCL basically means (1) to define the so-called semantic
domain, in which OCL expressions are evaluated, and (2)
to specify the evaluation process for OCL expressions in a
given context.

The semantic domain for OCL is given by all possible
system states. Since a system state can be visualized by an
object diagram, the semantic domain is (almost) defined by
the official UML metamodel for object diagrams. There are
two major problems to be solved when defining the semantic
domain based on the definition of object diagrams. Firstly,
UML’s metamodel for object diagrams does not define the
semantics of OCL’s predefined types, such as Integer, Real,
String, Set(T), etc. However, this problem has been already
recognized in the OCL standard and an additional pack-
age (named Values) for the OCL metamodel has been pro-
posed. We will, to a great extent, reuse package Values in
our approach. Secondly, the metamodel for object diagrams
implicitly assumes the existence of solely one object diagram
at any moment of time. This becomes a major obstacle as soon
as more than one system state is relevant for the definition of
OCL’s semantics (and this is really the case when defining
the semantics of OCL’s postconditions). We propose for this
problem a solution which is fundamentally different from
the one chosen in the normative semantics and which leads,
as we think, to a much simpler metamodel for the semantic
domain of OCL.

The evaluation of OCL expressions is specified in our
approach by model transformations, which are in turn descri-
bed as QVT rules [16]. In order to improve readability, we use
in this paper a visualization of QVT rules, which is inspired
from graph-grammars. All QVT rules presented in this paper
are also available in its textual form. The complete set of
rules can be downloaded, together with all relevant meta-
models, from [17]. Note that the QVT rules are executable on
QVT-compliant engines, what is demonstrated by our OCL
tool RoclET [17], which uses internally the QVT rules for
the evaluation of OCL expressions. The QVT engine of our
choice was Together Architect 2006 [18] which offers mature
support for QVT editing and debugging. Please note, how-
ever, that our tool RoclET was intended to serve only as a
reference implementation for the OCL semantics described
in this paper. The goal of the RoclET development was not
to build an optimized OCL tool for industrial applications.
RoclET can nevertheless be used for teaching purposes. For
example, the evaluation of about 80 invariants on ten objects
takes less than 4 s.2

To summarize, our semantics for OCL has the following
characteristics:

2 The exact results depend, of course, on the structure and length of
evaluated invariants, the performance of the used computer, etc.

– The semantics is directly executable. Contrary to a paper-
and-pencil semantics, OCL developers can immediately
see by using a tool (e.g. RoclET), how the semantics
applies in a concrete scenario.
To our knowledge, only the semantics of OCL given by
Brucker and Wolff ([19,20]) has the same characteristics
and can be executed in the OCL tool HOL-OCL.

– The semantics is defined on top of the official metamod-
els for OCL’s abstract syntax and UML class- and object-
diagrams. Consequently, the semantic definition becomes
an integral part of the already existing language defini-
tions for UML and OCL.
However, we had to redefine some of the existing meta-
models due to some obvious inconsistencies, which would
have prevented us from completely implementing our
approach.

– The target audience for our semantics are developers, who
use OCL in practice. No familiarity with mathematical
and logical formalisms is presumed. In order to under-
stand the semantics, only some knowledge of metamod-
eling and QVT is required.

– The semantics is presented in a modular way. This allows
to easily define, starting from our semantics of OCL, the
semantics of another constraint language, which is tai-
lored to a given Domain-Specific Language (DSL). Sim-
ilarly, one could also create a new dialect for OCL in the
context of UML; for example, one could decide to aban-
don OCL’s concept of being a three-valued logic and to
allow only two Boolean values true and false.

The last point highlights the flexibility of our approach.
This flexibility is an important step forward to the vision
originally formulated by the PUML group (see, e.g., [21]) to
treat OCL not just as one monolithic language but rather as
a family of languages, which can be applied in many differ-
ent domains and can adapt easily to different requirements
from these domains while still sharing a substantial amount
of common semantic concepts, libraries, etc.

This paper is a revised and enhanced version of [22].
While [22] concentrates of the evaluation semantics for
invariants, we have added to this paper also rules for the eval-
uation of pre-/postconditions. Furthermore, many rules were
redesigned with the aim to make OCL’s underlying semantic
concepts more explicit and to make evaluation rules more
reusable in other language definitions. We also added a
section on tailoring the semantics of OCL towards the needs
of a DSL.

The rest of the paper is organized as follows. In Sect. 2,
we sketch our approach and show, by way of illustration, a
concrete application scenario for our semantics. The basic
evaluation steps are formalized by QVT rules in Sect. 3. The
formalized QVT rules have to be consistent to each other,

123

Semantics of OCL specified with QVT 401

Fig. 1 Metamodel for class
diagrams—syntax and
semantics

ModelElement

name : Name

Link LinkEnd

Association

AssociationEnd

multiplicity : Multiplicity
ordering : OrderingKind

1 2..*

{ordered}
+connection 0..*

+linkEnd

1

0..*

+associationEnd

2

1

{ordered}
+connection

0..*

1 +association

1+instance

AttributeLink

Instance

Attribute

Classifier

DataValue

+value

0..*

0..*

+slot

0..*

1 +attribute

0..*

1+classifier

Feature
0..*

0..1
+owner

{ordered}
+feature

1

+type
0..*

+typedFeature
Class

1

0..*

+association

+participant

+association

1

S
yn

ta
x

S
em

an
ti

cs
Object

Operation

isQuery:Boolean

Parameter

+type

1

+parameter
{ordered}

Stimulus

argument
{ordered}

sender

receiver

1

0..1

*

at least to a certain degree. Achieving consistency is more
likely, if the underlying semantic concepts are made more
explicit. Section 4 proposes a list of semantic concepts and
discusses their impact on evaluation rules. Section 5 shows
the flexibility of our approach and presents a stepwise adap-
tation of OCL’s semantics, so that the adapted version can be
used as a constraint language for a given DSL. In Sect. 6, we
compare our approach with existing approaches for formal-
izing the semantics of constraint languages. Section 7 draws
conclusions.

2 A metamodel-based approach for OCL evaluation

In this section we briefly review the technique and concepts
our approach relies on and illustrate with a simple example
the evaluation of OCL constraints. We concentrate on the
evaluation of an invariant constraint in a given state. Diffi-
culties arising from the evaluation of pre-/postconditions are
discussed in Sect. 4.

2.1 Official metamodels for UML/OCL

We base our semantics for OCL on the official metamodels
for UML and OCL. We support the last finalized version of
OCL 2.0 [14]. However, since our approach had the require-
ment to be integrated in the OCL tool RoclET, which cur-
rently does only support UML1.5 diagrams, we refer also in
this paper to UML1.5 as the metamodel of the UML part, on

which OCL constraints rely. Figures 1 and 2 show the parts
of the UML and OCL metamodels that are relevant for this
paper. Please note that Fig. 1 contains also in its upper part a
metamodel of the semantic domain of class diagrams.

2.2 Changes in the OCL metamodel

In order to realize our approach in a clear and readable
way, we had to add a few metaassociations, -classes, and
-attributes to package Values, which is part of the official
OCL metamodel (see Fig. 3). The metaclass OclExpression
has a new association to Instance, what represents the evalu-
ation of the expression in a given object diagram. We revised
slightly the concepts of bindings (association between Ocl-
Expression and NameValueBinding) and added to class Loop-
Exp two associations current and intermediateResult, and
one attribute freshBinding. Furthermore, the classes String-
Value, IntegerValue, etc. have now attributes stringValue,
integerValue, etc. what makes it possible to clearly distin-
guish a data-object from its value. We have created two new
metaclasses StateTransition and ObjectMap that are used in
evaluations of pre- and postconditions. Metaclass Object-
Map has two metaassociations with metaclass Instance and
is used to relate two Instances in a pre- and a post-state. Meta-
class StateTransition has two metaassociations with Stimulus
representing an Operation that corresponds to a given State-
Transition or a sent message. Stimulus itself is used to keep
the track about an operation invocation: receiver and sender
of a message, and operation arguments.

123

402 S. Marković, T. Baar

Fig. 2 Metamodel for
OCL—syntax

LoopExp

IteratorExp

Classifier
(from Core)+type

1

VariableExp

+referredVariable
1

0..*

+type

1

LiteralExp

0..1

+appliedElement

0..1

+source

0..1

1+body

+loopExp0..1

1..*

IntegerLiteralExp

integerSymbol:Integer

OclExpression

TupleLiteralExp

TupleLiteralPart Attribute

+value
0..1

+part

+attribute

0..1

0..1

0..1

0..*
0..1

IterateExp 0..1 0..1 +result

+baseExp

TypeExp

0..1

0..*

0..1 +initExpression

0..1

+referredType

+iterator

+loopBodyOwner

Variable

varName : String

+referringExp

LetExp

0..1

0..1

1+in

+variable 1

Attribute

OclExpression

AttributeCallExp

CallExp

AssociationEndCallExp AssociationEnd

0..1

+appliedElement

0..*

1

+referredAttribute
1

0..*

0..1

+source

+referredAssociationEnd

OperationCallExp Operation
0..* 1

+referredOperation

+argument
{ordered} 0..*

+parentCall0..1

+referringExp

+referringExp

+referringExp

IfExp

0..1 0..1 0..1

1

1
1 +condition

+thenExpression

+elseExpression

Constraint
(from Core)

ModelElement
(from Core)

Expression
(from Data_Types)

OclExpression
Classifier
(from Core)

ExpressionInOcl

0..*

0..*

0..1

+contextualClassifier
+bodyExpression1

1

+type

+constrainedElement

+constraint

0..1 1

+body

Namespace
(from Core)

Operation
(from Core)

0..1

+body

1

2.3 Evaluation

We motivate our approach to define OCL’s semantics with a
small example. In Fig. 4, a simple class diagram and one of
its possible snapshots is shown. The model consists of one
classStockwith two attributes:capacity and numOfI-
tems, both of type Integer, representing capacity of Stock
and the current number of items it has, respectively. The
additional constraint attached to the class Stock requires
that the current number of items in a stock must always be
smaller or equal to the capacity. The snapshot shown in the
right part of Fig. 4 satisfies the attached invariant because for
each instance of Stock (class Stock has only one instance
in the snapshot) the value of numOfItems is less than the
value of attribute capacity. In other words, the constraint
attached to the class Stock is evaluated on object s to true.

In order to show how the evaluation of an OCL constraint
is actually performed on a given snapshot, we present in
Fig. 5 the simplified state of the Abstract Syntax Tree as it
is manipulated by an OCL evaluator. Steps (a)–(b) performs
the evaluation of the leaf nodes. Depending on the results of
these evaluations, steps (b)–(c) performs evaluation of nodes
at the middle level. Finally, the last steps (c)–(d) performs
evaluation of the top-level of the AST. Please note that in
this example we were not concerned about concrete bind-
ing of the variable self. The problem of variable binding is
discussed in Sect. 2.4.

The basic idea of our approach is that an OCL constraint
can be analogously evaluated by annotating directly the OCL
metamodel instance instead of the AST.

Figure 6 shows the instance of the OCL metamodel rep-
resenting the invariant from Fig. 4. Here, we stipulate that all

123

Semantics of OCL specified with QVT 403

Fig. 3 Changed metamodel for
OCL—semantics

Instance

OclExpressionNameValueBinding

varName : String

+binding

0..*
0..1 +val1

ObjectDataValue

ElementValue

indexNr:Integer

PrimitiveValue OclVoidValue CollectionValue

BagTypeValue SetTypeValue

SequenceTypeValue

BooleanValue

booleanValue:Boolean

IntegerValue

integerValue:Integer

+element

0..1

0..*

0..1

LoopExp

freshBinding : Boolean

+current

+val

+val

0..*

0..1

+intermediateResult

StringValue

stringValue:String

RealValue

realValue:Real

0..*

0..*

0..1

0..10..*

0..*

TupleValue

EnumerationValue

EnumerationLiteral

+enumerationvalue

+enumerationliteral1

0..*

StateTransition

ObjectMap

ModelElement

Stimulus

pre

post
operation

message

map

1

1

1

0..*

0..*

so sm

Operation

operation 1

op

oo

s:Stock

capacity=7
numOfItems=3

Stock

capacity: Integer
numOfItems: Integer

context Stock inv:
self.capacity>self.numOfItems

Fig. 4 Example—class diagram and snapshot

expressions have not been evaluated yet because for each
expression the link val to metaclass Instance is missing.
Please note that here we assume that in all expressions vari-
able self is bound to object o. For the sake of readability
this information is omitted in Figs. 6 and 7.

The final state of the metamodel instance, i.e. after the last
evaluation step has been finished, is shown in Fig. 7. What has
been added compared to the initial state (Fig. 6) is highlighted
by thick lines. The evaluation of the top-expression (Opera-
tionCallExp) is a BooleanValue with booleanValue attribute
set to true, the two AttributeCallExps are evaluated to two
IntegerValues with values 7 and 3, and each VariableExp is
evaluated to Object with name s.

2.4 Binding

The evaluation of one OCL expression depends not only on
the current system state on which the evaluation is performed
but also on the binding of free variables to current values. The
binding of variables is realized in the OCL metamodel by
the class NameValueBinding, which maps one free variable
name to one value. Every OCL expression can have arbi-
trarily many bindings, the only restriction is the uniqueness
of variable names within the set of linked NameValueBinding
instances.

In the invariant of the Stock example we have used one
free variable, called self. Although self is a predefined var-
iable in OCL, it can be treated the same way as all other
variables, which are introduced in LoopExp. For example,
the invariant

context Stock inv :
self . capacity > self .numOfItems

Fig. 5 Evaluation of OCL
expressions seen as an AST:
a initial AST, b leaf nodes
evaluated, c middle nodes
evaluated, d complete AST
evaluated

>

capacity numOfItems

self self

(a)

>

capacity numOfItems

self self

ss

(b)

>

capacity numOfItems

self self

s s

7 3

(c)

>

capacity numOfItems

self self

true

7 3

s s

(d)

123

404 S. Marković, T. Baar

Fig. 6 OCL Constraint before
evaluation

ace:AttributeCallExp

a:Attribute

name='capacity'

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:Variable

varName='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

a2:Attribute

name='noOfItems'

referredAttribute

ve2:VariableExp

source

referredVariable

argument
parentCall

referredOperation

o:Object

name='s'al1:AttributeLink

value

slot
al2:AttributeLink

value

slot

C
u

rr
en

t
S

ta
te

iv2:IntegerValue

integerValue=3

iv:IntegerValue

integerValue=7

O
C

L
C

o
n

st
ra

in
t

attribute attribute

D
at

a

Fig. 7 OCL Constraint after
evaluation in a given snapshot

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute

ve:VariableExp

source

vd:Variable

varName='self'referredVariable

op:Operation

name='>'

ace2:AttributeCallExp

referredAttribute

ve2:VariableExp

source

referredVariable

referredOperation

o:Object

name='s'

valval

val

a:Attribute

name='capacity'

a2:Attribute

name='noOfItems'

al1:AttributeLink

attribute

value slot
al2:AttributeLink

attribute

valueslot

C
u

rr
en

t
S

ta
te

O
C

L
C

o
n

st
ra

in
t

bv:BooleanValue

booleanValue=true

iv2:IntegerValue

integerValue=3

iv:IntegerValue

integerValue=7

val val

D
at

a

argument
parentCall

can be rewritten as

Stock . allInstances−>forAll (self |
self . capacity>self .numOfItems)

The binding of variables is done in a top-down approach.
In other words, variable bindings are passed from an expres-
sion to all its sub-expressions. Some expressions do not only
pass the current bindings, but also change them. An exam-
ple for adding new value-name bindings will be presented in
more details in Sect. 3 where the evaluation rules for iterate
and let expressions are explained.

Figure 8 shows the process of binding passing on a con-
crete example. In the upper part, the initial situation is given:
The top-expression already has one binding nvb for variable
self. In the lower part of the figure, all subexpressions of the
top-expression are bound to the same NameValueBinding as
the top-expression.

3 Core evaluation rules formalized as model
transformations

The previous section has shown the main idea of our appro-
ach: we annotate the evaluation result of each (sub)expression
directly to the corresponding instance of class OclExpression
in the OCL metamodel. What has not been specified yet are
the evaluation steps themselves, for example, that an Attrib-
uteCallExp is always evaluated to the attribute value on that
object to which the source expression of AttributeCallExp
evaluates. As shown below, these evaluation steps will be
formally given in form of model transformation rules.

Although the graph-transformation rules are generally
readable and understandable nicely, their number can become
quite high if one wants to accommodate all peculiarities of
OCL (e.g. undefined values, flattening of collections, @pre
in postconditions, etc.). In order to structure the semantics
definition, we will present in this section the core version

123

Semantics of OCL specified with QVT 405

Fig. 8 Binding passing

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

argument
parentCall

referredOperation

ace:AttributeCallExp

oce:OperationCallExp

source

referredAttribute source

op:Operation

name='>'

ace2:AttributeCallExp

referredAttributesource

argument
parentCall

referredOperation

o:Object

name='s'

binding

binding

nvb:NameValueBinding

varName='self'

nvb:NameValueBinding

varName='self'

binding

binding

. . .

. . .

val

val
o:Object

name='s'

of evaluation rules for certain types of expressions and will
explain in the next Sect. 4 how these core rules have to be
extended/adapted in order to reflect all semantic concepts of
OCL.

3.1 Model transformation rules

For the specification of evaluation rules we use the formalism
of model transformations, more precisely a graphical syntax
of QVT (Query/View/Transformation) rules [16].

For our application scenario of QVT rules, source and tar-
get model are always instances of the same metamodel; the
metamodel for UML/OCL including the small changes we
have proposed in Sect. 2. Each QVT rule consists of two
patterns (LHS, RHS), which are (incomplete) instantiations
of the UML/OCL metamodel. When a QVT rule is applied
on a given source model, a LHS matching sub model of the
source model is searched. Then, the target model is obtained
by rewriting the matching sub model by a new sub model that
is derived from RHS under the same matching. If more than
one QVT rule match on a given source model, one of them
is non-deterministically applied. The model transformation
terminates as soon as none of the QVT rules is applicable on
the current model.

While in the conference version of this paper [22] we
have stuck to the official syntax of QVT rules, we take now
the freedom to introduce some additional shorthand nota-
tions, which will help to improve conciseness and readabil-
ity of evaluation rules. One source for complexity of the
rules given in [22] is the rules’ LHS containing two sub-
patterns; one for the structure to look for in the OCL syn-
tax tree (e.g. AttributeCallExp) and one for the structure in
the state, in which the constraint is evaluated. The RHS has
again two patterns; one for the updated structure of the OCL
syntax tree and one for the structure in the state. Since the

evaluation of OCL expressions does not have side-effects
on the state in which the expression is evaluated, the state-
subpattern of LHS must be the same as the subpattern
of RHS.

In order to avoid the redundancy of having the same sub-
patterns in LHS and RHS, our evaluation rules contain besi-
des LHS and RHS a third part called Context, that specify
the structures in the input, which must be available when
applying the rule but which are not changed (see Fig. 9 for a
comparison of the old and the new form of evaluation rules).
The Context part is optional. For the core rules presented in
this section, the Context will encode the assumed structures
in the current state, in which the OCL expression is being
evaluated. When it comes to the evaluation of pre-/postcon-
ditions, we will see in the next section that the Context can
also contain even more information. Besides the structures
that describe the system state, Context can also contain an
optional part with data values that are necessary for the eval-
uation of rules.

3.2 Binding passing

Before the source expression can be evaluated, the current
binding of variables has to be passed from the parent expres-
sion to all its subexpressions. Figure 10 shows the trans-
formation rule for OperationCallExp. When applying this
rule, the binding of the parent object oce (represented by
a link from oce to the multiobject nvb in LHS) is passed
to subexpressions oe and aoe (links from oe and aoe to
nvb are established in RHS). Analogous rules exist for all
other kinds of OCL expressions which have subexpressions.
For the (subclasses of) LoopExp (see below) one needs also
additional rules for handling the binding because the subex-
pressions are evaluated under a different binding than the
parent expression.

123

406 S. Marković, T. Baar

Fig. 9 Format of evaluation
rules used in [22] and in this
paper

EvaluationRule

EvaluationRule

Context
CurrentState

i1:Instanceexp1:OclExpression exp1:OclExpression
val

{and} {and}

i2:Instancei2:Instance

exp2:OclExpression exp2:OclExpression

subexp subexp
i2:Instancei2:Instance

i1:Instance i1:Instance

valval

noitalernoitaler

i2:Instancei1:Instance
relation

i1:Instanceexp1:OclExpression
val

exp2:OclExpression
subexp

i2:Instance
val

exp1:OclExpression

exp2:OclExpression

subexp

i2:Instance
val

Fig. 10 Binding of an
expression

OperationCallExp-binding

oce:OperationCallExp

oe:OclExpressiono:Operation
sourcereferredOperation

binding

nvb:NameValueBinding

{when}
oe.binding->isEmpty() and
oce.argument->forAll(a | a.binding->isEmpty())

aoe:OclExpression

argument

parentCall oce:OperationCallExp

oe:OclExpressiono:Operation
sourcereferredOperation

binding

nvb:NameValueBinding

aoe:OclExpression

argument
parentCall

bindingbinding

3.3 A catalog of core rules

Each OCL expression is an instance of the metaclass Ocl-
Expression in the OCL metamodel; more precisely—since
OclExpression is an abstract metaclass—an instance of one
of the non-abstract subclasses of OclExpression. For each
of these non-abstract metaclasses, the semantics definition
must have at least one evaluation rule.

The semantics of a constraint language such as OCL can
be split along this syntactic dimension (in Sect. 4, we will
see that it is useful to have also another dimension for the
semantics). However, it is not always appropriate to organize

a catalog of evaluation rules based on the metaclasses from
the abstract syntax metamodel. Sometimes, evaluation rules
for different metaclasses are very similar so that these eval-
uation rules could be put into the same category (for exam-
ple, Navigation Expressions). But there is also the opposite
case, where instances of the same metaclass are evaluated
using very different mechanisms, what is a sign for a wrong
granularity of metaclasses in the metamodel (for example,
OperationCallExp).

We propose to organize the evaluation rules for OCL based
on Navigation Expressions, Operation Expressions, Loop
Expressions, Variable Expressions, Literal Expressions,

123

Semantics of OCL specified with QVT 407

Fig. 11 Attribute call
expression evaluation

Context

AttributeCallExp-evaluation

DataCurrentState

ace:AttributeCallExp

a:Attribute
source referredAttribute

ace:AttributeCallExp

oc:OclExpression a:Attribute
source referredAttribute

d:DataValue

valo:Object
oc:OclExpression

{when}
ace.val->isEmpty()

val

val

o:Object al:AttributeLink d:DataValue

a:Attribute

valueslotinstance
attributeLink
attribute

o:Object

Fig. 12 Association end call
expression evaluation that
results in set of objects

AssociationEndCallExp-setvalued-evaluation

aece:AssociationEndCallExp

source referredAssociationEnd
aece:AssociationEndCallExp

oe:OclExpression
source referredAssociationEnd

o:Object

val
o:Object

o2:Objectm:ElementValue

element

val

1 1

{when}

sv:SetTypeValue

aece.val->isEmpty() and ae.isSetValued()

val val
oe:OclExpression

Context CurrentState

o:Object o2:Object

linkEnd

instance

associationEndl:Link
link

connectionconnection
link

instance

linkEnd1
1

1

1

1
1

ae:AssociationEnd

ordering=unorderedlinkEnd
le2:LinkEndle1:LinkEnd

ae:AssociationEnd

ordering=unordered
ae:AssociationEnd

ordering=unordered

If-Expressions, Message Expressions3, Let-Expressions,
State Expressions,4 Tuple Expressions. For the class of Oper-
ation Expressions, it is useful to distinguish expressions that
refer (1) to predefined operations from the OCL library, (2)
to queries defined by the user in the underlying class model.

Here, we discuss only the most representative rules.
The main goal is to demonstrate that the evaluation of all
kinds of OCL expressions can be formulated using graph-
transformations in an intuitive but precise way.

3.3.1 Navigation expressions

OCL expressions of this category are, for example, instances
of AttributeCallExp and AssociationEndCallExp. Such
expressions are evaluated by ‘navigating’ from the object,
to which the source expression is evaluated, to that element
in the object diagram, which is referenced by the attribute or
association end.

3 Message Expressions can occur only in postconditions and are ignored
here.
4 We consider as the semantic domain of our evaluation only object dia-
grams in which the objects do not have a reference to an explicit state
given in a state diagram. Consequently, State Expressions are ignored
here.

AttributeCallExp The semantics of AttributeCallExp is
specified by the rule AttributeCallExp-evaluation given in
Fig. 11. The evaluation of ace is data value d, which is also
the value of the attribute a for object o. Note, that we stipu-
late in the LHS, that oc, the source expression of ace, has
been already evaluated to object o.

AssociationEndCallExp We discuss here only the case of
navigating over an unordered association end with multiplic-
ity greater than 1 (the case of multiplicities equal to 1 is very
similar to AttributeCallExp). The rule shown in Fig. 12 spec-
ifies that the value of aece is a newly created object of type
SetTypeValue whose elements refer to all objects o2 that can
be reached from object o via a link for ae. Again, object o
is the evaluation of source expression oe. The rule shown
in Fig. 12 contains at few locations the multiplicities 1–1 at
the link between two multiobjects, for example at the link
between le2 and l. This is an enrichment of the official
QVT semantics on links between two multiobjects. Standard
QVT semantics assumes that a link between two multiobject
means that each object from the first multiobject is linked
to every object from the second multiobject, and vice versa.
This semantics is not appropriate for the situation shown in
Fig. 12 where each element of multiobject l must be con-
nected only to one element from multiobject le2, and vice

123

408 S. Marković, T. Baar

Fig. 13 Equal operation
evaluation for objects

EqualExp-Objects-evaluation

bv:BooleanValue

booleanValue=b

{when}
if o1=o2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

argument

oe1:OclExpression

val

o2:Objecto1:Object

oce:OperationCallExp

op:Operation

name= '='

referredOperation

source

val

oe2:OclExpression

argument

oe1:OclExpression

val

o2:Objecto1:Object
{when}

oce.val->isEmpty()

val

Fig. 14 Equal operation
evaluation for integers

EqualExp-Integers-evaluation

val

{when}

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe2:OclExpression

argument

iv2:IntegerValue

integerValue=i2

oe1:OclExpression

val

{when}
oce.val->isEmpty()

bv:BooleanValue

booleanValue=b

if i1=i2 then b=true else b=false endif

oce:OperationCallExp

op:Operation

name= '='

iv1:IntegerValue

integerValue=i1

source

referredOperationval

oe2:OclExpression

argument

iv2:IntegerValue

integerValue=i2

oe1:OclExpression

val

versa. By using 1–1 multiplicities, we indicate a non-standard
semantics of links between two multiobjects.

3.3.2 Operation expressions

Expressions Referring to Predefined Operations Expressions
from this category are instances of the metaclass Operation-
CallExp but the called operation is a predefined one, such as
+, =. These operations are declared and informally explained
in the chapter on the OCL library in [14]. As an example,
we explain in the following the semantics of operation “=”
(equals). We show only two rules here, one specifies the eval-
uation of equations between two objects, and the other the
evaluation of equations between two integers.

In Fig. 13, the evaluation is shown for the case that both
subexpressions oe1, oe2 are evaluated to two objects o1
and o2, respectively. In this case, the result of the evaluation
is bv of type BooleanValue with attribute booleanValue b,
which is true if the evaluations of oe1 and oe2 are the same
object, and false otherwise.

If oe1 and oe2 evaluate to IntegerValue, the second QVT
rule shown in Fig. 14 is applicable and the result of evaluation
will be an instance of BooleanValue with attribute boolean-
Value set to true if the attribute integerValue of iv1 is equal
to integerValue of i2, and to false otherwise.
Expressions Referring to a User-defined Query If a user-
defined query is used in an OCL constraint, then the seman-
tics of the used query must be specified by a body-clause
(or by a def-clause), which is attached to the query. The
query might also have attached a pre-condition, which must

evaluate to true in the current situation. Otherwise, the query-
expression is evaluated to undefined. If the pre-condition
evaluates to true, then the value of the OperationCallExp
is the same as the evaluation of the clause body under the
current argument binding.

Figure 15 shows evaluation rules for user-defined que-
ries. The first rule creates a set of NameValueBindings for
the expressions in precondition and body. Every NameValue-
Binding from this set corresponds to exactly one argument of
the OperationCallExp opce. The second rule performs the
evaluation of the query in such a way, that if the precondition
does not evaluate to true then the result of the evaluation
will be undefined, otherwise the result will be the result of
evaluating body. One problem, however, is, that the body-
expression might contain again an OperationCallExp refer-
ring to op, i.e., the definition of op is recursive. Recursive
query definitions lead in some but not all cases to infinite
loops during the evaluation. Brucker et al. propose in [23]
that recursive query definitions should be checked by the
user for unfounded recursions. In principle, such a check is
possible but it requires substantial analysis effort.
Expressions for Typecheck and Typecast To this group
belong all OperationCallExps referring to the predefined
operation oclAsType, oclIsTypeOf, and oclIsKindOf. The
operation oclAsType makes a cast of the source expression
to the type specified in the argument. If this cast is success-
ful, the whole expression is evaluated to the same object as
the source expression. If the cast is not successful (i.e., the
evaluation of the source expression is an object whose type
does not conform to the type given in the argument), then the

123

Semantics of OCL specified with QVT 409

Fig. 15 Evaluation of an
expression referring to a query

QueryExp-binding

{when}
opce.val->isEmpty()

oce:OclExpression ocem:OclExpression

val
i:Instance

val

im:Instance

opce:OperationCallExp

op:Operation

isQuery=true

referredOperation

source argument

p:Parameter

parameter

oce:OclExpression ocem:OclExpression

val
i:Instance

val

im:Instance

opce:OperationCallExp

op:Operation

isQuery=true

referredOperation

source argument

p:Parameter

parameter

{when}
nvSet.varName=Set{'self'}->union(op.parameter.name) and
nvSet->forAll(nv | (nv.varName='self') implies nv.val=i and
 (nv.varName<>'self') implies nv.val=
 ocem.at(op.parameter->indexOf(op.parameter->select(p | p.name=nv.varName)->any(true)).val) and
c.stereotype.name='pre' and oceb2.binding->isEmpty()

e2:ExpressionInOcl

body

oceb2:OclExpression

bodyExpression
binding

body oceb2:OclExpression

bodyExpression

val

opce:OperationCallExp

op:Operation

isQuery=true

referredOperation

e2:ExpressionInOcl

body
oceb2:OclExpression

bodyExpression

im:Instance
val

opce:OperationCallExp

op:Operation

isQuery=true

referredOperation

e2:ExpressionInOcl

body oceb2:OclExpression

bodyExpression

val

im:Instance

val

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

c:Constraint

e:ExpressionInOcl

body oceb1:OclExpression

bodyExpression

constraint

i:Instance

bm:BooleanValue
val

{when}
if bm.booleanValue<>true then i.oclIsTypeOf(OclVoidValue) else i=im endif and
c.stereotype.name='pre'

bm:BooleanValue
val

nvSet:NameValueBinding

{when}
opce.val->isEmpty()

QueryExp-evaluation

bindinge2:ExpressionInOcl

whole expression is evaluated to undefined. Because we treat
the evaluation to undefined in the next Sect. 4 in a general
manner, we skip the rule for oclAsType here. The rules for
oclIsTypeOf and oclIsKindOf are very similar; Fig. 16 shows
the rule for oclIsKindOf.
allInstances()-Expressions The predefined operation allIn-
stances() yields all existing objects of the specified type and
all its subtypes. The rule is shown in Fig. 17. Note that the
multiobject os represents according to the QVT semantics
the maximal set of objects o, for which the condition given
in the when-clause of the Context holds.

3.3.3 Loop expressions

Iterator expressions are those in OCL which have as the
main operator one from select, reject, forAll, iterate, exists,

collect, any, one, collectNested, sortedBy, or isUnique. Since
all these expressions can be expressed by macros based on
iterate, it is sufficient to refer for their semantics just to the
semantics of iterate.

In Fig. 18 are shown evaluation rules that describe the
semantics of iterate.

The rule Iterate-Initialisation makes a copy of the evalua-
tion of the source expression, and assigns this copy under the
role current to ie. Furthermore, one NameValueBinding is
created and assigned to the body expression. The name of the
NameValueBinding is the same as the name of variable result
and its value is the same as the value of the initExpression
for result. For some technical reasons, attribute freshBinding
of ie is set to false.

The rule Iterate-IteratorBinding updates the binding on
body expression oe for the iterator variable v with a new

123

410 S. Marković, T. Baar

Fig. 16 Evaluation rule for
oclIsKindOf

OclIsKindOf-evaluation

val

{when}

oce:OperationCallExp

op:Operation

name= 'oclIsKindOf'

source

referredOperationval

te:TypeExp

argument

oe:OclExpression

referredType

{when}
oce.val->isEmpty()

bv:BooleanValue

if c1.conformsTo(c) then bv = bv1 else bv=bv2 endif

oce:OperationCallExp

source

referredOperation

te:TypeExp

argument

oe:OclExpression

o:Object c:Class

Context

CurrentState

o:Object c1:Class

Data

op:Operation

name= 'oclIsKindOf'

val

o:Object c:Class

referredType

classifier bv1:BooleanValue

booleanValue=true

bv2:BooleanValue

booleanValue=false

Fig. 17 Evaluation rule for
allInstances

allInstances-evaluation

oce:OperationCallExp

op:Operation

name= 'allInstances'

source

referredOperation
te:TypeExp

referredType

{when}
oce.val->isEmpty()

c:Classifier

Context
CurrentState

{when}
os->forAll(o| o.classifier.conformsTo(c))

oce:OperationCallExp

op:Operation

name= 'allInstances'

source

referredOperation

te:TypeExp

referredType

c:Classifier

os:Object

stv:SetTypeValue

ev:ElementValue

os:Object

1
1

val

element

value vp. The element with the same value vp is chosen
from collection current and is removed afterwards from this
collection. The attribute freshBinding is set to true and the
binding for oe has changed.

The rule Iterate-IntermediateEvaluation updates the bind-
ing for the variable with the same name as the result variable
of ie based on the new evaluation of oe. Furthermore, the
value of attribute freshBinding is flipped and the evaluation
of body expression oe is removed.

The final rule Iterate-evaluation covers the case when the
collection current of ie is empty. In this case the value
of ie is set to that value which is bound to the NameValue-
Binding with the same name as the result variable.

3.3.4 Variable expressions

Figure 19 shows the evaluation rule for VariableExp. When
this rule is applied, a new link is created between Variable-
Exp and the value to which NameValueBinding, with the same
name as VariableDeclaration, is connected.

3.3.5 Literal expressions

In Fig. 20, the evaluation of IntegerLiteralExp is shown.
By applying this rule, a new IntegerValue is created whose
attribute integerValue has the same value as the attribute

123

Semantics of OCL specified with QVT 411

Fig. 18 Iterate—evaluation
rules

Iterate-evaluation

Iterate-initialisation

Iterate-iteratorBinding

source

val

oes:OclExpression

element

source

val
current

Iterate-intermediateEvaluation

ie:IterateExp

freshBinding=true

val

oe:OclExpression
body

oe:OclExpression
body

{when}
s.element->isEmpty() and ie.val->isEmpty()

{when}

s:CollectionTypeValue

element

element

1
1

1

1

1

ec:ElementValue

ec:ElementValue es:ElementValue

s:CollectionTypeValue

oes:OclExpression

c:CollectionTypeValue

vi:Instance

vc:Instancevi:Instance

current

c:CollectionTypeValue

result

1

oe:OclExpression

body

current

oe:OclExpression

bodybindingb:NameValueBinding

varName=v

{when}

current

s:CollectionTypeValue

es:ElementValue

s:CollectionTypeValue
iterator

bm=bm1->excluding(nvb|nvb.name=v) and oe.val->isEmpty()

vd:Variable

varName=v

bm:NameValueBindingbm1:NameValueBinding

bindingbinding

ie:IterateExp

freshBinding=false

oe:OclExpression body

oe:OclExpression
body

vp:Instance

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=false

ie:IterateExp

freshBinding=true

ie:IterateExp

ie:IterateExp

val

val val

valval

s.clone(c) and es.clone (ec) and vc.clone (vi)

vp:Instance

{when}
oe.val->isEmpty()

inite:OclExpression

vd:Variable

varName=v

res:Variable

varName=r

val
vt:Instance

initExpression

binding

b:NameValueBinding

varName=r

val

ins:Instance ins:Instance

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val

binding

b:NameValueBinding

varName=r

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

result

res:Variable

varName=r

s:CollectionTypeValue
current

ie:IterateExp

oe:OclExpression
body

result

res:Variable

varName=r

binding

b:NameValueBinding

varName=r

val
ins:Instance

val

result

inite:OclExpression

res:Variable

varName=r

val

vt:Instance

initExpression

iterator

element

Fig. 19 Variable expression
evaluation

VariableExp-eval

ve:VariableExp

{when}
ve.val->isEmpty()

vd:Variable

varName=ni:Instance

nvb:NameValueBinding

varName=n

val

binding

referredVariable

ve:VariableExp

i:Instance

nvb:NameValueBinding

varName=n

val

binding

referredVariable

val
vd:Variable

varName=n

integerSymbol for expression ie. Note, that this type of
expressions does not need variable bindings because their
evaluation does not depend on the evaluation of any variable.

3.3.6 If-expressions

Figure 21 shows the evaluation rule for an if -expression.
The result of the evaluation depends on the value to which
condition expression c is already evaluated. As it is stated
in the when-clause of the rule, if the value of the condition
is true then the result of the evaluation will be the value of

IntegerLiteralExp-eval

ie:IntegerLiteralExp

integerSymbol=i
ie:IntegerLiteralExp

integerSymbol=i
valiv:IntegerValue

integerValue=i
{when}

ie.val->isEmpty()

Fig. 20 Integer literal expression evaluation

the thenExpression, otherwise it will be value of the
elseExpression. Please note that in this example we do
not deal with evaluation to undefined and that this aspect of
OCL will be discussed later.

123

412 S. Marković, T. Baar

Fig. 21 If-expression
evaluation

ifExp-evaluation

ie:IfExp

condition

c:OclExpression

{when}
ie.val->isEmpty()

thenExpression

i1:Instance

elseExpression
e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue

booleanValue=b

val val val

ie:IfExp

condition

c:OclExpression

thenExpression

i1:Instance

elseExpression

e:OclExpression

i2:Instance

t:OclExpression

bv:BooleanValue

booleanValue=b

val val val

i:Instance
val

{when}
if b=true then i=i1 else i=i2 endif

Fig. 22 Let expression:
binding and evaluation LetExp-binding

LetExp-evaluation

le:LetExp

i2:OclExpression

{when}
le.val->isEmpty()

val
in2:Instance

in
le:LetExp

i2:OclExpression

val

in2:Instance

in

val

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration

varName=v

i1:OclExpression

val

in1:Instance

variable

initializedVariable
initExpression

bm:NameValueBinding

binding

le:LetExp

i2:OclExpression

in

vd:VariableDeclaration

varName=v

i1:OclExpression

val
in1:Instance

variable

initializedVariable
initExpression

b:NameValueBinding

varName=v

binding
bindingval

{when}
bm1=bm->excluding(nvb|nvb.varName=v)

bm1:NameValueBinding

binding

{when}
le.val->isEmpty() and
i2.binding->isEmpty() and
i2.val->isEmpty()

3.3.7 Let-expressions

The evaluation of let-expressions is a little bit different from
the other rules because it changes NameValueBinding for its
subexpressions (similarly to Loop Expressions). The evalu-
ation rules for LetExp are shown in Fig. 22. The first rule
performs binding of the let-variable to the value to which
initExpression evaluates (by creating a new Name-
ValueBinding instance), and then passes this NameValue-
Binding to the in part of the expression. The second part
specifies that result of evaluation of an LetExp will be the
same as evaluation of its in expression.

3.3.8 Tuple expressions

In Fig. 23, the evaluation rule for TupleLiteralExp is shown.
This rule consists of three parts. The first part creates a
temporary TupleValue object that will become the result of
evaluation once all TupleLiteralParts are traversed. The mid-
dle rule shows the core semantics of TupleLiteralExp evalu-
ation. This rule will be executed as many times as there are
TupleLiteralParts in the expression. Each time this rule is

triggered, a new AttributeLink is created and attached to the
temporary TupleValue. This newly created AttributeLink will
point to one attribute from the tuple type, and to the value
that TupleLiteralPart has. The third rule is used to create the
final value of the TupleLiteralExp.

3.4 Syntactic sugar

Many pre-defined OCL operations are defined as an abbre-
viation for more complex terms. For instance, the operation
exists can be simulated by operation iterate. More precisely,
as described in [14], expressions of form

coll−>exists (x | body(x))

can be rewritten to

coll−>iterate (x; acc :Boolean=false | acc or body(x))

This rewriting step can also be expressed as a graph-trans-
formation rule what would make the rule for evaluating the
pre-defined operation exists superfluous.

Figure 24 shows a QVT rule, which transforms one exists-
expression into corresponding IterateExp. RHS of the rule

123

Semantics of OCL specified with QVT 413

Fig. 23 Tuple expression
evaluation

TupleExp-evaluation1

TupleExp-evaluation

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val
i1:Instance

value

{when}
tv.slot->collect(attribute)->excludes(a)

tlp:TupleLiteralPart

attribute

tle:TupleLiteralExp

a:Attribute

part

i:OclExpression

val

i1:Instance

value

tlp:TupleLiteralPart

attribute

tv:TupleValue

al:AttributeLink

slot
instance

tv:TupleValue

value

attribute
attributeLink

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.temp->isEmpty()

tle:TupleLiteralExp tv:TupleValuetemp

temp temp

TupleExp-evaluation2

tle:TupleLiteralExp

{when}
tle.val->isEmpty() and tle.type.typedFeature =
tv.slot.attribute->asSet()

tle:TupleLiteralExp tv:TupleValue

tv:TupleValue
val

temp

Fig. 24 Transforming exists
expression to an iterate
expression

Exists-to-Iterate

oe:OclExpression

sourceiterator

aoe:OclExpression

body

it:IteratorExp

name='exists'

appliedElementloopExp

oe:OclExpression

sourceiterator

oc:OperationCallExp

body

ie:IterateExp
appliedElementloopExp

bl:BooleanLiteralExp

booleanSymbol=false

result
baseExp

initExpression
initializedElement

aoe:OclExpressionve:VariableExp

o:Operation

name='or'

referredVariable

referredOperation
tnemugraecruos

{when}
aoe->usedFreeVarName->excludes(s)

vds:Variable

r:Variable

varName=s

vds:Variable

states that a new IterateExp is created, together with a new
VariableDeclaration and a new BooleanLiteralExp with
booleanSymbol set to false. The source of the expression
and the iterator remain the same as for the exists operation.
The body expression is modified and after the transforma-
tion it represents the disjunction of the previous body and the
newly created variable expression that refers to the new Vari-
ableDeclaration. In the when-clause, we state an additional
constraint that varName s used in the newly created Vari-
ableDeclaration is not yet used as a name by any of the free
variables in the body.

4 Semantic concepts in OCL

In the previous section, the most important evaluation rules
for each of the possible kinds of OCL expressions were given.
The rules basically describe the necessary evaluation steps
in a given state, but they do not reflect yet the complete
semantics of OCL. For example, nothing has been said yet on
how an operation contract consisting of pre-/postconditions
is evaluated, how to handle the @pre construct in postcondi-
tions, under which circumstances an expression is undefined,
etc. These are examples for additional semantic concepts,

123

414 S. Marković, T. Baar

which are supported by OCL but which are most likely not
supported by every other constraint language. Besides the
syntactic dimension already explained in Sect. 3.3 for the cat-
egorization of rules, the additional semantic concepts form a
second dimension for the rule categorization. We have iden-
tified the following list of semantic concepts, which must
be taken into account when formulating the final version of
evaluation rules (note that in Sect. 3.3 only the rudimentary
version of evaluation rules has been shown):

– evaluation of operation contracts (pre-/postconditions)
– evaluation to undefined (including strict evaluation with

respect to undefined, with some exceptions)
– dynamic binding when invoking a query
– non-deterministic constructs (any(), asSequence())5

In the next subsections, we discuss the semantical con-
cepts that have the most impact on the evaluation rules from
Sect. 3.3.

4.1 Evaluation of operation contracts

The evaluation of an operation contract is defined with respect
to a transition between two states.

Metaclass StateTransition from our metamodel (see Fig. 3)
is used to capture one transition from a pre- to a post-state.
This transition represents one concrete operation execution
with concrete values passed as operation parameters. In order
to be able to evaluate one pre- or one postcondition, we need
all information about the state transition for which we want
to perform the evaluation: operation that caused the tran-
sition, values of operation parameters, pre-state, post-state,
relationships between objects from pre- and post-state.

The evaluation of preconditions can be done analogously
to the evaluation of invariants. The current state to which the
Context of the evaluation rule refers to is in this case just the
pre-state. In addition, the bindings for the operation argu-
ments have to be extracted from a Stimulus that belongs to
the StateTransition for which we perform the evaluation.

The evaluation of the postcondition is basically done in
the post-state. The keyword result is evaluated according to
the binding for the return parameter. The evaluation of result
is fully analogous to the evaluation of variable expressions.

The evaluation of @pre is more complicated. It requires a
switch between pre- and post-state, more precisely, we have
to manage the different values for properties of each object
in pre- and post-state. Even more complicated, it might be
the case that the set of objects itself has changed between
pre- and post-state.

5 Non-deterministic constructs lead to semantical inconsistencies as
one of the authors argues in [24]. They are not further discussed here.

In the semantics of OCL described in [14, Annex A], the
pre- and post-states are encoded as a set of functions (each
function represents an attribute or a navigable association
end) that work on a constant domain of objects. Further-
more, there is an extra function that keeps track which of
the objects are created in the current state. The formalization
has the advantage that the involved objects do not change
their identity and, thus, is very easy to understand. Unfortu-
nately, we were not able to apply this simple model to our
semantics due to technical problems caused by the format of
graph transformations. In our semantics, the objects in the
pre- and post-state have different identities, but each object
can be connected with one object from the opposite state via
an instance of metaclass ObjectMap. Please note that for one
object there can exist many ObjectMaps depending on the
number of StateTransitions one object is involved in. A pair
of related objects represents the same object when we would
view a pre-/post-state pair as an evolvement over the same
domain. If an object from the pre-state is not related with
any object from the post-state, this means that this object
was deleted during the state transition. Analogously, objects
in the post-state without a counterpart in the pre-state were
created.

Figure 25 shows an example. The pre-state consists of two
objects with identifiers p1, p2 whose type is a class with
name Person. The attribute links for the attribute named
age refer to the value dv1 and dv2, which reside in the
package Data. In the post-state, the identifiers for objects and
attribute links have completely changed. But since object p1
and p11 are related by an ObjectMap om1, we know that
p11 and p1 represent the same object. Note, however, that
the state of this object has changed since the attribute link
for attribute named age doesn’t refer any longer to the value
dv2 but to dv3. Since no other ObjectMaps exist, we can
conclude that during the state transition from the pre-state to
the post-state, the object p2was deleted and object p21was
created.

The @pre-operator can now be realized as an extension
to the already existing core rules. Note that the official OCL
syntax allows to attach @pre on every functor, but @pre is
only meaningful when attached to navigation expressions or
to an allInstances-expression. The most complicated case is
the application to AssociationEndCallExps.

Figure 26 shows the extended evaluation rule for Associ-
ationEndCallExp with an object-valued multiplicity (upper
limit is 1). The current OCL metamodel encodes @pre-
expressions as operation call expressions of a predefined
operation with name @pre. The source expression of this
operation call expression is exactly that expression, to which
the @pre operator is attached. The rule reads as follows:
First, we wait for the situation in which the source expres-
sion of the association end call expression is evaluated (here,
to o1). Note that the Context requires that o1 is an object

123

Semantics of OCL specified with QVT 415

Fig. 25 Relationship between
pre- and post-state

Transitions

Data

PreState PostState

p2:Object

al2:AttributeLink

dv2:DataValue

al1:AttributeLink

c1:Class

name='Person'

dv1:DataValue

a1:Attribute

name='age'

dv3:DataValue

al11:AttributeLink

c1:Class

name='Person'

a1:Attribute

name='age'

al22:AttributeLink

post

classifier

classifier classifier

classifier

valuevalue valuevalue

attribute

attributeLink

instance slot

attributeLink

attribute

attribute
attributeLink

attributeLink

attribute

instance

instance

instance

slotslot

slot

instanceinstance

instance instance

st1:StateTransition

om1:ObjectMap

s1:Stimulus
operation

o:Operation

dv4:DataValue

pre

operation

argument

receiver

p21:Object

p11:Objectp1:Object

Fig. 26 Evaluation of @pre
attached to an object-valued
association end call expression

AtPreAssociationEndCallExp-evaluation

Context
PreState

source aece:AssociationEndCallExp

oc:OclExpression
source

valo1:Object

oc:OclExpression

{when}
oce.val->isEmpty() and not (ae.isSetValued())

val
o1:Object

oce:OperationCallExp
oce:OperationCallExp

o1pre:Object

op:Operation

name='@pre'

referredOperation

ae:AssociationEnd

referredAssociationEnd

le1:LinkEnd

le2:LinkEnd

l:Linkae:AssociationEnd

o2pre:Object

o2:Object

val

ae:AssociationEnd

referredAssociationEnd

instance

linkEnd

linkEnd

instance

associationEnd

linkEnd

connection link

 link
connection

source
source

PostState

o1:Object

o2:Object

Transitions

st1:StateTransition

om2:ObjectMap

om1:ObjectMap

postpre

pre post

map

map

 referredOperation
op:Operation

name='@pre'

aece:AssociationEndCallExp

from the post-state (what should be always the case). Then,
the corresponding object of o1 in the pre-state is searched
(o1pre) for which the original rule for evaluation of the
association end call is applied (in the pre-state). The object
representing the result of the association end call (o2pre) is
then projected to the post-state (o2), what is then given back
as the result of the evaluation. Note that we didn’t specify
so far the cases, in which o1 does not have a counterpart
on the pre-state (i.e. the source expression oc evaluates to
a newly created object) or that the result of the association
end call in the pre-state (o2pre) does not have a counter-
part in the post-state (i.e. the object o2pre was deleted during
the state transition). This question is answered in the next
subsection.

4.2 Evaluation to undefined

The evaluation of OCL expressions to undefined is proba-
bly one of the most complicated semantic concepts in OCL
and has raised many discussions. The value undefined has
been often mixed in the literature with value nullknown from
Java. Furthermore, questions like Can an AttributeLink refer
to undefined in a state? Can a Set-expression be evaluated
to undefined? Can a Set-value have elements that are unde-
fined? are not fully clarified by the official OCL semantics
(cmp. also [23]).

First of all, we should note that value undefined was added
to the semantic domain for the sole purpose to indicate excep-
tional situations during the evaluation. For instance, when an

123

416 S. Marković, T. Baar

object-valued AssociationEndCallExp tries to navigate over
non-existing links or that a cast of an expression to a subclass
fails. Thanks to the pre-defined operation oclIsUndefined(), it
is possible to test if an expression actually evaluates to unde-
fined; what—together with the exception from strict evalu-
ation for and, or, implies, forAll etc.—is a powerful tool to
write OCL constraints reflecting the semantics intended by
the user.

But when is an expression actually evaluated to unde-
fined? Strictly speaking, we had to add for each core eval-
uation rule a variant of this rule, that captures all situations
in which the evaluation results to undefined. Fortunately, we
have designed our evaluation rule in such a way, that this
additional rule can be generated. Evaluation to undefined is
always needed in all cases, in which the pattern given in the
Context does not match the current situation.

In order to illustrate the idea, we have a look to the rule for
@pre applied on association end call expressions (Fig. 26). If,
for example, the object o1 (evaluation of the source expres-
sion) was newly created during the state transition so that
the pre-post link to an object o1pre is missing, then the
whole @pre-expression evaluates to undefined. Likewise, if
the corresponding object o1pre exists but does not have a
link for association end ae. Another reason could be that the
link exist but the referred object o2pre is deleted during the
state change. In all these cases, the @pre-expression should
be evaluated to undefined and all these cases have in common
that the pattern given in the Context does not match.

4.3 Dynamic binding

Dynamic binding (also called late binding) is one of the key
concepts in object-oriented programming languages but has
been mostly ignored in the OCL literature so far. Dynamic
binding becomes relevant for the evaluation of user-defined
queries. Consider two classesA andB, the classB is a subclass
of A and the operation m() is declared as query with return
type Integer in A. Please note that besides by using the
body expressions, queries can be defined using def expres-
sions. Moreover, assume to have the following constraints:

context A: :m() : Integer
body: 5

context B: :m() : Integer
body: 7

Let a and b be expressions that evaluate to an A and to a B
object, respectively. The result of the evaluation of a.m()
is clearly 5. The evaluation of b.m() depends on whether
or not OCL supports dynamic binding.

The core rule for query evaluation shown in Fig. 15 does
not realize dynamic binding so far because it does not take
into account the potential inheritance hierarchy in the model.

The result of the second rule shown in Fig. 15 is the value of
any possible body expression (oceb2) regardless its context.

For this situation when different bodies can be attached to
the same operation (as in our example with classes A and B),
we have to define a strategy for choosing the right body. The
most suitable strategy would be to search the inheritance tree
and take the body expression defined for the classifier that is
the least parent of the source classifier (in the case of b.m(),
this would be the second body defined with expression 7).

In order to transform the static-binding evaluation rules
for queries shown in Fig. 15 into a dynamic-binding rule, we
had to alter the when-clauses in the LHS of the second rule
with the following constraint:

i f bm.booleanValue<>true then i .oclIsTypeOf(OclVoid
Value)

else i=op.getRightBody(opce . source . val .oclAsType
(Object) . classifier−>any(true))

endif and
c . stereotype .name=’pre ’

The getRightBody query (when multiple inheritance is not
allowed) is defined as:

context Operation def : getRightBody(cl : Classifier) :
Instance=
i f self .body.oclAsType(ExpressionInOcl) . contextual
Classifier−>exists (cl) then
op.body−>select (b |b.oclAsType(ExpressionInOcl)

. contextualClassifier−>includes(cl))
−>any(true) . bodyExpression . val

else i f cl . getDirectParent()−>notEmpty() then
self .getRightBody(cl . getDirectParent()−>

any(true))
else getOclVoidValue()

endif
endif

5 Tailoring OCL for DSLs

This section contains an example how our approach for defin-
ing the semantics of OCL can be applied for the definition
of an OCL-based constraint language, which is tailored to a
domain specific language (DSL).

As a running example we will use a simple Relational
Database Language for which we will define an extension
of OCL. Two tables Person and Dog (see Fig. 27) will
be used as an illustrating example, for which we develop
domain-specific constraints. Each table has one primary key
(personID for table Person and dogID for table Dog).
In addition, column ownerID of table Dog has a foreign
key relationship with column personID of table Person.

A simple metamodel for relational databases is shown in
Fig. 28. This language is sufficient to specify the database
from Fig. 27. Please note that, for the sake of simplicity, we
have avoided to introduce database-specific types, but reuse

123

Semantics of OCL specified with QVT 417

Dog
dogID
(PK)

breed ownerID
(FK for personID)

1 Doberman 1
2 Bulldog 1
3 Poodle 2

Person
personID

(PK)
name age

1 John 23
2 Mark 17
3 Steve 45

Fig. 27 An example of a relational database

already existing UML/MOF primitive types as types for table
columns.

When tailoring OCL as a constraint/query language for a
domain specific language, it is necessary to introduce addi-
tional concepts to OCL in order to capture domain specific
constructs. In our example, two constructs require an exten-
sion of the OCL metamodel: 1) navigation to a column 2)
navigation to a column constrained with a foreign key. The
first navigation is applied on a Row and has to return the value
of the Column for this Row and the second one has to return
a Row of the Table to which the ForeignKey refers.

As an example for these two new navigation expressions
consider the following constraint:

Dog. allInstances()−>select (d |d. breed=’Doberman’)
−>forAll (dd |dd<=>ownerID.age>18)

This example constraint uses three specificities of our rela-
tional database DSL: Ordinary navigation to columnsbreed
and age, foreign key navigation to column ownerID (for-
eign key navigation is marked with <=> in order to make it
distinguishable from ordinary column navigation), and a call
of allInstances() on a table.

Another way of expressing the same could be by using
only ordinary column navigation and allInstances(), but this
version is much longer:

OclExpression

ColumnCallExp

0..1+appliedElement

0..*

1+referredColumn

1

0..*

0..1 +source

+referredColumn

0..* Operation1

+referredOperation

+arguments

{ordered} 0..*

+parentOperation0..1

Column

ForeignKeyCallExp

OperationCallExp

CallExp

Fig. 29 DSL Navigation expressions

Dog. allInstances()−>select (d |d. breed=’Doberman’)
−>forAll (dd | Person . allInstances ()
−>any(p |p.personID=dd.ownerID) . age>18)

In order to incorporate ordinary and foreign key column
navigation into the constraint language, the metamodel for
OCL had to be altered. Figure 29 shows the part of the
Domain Specific Query language that is different from stan-
dard OCL.

Figure 30 shows the definition of the semantics of column
call expressions in form of an evaluation rule. The result of
evaluation of such an expression would be the value of the
Cell that belongs to the Row that is the source of the expres-
sion, and that is referred by the chosen Column.

Fig. 28 Relational database
metamodel

Instance

Row

Cell

PrimitiveValue

isEqualTo(PrimitiveValue):Boolean

Table

DatabaseClassifier

DataTypeForeignKeyPrimaryKey

DBConstraint

name:String

Column

name:String

ModelElement

name:String

1 1

1
1

1

1

11

1

1

0..1
0..*

0..*

0..*
0..*

..0..0

0..*

0..*

+foreignKey

+refColumn

+type

+value

1

+table
+table

+column +cell

+row

+row

+constraintDB

+column

+constraintDB +column

+table

+database+database

+cell

+row

123

418 S. Marković, T. Baar

Fig. 30 Semantics of column
navigation specified with QVT

Context

ColumnCallExp-evaluation

CurrentState Data

cce:ColumnCallExp

c:Column

source referredColumn

cce:ColumnCallExp

oc:OclExpression c:Column

p:PrimitiveValue

source referredColumn

value

cell
cell column

r:Row valr:Rowoc:OclExpression

{when}
cce.val->isEmpty()

val

val

r:Row

c:Column

row

cl:Cell

p:PrimitiveValue

Fig. 31 Semantics of foreign
key navigation specified with
QVT

Context

ForeignKeyCallExp-evaluation

fce:ForeignKeyCallExp

c:Column

source referredColumn

fce:ForeignKeyCallExp

oc:OclExpression c:Column
source referredColumn

r2:Row

r:Row
val

r:Rowoc:OclExpression

{when}
fce.val->isEmpty()

val

val

CurrentState

cell

cell

column

r:Row

c:Column

row

cl:Cell fk:ForeignKey

c:Column

cl2:Cellr2:Row

{when}
cl.value.isEqualTo(cl2.value)

column
cell

row

cell

constraintDB

refColumn
foreignKey

column

The semantics of ForeignKeyCallExp is shown in Fig. 31.
This rule specifies that the value of the ForeignKeyCallExp
will be a Row r2 for which its primary key column has a
Cell with the same value as the Cell of the source Row r for
the foreign key column.

A mandatory construct that is needed when specifying
the semantics of domain specific query languages and that
cannot be reused from standard OCL is the operation call
expression for the predefined operation allInstances(). This
construct operates on model elements that do not exist in
UML/MOF and therefore has to be explicitly defined as in
Fig. 32.

Another way of defining the semantics of OCL expres-
sions on the instance level is by moving (transforming) an
OCL expression to an equivalent expression that queries
the corresponding metamodel. As an example, consider the
following ColumnCallExp specified using our concrete
syntax:

exp.age

Please note that the source expression exp can be any
expression of type Table. This very concise expression writ-
ten in the DSL-specific version of OCL could be emulated
by the following plain OCL expression, which exploits the
metalevel. However, this expression is clearly much more
complicated.

Column. allInstances()−>select (col | col .name=’age’
and col . table=exp. table) . cell
−>select (cc | cc .row=exp)
−>any(true)

6 Related work

The work described in this paper combines techniques and
results from different fields in computer science: logics, pre-
cise modeling with UML/OCL, model transformation, mod-
eling language design. For this reason, we separate related
work into three categories.

123

Semantics of OCL specified with QVT 419

Fig. 32 Semantics of
allInstances operation call
expression for relational
database

allInstancesDB-evaluation

Context
CurrentState

oce:OperationCallExp

source

referredOperation
te:TypeExp

referredType

{when}
oce.val->isEmpty()

t:Table

oce:OperationCallExp

source

referredOperation

te:TypeExp

referredType

t:Table

rs:Row

stv:SetTypeValue

ev:ElementValue

rs:Row

1
1

val

element

t:Table
 table

row

val
op:Operation

name= 'allInstances'

op:Operation

name= 'allInstances'

6.1 Approaches to define the semantics of OCL

There are numerous papers and even some dissertations that
propose a formal semantics for complete OCL or for a frag-
ment of it, e.g., [15,21,25–31] and, recently, [20]. Many other
papers have identified inconsistencies in the official OCL
semantics and contributed in this form to a better under-
standing of OCL’s concepts, e.g., [23,24,32–34].

Though we hope to have addressed in our semantics many
of the issues raised in previous papers, there is no guarantee
we can give, that our semantics has resolved all problems
(a discussion on this would deserve another paper). What is
more relevant for the current paper is to compare the tech-
nique, which has been used for the semantics definition, with
that of other approaches. We restrict ourselves to a com-
parison with the two semantics given in the OCL language
standard.

6.1.1 Official OCL semantics: informative

Annex A of [14] presents a set-theoretical semantics for OCL,
which goes back of the dissertation of Mark Richters [15].
This semantics has been marked in the OCL standard as infor-
mative.

The semantic domain of OCL is formalized by the notion
of system state (a triple consisting of the set of objects, the
set of attribute values for the objects, and the set of asso-
ciation links connecting objects) and the interpretation of
basic types. The notion of system state is defined on top of
the notion of object model. What was formalized by Rich-
ters as system state is known in UML terminology as object
diagram, an object model corresponds to a class diagram.

In our approach, the class and object diagrams are directly
formalized by their metamodels and the interpretation of
basic types is covered by the package Values of the OCL
metamodel. All three metamodels, on which our approach
relies, are part of the official language definition for UML/

OCL. However, there is one important difference to Richter’s
semantics: In Richter’s approach, one object can be in multi-
ple states, whereas in our approach, states are represented by
object diagrams, which can never share objects with the same
identity. We solved this problem by introducing Object-
Map objects (cmp. Sect. 2.2) whenever two different states
are involved in the evaluation of OCL constraints (e.g., post-
conditions). Note that a set of ObjectMap objects referring
to a pre-state and a post-state can also encode the informa-
tion which of the objects were created/deleted during the
transition from pre- to post-state. In Richter’s approach, the
lifetime of an object is encoded by the function σC L ASS .

The evaluation of OCL expressions is formalized in Rich-
ter’s semantics by an interpretation function I, which is
defined separately for each type of OCL expression. The def-
initions for I are based on the above mentioned ingredients
of the semantics: object model, system state, interpretation of
basic types. In our approach, the interpretation function I is
implicitly given by QVT rules, which are based on the meta-
models for class diagrams, object diagrams, and on package
Values.

One of the most interesting details when comparing the
formalization of expression evaluation is the handling of pre-
defined functions. Following Richter, pre-defined functions
like =, union, concat, etc., are interpreted by their math-
ematical counterparts, e.g., I(=t)(v1, v2) = true if v1 = v2

and v1 �= ⊥ and v2 �= ⊥. Otherwise stated, the semantics
of some operations of the object language (OCL) is reduced
to the semantics of some operations of the meta language
(mathematics). The same holds in our case! For example, the
semantics of operation ‘=’ of the object language (OCL) is
reduced to the semantics of the operation ‘=’ in the metalan-
guage (QVT) (see Sect. 3.3.2).

In both cases, it has to be assumed that the semantics of
the metalanguage has been already defined externally (cmp.
also [35]). In case of Richter’s semantics, one could refer to
textbooks introducing mathematics. In case of our semantics,

123

420 S. Marković, T. Baar

we can refer to the implementation of QVT engines, which
actually map QVT rules to statements in a programming lan-
guage, e.g. Java.

6.1.2 Official OCL semantics: normative

The semantics described in [14, Sect. 10] Semantics Descri-
bed Using UML is called normative OCL semantics and
shares the same main goal as our approach: to give a seman-
tics description of OCL, which is seamlessly integrated into
the other artifacts (metamodels) of OCL’s language defini-
tion. However, there are important differences.

The normative semantics defines package Values to encode
pre-defined data types and system states. We tried to align
our approach as much as possible with this package Values
(e.g., NameValueBinding), but some details differ. Most
notable, as already mentioned in the comparison with Rich-
ter’s semantics, our states never contain identical objects. The
normative OCL semantics insists on keeping the identities of
objects across states, but this yields to a quite complicate
encoding of attribute values and links, which have to be kept
separated from objects (see metaclass LocalSnapshot).
Moreover, the normative semantics encodes exactly one sys-
tem trace (metaassociation pred–succ on LocalSnap-
shot), while in our approach state transitions are modeled
explicitly by a new metaclass StateTransition.

The evaluation of OCL expressions is formalized in the
normative semantics by so-called evaluation classes. For
each metaclass from the metamodel of OCL’s abstract syn-
tax, there is exactly one corresponding evaluation class, e.g.
AttributeCallExpEval. Evaluation classes are com-
plimented by a number of invariants, whose purpose is to
specify the evaluation process. In many cases, each of these
invariants can be mapped to exactly one QVT rule in our
approach. For example, there is for each evaluation class one
invariant specifying the propagation of the current binding of
variables (called Environment in the normative seman-
tics) to sub-expressions, what corresponds to our variable
binding propagation rules described in Sect. 2.4.

The normative semantics has been also the starting point
for a semantics formalization given by Chiaradía and Pons
[36]. They alter the OCL semantics’ metamodel by intro-
ducing the visitor pattern in order to reduce the duplica-
tion of information in AbstractSyntax and Evaluations pack-
ages of OCL metamodel. Contrary to our approach, they use
UML sequence diagrams to express the semantics of OCL
expressions.

6.2 Approaches to define language semantics by model
transformations

The application of model transformations (or, more general,
graph transformations) for the purpose of defining language

semantics is not a new idea. However, we are only aware of
one paper, which applies this technique for the definition of
the semantics of OCL. Bottoni et al. propose in [37] a graph-
ical notation of OCL constraints and, on top of this notation,
some simplification rules for OCL constraints. These sim-
plification rules specify implicitly the evaluation process of
OCL expressions. However, the semantics of OCL is not
developed as systematically as in our approach, only the
simplification rules for select are shown. Since [37] was
published at a time where OCL did not have an official meta-
model, the simplification rules had to be based on another
language definition of OCL.

For behaviorial languages, Engels et al. defined in [38] a
dynamic semantics in form of graph-transformation rules,
which are similar to our QVT rules. As an example, the
semantics of UML statechart diagrams is presented.

In [39] Varró points out the abstraction gap between the
“graphical” world of UML and mathematical models used to
describe dynamic semantics. In order to fill this gap, he uses
graph transformation systems to describe visual operational
semantics. An application of this approach is demonstrated
by specifying semantics of UML statecharts.

Stärk et al. define in [40] a formal operational semantics
for Java by rules of an Abstract State Machine (ASM). The
semantic domain of Java programs is fixed by defining the
static structure of an appropriate ASM. The ASM encodes
furthermore the Abstract Syntax Tree (AST) of Java pro-
grams. As shown by our motivating example in Sect. 2, there
are no principal differences between an AST and an instance
of the metamodel. Also, ASM and QVT rules are based on
the same mechanisms (pattern matching and rewriting).

6.3 Other related work

An interesting classification of OCL language concepts was
developed by Chiorean et al. [41]. In this paper, OCL lan-
guage constructs are classified according to their usage in
different domains, such as Transformations, Assertions, and
Commands. In our approach, we have concentrated on what
is called core OCL in [41], but it would be definitely worth-
while to investigate the other domains as well.

Kolovos et al. define in [42] a navigation language for
relational databases that is similar to our language defined in
Sect. 5. They use the metalanguage EOL (which is based on
OCL) to define the result of evaluation of new expressions
like column navigation.

7 Conclusions and future work

We have developed a metamodel-based, graphical definition
of the semantics of OCL. Our semantics consists of a meta-

123

Semantics of OCL specified with QVT 421

model of the semantic domain (we have slightly adapted the
existing metamodels from UML1.x) and a set of transfor-
mation rules written in an extension of QVT, which spec-
ify formally the evaluation of an OCL constraint in a given
snapshot. To read our semantics, one does not need advanced
skills in mathematics or even knowledge in formal logic; it is
sufficient to have a basic understanding of metamodeling and
QVT. The most important advantage, however, is the flexi-
bility our approach offers to adapt the semantics of OCL to
domain-specific needs. Since the evaluation rules can directly
be executed by any QVT compliant tool, it is now very easy
to provide tool support for a new dialect of OCL. This is an
important step forward to OMG’s vision to treat OCL as a
family of languages.

We are currently investigating how an OCL semantics
given in form of QVT rules can be used to argue on the
semantical correctness of refactoring rules for UML/OCL,
which we have defined as well in form of QVT rules. A
refactoring rule describes small changes on UML class dia-
grams with attached OCL constraints. A rule is considered
to be syntactically correct if in all applicable situations the
refactored UML/OCL model is syntactically well-formed.
We call a rule semantically correct if in any given snap-
shot the evaluation of the original OCL constraint and the
refactored OCL constraint yields to the same result (in fact,
this view is a simplified one since the snapshots are some-
times refactored as well). To argue on semantical correct-
ness of refactoring rules, it has been very handy to have the
OCL semantics specified in the same formalism as refactor-
ing rules, i.e. in QVT. A more detailed description together
with a complete argumentation on the semantical correct-
ness of the MoveAttribute refactoring rule can be found
in [43].

Another branch of future activities is the description of the
semantics of programming languages with graphical QVT
rules. Our ultimate goal is to demonstrate that also the descri-
ption of the semantics of a programming language can be
given in an easily understandable, intuitive format. This might
finally contribute to a new style of language definitions, in
which the semantics of a language can be formally defined
as easy and straightforwardly as today’s syntax definitions
of modeling languages.

References

1. OMG. UML 2.0 Infrastructure Specification. OMG Document
ptc/03-09-15, September 2003

2. Berkenkötter, K.: OCL-based validation of a railway domain pro-
file. In: Kühne, T. (ed.) Models in Software Engineering, Work-
shops and Symposia at MoDELS 2006, Genova, Italy, October
1–6, 2006, Reports and Revised Selected Papers, LNCS, vol. 4364,
pp. 159–168. Springer, Heidelberg (2007)

3. Demuth, B., Hußmann, H., Loecher, S.: OCL as a specification
language for business rules in database applications. In: UML’01:

Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools,
Lecture Notes in Computer Science, vol. 2185, pp. 104–117.
Springer, Heidelberg (2001)

4. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the
specification of model transformation contracts. In: Octavian Pat-
rascoiu, editor, OCL and Model Driven Engineering, UML 2004
Conference Workshop, 12 October 2004, Lisbon, Portugal, pp. 69–
83. University of Kent, Kent (2004)

5. Akehurst, D.H., Bordbar, B.: On querying UML data models with
OCL. In: Gogolla, M., Kobryn, C. (eds.) UML 2001—The Unified
Modeling Language, Modeling Languages, Concepts, and Tools,
4th International Conference, Toronto, Canada, 1–5 October 2001,
Proceedings, Lecture Notes in Computer Science, vol. 2185, pp.
91–103. Springer, Heidelberg (2001)

6. Demuth, B., Hußmann, H.: Using UML/OCL constraints for rela-
tional database design. In: France, R.B., Rumpe, B. (eds.) UML’99:
The Unified Modeling Language—Beyond the Standard, Second
International Conference, Fort Collins, CO, USA, 28–30 October
1999, Proceedings, Lecture Notes in Computer Science, vol. 1723.
Springer, Heidelberg (1999)

7. Bauerdick, H., Gogolla, M., Gutsche, F.: Detecting OCL traps
in the UML 2.0 superstructure: an experience report. In: Baar,
T., Strohmeier, A., Moreira, A.M.D., Mellor, S.J. (eds.) UML
2004—The Unified Modelling Language: Modelling Languages
and Applications. 7th International Conference, Lisbon, Portugal,
11–15 October 2004. Proceedings, Lecture Notes in Computer Sci-
ence, vol. 3273, pp. 188–196. Springer, Heidelberg (2004)

8. Oslo, T.: Oslo project (2007). http://oslo-project.berlios.de/
9. MDT-OCL Team: Eclipse MDT—OCL project (2007). http://

www.eclipse.org/modeling/mdt/?project=ocl
10. Dresden OCL Team: Dresden OCL Toolkit (2007). http://dresden-

ocl.sourceforge.net/
11. OCTOPUS Team: OCTOPUS—OCl TOol for Precise Uml Spec-

ifications (2007). http://octopus.sourceforge.net/
12. USE Team: USE—a UML-based Specification Environment

(2007). http://www.db.informatik.uni-bremen.de/projects/USE/
13. OCLE Team: OCLE–Object Constraint Language Environment

(2007). http://lci.cs.ubbcluj.ro/ocle/index.htm
14. OMG: Object Constraint Language—OMG Available Specifica-

tion, version 2.0. OMG Document formal/06-05-01, May (2006)
15. Richters, M.: A precise approach to validating UML models and

OCL constraints. PhD thesis, Bremer Institut für Sichere Systeme,
Universität Bremen, Logos-Verlag, Berlin (2001)

16. OMG: Meta object facility (MOF) 2.0 Query/View/Transformation
Specification. OMG Document ptc/05-11-01, November (2005)

17. RoclET Team. RoclET project (2007). http://www.roclet.org/
18. Borland. Together technologies (2007). http://www.borland.com/

together/
19. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report

525, ETH Zurich (2006)
20. Brucker, A.D.: An Interactive Proof Environment for Object-ori-

ented Specifications. PhD thesis, ETH Zurich (2007). ETH Disser-
tation No. 17097

21. Clark, T., Evans, A., Kent, S.: Engineering modelling languages:
a precise meta-modelling approach. In: Kutsche, R.-D., Weber,
H. (eds.) Fundamental Approaches to Software Engineering. 5th
International Conference, FASE 2002 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2002 Grenoble, France, April 2002, Proceedings, LNCS, vol. 2306,
pp. 159–173. Springer, Heidelberg (2002)

22. Marković, S., Baar, T.: An OCL semantics specified with QVT.
In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
Proceedings, MoDELS/UML 2006, Genova, Italy, 1–6 October
2006, LNCS, vol. 4199, pp. 660–674. Springer, Heidelberg
(2006)

123

http://oslo-project.berlios.de/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://dresden-ocl.sourceforge.net/
http://dresden-ocl.sourceforge.net/
http://octopus.sourceforge.net/
http://www.db.informatik.uni-bremen.de/projects/USE/
http://lci.cs.ubbcluj.ro/ocle/index.htm
http://www.roclet.org/
http://www.borland.com/together/
http://www.borland.com/together/

422 S. Marković, T. Baar

23. Brucker, A.D., Doser, J., Wolff, B.: Semantic issues of OCL: Past,
present, and future. In: Demuth, B., Chiorean, D., Gogolla, M.,
Warmer, J. (eds.) OCL for (Meta-)Models in Multiple Applica-
tion Domains, pp. 213–228. University Dresden, Dresden (2006)
(Available as Technical Report, University Dresden, number TUD-
FI06-04-September 2006)

24. Baar, T.: Non-deterministic constructs in OCL—what does any()
mean. In: Prinz, A., Reed, R., Reed, J. (eds.) Proceedings of 12th
SDL Forum, Grimstad, Norway, June 2005, LNCS, vol 3530, pp.
32–46. Springer, Heidelberg (2005)

25. Richters, M., Gogolla, M.: On formalizing the UML object con-
straint language OCL. In: Ling, T.W., Ram, S., Lee, M.L. (eds.)
Proceedings of 17th International Conference in Conceptual Mod-
eling (ER’98), LNCS 1507, pp. 449–464. Springer, Berlin, (1998)

26. Richters, M., Gogolla, M.: A metamodel for OCL. In: France,
R., Rumpe, B. (eds.) UML’99—The Unified Modeling Language.
Beyond the Standard. Second International Conference, Fort Col-
lins, CO, USA, 28–30 October 1999, Proceedings, LNCS, vol.
1723, pp. 156–171. Springer, Heidelberg (1999)

27. Cengarle, M.V., Knapp, A.: A formal semantics for OCL 1.4. In:
Gogolla, M., Kobryn, C. (eds.) UML, Lecture Notes in Computer
Science, vol. 2185, pp. 118–133. Springer, Heidelberg (2001)

28. Stephan, F., Wolfgang, M.: Formal semantics of static and
temporal state-oriented OCL-constraints. J. Softw. Syst. Model.
(SoSym) 2(3), 164–186 (2003)

29. Hennicker, R., Knapp, A., Baumeister, H.: Semantics of OCL oper-
ation specifications. Electronic Notes in Theoretical Computer Sci-
ence. Proceedings of OCL 2.0 Workshop at UML’03 102, 111–132
(2004)

30. Baar, T.: Über die Semantikbeschreibung OCL-artiger Sprachen.
PhD thesis, Fakultät für Informatik, Universität Karlsruhe (in Ger-
man). ISBN 3-8325-0433-8, Logos, Verlag, Berlin (2003)

31. Cengarle, M.V., Knapp, A.: OCL 1.4/5 vs. 2.0 expressions for-
mal semantics and expressiveness. Softw. Syst. Model. 3(1), 9–
30 (2004)

32. Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills,
A.C.: The amsterdam manifesto on OCL. In: Clark, T., Warmer, J.
(eds.) Object Modeling with the OCL: The Rationale behind the
Object Constraint Language, pp. 115–149. Springer, Heidelberg
(2002)

33. Flake, S.: Ocltype—a type or metatype? Electr. Notes Theor. Com-
put. Sci. 102, 63–75 (2004)

34. Akehurst, D.H., Howells, G., McDonald-Maier, K.D.: Supporting
OCL as part of a family of languages. In: Baar, T. (ed.), Proceed-
ings of the MoDELS’05 Conference Workshop on Tool Support
for OCL and Related Formalisms—Needs and Trends, Montego
Bay, Jamaica, 4 October 2005, Technical Report LGL-REPORT-
2005–001, pp. 30–37. EPFL (2005)

35. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics
of “Semantics”? IEEE Comput. Softw. 37(10):64–72 (2004)

36. Chiaradía, J.M., Pons, C.: Improving the OCL semantics defini-
tion by applying dynamic meta modeling and design patterns. In:
Demuth, B., Chiorean, D., Gogolla, M., Warmer, J. (eds.) OCL for
(Meta-)Models in Multiple Application Domains, pp. 229–239.
University Dresden, Dresden (Available as Technical Report, Uni-
versity Dresden, number TUD-FI06-04-September) (2006)

37. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Consistency
checking and visualization of OCL constraints. In: Evans, A., Kent,
S., Selic, B. (eds.) UML 2000—The Unified Modeling Language,
Advancing the Standard, Third International Conference, York,
UK, 2–6 October 2000, Proceedings, LNCS, vol. 1939, pp. 294–
308. Springer, Heidelberg (2000)

38. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta
modeling: A graphical approach to the operational semantics of
behavioral diagrams in UML. In: Evans, A., Kent, S., Selic, B.

(eds.) UML 2000—The Unified Modeling Language, Advancing
the Standard, Third International Conference, York, UK, 2–6 Octo-
ber 2000, Proceedings, LNCS, vol. 1939, pp. 323–337. Springer,
Heidelberg (2000)

39. Varró, D.: A formal semantics of UML Statecharts by model tran-
sition systems. In: Corradini, A., Ehrig, H., Kreowski, H., Ro-
zenberg, G. (eds.) Proceedings of ICGT 2002: 1st International
Conference on Graph Transformation, LNCS, vol. 2505, pp. 378–
392. Springer, Heidelberg (2002)

40. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual
Machine—Definition, Verification, Validation. Springer, Heidel-
berg (2001)

41. Chiorean, D., Bortes, M., Corutiu, D.: Proposals for a widespread
use of OCL. In: Baar, T. (ed.). Tool Support for OCL and Related
Formalisms—Needs and Trends, MoDELS’05 Conference Work-
shop, Montego Bay, Jamaica, October 4, 2005, Proceedings, Tech-
nical Report LGL-REPORT-2005-001, pp. 68–82. EPFL (2005)

42. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Towards using OCL for
instance-level queries in domain specific languages. In: Demuth,
B., Chiorean, D., Gogolla, M., Warmer, J. (eds.) OCL for (Meta-)
Models in Multiple Application Domains, pp. 26–37. University
Dresden. Dresden (available as Technical Report, University Dres-
den, number TUD-FI06-04-September) (2006)

43. Baar, T., Marković, S.: A graphical approach to prove the seman-
tic preservation of UML/OCL refactoring rules. In: Virbitskaite,
I., Voronkov, A. (eds.) Proceedings, Sixth International Andrei
Ershov Memorial Conference on Perspectives of System Informat-
ics (PSI 2006), Akademgorodok near Novosibirsk, Russia, LNCS,
vol. 4378, pp. 70–83. Springer, Heidelberg (2007)

Author’s Biography

Slaviša Marković graduated
from the University of Belgrade
and currently is a PhD student and
research assistant at the Software
Engineering Laboratory (LGL),
Swiss Federal Institute of Tech-
nology in Lausanne (EPFL). His
research interests include model
transformations, model refactor-
ings, and semantics of constraint
languages.

Thomas Baar is Senior Res-
earcher and Lecturer for software
engineering at the École Poly-
technique Fédérale de Lausanne
(EPFL). His research interests
include quality-oriented software
processes, (semi-)formal specifi-
cation techniques, and automatic
verification of system implemen-
tations. Dr. Baar holds a diploma
degree in computer science from
Humboldt-University Berlin and
a doctoral degree from University
Karlsruhe. He is a member of the
ACM.

123

	Semantics of OCL specified with QVT
	Abstract
	1 Introduction
	2 A metamodel-based approach for OCL evaluation
	2.1 Official metamodels for UML/OCL
	2.2 Changes in the OCL metamodel
	2.3 Evaluation
	2.4 Binding

	3 Core evaluation rules formalized as model transformations
	3.1 Model transformation rules
	3.2 Binding passing
	3.3 A catalog of core rules
	3.4 Syntactic sugar

	4 Semantic concepts in OCL
	4.1 Evaluation of operation contracts
	4.2 Evaluation to undefined
	4.3 Dynamic binding

	5 Tailoring OCL for DSLs
	6 Related work
	6.1 Approaches to define the semantics of OCL
	6.2 Approaches to define language semantics by model transformations
	6.3 Other related work

	7 Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

