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a b s t r a c t

To test the validity of replacing a composite fermion by an elementary fermion,we calculate the transition
rate from a statemade of one free electron and one trion to a similar electron–trion pair, through the time
evolution of such a pair induced by Coulomb interaction between elementary fermions. It is convenient
to describe trion as one electron interacting with one exciton. This allows us to use the tools we have
developed in the new composite-exciton many-body theory. The trion–electron scattering contains a
direct channel in which ‘‘in’’ and ‘‘out’’ trions aremadewith the same fermions, and an exchange channel
in which the ‘‘in’’ free electron becomes one of the ‘‘out’’ trion components. As expected, momenta are
conserved in these two channels. The direct scattering is found to read as the bare Coulomb potential
between elementary particles multiplied by a form factor which depends on the ‘‘in’’ and ‘‘out’’ trion
relative motion indices η and η′, this factor reducing to δηη′ in the zero momentum transfer limit. In this
direct channel, the trion at large distance reacts as an elementary particle, its composite nature showing
up at large momentum transfer. In contrast, the fact that the trion is not elementary does affect the
exchange channel for all momentum transfers. We thus conclude that a 3-component fermion behaves
as an elementary fermion for direct processes in the small momentum transfer limit only.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The proper description of composite quantum particles has
been a long-standing problem for decades. The simplest idea by far
is to replace them by elementary particles, these particles being
fermionlike if the number of fermions they contain is odd and
bosonlike if this number is even.

A few years ago, we have reconsidered the problem of
quantum-particle compositeness through the simplest case: just
two fermions. Through a new many-body procedure [1,2] which
allows to treat Pauli exclusion between fermionic components
of these composite bosons exactly, we have shown that, in all
physical effects we have studied up to now [2], the replacement of
Wannier excitons by elementary bosonswith effective interactions
dressed by exchanges (as usually done), misses terms which can
even be dominant in problems dealing with unabsorbed photons
[3]. A way to grasp the difficulty is to note that replacement of a
free electron–hole pair by an elementary boson strongly reduces
the degrees of freedom of the system. This is beautifully seen
through the prefactor change from (1/N!) to (1/N!)2 in the closure
relation of elementary and composite bosons [4], making all sum
rules for elementary and composite bosons irretrievably different,
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whatever the effective scatterings generated by bosonization
procedures are.

Composite bosons made of two fermions now are under good
control, the subtle many-body physics of these systems resulting
from fermion exchanges being nicely visualized through the
so-called ‘‘Shiva diagrams’’ [5]. This is why it is now time to
start tackling fermionlike composite particles. In this very first
paper, we study the simplest problem: one trion made of three
different fermions — to avoid complication linked to fermion
exchange inside the particle itself. Such a 3-fermion particle can be
deuteriumatommadeof one electron, oneproton andoneneutron.
Other possibilities are H− ion made of two opposite-spin electrons
and one proton, or X− semiconductor trion [6–13] in which
proton is replaced by valence hole. While deuterium is neutral,
both H− ion and X− semiconductor trion are negatively charged.
Consequently, the scattering of such a composite fermion with a
free electron is directly related to the way charge compositeness
affects Coulomb interaction.We a priori expect this scattering to be
the bare Coulomb potential VQ between two elementary charges,
with a form factor fQ which comes from the trion composite nature.
Since at large distance, trion should appear as one elementary
negative charge, this form factor should reduce to 1 in the small
Q limit. Closer, the fact that the trion is made of two electrons and
one hole should show up through a form factor which differs from
1 when Q increases.

The purpose of this communication is to study the effect
of compositeness of fermion-like particles through the precise
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calculation of the scattering of one electron with one semiconduc-
tor trionmade of two opposite-spin electrons and one hole.We de-
rive this scattering from the time evolution of electron–trion pair
state induced by Coulomb interaction. Due to the quantum nature
of trion components, it appears that this scattering contains a di-
rect and an exchange channel. While the direct scattering tends to
the scattering of elementary particles for small momentum trans-
fer, the exchange channel leads to a scattering which has a totally
different structure. A way to physically grasp this difference, is to
say that a trionmust behave as an elementary particle in processes
in which its three fermions stay far apart from the free electron
with which it interacts, as in direct processes with small momen-
tum transfer. In contrast, trion and free electron are, by construc-
tion, not far apart when they exchange their fermions. This is why
the composite-fermion nature of the trionmust show up for all ex-
change processes.

2. Procedure

We consider a state made of one conduction electron Ke with
momentum ke, spin σ = (±1/2), and one trion J made of
one valence hole and two opposite-spin conduction electrons,
with center-of-mass momentum kj, relative motion index ηj and
total electron spin (Sj = (0, 1), Sjz = 0). Let aĎKe

be the
electron creation operator and T Ď

J the trion creation operator. The
time evolution of this electron–trion pair state, due to Coulomb
interaction included in the system Hamiltonian H , is given by
|ψt(Ke, J)〉 = exp(−iHt)|ψ(Ke, J)〉, with |ψ(Ke, J)〉 = aĎKe

T Ď
J |v〉.

By using the integral representation of the exponential, this state
also reads

|ψt(Ke, J)〉 =

∫
+∞

−∞

dx
(−2iπ)

e−i(x+i0+)t

x + i0+ − H
aĎKe

T Ď
J |v〉, (1)

which is valid for t > 0, provided that 0+ is a positive constant.
To calculate this quantity in a convenientway, we introduce the

electron creation potential [14] defined as V Ď
Ke

= HaĎKe
− aĎKe

(H +

ε
(e)
Ke
). This operator describes all interactions of electronKe with the

rest of the system. This allows us to write the key equation [14] for
correlation effects with electron Ke, namely,

1
z − H

aĎKe
=

(
aĎKe

+
1

z − H
V Ď
Ke

)
1

z − H − ε
(e)
Ke

, (2)

valid for any z. By inserting this equation into Eq. (1) and by noting
that (H − E

(T )
J )T Ď

J |v〉 = 0, the state |ψt(Ke, J)〉 splits as

|ψt(Ke, J)〉 = e−i(ε(e)Ke +E
(T )
J )taĎKe

T Ď
J |v〉 + |ψ̃t(Ke, J)〉, (3)

where the state change is given by

|ψ̃t(Ke, J)〉 =

∫
+∞

−∞

dx
(−2iπ)

×
e−i(x+i0+)t

(x + i0+ − H)(x + i0+ − ε
(e)
Ke

− E
(T )
J )

V Ď
Ke
T Ď
J |v〉. (4)

The transition rate towards another electron–trion state (K′

e, J
′)

must be identified with [15,16]

t
T(Ke,J)→(K′

e,J ′)
=

∣∣∣〈ψ(K′

e, J
′)|ψ̃t(Ke, J)〉

∣∣∣2 , (5)

in order for the RHS of this equation to cancel with t , the state
change reducing to 0 for t = 0, as readily seen from Eq. (3).
Since |ψ̃t〉 is first order in the interactions, due to the creation
potential V Ď

Ke
in Eq. (4), we find from aK′

e
(z − H)−1 deduced from
Eq. (2), that the scalar product in Eq. (5) reduces, at first order in
the interactions, to

〈ψ(K′

e, J
′)|ψ̃t(Ke, J)〉 ' 〈v|TJ ′aK′

e
V Ď
Ke
T Ď
J 〉Ft(K′

e, J
′
;Ke, J),

Ft(K′

e, J
′
;Ke, J) =

∫
+∞

−∞

dx
(−2iπ)

×
e−i(x+i0+)t

(x + i0+ − ε
(e)
K′
e

− E
(T )
J ′ )(x + i0+ − ε

(e)
Ke

− E
(T )
J )

. (6)

The t part Ft(K′

e, J
′
;Ke, J) readily gives −2iπe−it∆+/2δt(∆−),

where ∆± = ε
(e)
Ke

+ E
(T )
J ± (ε

(e)
K′
e

+ E
(T )
J ′ ), while δt(∆) =

sin(t∆/2)/π∆ is the usual delta function of width t/2. Since
δt(0) = t/2π , the transition rate from state (Ke, J) to state (K′

e, J
′)

then takes the physically expected form

1
T(Ke,J)→(K′

e,J ′)
= 2πδt(ε

(e)
Ke

+ E
(T )
J − ε

(e)
K′
e

− E
(T )
J ′ )

×

∣∣∣〈v|TJ ′aK′
e
V Ď
Ke
T Ď
J 〉

∣∣∣2 . (7)

3. Calculation of the transition rate

To calculate the matrix element appearing in this transition
rate, we first need to determine the creation potential V Ď

Ke
. By

writing the system Hamiltonian in second quantization as H =

He +Hh + Vee + Vhh + Veh, this operator reduces to [Vee + Veh, a
Ď
Ke

].
For Ke = (ke, σ ), it reads

V Ď
Ke

=

∑
q

Vqa
Ď
ke+q,σ

(∑
p,s

aĎp−q,sap,s −

∑
p,m

bĎp−q,mbp,m

)
, (8)

where bĎp,m creates hole with momentum p and ‘‘spin’’ m =

(±3/2,±1/2) orm = (±3/2) for bulk or quantum well samples.
We have shown [17] that the creation operator for trion

made of electrons with spins (s, s′) can be written in terms of
electron–exciton pairs, as

T Ď
J =

∑
ν,p

〈ν, p|ηj, Sj〉a
Ď
p+βekj,sB

Ď
ν,−p+βXkj,s′

, (9)

where βe = 1 − βX = me/(2me + mh). Operator BĎν,Q,s creates
an exciton with center-of-mass momentum Q, relative motion
index ν, and electron spin s = ±1/2. The hole spin m being
unimportant here, since we have one hole only, we can forget it to
simplify notations. This exciton creation operator reads in terms of
electron–hole pairs as

BĎν,Q,s =

∑
p

〈p|ν〉aĎp+αeQ,sb
Ď
−p+αhQ, (10)

where αe = 1 − αh = me/(me + mh) while 〈p|ν〉 is the Fourier
transform of the exciton relative motion wave function 〈r|ν〉.

By comparing the two above equations, we note that the trion
center-of-mass momentum kj splits between electron and exciton
according to theirmasses, just as the exciton does. In the sameway,
the prefactor 〈ν, p|η, S〉 in the trion expansion (9) is the ‘‘Fourier
transform in the exciton sense’’ of the trion relative motion wave
function, as shown in previous works [17,18]. Let us briefly recall
a few important points for the trion physics we have obtained in
these works.

The physically relevant spatial variables for trions, i.e. the
variables which fulfill [rn, pn′ ] = iδnn′ are (R, r,u) or (R, r′,u′),
where R = [me(re +re′)+mhrh]/(2me +mh) is the center-of-mass
coordinate, r = re−rh, andu = re′−(mere+mhrh)/(me+mh) is the
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distance between electron e′ and the center of mass of (e, h). The
other two variables (r′,u′) read as (r,u) with (re, re′) exchanged
[19]. Within these variables, the trion Hamiltonian appears as

H(re, re′ , rh) =
P2
R

2MT
+ h(r,u), (11)

where the trion relativemotion part is such that h(r,u) = h(r′,u′)
with

h(r,u) = hX (r)+
p2u
2µT

+ v(r,u). (12)

hX (r) = p2r/2µX − e2/r is the exciton Hamiltonian with effective
mass µ−1

X = m−1
e + m−1

h , while the trion effective mass is µ−1
T =

m−1
e + (me + mh)

−1. The coupling v(r,u), which comes from
interactions of electron e′ with the (e, h) pair is given by

v(r,u) =
e2

|re′ − re|
−

e2

|re′ − rh|
=

e2

|u − αhr|
−

e2

|u + αer|
. (13)

Since the trion Hamiltonian is such that H(re, re′ , rh) =

H(re′ , re, rh), the orbital eigenstates are even or odd with respect
to (re ↔ re′) exchange; due to Pauli exclusion, the even ones are
associated with electron singlet states S = 0 while the odd ones
are associated with triplets S = 1, the molecular ground state
having an even orbital wave function as usual. Within these trion
variables, the orbital parity reads 〈r,u|η, S〉 = (−1)S〈r′,u′

|η, S〉.
This condition leads, for the Fourier transform in the exciton sense,
to [18]

〈ν, p|η, S〉 =

∫
drdu〈ν|r〉〈p|u〉〈r,u|η, S〉

= (−1)S
∑
ν′,p′

〈ν|p′
+ αep〉〈p + αep′

|ν ′
〉〈ν ′, p′

|η, S〉. (14)

It is then possible to show that expression (9) for trion creation
operator also reads

T Ď
J =

1
2

∑
ν,p

〈ν, p|ηj, Sj〉
[
aĎp+βekj,sBν,−p+βXkj,s′

− (−1)SjaĎp+βekj,s′
BĎν,−p+βXkj,s

]
. (15)

This makes this operator readily creation of triplet or singlet state,
depending if Sj is equal to 1 or 0. However, calculations performed
with T Ď

J written as in Eq. (9)with 〈ν, p|η, S〉 fulfilling Eq. (14), turns
out to be far simpler than the ones using Eq. (15). (Terms like the
sum in Eq. (14) are generated by crossed scalar products when
using Eq. (15)).

Eq. (9) allows us to rewrite V Ď
Ke
T Ď
J |v〉 as

V Ď
Ke
T Ď
J |v〉 =

∑
ν,p

〈ν, p|ηj, Sj〉
(
{V Ď

Ke
, aĎp+βekj,s}B

Ď
ν,−p+βXkj,s′

− aĎp+βekj,s[V
Ď
Ke
, BĎ

ν,−p+βXkj,s′
]

)
|v〉, (16)

where {F ,G} stands for the anticommutator (FG + GF), while
[F ,G] stands for the commutator (FG − GF). Due to Eq. (8),
the anticommutator reduces to

∑
q Vqa

Ď
q+ke,σ a

Ď
−q+p+βekj,s, so that

the first part of V Ď
Ke
T Ď
J |v〉 corresponds to direct Coulomb process

between free electron Ke and the electron of the electron-
exciton pair making trion J (see Fig. 1(a)). Similarly, the second
part of V Ď

Ke
T Ď
J |v〉 corresponds to interactions with the exciton

of this pair, as seen from the commutator which reduces
to
∑

q,ν′ Vqγ−q(ν
′, ν)aĎq+ke,σB

Ď
ν′,−q−p+βXkj,s′

(see Fig. 1(b)). The
electron-exciton scattering amplitude, easy to obtain by expanding
Fig. 1. (a), (b) In order to have free electron (ke, σ ) interactingwith trion (kj, ηj, Sj)
in a convenient way, we first write trion in terms of electron-exciton pair, the
vertex being the ‘‘Fourier transform in the exciton sense’’ 〈ν, p|ηj, Sj〉 of the trion
relative motion wave function |ηj, Sj〉. In (a), the free electron interacts with the
electron part of the trion, the coupling being Vq = V−q , while in (b) the free
electron interactswith the excitonpart of the trion, the coupling beingVqγ−q(ν

′, ν):
In this interaction, the exciton goes from ν to ν ′ while its momentum change is
(−q). Exciton being neutral, γq(ν ′, ν) goes to zero when q goes to zero (see Eq.
(17)). (c): ‘‘Out’’ state made of one free electron (k′

e, σ ) and one trion (kj′ , ηj′ , Sj′ )
which results from the time evolution of the electron–trion pair state resulting from
diagrams (a) and (b).

the exciton in electron–hole pairs according to Eq. (10), leads
to [20]

γq(ν
′, ν) =

∑
p
(〈ν ′

|p + αhq〉 − 〈ν ′
|p − αeq〉)〈p|ν〉

= 〈ν ′
|eiαhq.r − e−iαeq.r|ν〉. (17)

This quantity, which also appears in the direct scattering of two
excitons, is calculated in Ref. [20]. We find 〈ν0|eiq.r|ν0〉 = (1 +

q̃2/4)−2 or (1+q̃2/16)−3/2, with q̃ = qaX , for 3D or 2D ground state
excitons, i.e. for |ν0〉 states such that 〈r|ν0〉 = e−r/aX (a3/2X

√
π)−1 or

〈r|ν0〉 = e−2r/aX 23/2(aX
√
π)−1.

All this leads to V Ď
Ke
T Ď
J |v〉 =

∑
q Vqa

Ď
q+ke,σT

Ď
J,−q|v〉, where

T
Ď
J,q =

∑
ν,p

[
aĎq+p+βekj,sB

Ď
ν,−p+βXkj,s′

+ aĎp+βekj,s

∑
ν′

γq(ν
′, ν)BĎ

ν′,q−p+βXkj,s′

]
〈ν, p|ηj, Sj〉. (18)

We now turn to the scalar product of 〈v|TJ ′aK′
e
(see Fig. 1(c))

with the two parts of V Ď
Ke
T Ď
J |v〉. For ‘‘out’’ electron K′

e = (k′

e, σ )

withmomentumk′

e and same spinσ as the ‘‘in’’ electron, this scalar
product splits into a direct and an exchange channel (see Fig. 2),

〈v|TJ ′aK′
e
V Ď
Ke
T Ď
J |v〉 = ξ dir

(
K′

e Ke

J ′ J

)
− ξ in

(
K′

e Ke

J ′ J

)
. (19)
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Fig. 2. (a) Diagram for the time evolution of the ‘‘in’’ statemade of one free electron
(ke, σ ) interacting with one trion (kj, ηj), due to their Coulomb interaction, the
‘‘out’’ state being electron (k′

e, σ ) and similar trion (kj′ , ηj′ ). (b): Direct Coulomb
scattering between free electron and trion as given in Eq. (20). (c): ‘‘In’’ exchange
Coulomb scattering between free electron and trion, as given in Eq. (21). In this
scattering, interactions take place between ‘‘in’’ particles, ‘‘in’’ and ‘‘out’’ exchange
scatterings being equal when energy is conserved (see Eq. (22)). (d): ‘‘In’’ exchange
scattering between two free electrons.

In the direct channel, the ‘‘in’’ and ‘‘out’’ trions are made with the
same fermions. Its precise value reads

ξ dir
(
K′

e Ke

J ′ J

)
= Vk′

e−ke〈v|TJ ′T
Ď

J,ke−k′
e
|v〉. (20)

In the exchange channel, the ‘‘in’’ electronbecomes one component
of the ‘‘out’’ trion. Its precise value reads

ξ in
(
K′

e Ke

J ′ J

)
=

∑
q

Vq〈v|TJ ′a
Ď
q+ke,σ ak′

e,σ
T

Ď
J,−q|v〉. (21)

Note that, in this exchange scattering, Coulomb interactions
take place between the ‘‘in’’ particles (Ke, J). This makes the
scattering rate defined in Eq. (7) not symmetrical with respect
to ‘‘in’’ and ‘‘out’’ states, as reasonable since the state which
evolves is the ‘‘in’’ state. It is, however, important to note that
the ‘‘in’’ scattering obtained through 〈v|TJ ′aK′

e
V Ď
Ke
T Ď
J |v〉 and the

‘‘out’’ scattering possibly obtained from 〈v|TJ ′VK′
e
aĎKe

T Ď
J |v〉, are

equal for energy conserving processes. Indeed, by calculating
〈v|TJ ′aK′

e
HaĎKe

T Ď
J |v〉 with H acting on the right side and on the left

side, we find

〈v|TJ ′VK′
e
aĎKe

T Ď
J |v〉 − 〈v|TJ ′aK′

e
V Ď
Ke
T Ď
J |v〉

=

(
ε
(e)
Ke

+ E
(T )
J − ε

(e)
K′
e

− E
(T )
J ′

)
〈v|TJ ′aK′

e
aĎKe

T Ď
J |v〉. (22)

Since states (Ke, J) and (K′

e, J
′) in the transition rate have the same

energy in the large t limit (see Eq. (7)), the relevant scattering for
transition rate can be calculated with Coulomb interactions acting
either between ‘‘in’’ or between ‘‘out’’ states.

4. Direct channel

LetQ = k′

e−ke be themomentum transfer of the electron–trion
scattering of interest (see Fig. 2(a)). The scattering associated to
the direct channel given in Eq. (20) appears as the bare Coulomb
scattering VQ multiplied by a form factor fQ(J ′, J) which is equal
to 〈v|TJ ′T

Ď
J,−Q|v〉. The operator T

Ď
J,−Q contains two terms. The first

one comes from free electron Ke having Coulomb interaction with
the electron part of the trion, while, in the second term, this
interaction takes place with the exciton part of the trion. In the
Q → 0 limit, the first term of T

Ď
J,−Q tends to T Ď

J , while in the
second term, γQ(ν ′, ν) goes to zero, as seen from Eq. (17): This
physically comes from the fact that exciton is neutral, so that at
large distance, i.e., at smallQ , the effects of its two opposite charges
cancel. Consequently, limQ→0 TJ,−Q = T Ď

J . This readily shows that
the form factor fQ(J ′, J) reduces to δJ ′J for Q → 0: In this limit, the
direct scattering of one free electron and one trion thus tends to
VQδJ ′J , as if the trion were an elementary particle J .

The composite nature of the trion shows up with fQ(J ′, J)
departing from δJ ′J when Q increases, i.e. at small distance, as
physically reasonable. Its precise value reads

fQ(J ′, J) = 〈v|TJ ′T
Ď
J,−Q|v〉

= δkj′ ,kj−Q
∑
ν,ν′,p

[
〈Sj′ , ηj′ |p − βXQ, ν ′

〉δν′ν

+ 〈Sj′ , ηj′ |p + βeQ, ν ′
〉γ−Q(ν

′, ν)
]
〈ν, p|ηj, Sj〉. (23)

5. Exchange channel

We now turn to the exchange scattering given in Eq. (21). Using
Eq. (9) for TJ and Eq. (18) for TJ,q, we find for trions made of
opposite-spin electrons

ξ in
(
K′

e Ke

J ′ J

)
= δk′

e+kj′ ,ke+kj

∑
q,ν′

Vq〈Sj′ , ηj′ |ν ′, q + ke − βekj′〉

×

[
〈ν ′, q + k′

e − βekj|ηj, Sj〉

+

∑
ν

γ−q(ν
′, ν)〈ν, k′

e − βekj|ηj, Sj〉

]
. (24)

It is of interest to note that, if trion J could be reduced to ele-
mentary electronwithmomentum kj, the corresponding exchange
scattering shown in Fig. 2(d)would read δk′

e+kj′ ,ke+kjVkj′−ke .We see
that the above result for the exchange scattering of one electron
and one composite trion never reduces to the one for two elemen-
tary charges, even for zero momentum transfer, i.e., for k′

e = ke,
which is the limit inwhich the direct scatterings for composite and
elementary trion are found to be the same.

The precise calculation of the form factor fQ(J ′, J) for arbitrary
momentum transfer Q, as well as the ‘‘in’’ exchange scattering
requires the knowledge of the trion Fourier transform in the
exciton sense 〈ν, p|η, S〉, i.e. the knowledge of the trion relative
motion wave function 〈r,u|η, S〉 (see Eq. (14)). While the trion
ground state energy can be obtained from variational procedures
through not too heavy numerical calculations based onminimizing
〈ψ |H|ψ〉/〈ψ |ψ〉 [21–29], the derivation of trion wave function
for bulk or quantum well samples, i.e., the resolution of the
Schrödinger equation (H − E)|ψ〉 = 0, with ψ(re, re′ , rh) =

ψ(re′ , re, rh) for 2D and 3D systems, is far more tricky: It is known
that trial functions giving good energies can in fact be very far from
the exact eigenfunctions. This iswhy itwould benecessary to really
face a more accurate solution of the Schrödinger equation in order
to get reliable form for the trion wave function. Unfortunately,
such a reliable form, realistic [30,31] but simple enough to be of
possible use for the calculation of fQ(J ′, J) and ξ in

(
K′
e Ke
J ′ J

)
, is not
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yet available in the literature and is beyond the scope of this work.
This is why the calculation of these quantities for any momentum
transfer cannot be incorporated here. We have in mind, in a near
future, to tackle the difficult problemof determining the trionwave
function along the ideas we have here developed.

6. Conclusion

This work shows that a composite fermion made of two
opposite-spin electrons and one hole behaves as an elementary
fermion for direct process in the small momentum transfer limit
only. For all other cases, in particular when fermion exchanges
take place, the compositeness of the particle affects its scattering
substantially. This work also shows that the representation of
the trion as an electron interacting with a composite exciton is
again quite convenient as it leads to very compact calculations,
the ‘‘Fourier transform in the exciton sense’’ of the trion relative
motion wave function appearing as the relevant quantity for
interacting-trion problems.
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