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Fast oscillations and in particular gamma-band oscillation (20–80 Hz) are
commonly observed during brain function and are at the center of sev-
eral neural processing theories. In many cases, mathematical analysis of
fast oscillations in neural networks has been focused on the transition
between irregular and oscillatory firing viewed as an instability of the
asynchronous activity. But in fact, brain slice experiments as well as de-
tailed simulations of biological neural networks have produced a large
corpus of results concerning the properties of fully developed oscilla-
tions that are far from this transition point. We propose here a math-
ematical approach to deal with nonlinear oscillations in a network of
heterogeneous or noisy integrate-and-fire neurons connected by strong
inhibition. This approach involves limited mathematical complexity and
gives a good sense of the oscillation mechanism, making it an interest-
ing tool to understand fast rhythmic activity in simulated or biological
neural networks. A surprising result of our approach is that under some
conditions, a change of the strength of inhibition only weakly influences
the period of the oscillation. This is in contrast to standard theoretical and
experimental models of interneuron network gamma oscillations (ING),
where frequency tightly depends on inhibition strength, but it is similar
to observations made in some in vitro preparations in the hippocampus
and the olfactory bulb and in some detailed network models. This result
is explained by the phenomenon of suppression that is known to occur
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in strongly coupled oscillating inhibitory networks but had not yet been
related to the behavior of oscillation frequency.

1 Introduction

Oscillations are a general phenomenon in the brain and develop over a
large range of frequencies. However, in awake animals and humans, fast
rhythms such as gamma frequencies (20–80 Hz) are especially prominent
(Varela, Lachaux, Rodriguez, & Martinerie, 2001). Gamma oscillations are
observed during perception in the visual (Singer & Gray, 1995; Gray &
Singer, 1989) and olfactory (Wehr & Laurent, 1996; Freeman, 1972; Adrian,
1942) systems, but also during motor control (Schoffelen, Oostenveld, &
Fries, 2005) and many other cognitive processes (for review, see Kaiser &
Lutzenberger, 2003). This makes them an important correlate of ongoing
neural processing and suggests that they might play a determinant role
in brain computations (Sejnowski & Paulsen, 2006; Varela et al., 2001). In
parallel to phenomenological observations, experimental studies have ad-
dressed the question of the mechanisms by which gamma oscillations are
generated in brain networks. In particular, pioneering studies could repro-
duce gamma oscillations in ex vivo preparations, permitting identification,
by electrophysiology and pharmacology, of the cellular and synaptic sub-
strates of rhythm generation and control. For the largest part, these exper-
iments were performed in slices of hippocampus (for review, see Bartos,
Vida, & Jonas, 2007; Traub, Bibbig, LeBeau, Buhl, & Whittington, 2004), but
similar studies were also conducted in preparations of the cortex (Buhl,
Tamas, & Fisahn, 1998) and the olfactory bulb (Lagier, Carleton, & Lledo,
2004). In all cases, these experiments demonstrated the involvement of in-
hibitory circuits, as the oscillation is always disrupted by pharmacological
blockade of inhibition. This supports the classic hypothesis that gamma os-
cillations are resulting from inhibitory feedback loops present in most brain
networks (Freeman, 1975). Beyond this important but still schematic idea,
several other processes implicated in the oscillation phenomenon were also
identified, among them excitatory synaptic transmission, gap junctions, and
neuromodulation (Traub et al., 2004). Detailed computational models of re-
alistic spiking neuron networks have attempted to deal with this complexity
for the hippocampus (Traub, Whittington, Stanford, & Jefferys, 1996; Bartos
et al., 2002) or the olfactory bulb (Davison, Feng, & Brown, 2003; Bathel-
lier, Lagier, Faure, & Lledo, 2006; Lagier et al., 2007). Nevertheless, these
models are themselves complex, which together with their specificity pre-
vents the extraction of easily understandable and transposable mechanistic
rules.

To this end, analytical methods are better for gaining a physical intuition
of the phenomenon and simplifying the search for relevant parameters
and physiological mechanisms. An important amount of research has been
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conducted in the past 20 years to mathematically formalize spiking neural
network oscillations in different regimes and under various assumptions
of network architecture, synaptic parameters, and cellular properties. We
can, however, categorize the different approaches in two main paradigms.
The first (which regroups the larger number of studies) assumes that a
population oscillation arises from the phase locking of an ensemble of neu-
rons discharging at a regular and homogeneous frequency, meaning that
average network firing rate and oscillation frequency are equal (Strogatz
& Mirollo, 1991; Abbott & van Vreeswijk, 1993; Gerstner & van Hemmen,
1993; van Vreeswijk, Abbott, & Ermentrout, 1994; Gerstner, van Hemmen,
& Cowan, 1996). In contrast, the second paradigm deals with networks of
noise-driven, irregularly firing neurons, whose average firing rate is lower
than oscillation frequency. In this case, the population oscillation is in fact
imposed by synaptic interactions, which periodically modulate the global
firing probability of the network (Brunel & Hakim, 1999; Brunel, 2000; Ger-
stner, 2000). If both paradigms are applicable to some biological examples,
the second one much better fits the irregularity of individual neurons and
their relatively low firing rates observed during gamma oscillations in intact
animals (Csicsvari, Hirase, Czurko, & Buzsaki, 1998; Friedrich, Habermann,
& Laurent, 2004) or in some in vitro preparations (Fisahn et al., 1998; Bathel-
lier et al., 2006). But despite its appeal, this paradigm has been little explored
experimentally. A reason for this might be the somewhat indirect approach
used to derive these results.

Indeed, the standard analytical approach in this paradigm is to focus
on the transition between asynchronous and oscillatory states because this
transition occurs via a supercritical Hopf bifurcation (Brunel & Hakim, 1999)
for which oscillation behavior can be well captured by a linear analysis.
Hence, this approach intrinsically assumes that the amplitude of the firing
rate oscillation is small and that its shape is close to a sine function. However,
experimental preparations often deal with fully developed oscillations, and,
for example, in the case of hippocampal slices, during oscillations the time
course of the population firing rate can clearly depart from a sine function
and approach a periodic sequence of sharp activity peaks (Fisahn et al.,
1998; Hajos et al., 2004). Moreover, while higher-order developments of the
linear theory are a possible strategy to deal with the nonlinearities of real
oscillations (Brunel & Hakim, 1999), they are limited to the vicinity of the
transition point, which is unlikely to cover the parameter range explored in
experiments.

To deal with these shortcomings we develop the following theoretical
ideas:

� For networks of homogeneous or (or weakly heterogeneous)
integrate-and-fire-type neurons, the oscillation period in the limit cy-
cle can be calculated (Gerstner & van Hemmen, 1993; Gerstner et al.,
1996; Chow, White, Ritt, & Kopell, 1998; Gerstner, 2000).
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� Inhibitory networks receiving heterogeneous but noise-free inputs
can generate oscillations in a so-called suppressive regime (Chow,
1998; White, Chow, Ritt, Soto-Trevio, & Kopell, 1998), in which a
fraction of the neurons is silenced. This regime can be compared to
the low firing rate oscillation of noisy networks in that it yields an
average network firing rate smaller than oscillation frequency (if one
considers both silent and active neurons).

� Combining the above two ideas, we can compute the full trajectory
of the instantaneous network firing rate in the limit cycle. This can
be done analytically under some simplifying assumptions (uniform
input distribution and current-based synapses; see section 4), while
in more realistic cases (gaussian input distribution, partial connec-
tivity, conductance-based synapses; see section 5), the description is
reduced to a single iterative equation that is straightforward to solve
numerically.

� Because fixed heterogeneities are actually equivalent to slow noise,
our results also hold for noise-driven networks under reasonable as-
sumptions on noise correlation time or membrane time constant (see
section 6).

In summary, our approach can be seen as a quite general framework to
treat oscillations at a low firing rate in a nonlinear regime where the popu-
lation activity exhibits large periodic activity peaks rather than sinusoidal
modulation. The mathematical treatment is based on an intuitive descrip-
tion of the phenomenon. We assume that the oscillation can be decomposed
into alternating periods of discharge and complete silence, similar to what
is observed in hippocampal in vitro preparations (Hajos et al., 2004) or
very commonly in simulations (e.g., see Figure 1). The key to the approach
and its novelty is to explicitly model the suppression phenomenon, which
decides how many neurons can spike in each cycle and how firing is dis-
tributed in time. From the number of spikes per cycle, we can deduce how
much inhibition is released after the period of discharge. This feedback in-
hibition imposes a period of silence, which terminates when inhibition has
vanished. Thus, oscillation frequency is finally obtained by computing the
time needed for the first neuron to be released from the inhibitory feedback.
Because the amplitude of the feedback depends on the period of discharge
and reciprocally, computations are performed in a self-consistent manner.

In the end, we obtain a full description of the instantaneous network
firing rate, which allows the prediction of the influence of each model pa-
rameter and, in particular, the strength of inhibition, which is not straight-
forward in a traditional framework. We thus can use our mathematical
analysis to propose an interpretation of some existing experimental and
numerical observations in which network parameters are manipulated.
Interestingly, several experiments in the hippocampus and the olfactory
bulb showed that varying inhibition strength does not affect oscillation
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Figure 1: Network and typical ensemble oscillation. (A) Sketch of the network.
Neurons receive steady heterogeneous current inputs as well as inhibitory
synapses modeled as either currents or conductances. (B) Top: In a typical
ensemble oscillation, the firing rate oscillates between periods of discharge and
complete silence. Bottom: Subthreshold voltage trace of a single quiescent neu-
ron showing the typical inhibitory phasic inhibitory postsynaptic potential.

frequency, although it can change the network firing rate (Faulkner, Traub,
& Whittington, 1998; Fischer & Durr, 2003; Bathellier et al., 2006). This re-
markable stability property was also observed in simulations of detailed
recurrent inhibitory networks (Kopell & Ermentrout, 2004; Bathellier et al.,
2006; Vida, Bartos, & Jonas, 2006) but did not have a clear explanation. In
fact, this property cannot be explained according to the standard model
of interneuron network gamma oscillation (ING) where all neurons fire on
each cycle (Wang & Buzsáki, 1996; Chow et al., 1998; Whittington, Traub,
Kopell, Ermentrout, & Buhl, 2000). In this case, the number of spike per cycle
is fixed, and the amplitude of the inhibitory feedback that sets the duration
of the cycle is proportional to the amplitude of single inhibitory events. In
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the suppressive regime that we consider here, inhibition strength controls
the amplitude of the inhibitory feedback (and thereby the duration of the
silent period) in two antagonist ways: first, via the amplitude of the individ-
ual inhibitory events constituting this global feedback, and second, via the
number of spikes fired in the period of discharge. We show that while the
first one increases with inhibition strength, the second one decreases due to
a more rapid suppression of the period of discharge. For sufficiently large
heterogeneities (or noise), these two effects tend to be balanced, stabilizing
the duration of the oscillatory cycle. This explanation therefore suggests
that suppression can play an important role in the mechanism of some
gamma oscillations in brain networks.

2 Neural Network Model and Preliminary Assumptions

We consider a network of M leaky integrate-and-fire neurons, each de-
scribed by its membrane voltage Vi , receiving heterogeneous but con-
stant current inputs I het

i and interconnected by inhibitory synapses (see
Figure 1A). When Vi is crossing a threshold θ , the neuron emits a spike,
and its voltage is reset to a lower-value Vreset . Below threshold, the voltage
obeys the differential equation

C
dVi

dt
= − 1

R
(Vi − VL ) + I het

i − I syn
i (t), (2.1)

where C and R are the membrane capacitance and resistance, respectively,
and I syn

i (t) is the total inhibitory current received from synapses.1 For con-
venience, we introduce vi = Vi − θ and put equation 2.1 in an integral form
(starting from the time of the last spike t̂i ):

vi (t) = Ui + (Vreset − θ − Ui )e− t−t̂i
τm − 1

τm

∫ t

t̂i
e− t−x

τm αi (x) dx, (2.2)

with τm = RC , Ui = VL − θ + RI het
i , and αi (t) = RI syn

i (t). Note that after
this rescaling of voltage, the firing threshold is at vi = 0. A single synaptic
input causes a transient current of shape,

s(t) =
(

e− t−τl
τd − e− t−τl

τr

)
�(t − τl ), (2.3)

where τd , τr , and τl are, respectively, the decay time, rise time, and latency
of the synaptic event, and �(t) is the Heaviside step function (�(t) = 1

1Note that here we use current-based synapses; an extension of our approach to
conductance-based synapses is discussed in section 5.2



Gamma Oscillations in a Nonlinear Regime 2979

for t ≥ 0 and zero otherwise). We suppose that the network has all-to-all
connectivity,2 and we describe the activity of the network by a function
ν(t) = ∑

δ(t − t f
i ) where t f

i is the time of spike f in neuron i . Note that
in the limit of large network, ν(t) is the instantaneous firing rate of the
network. The total synaptic current received in a neuron is then

αi (t) = α(t) = J
∫ +∞

−∞
s(t − x)ν(x) dx, (2.4)

where J is the amplitude of a single inhibitory postsynaptic potential. We
suppose that the network has reached an oscillatory state, which should
typically appear when inhibitory coupling becomes stronger than a criti-
cal value Jc (or equivalently, below a critical value of heterogeneity; White
et al., 1998; Neltner, Hansel, Mato, & Meunier, 2000; Hansel & Mato, 2003).
This oscillatory regime corresponds to a weak locking of neuronal firing
for which small time delays are observed between the spikes of differ-
ent neurons (Gerstner, Ritz, & van Hemmen, 1993; Chow, 1998; Kopell &
Ermentrout, 2004). If inhibition is further increased, the oscillation can go in
a so-called suppressive regime in which some of the neurons are not able to
fire (White et al., 1998; Chow et al., 1998). In addition, this regime typically
corresponds to an oscillation in which the network alternates between a
period of complete silence and a period of discharge (see Figure 1B). Sup-
posing that we have reached this clearly nonlinear regime and taking T to
be the period of an oscillation, we decompose the global firing ν(t) into a
sum of identical T-shifted functions,

ν(t) =
+∞∑
j=0

r (t − jT), (2.5)

where r (t) represents the time course of the firing during a single oscillation
cycle. The hypothesis that the network goes through a true period of silence
imposes that r (t) is positive on [0; T ′] with T ′ < T and is zero otherwise.
In other words, 0 marks the beginning of the period of discharge. Under
the assumption of periodic firing, the current received by each neuron (see
equation 2.4) can be written in the form

α(t) = J
∫ +∞

−∞
s(t − x)r (x) dx + J

+∞∑
j=1

∫ +∞

−∞
s(t − x)r (x − jT) dx, (2.6)

which conveniently separates the contribution of synaptic events appearing
in the oscillations cycle (i.e., at t ≥ 0) from those received in previous cycles

2Note that an extension of our approach to partial connectivity is discussed in
section 5.3.
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(i.e., at t < 0). The contribution of previous cycles can be computed in two
geometrical sums because s(t) is composed of two exponential functions
(see equation 2.3). This gives, for t ∈ [0; T],

αprevious(t) = J e− t+T−τl
τd

1 − e− T
τd

∫ T

0
e

x
τd r (x) dx − J e− t+T−τl

τr

1 − e− T
τr

∫ T

0
e

x
τr r (x) dx, (2.7)

3 Self-Consistent Equations for the Firing of the Oscillating
Network

The integration of synaptic currents in the membrane dynamics (i.e., in
equation 2.2) determines when each neuron eventually spikes and thus
determines the function r (t). Based on this idea, it is possible to deduce
a self-consistent equation for r (t). To do so, we first approximate voltage
trajectories for each neuron close to the time of spike emission (i.e., in the
period of discharge) and then apply the threshold condition to obtain an
equation for spike times.

3.1 Simplification of the Membrane Voltage. We suppose that the pop-
ulation is in an oscillation of (yet unknown) oscillation period T . Each pe-
riod can be separated in an active phase of duration T ′ ≤ T , where many,
but not necessarily all, neurons fire, and a silent phase of duration T − T ′.
When integrating the current α(t) in equation 2.2, we make two simplify-
ing assumptions, which are motivated by the nonlinear regime hypothesis
and the typical range of neuronal and synaptic parameters in biological
networks:

1. We suppose the synaptic rise time τr to be small compared to de-
cay time τd and to the duration of the silent period T − T ′ such
that e− T−T ′

τr � e− T−T ′
τd . This is in fact a reasonable assumption for most

synapses and for nonlinear oscillations in the gamma range.

2. We suppose that e− T−T ′
τm � e− T−T ′

τd . On the one hand, the use of this
hypothesis is fostered by the observation that oscillations in het-
erogeneous networks are stable only in the regime where roughly
τm � T and τm � τd (i.e., phasic regime; White et al., 1998).3 On
the other hand, small, effective membrane time constants are typi-
cally observed during intense synaptic activity in biological networks
due to conductance effects (Destexhe, Rudolph, & Pare, 2003), which

3Note that this approximation can very well be valid even if τm/τd is of the order of
few units. For this reason, we keep first-order terms in τm/τd in the rest of the derivation.
This in particular improves numerical agreement with simulations when τm/τd is rather
large, such as in Figures 3 and 4A.
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represents another justification of this hypothesis in the extension of
our approach to conductance-based synapses.

It follows from the first assumption that during the period of discharge
(t ∈ [0; T ′]), we can neglect the term in τr against the term in τd in the
expression of αprevious(t) in equation 2.7. The second assumption allows us
to neglect (i) the influence of the reset that followed the spikes that occurred
in previous cycles (see equation 2.2) and (ii) the exponential terms with time
constant τm that result from the integration of αprevious(t) in the membrane
voltage equation (see the last term in equation 2.2). Let us define:

N =
∫ T ′

0
e

x
τd r (x) dx. (3.1)

The parameter N represents the number of spikes fired in the pe-
riod of discharge in each cycle, since we have x < T ′ � τd , implying
that

∫ T ′

0 e
x
τd r (x) dx ≈ ∫ T ′

0 r (x) dx. Using the previously presented approxi-
mations and combining equations 2.2 and 2.6, we obtain an approximate
description of the membrane voltage close to the point where a neuron with
drive Ui reaches the threshold for the first time after t = 0:

vi (t) 	 Ui − J Ad Ne− t+T−τl
τd

1 − e− T
τd

− J
∫ t

0
vsingle(t − x)r (x) dx, (3.2)

with Ad = τd
τd−τm

and vsingle(t) being the shape of the membrane voltage
variation resulting from a single synaptic event, that is, the convolution
of s(t) with the membrane filter (e− t

τm ) (here without approximation). This
equation is fairly intuitive. The first term on the right-hand side represents
the constant drive Ui received by each neuron. The second term describes
the fraction of the voltage that results from the synaptic currents received
in previous oscillation cycles (i.e, for t < 0). It corresponds to the inhibition
barrage that prevents firing in the silent period of the cycle (see Figure 2A).
The third term describes the fraction of the voltage that results from synaptic
currents received during the cycle (i.e., for t ≥ 0) from neurons that have
spiked just before neuron i . Contrary to the second term, this term tends to
increase over time during the period of discharge (i.e., accumulation of new
synaptic events; see Figure 2B). By progressively bringing neurons away
from threshold, this term actually mediates the suppression phenomenon
and terminates activity during each cycle.

3.2 Equations for the Oscillation Period and Single Neuron Spike
Times. We now suppose that each neuron of the network fires at most once
in a cycle as it is commonly observed in brain slice experiments (Fisahn
et al., 1998; Bathellier et al., 2006). This allows us to deduce all spike times
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Figure 2: Mechanisms of the oscillation. (A) The silent period is imposed by the
barrage of inhibitory events (IPSPs) generated during the period of discharge.
The duration of the silent period depends mainly on waveform of the global
IPSP (gray dashed line superimposed onto the voltage trace). (B) The spiking
phase resumes when the first neuron reaches threshold—first action potential,
(AP) in the AP sequence. The voltage trajectories in subsequent neurons are de-
viated downward by the new IPSPs coming from preceding neurons (compare
actual trajectories with trajectories in the absence of IPSPs, i.e., unperturbed).
Ultimately these IPSPs suppress the spiking of the less excited neurons, leading
to the end of the period of discharge.

directly from equation 3.2 and forget about the dynamics of neurons right
after reset (except that we assume the reset to be strong enough to prevent
any neuron from firing again before the end of the period of discharge).
Spike time ti in each neuron i is given by the threshold condition v(ti ) = 0.
However, the period of discharge starts by definition at time t = 0, when
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inhibition has vanished enough for a first neuron (denoted i0) to reach the
firing threshold (see Figure 2B). At this time point, applying vi0 (0) = 0 to
equation 3.2 gives an equation for the oscillation period:

Ui0 = J NAde− T−τl
τd

1 − e− T
τd

. (3.3)

In fact, because all neurons are supposed to receive the same synaptic
currents here, the first neuron to fire is the one with the largest current
drive, so Ui0 = max(Ui , i ∈ [1 : M]). The threshold is then reached by other
neurons, following the inverse order of their current drives (see Figure 2B).
Therefore, we order the neurons decrementally according to their current
input with index k. We also now take r (t) = ∑

δ(t − tk), where tk represents
the time of the spike in neuron k. By combining equations 3.2 and 3.3, we
obtain an equation for the time of each spike in the oscillation cycle:

Uk = Ui0 e− tk
τd + J

k−1∑
i=0

vsingle(tk − ti ). (3.4)

Because we know the distribution of the Uk , this equation can be solved
by recurrence until a value K (note that K ≈ N) for which a jump in the
solution is observed (tK − tK−1 
 tK−1 − tK−2). This marks the end of the
period of discharge (T ′ = tK−1) and occurs when the second term on the
right-hand side has increased enough (i.e., the newly generated inhibitory
currents are able to silence neurons with the weakest drives; see Figure
2B). Having the tk ’s and thereby the quantity N, it is straightforward to
compute the period T via equation 3.3, leading to a full description of the
oscillation. It noteworthy that T here explicitly depends on the product
J N (amplitude of a single inhibitory event times roughly the number of
spikes fired in a cycle), but that N will decrease with an increasing J via
the feedback process appearing on the left-hand side of equation 3.4 and
which drives the suppression of firing. Therefore, the description obtained
here fairly well summarizes the intuitive argument made in section 1 to
explain the stability of the oscillation period with respect to J . But the exact
dependencies of N in J and other parameters are still unknown. They can,
however, be explored by solving the spike time equation (see equation 3.4).

4 Analytical Solution of the Spike Time Equation for a Uniform
Heterogeneity Distribution

Explicit solutions of the spike time equation are difficult to obtain in the
general case. But if we suppose that the distribution of heterogeneities is uni-
form and the number of neurons is large, it is possible to derive a continuum
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equation, which can be solved analytically. While such a distribution is not
commonly observed in most biological networks, the analytical results ob-
tained in this section are still mostly valid to explain the qualitative behavior
of more realistic models, as we show in section 5.

4.1 Derivation and Resolution of the Continuum Equation. The con-
tinuum equation is obtained in the limit of large networks (M → ∞) for
which r (t) becomes the instantaneous firing rate of the network and the
interspike intervals go to zero (tk+1 − tk → 0). Continuous and discrete de-
scriptions can be linked by the relation

∫ tk+1

tk
r (x) dx = 1, which becomes

(tk+1 − tk)r (tk) = 1 when approximated to the first order in tk+1 − tk . When a
first-order development of equation 3.3 is used for two consecutive spikes,
the interspike interval can also be expressed as

Uk+1−Uk = (tk+1−tk)
d
dt

(
Ui0 e− t

τd + J
∫ t

0
r (x)vsingle(t − x) dx

)
tk

. (4.1)

The combination of these two expressions for the interspike interval
gives an equation for r (t), provided that we can approximate the random
uniform distribution of input drives by a regular distribution Uk = Umax −
k �U

M where �U = Umax − Umin is the width of the distribution and M the
total number of neurons:

r (t) = − M
�U

d
dt

(
Ui0 e− t

τd + J
∫ t

0
r (x)vsingle(t − x) dx

)
. (4.2)

If we take τl = 0 (i.e., no latency) and exploit that the integral repre-
sents a convolution by three exponential terms, equation 4.2 becomes an
inhomogeneous third-order linear differential equation. However, to re-
duce the complexity of the solution, we assume that T ′ � τd , which is
typically observed in the nonlinear regime (e.g., see Figures 1 and 3), and
we obtain a second-order differential equation (the derivation is detailed in
appendix A),

τmτr
d2r
dt2 + (τm + τr )

dr
dt

+
(

1 + J M
�U

)
r (t) = MUi0

τd�U
, (4.3)

with initial conditions r (0) = M
τd

Ui0
�U and dr

dt (0) = 0.
For the solution of this equation to cross zero at least once for positive

times (which is required to fulfill the hypothesis that network discharge
in a cycle spans a finite time interval), it is necessary that the quantity
δ = 4 τmτr (1+J M/�U)

(τm+τr )2 − 1 be positive (this condition can be seen as a rough ap-
proximation of the minimal inhibition strength at which a stable or unstable
oscillatory solution for the network firing rate exists). In this case, setting
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a = 1
2τm

+ 1
2τr

and b = a
√

δ, we obtain the time course r (t) of the firing rate
in each cycle:

r (t) = Ui0

τd J

J M
�U

1 + J M
�U

(
1 + J M

�U

(
cos(bt) + 1√

δ
sin(bt)

)
e−at

)
. (4.4)

In the limit of T ′ � τd , equation 3.3 for the period of the oscillation can
be rewritten as

T = τd ln

(
J Ad

Ui0

∫ T ′

0
r (x) dx + 1

)
, (4.5)

where T ′ is the time at which network activity terminates (i.e., the solution of
r (T ′) = 0). These solutions are observed to be in rather good agreement with
simulations of the full network, especially for oscillations that are far from
the transition between the asynchronous and oscillatory state (see Figure 3).
They are also very close to the numerical resolution of equations 3.4 and
3.3 (see Figure 3). Unsurprisingly, the quality of frequency predictions de-
creases close to the bifurcation (see Figure 3B). This is due to the terms
neglected when deriving equation 3.2, in particular, the voltage reset fol-
lowing spikes. The latter term tends to make neurons fire later in a cycle
(or be suppressed) than when they are fired in the previous one (this in fact
explains that the firing period is slightly longer in simulations, e.g., Figure
3A). We observed that this results in either the destabilization of the oscil-
lation or the creation of additional slower frequencies in some conditions
(in some cases, a small proportion of neurons can be observed to fire in a
fraction of the cycles). But interestingly, we find in any case, an excellent
agreement between analytical results and simulations for the time-averaged
network firing rate ν0 = 1/T

∫ T
0 r (t)dt, after but also before the bifurcation

(see Figure 3B).

4.2 Solution and Parameter Dependencies in the Limit of Strong
Inhibition. Because the nonlinear regime is typically obtained for large
amplitudes of inhibition, it is interesting to consider the limit J M 
 �U.
In this case, formula 4.4 can be simplified into

r (t) = Ui0

τd J
J M
�U

cos(b̃t)e−at, (4.6)

where b̃ = 2a
τm+τr

√
J Mτmτr

�U . The duration of the discharge becomes T ′ = π b̃−1.
Using the fact that for J M/�U 
 1, we have 1/T ′ ∼ b̃ 
 a , we also obtain
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Figure 3: Oscillation in a network receiving a uniform distribution of inputs
and all-to-all connectivity. (A) Firing rate during the spiking period in simula-
tions for a random and a regularly interspaced distribution of inputs (mean of
40 periods) and predictions of our theoretical framework (analytical and numer-
ical solutions of the spike time equation are shown). (B) Oscillation frequency
(B1), coherence (B2), and network average firing rate (B3) when inhibition
strength is varied: simulations and theoretical predictions. In B1, no finite so-
lutions of equation 4.4 or equation 3.3 are found found beyond the left end of
the curves. Coherence is the mean vector strength (

√
〈sin φi 〉2 + 〈cos φi 〉2) of the

spike phases (φi ) measured between successive peaks of the membrane volt-
age averaged over the entire population. The dashed line in B2 indicates the
transition between asynchronous and oscillatory states observed in simulations.
(C–E) Simulations and theoretical predictions of oscillation frequency and mean
firing rate for variations of the synaptic rise (C) and decay (D) time, and of the
mean input current while �U is kept constant (E). Simulation parameters when
not varied: M = 961 neurons, θ = −52 mV, Vreset = VL = −70 mV, τm = 5 ms,
U = 〈Ui 〉 = 60 mV, �U = 0.2 〈Ui 〉, τd = 20 ms, τr = 3 ms, τl = 0. In A, E , F , and
G, J = 0.71 mV.
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from the integration of r (t) in equation 4.5 a simple closed-form formula for
the period of oscillation:

T = τd ln

(√
J M
�U

√
τrτm

τd − τm
+ 1

)
, (4.7)

which is in fact numerically similar to the nonsimplified solution (see
equations 4.4 and 4.5) far from the bifurcation (see Figure 3B). This ex-
pression clearly shows that the important parameters for the determination
of oscillation frequency are synaptic and membrane time constants as well
as the ratio of inhibition over network heterogeneities (i.e., the dispersion
of membrane voltages �U).

The dependency on τm and τr can be understood intuitively. Both param-
eters are setting the rise of inhibitory events, which controls the number of
spikes fired in each cycle. Slower rise of inhibition implies slower silencing
and thus more spikes. This strengthens the global inhibitory feedback that
follows the discharge and prolongs the period of silence, thereby decreasing
oscillation frequency (see Figure 3C). The same intuitive explanation could
be given for the role of inhibition latency, although it was not considered
here in the analysis (but see Figure 5A).

The role of the decay time τd is less intuitive. Because it controls the
duration of inhibitory events, τd sets the duration of the period of silence.
But it also determines the rate at which neurons of the population cross the
threshold during the period of discharge (via the slope of the membrane
potential; see equation 3.4). Therefore, it also controls the number of spikes
fired in the cycle (which is represented by the term inside the logarithm
in formula 4.7). For large τd , these effects tend to compensate for each
other, canceling the influence of τd on population frequency (see Figure 3D).
Interestingly, the influences of τd and τr on frequency, observed here in a
heterogeneous network, are similar in noisy networks (Brunel & Wang,
2003).

It is also noteworthy that while the spread �U of heterogeneities con-
tributes in setting the oscillation frequency, the average drive 〈Ui 〉 does not
have any influence (see Figure 3E). However, the time-averaged network
firing rate depends linearly on this parameter.

Finally, the dependency on inhibition strength is weak (i.e., via the log-
arithm of a square root; see also Figure 3B), which corresponds to observa-
tions made in simulations of comparable heterogeneous networks (Kopell
& Ermentrout, 2004). This weak dependency is explained by the fact that
the decrease in the number of spikes per cycle for larger inhibition does
not perfectly balance the increase of the strength of individual synaptic
current. As a result, the period of silence becomes longer, and frequency
decreases. Importantly, formula 4.7 clearly shows that oscillation frequency
cannot reach an extremum (or a plateau) for large J as observed in some
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numerical studies of more realistic networks (Bathellier et al., 2006; Vida
et al., 2006) and in some experiments (Bathellier et al., 2006; Fischer & Durr,
2003; Faulkner et al., 1998). In order to obtain this behavior, it is necessary
to extend the model to more realistic assumptions, as we show in the next
section.

5 Extensions to Biologically Realistic Neuronal and Network
Features

5.1 Gaussian Distributions of Heterogeneities. For any distribution of
inputs, it is straightforward to solve equation 3.4 numerically, supposing,
for generality, that inputs are distributed regularly (i.e., Uk = F −1(1 − k/M)
where F is the cumulative distribution function and M the total number
of neurons). We can therefore also easily predict both the firing rate and
oscillation frequency for a gaussian distribution of inputs, which are more
likely to approximate the reality of biological neural networks. This pre-
diction rather well approximates simulations of the full network (e.g., see
Figure 4A). The main discrepancy between uniform and gaussian distribu-
tions is that for the latter, the voltage difference between two consecutive
neurons (�U/M in the uniform distribution) is larger in the tails than in the
center of the distribution, meaning that the level of heterogeneity is locally
higher. For example, this attenuates the decrease of frequency for strong
inhibition that progressively restricts the firing to neurons in the upper tail
of the distribution and increases heterogeneities (see Figure 4A; see also
the effect of increasing �U in equation 4.7). This effect is, however, not
strong enough to yield a minimum or a plateau of frequency for large J . It
is noteworthy that this effect is also responsible for a decrease of frequency
when the mean of the input distribution is increased while the variance is
kept constant (e.g., see Figure 5D), which is not observed for the uniform
distribution (see Figure 3E).

5.2 Conductance-Based Synapses. In real neurons, synaptic currents
are the result of conductance changes and therefore depend on membrane
voltage. If we account for this property in our model, the total synaptic
current has to be written as I syn

i (t) = (V(t) − Esyn)Gi (t), where Esyn is the
reverse potential of the synapses and Gi (t) is the total synaptic conductance.
However, under the assumptions that G(t) varies little around its average
and that the membrane voltage stays close to threshold (see appendix B), the
conductance-based model can be reduced to a canonical voltage equation
similar to the one introduced for the current-based model (see equation 2.2).
The only difference with the latter is that we have to work with an effective
membrane time constant τ ∗

m = RC
1+R〈G〉t

, which depends on the time average
of the total inhibitory conductance 〈G〉t . Supposing that a single synaptic
opening leads to a maximum conductance Gmax with a transient time course
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Figure 4: Oscillation robustness to changes in inhibition strength. (A) Net-
work with a gaussian distribution of inputs and synapses modeled as currents.
(A1) Instantaneous population firing rate during the period of discharge in
simulations compared to numerical results based on our theoretical framework
(solution of equation 3.4). σU = 0.006 〈U〉 and J = 0.71 mV. (A2) Oscillation fre-
quency and firing rate in simulations compared to our theoretical predictions
for two different values of input variance σU = RσI . All parameters except σU

are the same as in Figure 3. (B) Same as Abut with synapses modeled as conduc-
tances. Parameters: M = 961 neurons, R = 100 M�, C = 500 pF, θ = −52 mV,
Vreset = VL = −70 mV, VG = −70 mV, 〈I 〉 = 3 nA, τd = 10 ms, τr = 2 ms, τl = 1
ms. In B1, we took σI = 0.14〈I 〉 and J = 2 nS. (C) Same as B2 but for random
connectivity and connection probability p = 0.7. Note that oscillation frequency
goes through a minimum when inhibition strength is large. Parameters are the
same as in B. (D) Simulations of a network of 100 detailed neurons taken from
(Bathellier et al., 2006), for all-to-all (filled symbols) and partial connectivity
(empty circles). A minimum in oscillation frequency is observed for partial
connectivity.
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Figure 5: Influence of synaptic time constants and input parameters on fir-
ing rate and oscillation frequency for a gaussian distribution of inputs and
conductance-based synapses. (A) Synaptic latency. (B) Rise time. (C) Decay
time. (D) Input mean only. The standard deviation is fixed to σI = 0.15 nA.
(E) Mean 〈I 〉 and standard deviation σI of the input distribution are both
changed in the same proportion and σI = 0.05 〈I 〉. Otherwise, if not varied, sim-
ulation parameters are: M = 961 neurons, R = 100 M�, C = 500 pF, θ = −52
mV, Vreset = VL = −70 mV, VG = −70 mV, τd = 10 ms, τr = 2 ms, τl = 1 ms,
〈I 〉 = 3 nA, σI = 0.05 〈I 〉, and the peak conductance of single inhibitory events
Gmax = 2 nS.

s(t) as in equation 2.3 with a decay time τd much larger than the rise time,
the mean conductance is given by

〈G〉t = Gmax
Nτd

T
. (5.1)
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Because the membrane time constant now depends on the two unknown
parameters N and T , the solution rN,T (t) of the spike time equation is also a
function of N and T . However, both N and T can be determined by solving
N = ∫

rN,T (t)e
t

τd dt together with equation 3.3 for the oscillation period.
This can be easily performed numerically, yielding predictions that are in
good agreement with simulations of the full network (e.g., for a gaussian
distribution of inputs in Figure 4B). The results interestingly show that
the dependencies of oscillation frequency on inhibition strength (compare
Figures 4A and 4B) and on synaptic time constants (compare Figures 3
and 5) are similar for current- and conductance-based synapses, indicating
that conductance effects have little influence on the qualitative behavior
of the oscillation. The intuitive explanation of this observation is that the
quantity N/T is roughly equal to the time-averaged network firing rate,
which for large J varies close to linearly with the inverse of Gmax and τd

and depends little on τr (see Figures 3, 4, and 5). Hence, 〈G〉t can have only
a weak contribution on oscillation properties.

5.3 Extension to Partial Connectivity. It should be accounted for that in
biological networks, each neuron is connected to only a fraction of the other
neurons. In this case, the total current (or conductance) received in each cell
i becomes a random variable. If we take the simple example of a randomly
connected network with constant probability p < 1, then the number of
synaptic events received by each neuron is roughly Np(1 + σNχi ), where χi

is a random variable with a unitary gaussian distribution (in the limit of

large N) and with σN =
√

1−p
pN . This gives a slightly modified equation for

the spike times:

0 = −Uk + J pNAd
(1 + σNχk)e− T+tk −τl

τd

1 − e− T
τd

+ J p
k−1∑
l=0

vsingle(tk − tl ). (5.2)

The period T is defined by

Ui0

1 + σNχi0

= J pNAde− T−τl
τd

1 − e− T
τd

, (5.3)

in which i0 stands for the index of the first neuron that is able to reach the
threshold at the end of the silent phase. Setting Z0 = Ui0

1+σNχi0
, equation 5.2 can
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be simplified into the same form as equation 3.4 if we neglect the quantity
Z0σNχk(1 − e− t

τd ):

0 = Ũk + Z0e− t′k
τd + J p

k−1∑
l=0

vsingle(t′
k − t′

l ). (5.4)

In this form, the effective heterogeneity in the network Ũk = Uk − Z0σNχi

is simply the sum of input and synaptic heterogeneities. If we consider the
case in which the Uk ’s are normally distributed with variance σ 2

U , Ũk also
has a gaussian distribution with variance σ̃ 2

U = σ 2
U + Z2

0σ
2
N.

With this evaluation of the effective variance of heterogeneities, we can
obtain good agreement between the numerical solution of the spike time
equation and simulations of the full network. Interestingly we observe that
the frequency of oscillation goes through a minimum for large inhibition
strengths (see Figure 4C). This is due to synaptic heterogeneities that domi-
nate over input heterogeneities in the limit of strong inhibition. The variance
of the total synaptic current received by a neuron is roughly linear in the
strength of inhibition J (σ 2

N ∼ N−1 ∼ J ). This adds up with the tail effect of
the gaussian distribution, increasing the effective voltage dispersion (i.e.,
effective �U) such that it can balance the increase in J , implying a stabi-
lization of oscillation frequency (frequency depends on inhibition via the
ratio of J over voltage dispersion; see section 4). A minimum in oscillation
frequency for strong inhibition has already been reported in some numer-
ical studies that consider networks of detailed neurons with biologically
realistic inhibitory connectivity (Bathellier et al., 2006; Vida et al., 2006). We
could verify that for the detailed neuron model used by Bathellier et al.
(2006), partial connectivity is required to observe the minimum in oscilla-
tion frequency and therefore also explains this effect (see Figure 4D).

6 Link Between Fixed Heterogeneities and Temporal Noise

Our approach assumes fixed heterogeneous input currents and no noise.
However convenient this “quenched noise” hypothesis might be, it is
undeniable that real neurons also receive randomly fluctuating inputs.
Inhibition-dependent oscillations in homogeneous, noise-driven networks
and in heterogeneous, deterministic networks show one clear difference.
For the former, all individual neurons fire irregularly but with the same
overall firing rate (see Figures 6B and D), whereas for the latter, one fraction
of the cells regularly fires at oscillation frequency while the rest is silent
(see Figures 6A and 6D). That said, neither of these two extreme cases ac-
tually represents the biological reality because both fast noise and steady
heterogeneities exist in brain networks, although it is not clear in which
proportion. Hence, one should expect that neuronal firing in a brain net-
work is not fully stochastic (see Figure 6C) and that the distribution of firing
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Figure 6: Link between heterogeneous and noisy inputs paradigms. (A–C) In-
stantaneous network firing rate and single neuron voltage traces for a network
driven by heterogeneous steady inputs only (A), colored noise inputs only
(C), or both (B). In B, noise and heterogeneities respectively contribute 30% and
70% of the total current standard deviation. Simulation parameters are as in
Figure 4B with Gmax = 2.6 nS, τnoise = 5 ms. In A, σI = 0.45 nA. In C , σnoise =
0.45 nA. In B, σI = 0.315 nA and σnoise = 0.135 nA. (D) Distribution of neuronal
firing rates for all 961 neurons of the network for the three mentioned cases.
In the case of heterogeneity, neurons with a small index receive the weakest
drive. The dashed lines represent the oscillation frequencies. From top to bot-
tom: heterogeneities, noise, both. (E) Firing rate and oscillation frequency in
a network driven by colored noise when the noise time constant is changed.
Synapses are modeled as currents, and the membrane time constant τm is set
to 5 ms. In this case, the heterogeneous input paradigm gives good analytical
predictions. Parameters are as in Figure 4A, with J = 0.92 mV, Rσnoise = 1 mV,
and no heterogeneity (i.e. σI = 0). (F) Same as E but for synapses modeled as
conductances. In this case, the time constant is variable but smaller than 1 ms.
The quality of the prediction drops for lower noise time constants. Parameters
are as in Figure 4B but with Gmax = 2.6 nS, σnoise = 0.45 nA and σI = 0.
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rates in the population is heterogeneous but to some extent homogeneized
by noise (see Figure 6D). Nevertheless, the full regularity of neuronal firing
is not a requirement for the validity of our approach.

Indeed, our framework requires simply the statistics of the voltage dis-
persion to be constant from one cycle to another and the distribution of
membrane voltages in the population to be constant during the period of
discharge (this is explicitly supposed in the derivation of the spike time
equation). The first condition is fulfilled if input currents are stationary
stochastic processes, and the second condition simply imposes that voltage
fluctuations are slow enough. Namely, our framework should remain valid
as long as the duration of the period discharge T ′ is much smaller than
the correlation time τv of the noisy membrane voltage. Voltage fluctuations
result from the filtering of current inputs by the membrane dynamics, im-
plying that their correlation time will be close to the largest of membrane
time constant τm and of the correlation time of the noisy input τnoise. There-
fore, the slow noise hypothesis holds in any case if the membrane time
constant is itself much larger than the duration of the period of discharge,
and otherwise if input fluctuations are slow enough.

If we take σ 2
noise to be the variance of the noisy input (gaussian noise), it

is easy to deduce the effective standard deviation of voltage fluctuations:

σU = σnoise√
1 + τm/τnoise

. (6.1)

In the slow noise limit, σU can be directly used as the standard devia-
tion of the input currents Uk in order to solve the spike time equation (see
equation 3.4). The condition τm 
 T ′ can be typically obtained with current-
based synapses that do not affect the membrane time constant, and in this
case, both oscillation frequency and network firing rate can be accurately
predicted by our framework for any correlation time of the noisy input (see
Figure 6E; τm = 5 ms, discharge period: ∼1 ms). In contrast, if the membrane
time constant is small (e.g., with strong activations of conductance-based
synapses), the predictions of our framework can be accurate only for large
noise correlation times (see Figure 6E; τm < 1 ms, discharge period: 1–2 ms).
When the noise correlation time is small, our approach actually tends to
overestimate oscillation frequency and underestimate the average network
firing rate, which means that the strength of the suppression phenomenon
is overestimated. Fast noise is expected to increase the rate of threshold
crossings as compared to heterogeneous, noise-free trajectories with the
same variance. This leads to a more intense and narrower discharge period
than predicted and results in a prolongation of the oscillation period. It is
noteworthy that in principle, this effect does not affect in their substance
the mechanisms described in the noise-free case and that parameter depen-
dencies should be qualitatively the same for fast noise as for heterogeneous
networks. It is therefore not surprising that, for example, the dependencies
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of oscillation frequency on the synaptic time constants in the heterogeneous
case are qualitatively very similar to those already observed in the noisy
case (compare Figures 3 and 5 with Geisler, Brunel, & Wang 2005; Brunel
& Wang 2003). Conversely, our approach can be very useful for accurately
predicting the behavior of oscillations in noisy networks with respect to
variations of any parameter, in a strongly nonlinear regime where existing
approaches are not adequate.

7 Discussion

We have presented an analytical framework in which it is possible to com-
pute explicitly the instantaneous firing of a recurrent inhibitory network of
spiking neurons in the regime of fully developed oscillations. This frame-
work also assumes that only a fraction of the neurons fires in each oscilla-
tion cycle, which corresponds to the so-called suppressive or low-firing-rate
regime, generally observed in the brain during in vivo and in vitro gamma-
band oscillations. The particularity of this regime, as compared to the case
where all neurons are able to fire on each cycle, is that the number of spikes
per cycle is a priori unknown. We have show here a method to estimate
this number as well as the time course of the network discharge in the
cycle. Oscillation frequency and mean firing rate are deduced from this
estimation.

Our computations are valid in a regime where the membrane time con-
stant (τm) is clearly smaller than oscillation period (T) and inhibition decay
time (τd ). This so-called phasic regime has been identified by others as the
only regime in which oscillations in deterministic inhibitory integrate-and-
fire networks are stable with respect to input heterogeneities (Chow, 1998;
White et al., 1998). As a consequence, suppression can occur only within
the “phasic” regime. It is noteworthy that oscillation frequency in the pha-
sic regime has been readily computed for homogeneous networks (i.e. no
suppression; Chow et al., 1998). The result resembles our formula 4.7 in that
it is the product of τd and of a logarithmic term. However, the argument of
the logarithm clearly differs in the two formulas. The main specificities of
the “suppressive” regime as opposed to the homogeneous “phasic” regime
are the absence of dependency on mean input strength, the presence of
dependencies in synaptic rise time and membrane time constant, and the
square root dependency on synaptic strength (instead of linear).

Our framework applies to networks of neurons driven by steady het-
erogeneous currents or having slow-voltage fluctuations. “Slow” in this
case means that the noise correlation time should be clearly larger than
the duration T ′ of the discharge but can be shorter than the period T of
the oscillation. On the basis of our current knowledge, it is difficult to
decide if this condition holds for brain networks in general, in particular
because noise has been very little studied experimentally in relation to os-
cillations. It can nevertheless be argued that most of the noisiness in the
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membrane voltage of neurons is due to synaptic activity, which, accord-
ing to the decay time of typical synaptic events, gives correlation times in
the range of several milliseconds (about 2 to 10 ms depending on the type
of synapse). A recent report also indicates that inhibition actually domi-
nates membrane voltage fluctuations, which implies rather slow correla-
tion times (about 10 ms; Rudolph, Pospischil, Timofeev, & Destexhe, 2007).
Such a value would be close to the slow noise limit (e.g., in the hippocam-
pus), but further research is needed to check this possibility. Finally, a high
enough membrane time constant can also give slow voltage fluctuations,
even if to the best of our knowledge, there are no clear experimental state-
ments about the values of effective membrane time constants during gamma
oscillations.

If noise is an important part of the natural inputs received by a neuron,
it is also true that heterogeneities are plentiful in the brain. Real neurons
(even belonging to the same class) have discrepancies in their size and
shape, as well as in the distribution and density of their active channels,
all of which can constitute nonnegligible heterogeneities. In addition, the
natural input currents to brain networks are expected to be nonuniform,
precisely because their distribution should contain some information. What
remains unclear is to which proportion noise and heterogeneities contribute
to the dispersion of membrane voltages in biological networks. In fact, as
we suggested in Figures 6A to 6D, this proportion could be inferred from
the regularity of individual neurons firing. If neurons tend either to fire
at oscillation frequency or to be silent, as seems to be the case for odor-
induced gamma oscillation in the olfactory bulb (Buonviso et al., 2003),
then steady heterogeneities are dominant. If, on the contrary, neurons seem
to fire sparsely and in very random fashion (like pyramidal cells in hip-
pocampal slices; Hajos et al., 2004; Fisahn et al., 1998), then noise is more
important.

Our analysis gives several predictions relative to the control of oscilla-
tion frequency and network firing rate by synaptic and input parameters. In
particular, we demonstrate that the low-firing-rate regime implies a relative
stability of oscillation frequency over large variations of inhibition ampli-
tude, which contrasts with important changes of the network mean firing
rate. This particular behavior was recently observed in olfactory bulb slices
(Bathellier et al., 2006), suggesting that a single inhibitory loop between
olfactory bulb principal neurons could be mediating gamma oscillations in
this structure (see the discussion about the supposed synaptic mechanisms
in the olfactory bulb made by Bathellier et al., 2006). In hippocampal slices,
there exist at least two types of gamma oscillations. The first type (termed
interneuron network gamma or ING by Whittington et al., 2000) involves
only the interneurons’ circuit and would correspond to our hypothesis of
a single population of inhibitory neurons. In fact, no stability of oscillation
frequency is observed for the ING oscillations, indicating in the light of
our results that these oscillations should not have suppression. In contrast,
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the second type of hippocampal gamma oscillation (generated by different
induction protocols as the ING) exhibits a stability of oscillation frequency
with respect to pharmacological modulation of inhibition strength (Fis-
cher & Durr, 2003; Faulkner et al., 1998). It was demonstrated that for
these protocols, the oscillation requires the interplay of excitatory and in-
hibitory neurons (this type of oscillation was termed PING—pyramidal-
interneuron network gamma—by Whittington et al. 2000). Moreover, it is
possible that at least two inhibitory loops are involved in the generation
of these hippocampal gamma rhythms. Indeed, experimental analysis of
postsynaptic currents suggests that excitatory inputs from pyramidal cells
drive interneuron populations, which in turn release inhibition in pyrami-
dal neurons (Oren, Mann, Paulsen, & Hajos, 2006). Along with this first
loop, direct recurrent inhibition between interneurons is also observed to
play a nonnegligible role (Oren et al., 2006). This represents a larger degree
of complexity than was included in our simple model. Therefore, an ex-
tension of our framework to multiple loops would in fact be necessary to
capture the mechanism of the PING oscillatory dynamics. Such an exten-
sion would consist in coupling the spike timing equations of each neural
population. Although it would complicate the mathematical analysis, the
case of multiple loops would not fundamentally change the formalism that
we have presented here. Such an extension seems promising because our
hypothesis of highly nonlinear, narrow spike time distribution appears to
particularly well fit both interneurons and pyramidal cell data (Hajos et al.,
2004) and because pyramidal neurons fires at a low rate (Fisahn et al., 1998).
In this respect, it is noteworthy that the spike distribution of pyramidal neu-
rons in the oscillatory cycle has a shape very similar to what we observe in
our simple network for gaussian heterogeneities (a slow increase in spike
probability followed by a steep decrease; see Figures 1 and 3 and com-
pare with Hajos et al., 2004), indicating that a suppression phenomenon
similar to what we modeled in this study might participate in the PING
hippocampal oscillations.

On a more conceptual but still practical level, one important point that
we want to make with this study is about the phenomenon of suppression
(White et al., 1998; Chow et al., 1998). The role of suppression on oscillation
properties in a heterogeneous network is not taken into account in many ex-
perimental and theoretical studies, probably because it is not fully intuitive.
Moreover, if the presence of suppression is easy to acknowledge when neu-
ronal firing is slow and irregular, it is less obvious when most neurons fire
in a regular fashion and others are silent. The latter regime can thus falsely
be confused with a pure synchronized oscillator regime. However, these
regimes are somewhat different. Suppression gives, for example, much
more flexibility for adjusting the rate of the population output while main-
taining a stable oscillation frequency. It also represents a mechanism that
selects which neurons are allowed to fire and forces them into synchronous
firing. So if suppression is taking place, gamma oscillations are the correlate
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not only of the establishment of synchrony but also of a competitive mecha-
nism. We therefore think that it is crucial to study suppression as such in the
context of gamma rhythms, for both better mechanistic understanding of
the phenomenon and capturing the role of fast oscillations in the treatment
and propagation of information in the brain.

Appendix A: Derivation of the Instantaneous Firing Rate Equation

We here give the main steps for obtaining equation 4.3. We start from
equation 4.2, which can be rewritten as

r (t) + J M
�U

d
dt

∫ t

0
r (x)vsingle(t − x) dx = MUi0

τd�U
e− t

τd , (A.1)

with

vsingle(t) =
∫ t

0
s(y)e− t−y

τm dy, (A.2)

where s(y) = e− y
τd − e− y

τr is the time course of a unitary synaptic current.
At t = 0, the time derivative of the integral term in equation A.1 is equal
to r (0)vsingle(0) = 0, giving the initial condition r (0) = MUi0

τd�U . We then make
the assumption that e− t

τd 	 1 (i.e., zero-order approximation in T/τd ), such
that the derivative of the synaptic current waveform can be approximated
by e− y

τr /τr and the right-hand side of equation A.1 is constant. Hence, after
deconvolution of equation A.1 by the differential operator (τm

d
dt · +·), we

obtain

τm
dr
dt

+ r (t) + J M
�Uτr

∫ t

0
r (x)e− t−x

τr dx = MUi0

τd�U
. (A.3)

The integral term being null at t = 0, it is straightforward to derive from
this equation the second initial condition: dr

dt (0) = 0. Finally, application of
the operator (τr

d
dt · +·) to equation A.3 yields the second-order differential

equation for r (t):

τmτr
d2r
dt2 + (τm + τr )

dr
dt

+
(

1 + J M
�U

)
r (t) = MUi0

τd�U
. (A.4)
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Appendix B: Reduction of the Neuron Model for Conductance-Based
Synapses

For neurons receiving conductance-based synaptic inputs, the voltage equa-
tion reads:

C
dVi

dt
= − 1

R
(Vi − VL ) + I het

i − Gi (t)(Vi − Esyn), (B.1)

where Esyn is the reversal potential of inhibitory synapses. We rewrite the
synaptic term as a function of the new membrane voltage variable vi =
Vi − θ and of the time average of the total conductance 〈Gi 〉t :

Gi (t)(Vi − Esyn) = Gi (t)(θ − Esyn) + 〈Gi 〉tvi + vi (Gi (t) − 〈Gi 〉t). (B.2)

Supposing that G(t) varies little around its time average and that vi stays
close to 0, we can neglect the product vi (Gi (t) − 〈Gi 〉t) in this expression. In
this case, the voltage can be described by the same canonical equation as
for the current-based model:

vi (t) = U∗
i + (Vreset − θ − U∗

i )e− t−t̂i
τ∗
m − 1

τ ∗
m

∫ t

t̂i
e− t−x

τ∗
m α∗

i (x) dx, (B.3)

with τ ∗
m = R∗C , R∗ = R

1+R〈Gi 〉t
, U∗

i = (VL − θ )R∗/R + R∗ I het
i and the effective

synaptic current α∗
i (t) = R∗(θ − Esyn)Gi (t).
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Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a
hippocampal interneuronal network model. J. Neurosci., 16, 6402–6413.

Wehr, M., & Laurent, G. (1996). Odour encoding by temporal sequences of firing in
oscillating neural assemblies. Nature, 384(6605), 162–166.

White, J. A., Chow, C. C., Ritt, J., Soto-Trevio, C., & Kopell, N. (1998). Synchroniza-
tion and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J.
Comput. Neurosci., 5(1), 5–16.

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000).
Inhibition-based rhythms: Experimental and mathematical observations on net-
work dynamics. Int. J. Psychophysiology, 38, 315–336.

Received October 23, 2007; accepted March 5, 2008.


