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Abstract The response of a population of neurons to
time-varying synaptic inputs can show a rich phenomeno-
logy, hardly predictable from the dynamical properties of
the membrane’s inherent time constants. For example, a net-
work of neurons in a state of spontaneous activity can respond
significantly more rapidly than each single neuron taken
individually. Under the assumption that the statistics of the
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synaptic input is the same for a population of similarly
behaving neurons (mean field approximation), it is possible
to greatly simplify the study of neural circuits, both in the case
in which the statistics of the input are stationary (reviewed
in La Camera et al. in Biol Cybern, 2008) and in the case in
which they are time varying and unevenly distributed over the
dendritic tree. Here, we review theoretical and experimental
results on the single-neuron properties that are relevant for
the dynamical collective behavior of a population of neurons.
We focus on the response of integrate-and-fire neurons and
real cortical neurons to long-lasting, noisy, in vivo-like statio-
nary inputs and show how the theory can predict the observed
rhythmic activity of cultures of neurons. We then show how
cortical neurons adapt on multiple time scales in response
to input with stationary statistics in vitro. Next, we review
how it is possible to study the general response properties of
a neural circuit to time-varying inputs by estimating the res-
ponse of single neurons to noisy sinusoidal currents. Finally,
we address the dendrite–soma interactions in cortical neu-
rons leading to gain modulation and spike bursts, and show
how these effects can be captured by a two-compartment
integrate-and-fire neuron. Most of the experimental results
reviewed in this article have been successfully reproduced
by simple integrate-and-fire model neurons.

Keywords Populations of spiking neurons · Dynamics ·
Integrate-and-fire model · Patch clamp · Calcium spikes

1 Introduction

Neurons in the intact cortex of the mammalian brain are
driven by the synaptic current generated by thousands of
other neurons. As their activity is determined by the spikes
of large populations of neurons, it is important to study and
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characterize the collective properties of groups of cells. When
similarly behaving neurons share approximately the same
statistics of the synaptic current, these neurons can be grouped
together, and they can be replaced by a single-representative
cell. This approach, known as the “mean field approxima-
tion”, is reviewed in La Camera et al. (2008) for the case
in which (i) the statistics of the input current is stationary
and (ii) the response of the neuron is quasi-static, i.e. it can
be considered constant on a time interval of a few seconds.
This approach can be extended to the more general case of
time-varying statistics of the synaptic currents, and to the
case where the output spike train is non-static. The exten-
ded approach is particularly important to describe transient,
oscillatory and rhythmic neuronal activity of large popula-
tions of neurons, and it can predict dynamical behaviors that
sometimes cannot be foreseen by looking at the passive pro-
perties of the neuronal membrane. Population response times
can be very different from those predicted by the inherent
time constants of every individual neuron and in general they
depend on the full distribution of all dynamical variables cha-
racterizing the neuronal dynamics. A population of neurons
with spontaneous activity will exhibit reaction times that are
significantly shorter than the membrane time constant (see,
e.g., van Rossum et al. 2002), because the depolarizations are
distributed in the whole interval between the resting poten-
tial and the threshold for spike emission. As a consequence,
some of the neurons are ready to generate an action poten-
tial quickly (order of 1 ms) in response to a stimulus. Other
single-neuron properties, like adaptation on time scales of
hundreds of milliseconds to seconds, are also readily reflec-
ted by the population response. The extension of the mean
field approach to include non-stationary properties are the
focus of this review.

We start by presenting in some detail an approximated
theoretical framework for the problem of predicting the dyna-
mic response of a network of neurons to arbitrary time-
varying stimuli (Renart et al. 2003; La Camera et al. 2004).
As an application of this approach, we show how it is pos-
sible to make quantitative predictions on the rhythmic acti-
vity exhibited by networks of dissociated neurons (Giugliano
et al. 2004). We then show how single neurons and popu-
lations of neurons exhibit firing rate adaptation on multiple
time scales (La Camera et al. 2006), even in response to inputs
with stationary statistics. Studies of the population response
to fast-varying inputs are reviewed next, for which we are
forced to abandon the approximated theoretical framework
of the previous sections. In the case of fast-varying inputs, the
full mathematical machinery of the so-called population den-
sity approach, based on the solution of a Fokker–Plank equa-
tion, would in general be needed (Knight 1972; Abbott and
van Vreeswijk 1993; Treves 1993; Fusi and Mattia 1999; Bru-
nel and Hakim 1999; Nykamp and Tranchina 2000).
However, recent studies on simple integrate-and-fire (IF)

model neurons revealed that it is possible to predict the popu-
lation response to an arbitrary time-varying input by knowing
the response of single neurons to the sinusoidal components
that make the input signal (Brunel et al. 2001; Fourcaud and
Brunel 2002). The single-neuron response can be estima-
ted in the case of IF model neurons, or it can be measured
directly for real cortical cells (Köndgen et al. 2008). Because
of the features of sodium-mediated action potentials, corti-
cal neurons are surprisingly good at relaying fast temporal
information, while dynamical response attenuation and dis-
tortions affect the input–output transfer properties only for

very fast (
<∼ 5 ms) input transients. In all these studies, IF neu-

rons with firing rate adaptation and other small modifications
could predict quantitatively many aspects of the behavior of
real cortical neurons.

In the last section, we turn back to the static properties
of the neuronal response function to show how it is modu-
lated by the spatial input distributions along the dendritic
tree. We review the experimental results that show how dis-
tal dendritic input can modulate in a nonlinear fashion the
somatic stationary response function (Larkum et al. 2004).
This modulation is due to an interaction between somatic
action potentials and dendritic calcium spikes that under the
right conditions can lead to a further burst of somatic action
potentials (Larkum et al. 1999). Despite the complexity of
these mechanisms, a simple somatic IF mechanism coupled
with a dendritic compartment can capture the experimental
phenomenology and explain the gain modulation induced by
dentritic inputs. The extent to which simple spiking models
can capture these complex phenomena and, thus, provide the
field of neuroscience with a successful reductionist approach
is further examined in Sect. 7.

1.1 Response function of the leaky IF neuron

Most of the material reviewed in this article is based on, or
is related to, the response function of the adaptive leaky IF
(LIF) neuron, reviewed in detail in the companion article
(La Camera et al. 2008), to which the reviewer is referred for
a more detailed exposition. We report here the main formulae
for convenience. The LIF neuron is completely characterized
by its membrane potential, V , which evolves according to

dV

dt
= − V − Vrest

τ
+ I

C
, (1)

until a threshold θ is reached. At this time, a spike is said
to be emitted and V is clamped to a reset potential Vr for a
refractory period τr, after which motion resumes according
to Eq. 1. Vrest is the membrane’s resting potential, C is the
membrane capacitance, τ = RC , where R is the membrane
resistance, and I is an input current. To emulate the noisy
input current targeting neurons in vivo, the current I is mode-
led as a stochastic process. In the diffusion approximation
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(Lánský and Sato 1999; Richardson and Gerstner 2005), the
subthreshold dynamics of the membrane potential obeys the
stochastic differential equation of the Ornstein–Uhlenbeck
process (Tuckwell 1988):

dV = − V − Vrest

τ
dt + µdt + σξt

√
dt, (2)

where

µ = m I /C, σ = √
2τI sI /C (3)

are the average and standard deviation in unit time of the
membrane voltage, and ξt is a Gaussian process with flat
spectrum, zero average and unitary variance. m I and s2

I are
the average and the variance of the synaptic input current,
and

√
2τI is a factor to preserve units.

The stationary response function of the model neuron defi-
ned by Eq. 2, with spike and reset mechanisms as specified
above, is by definition the output firing rate as a function of
(constant) m I and sI , and is given by

Φ(µ, σ ; τ) ≡
⎡

⎢
⎣τr + τ

θ̂∫

V̂r

√
πeu2

(1 + erf(u)) du

⎤

⎥
⎦

−1

, (4)

where the “hat” operation applied to θ and Vr is defined by
ẑ ≡ (z −µτ)/σ√

τ . In the presence of firing rate adaptation,
the adapted firing rate f can be obtained as the self-consistent
solution of

f = Φ(m I − α f, sI ), (5)

where the parameter α quantifies the strength of adaptation.
The derivation of Eq. 5 from a minimal model of firing rate
adaptation is presented in detail in La Camera et al. (2008).
A generalization to the time-dependent case is presented in
the next section.

2 Population response to arbitrary time-varying inputs

In this section, we show how the single-neuron response func-
tion can be used to predict the dynamic behavior of networks
of spiking neurons. This application goes beyond the statio-
nary framework in which the mean field approach is derived,
and provides us with an approximated solution of a com-
plex Fokker–Plank equation in a two- or higher dimensio-
nal space (Brunel and Sergi 1998; Brunel and Hakim 1999;
Moreno et al. 2002; Nykamp and Tranchina 2001; Fourcaud
and Brunel 2002; Moreno-Bote and Parga 2004; Gigante
et al. 2007a,b). We present a case study where the use of the
stationary response function provides a good approximation
to the full approach (Renart et al. 2003). This approximation
can be extended to include firing rate adaptation, generalizing

Eq. 5 (La Camera et al. 2004), and is valid when the popula-
tion dynamics is faster than the dynamics of single neurons.
This allows one to assume that the population is always at
equilibrium (i.e., the solution of the Fokker–Planck equation
for which the derivative with respect to time is zero). This is
typically true for adaptation, but in general the network dyna-
mics is also faster than fast synaptic integration (2–10 ms),
especially in the presence of large spontaneous activity (see,
e.g., Renart et al. 2003; La Camera et al. 2008).

2.1 Simplified mean field theory with time-varying inputs

Consider an input spike train of time-varying frequencyνx (t),
targeting each cell of a population of neurons through
x-receptor-mediated channels. Each spike contributes a post-
synaptic current of the form ḡx e−t/τx , where ḡx is the peak
conductance of the channels. In the diffusion approximation
this produces an input current, Ix , which is an Ornstein–
Uhlenbeck process,

dIx = − Ix − m̄x

τx
dt + s̄xξt

√
2dt

τx
, (6)

with m̄x = ḡxνx (t)τx and s̄2
x (t) = (1/2)ḡ2

xνx (t)τx

(La Camera et al. 2008). Renart et al. (2003) have sugges-
ted that the population activity of the network could be well
predicted by

f (t) = Φ(mx (t), s2
x (t)), (7)

whereΦ is the stationary response function (e.g., Eq. 4), and
mx , s2

x are the time-varying average and variance of Ix . These
evolve according to the first-order dynamics (ẏ ≡ dy/dt):

τx ṁx = −(mx − m̄x ) (8)

and
τx

2
ṡ2

x = −(s2
x − s̄2

x ), (9)

(e.g., see Gardiner, 1985). In this approximation, it is assu-
med that the network activity follows its time-varying input
instantaneously. The reason for which this approximation
works is that the typical reaction times of a population of
integrate-and-fire neurons are short, of the order of a few
milliseconds. This is mostly due to the fluctuations in the
input current that distribute the depolarizations of the neurons
over the whole range of permitted values. As a consequence,
a non-negligible fraction of neurons is close to the thre-
shold for spike emission, making the response of the network
much faster than the response of any individual neuron (e.g.,
van Rossum et al. 2002). This justifies the assumption that
the firing rate of the population is always at the steady state,
despite an input with time-varying statistics mx (t), sx (t),
provided that the population dynamics are fast enough.
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2.2 Extension to networks of adapting neurons

The approach of the previous subsection can be extended to
include firing rate adaptation. Consider the stationary, mean
field model of the population adapted firing rate, Eq. 5, and
write it as follows:

f = Φ(mx − Iα, s2
x ) (10)

Iα = α f, (11)

where Iα , called the hyperpolarization (AHP) current, is a
feedback current driven by the neuron’s instantaneous output
rate f . Iα can be derived to be of form −α f from a minimal
cellular model of AHP current,

dIα
dt

= − Iα
τα

+ ḡα
∑

k

δ(t − tk), (12)

where the sum is over all spikes emitted by the neuron up
to time t and ḡα is the peak conductance. In the absence
of actions potentials, Iα decays to zero with time constant
τα , and α is linked to these cellular parameters by α = ḡατα .
This model works best in the presence of spontaneous activity
(La Camera et al. 2008).

From Eq. 12 one can show that, in the case of slow varia-
tion of firing rate due to adaptation, Iα follows the neu-
ron’s own instantaneous firing rate with time constant τα
(La Camera et al. 2004):

f = Φ(mx − Iα, s2
x ) (13)

τα İα = −Iα + α f, (14)

Note that for a stationary stimulus, i.e. νx constant, after a
transient of the order of max{τx , τα}, one recovers the statio-
nary model Eqs. 10 and 11, with m = m̄x , s = s̄x .

In the case of several independent components, they fol-
low their own synaptic dynamics and sum up in the argument
of the response function to give the time-varying firing rate,

f = Φ

(
∑

x

mx − Iα,
∑

x

s2
x

)

, (15)

which replaces Eq. 13. This model is valid when the condi-
tions for Eq. 7, of which it represents a generalization, hold.

Figure 1 shows the response of a population of uncoupled
LIF neurons to a complex input, comprising an impulsive
increase of 1 ms duration at t = 250 ms and a step increase
at t = 400 ms (horizontal bars in Fig. 1) on top of the synaptic
current. The synaptic current was made up of two fast com-
ponents (τx = 5 ms), one excitatory (AMPA-like), the other
inhibitory (GABAA-like), plus a third component mimicking
slow (NMDA-like) current (with τnmda = 100 ms). The
model makes a good prediction of the population activity,
even during the fast transients. The small discrepancies are
due to finite-size effects (Brunel and Hakim 1999; Mattia
and Del Giudice 2002), and to the approximation used for
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Fig. 1 Time-varying activity of a population of independent, adapting
LIF neurons in response to a noisy, broadband stimulus. Top: prediction
of the adapting rate model, Eqs. 13 and 14 (gray), compared to the
simulations of 20,000 neurons (black). The activity after a transient of
200 ms is shown. The short horizontal bar indicates a pulse-like increase
of 1 ms duration in the input current. The long horizontal bar indicates
a step-like increase of both the excitatory and inhibitory input current.
Bottom: Average time course of the stimulus (fluctuations around this
average are not shown). See the text and La Camera et al. (2004) for
details. Used with permission from La Camera et al. (2004). Copyright
© 2004 by The MIT Press

the stationary response function [Eq. 4 corrected for fast
correlated inputs (Brunel and Sergi 1998; Fourcaud and
Brunel 2002)]. To be able to use this approximation, the
synaptic current must be much faster than the membrane
time constant, i.e.,

maxx {τx } � τ. (16)

Synaptic current with longer correlation times (e.g., NMDA-
like or GABAB-like) can be approximated by a slowly chan-
ging current, i.e., their variance can be neglected in Eq. 15
(Brunel and Wang 2001).

2.3 Further extensions

The approach of this section can be extended to any model
neuron whose response function,Φ, is known, and not just to
the LIF neuron Eq. 2 (see also Shriki et al. 2003). In particular,
it can be extended to the conductance-based LIF neuron,
with the caveat that condition Eq. 16 may not be fulfilled
for currents with short time constants (e.g., AMPA-like and
GABAA-like). This is because the effective time constant of
the conductance-based neuron,

τ ∗ =
(

1

τ
+ geνe + giνi

)−1

, (17)

where ge,i , νe,i are the excitatory (e) and inhibitory (i) input
conductances and firing rates respectively, can reach values
as small as a few ms, depending on the instantaneous firing
rates. When condition Eq. 16 is not fulfilled, the approxi-
mated response function given by Moreno-Bote and Parga
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Fig. 2 Network activity emerging in dissociated cultures of neurons,
detected by substrate arrays of extracellular microelectrodes (MEAs).
The raster plot (upper panels) indicates the occurrence of spikes detec-
ted by seven substrate electrodes and, below, the resulting population
firing rate (scale bars 60 s, 10 Hz). Results from four MEAs experiments
were compared to computer simulations of small recurrent networks of
IF neurons, whose excitatory synaptic coupling was increased in the

direction of arrows. Numbers associated with each markers help iden-
tifying the same experiment in both plots, reporting the coefficient of
variation versus the mean, for the distribution of the interburst intervals
(IBI) as well as for the population bursts (PBd). Used and modified
with permission from Giugliano et al. (2004). Copyright © 2004 by the
American Physiological Society

(2005) should be used (see La Camera et al. 2004; La Camera
et al. 2008 for details).

In the next section, we present an application of the theo-
retical framework developed in this section to the dynamics
of rhythmic activity and population bursts.

3 Rhythmic activity and population bursts

Cultures of neurons from rat neocortex exhibit spontaneous,
temporally patterned, network activity (Fig. 2). Neurons
enzymatically dissociated from embryonic (rat) neocortex
can be cultured in vitro and maintained under healthy condi-
tions for up to several months in an incubator (Potter and
DeMarse 2001). Neurons remain electrically active (Kamioka
et al. 1996; Van den Pol et al. 1996), mature and conti-
nue developing ex vivo, and spontaneously reorganize into
functional synaptic networks (Nakanishi and Kukita 1998)
over the 2D surface of a Petri dish, or of an array of sub-
strate micro-electrodes (Giugliano and Martinoia 2006). As
opposed to brain slices, where spontaneous activity is largely
abolished by the deafferentation following acute tissue cut,
neuronal cultures spontaneously display a variety of collec-
tive spiking states (Wagenaar et al. 2006; Marom and Shahaf
2002). Thus, they offer a unique framework for identifying
the response properties of individual neurons relevant to the
collective dynamics of the whole network. In this section,
we review the application of the mean field approach to
the analysis of patterned rhythmic activity in those networks
(Giugliano et al. 2004).

3.1 Recurrent networks of IF neurons reproduce bursting
activity

Small recurrent networks of 100–1,000 adaptive leaky IF
excitatory neurons, incorporating the model parameters iden-
tified in the single-neuron response function experiments
reviewed in La Camera et al. (2008) (see their Table 1), were
able to capture the spontaneous rhythmic activity of Fig. 2
(van Vreeswijk and Hansel 2001; Ermentrout et al. 2001;
Giugliano et al. 2004). To mimic the experimental condi-
tions, where the action of inhibitory neurons is blocked by
appropriate selective chemical antagonists (Giugliano et al.
2006), no inhibitory input was considered in the model net-
work. The simulated network displayed spontaneously alter-
nating intervals of asynchronous activity at low firing rate,
and bursts of action potentials synchronized across the entire
population (Fig. 3). To obtain this behavior, a modest back-
ground synaptic activity, meant to parallel the spontaneous
release of neurotransmitter observed in mature and immature
cultures, was sufficient.

Note that individual model neurons were not intrinsically
bursting cells; instead, the synchronous emergence of brief
epochs of intense firing rate was caused their recurrent
synaptic interactions. Such epochs of intense activity were
terminated by the progressive build up of spike-frequency
adaptation in each IF neuron (Sect. 2.2, Eqs. 13–14). The
spatial location, from which a network-wide synchroniza-
tion event originates, varied randomly, consistent with the
lack of a spatial structure in the network, and in keeping
with the experimental findings (Fig. 2) (Kamioka et al. 1996;
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Fig. 3 A recurrent network, constituted by 100 excitatory identical IF
model neurons, shows a spontaneous transition from a stable resting
state frest to another fburst due to the finite-size fluctuations. For the
sake of illustration firing rate adaptation was not included (i.e., α = 0
in all neurons, see Eq. 5), so that fburst is a stable stationary state of the
network (scale bars 200 ms and 25 Hz/50 mV). The second transition
fburst → frest is induced by transiently reducing m0 (upper continuous
trace). Used and modified with permission from Giugliano et al. (2004).
Copyright © 2004 by the American Physiological Society

Giugliano et al. 2004). Varying the average synaptic coupling
strength and the overall number of synaptic connections
mimicked different stages of in vitro synaptogenesis and
development (Kamioka et al. 1996). For very weak coupling,
the model network generated no synchronous burst of acti-
vity, in agreement to what observed during the first 5–7 days
after plating (Giugliano et al. 2006). For larger but still weak
coupling, the network generated rare and unpredictable popu-
lation bursts which became more frequent and regular as soon
as the excitatory synaptic coupling was increased (Fig. 2).
The duration of the synchronized spiking epochs had com-
parable statistical properties in simulations and experiments
(Giugliano et al. 2004).

3.2 Mean field analysis of slow rhythmic activity

In Fig. 3, the network flips between two states of activity
either because of a strong enough finite-size fluctuation or
because of the application of a transient stimulus. However,
in the presence of firing rate adaptation it is possible to obtain
an alternative sequence of flips between the two stable states
without the application of transient stimuli. We show here
how it is possible to predict this phenomenon by using the
single-neuron response function in the mean field approach.

In the mean field approximation, the total synaptic current
received by a generic model neuron is Gauss distributed, with
its steady-state mean and variance given by

m I ( f ) = cN J f τ + m0, sI
2( f ) = cN J 2 f τ/2 + s2

0 .

(18)

Here, f is the mean firing rate of the network, N is the
number of neurons of the network, c is its “connectivity”
(i.e., the average fraction of connections per neuron), and J
is the amplitude of the synaptic weights (Amit and Brunel
1997). m0 and s2

0 reflect the mean and variance of the current
generated by spontaneous neurotransmitter release and other
sources of randomness, assumed to be independent of f . The
equilibria of the population dynamics can be identified as the
self-consistent solution of the mean field equation (e.g., Amit
and Brunel 1997; La Camera et al. 2008):

f = Φ (m I ( f ), sI ( f )). (19)

The fixed points at which the slope of the response function
is less than 1 are stable.

For appropriate values of J , two stable equilibria can be
found that we name here frest and fburst, with frest < fburst

(see Fig. 4a, the curve with J = 12 pA). In the model net-
work, spontaneous transitions from one of these stable states
to the other can only occur due to fluctuations induced by
finite-size effects (Brunel and Hakim 1999; Mattia and Del
Giudice 2002), or triggered by an external stimulus (as in
Fig. 3).

However, in the presence of firing rate adaptation, the state
point fburst may destabilize after the neurons undergo adap-
tation (Fig. 4b). To understand why this may occur, note that
in the presence of adaptation the fixed points of the network
are given by the solution of the self-consistent equation

f = Φ (m I ( f )− α f, sI ( f )), (20)

(see Eq. 5). When f is very small, like in state frest, the adap-
ting term −α f is also small, and the properties of this state
do not change appreciably. Things are different in the fburst

state, however, as shown in Fig. 4b. Intuitively, while frest

remains a stable solution of Eq. 20, fburst is a solution only
transiently, until adaptation has fully built up. This explains
in simple terms the mechanisms behind the suppression of
a single synchronized network event, or “population burst”,
and parallels the transient depression of firing seen e.g. in
Fig. 2.

4 Adaption over multiple time scales

The simplified dynamic mean field theory of the previous
sections could be extended to work in the presence of a
single adaptation current of the AHP type, Iα (Sect. 2.2).
This model of adaptation is general enough to describe most
situations of interest (Benda and Herz 2003; La Camera et al.
2004). However, firing rate adaptation is a complex pheno-
menon occurring on several time scales and affected by dif-
ferent ion currents (Thorson and Biederman-Thorson 1974;
Millhauser et al. 1988; Lowen and Teich 1992; Xu et al.
1996; Sah 1996; Schwindt et al. 1997; Powers et al. 1999;
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Fig. 4 Prediction of slow rhythmic activity from the properties of
the single-neuron response function. Each curve is the firing rate
of the population of LIF neurons (ΦLIF) as a function of the firing
rate of the population itself ( f ). When ΦLIF = f , the network has
reached a self-consistent state, which may be stable (closed circles) or
unstable (star), depending on the slope of the response function at f .
The slope of the response can be controlled by changing the value of
the synaptic couplings J , both in the absence (a) and in the presence
(b) of adaptation. a For J = 8 or 10 pA, only the stable state at low
firing rate is stable, named here frest . For J = 12 pA, a state with higher
firing rate is also stable, taken here to represent a population burst (see
the text). In these examples there is no firing rate adaptation (α = 0,
see Eq. 5). b Same as a in the presence of firing rate adaptation (Eq. 5
with Φ = ΦLIF). The stability properties of the network change in
the presence of adaptation: whereas frest is stable also in the presence

of adaptation, fburst destabilizes after the neurons undergo adaptation.
Adaptation decreases the slope of the response function, which morphs
into the lower curve, taking the network state into frest . In this state the
neurons are negligibly adapted because of their low firing rate, and the
response function becomes the upper curve again, where fburst is stable.
Given the small basin of attraction of state frest (this can be inferred
from its distance, along the curve, from the unstable fixed point marked
with ‘asterisk’), an upward fluctuation of the spontaneous activity is
sufficient to bring the network back into the fburst state. This state des-
tabilizes after the neurons adapt, and the sequence of transitions repeats
itself, with the network activity flipping between these two states in an
activity-dependent way, as confirmed by simulations (not shown). Used
and modified with permission from Giugliano et al. (2004). Copyright
© 2004 by the American Physiological Society

Ulanovsky et al. 2004; Gilboa et al. 2005; Descalzo et al.
2005; Drew and Abbott 2006; La Camera et al. 2006; Wark
et al. 2007). As a consequence, a single-adapting component
may not be enough to describe the time course of cortical neu-
rons, even in response to stationary input current (La Camera
et al. 2006). Despite a large number of adapting processes
acting on different time scales, an IF reduction of adapting
spike trains could be obtained with not more than four inde-
pendent adapting components in the case of pyramidal and
fast-spiking (FS) neurons of the rat somatosensory cortex.
These adapting processes acted on time scales ranging from
a few ms to tens of seconds (Sect. 4.3). In pyramidal neurons,
one of these components was found to facilitate the firing rate
(i.e., to increase it) with a time constant of the order of 1 s.
In this section, we review the model used to capture the tem-
poral aspect of the instantaneous firing rate in response to
fluctuating inputs with stationary statistics.

4.1 The generalized IF model with multiple
adapting processes

Recall that the model neuron having the quasi-stationary
firing rate given by Eqs. 13 and 14 is described by a single
variable, the membrane potential V , which below the spike
threshold θ obeys Eq. 2 withµ = (m I − Iα)/C , and Iα given
by Eq. 12.

A straightforward generalization of this model can be
obtained by adding two or more independent components,
Iα = ∑

k Iαk , in Eq. 13 (La Camera et al. 2006). Each of
the component processes obeys an equation like Eq. 12, with
corresponding τk , ḡk such that ḡkτk ≡ αk , and

∑
k αk = α

(negative αks correspond to facilitating processes, i.e., pro-
cess increasing the firing rate over time). This constraint
ensures that the quasi-stationary firing rate of each spike train
(reached when t � maxk τk) agrees with that given by the
stationary solution in mean field, i.e., by the self-consistent
solution of Eqs. 10 and 11.

4.2 Reproducing the temporal response of cortical neurons

The generalized adaptive model has been used to fit the time
course of the firing rate of cortical neurons, defined as the
inverse of the inter-spike interval (ISI) as a function of time,
f (t) = 1/ISI(t), using a Monte carlo procedure (La Camera
et al. 2006). The goodness-of-fit was then tested with χ2

test, using as the objective function the squared difference
of the ISIs, i.e. χ2

ISI = ∑
j (ISIexp

j − ISIth
j )

2. ISIth(t) was
obtained by simulating the full IF model described in the pre-
vious section. Note that it is necessary to consider the correct
number of processes to estimate the time constants involved:
since

∑n
k=1 ḡkτk = α, this constraint will be satisfied with

different values of τk depending on n, the total number of
processes. The peak conductances ḡk were given by the ratio
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Fig. 5 Generalized adaptive LIF model and its best fit of the temporal
response of a layer 5 FS interneuron of rat somatosensory cortex. in each
(panel) (from top to bottom, the membrane potential, the adaptation
current (Eq. 12 with time constant τα = 2.2 s), the total input current,
and the instantaneous firing rate are shown (see the text). The input
current was the same as injected into the neuron. In top and bottom
panels, the model is in gray and the data are black. Used and modified
with permission from La Camera et al. (2006). Copyright © 2006 by
the American Physiological Society

αk/τk (negative if αk < 0, representing facilitation instead of
adaptation). An example showing the model with one com-
ponent of adaptation and its best fit to an FS neuron of rat
somatosensory cortex is shown in Fig. 5.

This procedure was not used to reproduce spike times with
a millisecond precision (e.g., Jolivet et al. 2004, 2006), but
only to capture the time course of the instantaneous firing
rate.

4.3 Time scales of temporal adaptation in cortical neurons

In response to a stimulation of several seconds with fluctua-
ting current with stationary statistics, the temporal response
of FS interneurons of layers 2/3 and layer 5 of rat somatosen-
sory cortex could be captured with the generalized adaptive
LIF neuron of Fig. 5 with only two components. The fas-
ter adapting process was of the order of ∼200 ms; the slower
had a broader distribution of time constants ranging from ∼ 1
to ∼ 10 s (La Camera et al. 2006). Given that the maximal
interval duration of stimulation was 10 s, it is not excluded
that even slower adapting processes could be present in these
neurons.

Contrary to FS neurons, which typically had a consistent
response to the same stimulus, pyramidal neurons of rat
somatosensory cortex display a broader range of time
constants and magnitude of the adapting processes

involved. Four processes were identified according to the
order of magnitude of their time constants, which were, from
faster to slowest: a few milliseconds (affecting the first few
ISIs only), 50–200 ms, 0.5–1 s (a facilitatory process), and
order of seconds.

Despite the possibility to capture the temporal response of
cortical neurons with only a handful of adapting processes,
the distributions of time constants were broad, both within
cells (pyramidal neurons) and across cells (pyramidal and FS
neurons; see Table 3 of La Camera et al. 2006 for details).
This variability in response to stimuli and across neurons sug-
gests the possibility of a continuum of time scales, which may
be the basis for scale-free adaptation (Fairhall et al. 2001b;
Drew and Abbott 2006), a phenomenon with many potential
computational consequences (Brenner et al. 2000; Fairhall
et al. 2001a; Drew and Abbott 2006; Wark et al. 2007). Most
of these computational consequences find application in res-
ponse to stimuli with time-varying statistics; however, it is
important to bear in mind that multiple adaptation processes
are also observed in response to inputs with stationary statis-
tics, as reviewed in this section.

5 Response to sinusoidal inputs in the presence
of fluctuations

The dynamic mean field theory of the previous sections is
a simplified approach which, in those cases where it can
be applied, offers practical advantages to the study of the
temporal evolution of the network activity in the presence
of time-varying inputs. In the general case, the full popula-
tion density approach should be used, but the equations are
complex and are usually solved with perturbative techniques
for the case of weak (but arbitrarily fast) input modulation.
In this section, we reviewed some of the results obtained
with this approach, which dates back to Knight (1972) and
Treves (1993) (in the absence of noise), was generalized by
Gerstner (2000), and has more recently been undertaken
by Brunel and collaborators (Brunel et al. 2001; Fourcaud
and Brunel 2002; Fourcaud-Trocmé et al. 2003; Fourcaud-
Trocmé and Brunel 2005; see also Mattia and Del Giudice
2002).

The idea behind this approach is to analyze the response
of the network to a weak oscillatory input (i.e., sinusoidal
with frequency ω),

m I = m0 + m1sin(2πω t), (21)

with m1 � m0, in the presence of input fluctuations with
constant amplitude sI (see e.g. Fig. 6a, b). The response of the
network to this input can be found by solving perturbatively
a Fokker–Planck equation in series of 1/ω, assuming that the
neuron’s output firing rate is also sinusoidally modulated at
the same frequency,
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f (t) = f0 + f1(ω)sin (2πω t + φ(ω)). (22)

In networks of LIF neurons with instantaneous synapses, the
amplitude of the response modulation ( f1(ω)) in the high-
frequency regime is proportional to 1/

√
ω, with a phase lag

of 45 degrees (Brunel et al. 2001). In the presence of synap-
tic filtering, both the cut-off frequency and the phase lag are
eliminated (Brunel et al. 2001). However, another important
determinant to the response to oscillatory inputs, the mecha-
nism for spike generation, is absent in the LIF neuron. For
this reason, generalized models of IF neurons, where a fast
transient response of the membrane potential above a given
threshold can mimic an intrinsic mechanism of spike gene-
ration, were introduced and studied by Fourcaud-Trocmé
et al. (2003) (called nonlinear IF models). These models are
obtained by adding to the right hand side of Eq. 2 a term
ψ(V )/C , which contains the nonlinear mechanism under-
lying the generation of an action potential, and a parame-
ter �T defining its sharpness. The firing rate modulation at
high frequencies depends on ψ , being e.g. of the form 1/ω
for an exponential function, and 1/ω2 for the quadratic case
(Fourcaud-Trocmé et al. 2003). These results are also valid
in the presence of conductance-based synaptic inputs, and
suggest that in general the high-frequency modulation of the
response follows a power law ω−γ , where the exponent γ
depends on the nonlinearity of the spike generating current
ψ(V ) (Fourcaud-Trocmé et al. 2003). The (unmodulated)
background synaptic noise also plays a role in the determi-
nation of the linear response (Brunel et al. 2001; Fourcaud
and Brunel 2002), and so does the presence of firing rate
adaptation (Fuhrmann et al. 2002).

These theoretical results provide a number of precise pre-
dictions which were tested experimentally by Köndgen et al.
(2008) in rat cortical pyramidal neurons of the somatosen-
sory cortex (Fig. 6). These authors found that the amplitude
of the linear modulation ( f1(ω)) was generally constant and
independent of ω up to rather high input frequencies, below
a sharp cut-off of the order of 100–200 Hz. In this range, no
phase-shift was observed other than what caused by spike-
frequency adaptation at low frequencies (Fuhrmann et al.
2002) (Fig. 6c, d). This confirmed the role of the background
synaptic noise in removing the resonances at multiples of
the average firing rate response f0 (Brunel et al. 2001; Four-
caud and Brunel 2002), allowing fast time-varying inputs to
be encoded undistorted (i.e., without a phase lag). Beyond
the cut-off frequency range, the high frequency linear res-
ponse was found to decay as f1(ω) ∼ ω−γ , with γ > 1
and close to 2, independently of the noise correlation time
constant (Fig. 6c, d). This behavior is consistent with a non-
linear IF model with a very sharp spike, and a nonlinea-
rity which is intermediate between exponential and quadratic
(Fourcaud-Trocmé and Brunel 2005).
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Fig. 6 Noisy sinusoidal input currents were injected in cortical neurons
firing at 10–20 spikes/s to probe their dynamic response properties (a,
b) and the impact of input fluctuations. The mean input was modulated
as m I = m0 + m1sin(2πω t), with m1 � m0, while the amplitude
of the background noise (sI ) was kept constant. The neuron’s output
firing rate was also sinusoidally modulated at the same frequency ω,
f (t) = f0 + f1(ω) sin (2πω t + φ(ω)), over a wide range of input
frequencies, 0–200 Hz (c single cell; d population). f0 is the stationary
response function (e.g., Eq. 4 for the case of the LIF neuron), f1 is
the response amplitude of the modulated response and φ is its phase
shift. Used and modified with permission from Köndgen et al. (2008).
Copyright © 2008, Oxford University Press

6 Response to dendritic inputs and soma-dendritic
interactions

So far, we have been concerned with those properties of
single neurons and network activity that could be analyzed
assuming a point-neuron model. Point-neuron approxima-
tions may be a good description for small neurons with short
and isotropic dendritic trees. However, the apical dendritic
tree of layer 5 pyramidal neurons extends across all corti-
cal layers with a length of roughly 1.5 mm, and integrates
inputs from different cortical and subcortical sources (Budd
1998; Binzegger et al. 2004; Oda et al. 2004). Whether the
extended geometry of pyramidal neurons offers real compu-
tational advantages, or whether it only solves the ‘packing
problem’ of collecting a large amount of synapses for a
single integration process, remains an open issue and it will
not be discussed here. Instead, we will focus on some of
the phenomena that depend critically on such extended geo-
metry and cannot be captured with point-neuron approxi-
mations, like the dendritically induced gain modulation of
the somatic response and its control by inhibition (Larkum
et al. 2004; Murayama et al. 2008). This will allow us to
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characterize the response of layer 5 pyramidal neurons to
noisy input currents which are simultaneously injected in the
soma and in the apical dendrite.

6.1 Dendrites can differentiate between drivers,
modulators and disruptors

To structure the possible functional interactions among neu-
rons, it has been suggested to classify neurons into drivers,
modulators, and disruptors (Sherman and Guillery 1998).
While drivers act additively on the output frequency, modu-
lators act multiplicatively and disruptors block either of them.
The multiplicative scaling of the neuronal response function
is an efficient mechanism for modulating the neuronal res-
ponses in one cortical area by the activity in another area,
which may be an important mechanism for cognitive proces-
sing (Salinas and Thier 2000).

It has been noted that a point neuron is able to integrate
both drivers and modulators with the same type of ionotropic
synapses (Chance et al. 2002; Abbott and Chance 2005). Here
we show that an extended dendritic tree allows to incorporate
all three operations by varying the location of the synaptic
inputs (Fig. 7).

Experimental data and modeling studies confirm that
excitatory synaptic input projecting to the proximal dendritic

a b c

Fig. 7 Two-compartmental model of a cortical L5 pyramidal neuron.
a Beside the basal integration zone around the soma (lower circle) L5
pyramidal neurons show an additional apical integration zone (upper
circle) from where the signaling to the soma is mediated via dendri-
tic calcium spike. b To capture the spatial input structure we consider
a two-compartment neuron model with a voltage-dependent calcium
current (ICa) in the dendritic compartment and a spike-triggered after-
hyperpolarization current (ICa) in the somatic compartment. c Dendritic
(‘top-down’) input increases the gain of the somatically (‘bottom-up’)
induced current-to-rate response function via back-propagating action
potential induced calcium (BAC) firing. This top-down input represents
a multiplicative modulation of the somatic firing rate (with a factor ≥ 1)
which can be throttled by inhibitory dendritic input. Hence, the dendritic
tree determines whether synaptic input either acts as ‘driver’, ‘modula-
tor’, or ‘disruptor’ (Sherman and Guillery 1998), depending on whether
it projects to the somatic region or the apical tuft, and whether it acts
through excitation or inhibition

tree can act efficiently as a driver (i.e., it shifts the response
function to the left), while synaptic input to the distal den-
dritic tree can also act as a modulator (i.e., it also increases
the gain of the response function), see Fig. 8a and Larkum
et al. (2004). The basic mechanism allowing the distal den-
dritic input to modulate the gain relies on the generation of
dendritic calcium spikes. These calcium spikes may be trig-
gered by synaptic inputs on the distal dendritic tree impinging
on a back-propagating action potential (AP). The calcium-
induced dendritic depolarization propagates forward to the
soma where it triggers one or several additional APs. Because
this mechanism generates two or more APs out of one single
AP, it represents a multiplicative operation on the response
function. Since it is triggered by the joint emission of a back-
propagating AP and a dendritic calcium spike, this mecha-
nism is referred to as backpropagation-induced calcium
(BAC) firing (see also Larkum et al. 1999).

In the experimental data, the multiplicative modulation is
also accompanied by a left shift of the response function,
which otherwise characterizes the action of drivers (Fig. 7).
While in the experiment the left shift arises from a rather
proximal positioning of the dendritic electrode, distal synap-
tic input further away from the soma will undergo a stronger
attenuation and will barely contribute to the direct somatic
depolarization. However, it will still contribute to the gene-
ration of a calcium spike in the apical dendrite and thus to
a gain modulation of the somatic current-to-frequency res-
ponse function.

Besides the action of somatic and dendritic excitation
as drivers and modulators, respectively, inhibitory synaptic
inputs efficiently operates as disrupters of both drivers and
modulators. Inhibition may shunt the somatic voltage when
the excitatory synaptic input projects proximally to the soma
(Doiron et al. 2001; Mitchell and Silver 2003), or it may tran-
siently block the calcium conductance and thus disrupt the
gain modulation due to calcium spikes when the excitatory
synaptic input projects to the distal dendrite (Larkum et al.
1999; Pérez-Garci et al. 2006).

6.2 Two-compartmental IF model with dendritic
calcium spikes

The phenomena described in the previous subsection can be
explained by an extension of the LIF point-neuron model to
include two compartments, representing the somatic and the
distal dendritic regions, respectively (Fig. 7a, b). A success-
ful model of the calcium-induced dendritic depolarization
requires the integration of some active dendritic current (ICa,
Fig. 8c). To capture the fact that a dendritic calcium spike is
only triggered by a fast voltage up-sweep across some vol-
tage interval, a dynamic activation and inactivation of the
calcium conductance must be considered (this can be done
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in terms of activation and inactivation variables, m and h,
respectively, see Larkum et al. 2004).

Because in the experiment the calcium-induced somatic
AP bursts often cease even when the dendritic membrane is
still depolarized, a potassium AHP current (IAHP, see Eq. 12)
was included in the somatic compartment (Figs. 7b, 8b, c).
This transiently activated leak current represents a sort of
security valve, as it prevents the model neuron from being
trapped in a calcium-induced depolarization plateau where it
would continuously burst.

The two-compartmental IF model reproduces the firing
rates of L5 pyramidal neurons in response to somatic and
dendritic current injections (Fig. 8a). It also reproduces the
increased gain of the somatic current-to-frequency curve in
the presence of a dendritic background input (Fig. 8a, Larkum
et al. 2004). When injecting a noisy somatic input current
only, the individual spikes can be well predicted (Fig. 8b).
However, when injecting a dendritic input currents, it is just
the strong dendritic voltage deflection (‘calcium spike’) and
the induced AP burst which can be predicted, but not the
individual spike times within the burst (Fig. 8c). A detailed
description of the two-compartmental model is provided in
Larkum et al. (2004).

6.3 Somatic response function for joint somatic
and dendritic inputs

In this section, we provide an approximated formula for
the somatic response function of the two-compartmental IF
model of the previous subsection. We start from an approxi-
mation of the cortical neuron response function observed in
vitro (La Camera et al. 2008),

f (1) = (V − θ)

τ (θ − Vreset)
(

1 − e−a(V −θ)/σV

) , (23)

where τ = RC is the membrane time constant.
This formula was derived by Abbott and Chance (2005)

using heuristic arguments related to the known behavior at
large inputs, the effect of noise in the subthreshold versus
the suprathreshold regime, and the often observed threshold-
linear behavior at rheobase of cortical neurons. The quantity
V is the average of the membrane potential when the spi-
king generation mechanisms are inactivated, and σV is its
standard deviation. In terms of the mean, the standard devia-
tion, and the correlation length m I , sI and τI , respectively,
of the injected Ornstein–Uhlenbeck current (cf. Eq. 3) these
quantities are expressed by

V = R m I , σV = R sI
√

2τI /τ . (24)

When Ornstein–Uhlenbeck currents are injected both into the
soma and the distal dendrite, the corresponding somatic and
dendritic voltages are characterized by V S, σVS and V D, σVD,
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Fig. 8 Somatic and dendritic response functions and voltage traces
for the two-compartmental model. a Firing rates of the model neuron in
response to noisy input currents (sI = 300 pA) of varying mean (m I )
injected individually in the soma (curve labeled by s; circles represen-
ting experimental data) and the dendritic compartment (curve labeled
by d). When applying the same somatic currents in the presence of a
noisy dendritic input (fixed to m I = 750 pA and sI = 300 pA) the
gain of the neuronal response function with respect to the somatic input
is increased (dashed curve labeled by s+d). Blocking the calcium cur-
rent in the dendrite would lead to a rather shallow response function
for the dendritic current injection (dotted curve). b The somatic (VS)
and dendritic (VD) model voltage trace in the case of pure somatic cur-
rent injection closely predicts the experimental spike times. The thin
smooth and noisy curves show the corresponding experimental traces.
The lower panel confirms that no dendritic calcium current (ICa) is
elicited in the model, whereas a strong after-hyperpolarization current
(IAHP) is triggered after each spike. c In the presence of a dendritic input,
the dendritic calcium current (ICa) is responsible for the strong dendri-
tic depolarization (VD) generating the ‘BAC-burst’ (VS). The parame-
ters used in these simulations were (see Sect. 1.1 for a definition of
the symbols, with S standing for somatic compartment, and D stan-
ding for dendritic compartment): RS = RD = 45 mV, RT = 70 mV,
Vrest,S = −70 mV, Vrest,D = −60 mV, CS = τS/RS = 13/45 nF,
CD = 5/45 nF. The AHP current was as in Eq. 12, with the inclusion
of a reversal potential of −90 mV and gα = 5 nS, τα = 60 ms. The
calcium current (ICa, see Larkum et al. 2004 for details) is specified
by gCa = 70 nS, ECa = 120 mV, m∞

1/2 = 0 mV, h∞
1/2 = −10 mV,

slope(m∞) = 1/3 (mV)−1, slope(h∞) = 1/5 (mV)−1, τm = 15 ms
and τh = 80 ms. A somatic AP is elicited when VS crosses the threshold
θ = −47 mV and this activates an additional IAHP component. Subse-
quently, VS is clamped for 1 ms at 20 mV and then reset for another
1 ms at −52 mV, right 5 mV below the threshold. To mimic the back-
propagating AP, the dendritic voltage VD is instantaneously raised by
20 mV with a delay of 4 ms after VS crossed the threshold

respectively, each specified by the analog of the expressions
in (24).

Recall that the induction of a dendritic calcium spike
requires a fast dendritic voltage sweep crossing a certain vol-
tage threshold. It is possible to trigger a calcium spike by
dendritic input currents only, but in the presence of a back-
propagating AP far less dendritic input is needed. We there-
fore concentrate on those calcium spikes which are triggered
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by the joint action of a back-propagating AP and a simul-
taneous dendritic voltage sweep. This will lead directly to
a gain modulation of the somatic current-to-frequency res-
ponse function (see Eq. 27).

The specific requirement on the voltage transient arises
from the narrow window formed by the voltage-dependent
activation and inactivation functions (m∞ and h∞, respec-
tively) which are typical for calcium currents (Koch 1999;
Larkum et al. 2004). Since only a weak steady-state win-
dow current is possible with these gating functions, a slowly
increasing dendritic voltage would merely inactivate the cal-
cium conductance without being able to trigger a calcium
spike. Dendritic voltage traces produced by an Ornstein–
Uhlenbeck process will therefore only lead to calcium spikes
if the membrane potential deflections (characterized by σVD)
are large, and especially if these deflections arise together
with a dendritic steady-state depolarization (V D) which is
strong compared to the AP threshold (θ ). Hence, a criterium
for the generation of a dendritic calcium spike given a soma-
tically induced AP may have the form

σVD(1 + V D/θ) ≥ θ, (25)

where for the sake of simplicity we have chosen the same
threshold θ for the generation of a calcium spike as for the
generation of an AP. The probability, PCa, of a dendritic cal-
cium spike, conditioned on the earlier occurrence of a soma-
tic AP within a short time interval, is a saturating, increasing
function of the VD/θ term in Eq. 25; it can be expressed as

PCa =
(

1 − e−
σVD (1+V D/θ)−θ�/b
)
ρ (26)

where b is a positive constant in units of voltage and ρ is a
scaling factor between 0 and 1.

Next we consider the impact of the dendritic calcium
spikes on the neuronal response function. The firing rate f (2)

of the two-compartment model is due to the APs genera-
ted by the somatic current injection and the additional APs
generated by BAC-firing. Each AP induces an iterative, albeit
short-lived, process: a dendritic calcium spike occurring with
probability PCa causes, on average, a subsequent AP at the
soma, which in turn has a probability PCa to generate another
AP due to a calcium spike, and so on. f (2) can then be obtai-
ned as the sum across all iteratively induced APs, starting
with basic firing rate f (1) of the single compartment,

f (2) = f (1)
∞∑

i=0

(PCa)
i = f (1)

1 − PCa
, (27)

where the right-hand-side is obtained by summing the geo-
metric series. Alternatively, one may obtain f (2) from solving
the recursion relation f (2) = f (1) + f (2)PCa. Plugging the
expressions for f (2) and PCa (Eqs. 23 and 26, respectively)
into the right-hand side of Eq. 27, one obtains the firing rate
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Fig. 9 Somatic response function for different dendritic inputs in the
approximation of Sect. 6.3. a Firing rate f (2) for the two-compartment
model (Eq. 28) as a function of the average somatic depolarization
V S, plotted for different values of the average dendritic depolarizations
(V D = 0, 10, 20, 30 mV from bottom to top, with fixed σVS = 20 mV
and σVD = 15 mV). The star represents the voltage threshold θ =
20 mV. The lowest curve, representing the case V D = 0 (but with
σVD = 15 mV), almost coincides with curve for pure somatic injection
(Eq. 23). b The gain g of the response functions in a as a function of
average dendritic depolarization V D in the presence of a fixed noise
amplitude σVD = 15 mV (Eq. 29). The dots specify the values for V D
and g used to obtain the four curves in a. Other parameter values a = 5,
b = 5 mV, ρ = 0.5, α = 0.2, τ = 30 ms

of the two-compartment IF model (see Fig. 9),

f (2) = g(V D, σD) (V S − θ)

τ(θ − Vreset)
(

1 − e−a(V S−θ)/σVS

) , with (28)

g(V D, σD) = 1

(1 − ρ)+ ρe−
σVD (1+V D/θ)−θ�/b
. (29)

Expression (28) generalizes the one-compartmental res-
ponse function (23) to the case of two compartments, where
the second dendritic compartment acts as a gain modulator.
The somatic and dendritic voltage variables V S, σVS and V D,
σVD, respectively, are related to the somatically and dendri-
tically injected Ornstein–Uhlenbeck currents according to
(24).

The two-compartment response function (28) neglects the
passive propagation of the dendritic voltage toward the soma,
and of the somatic voltage towards the dendrites. A passive
dendro-somatic attenuation could be included in the model by
substituting VS → VS + αDVD and σS → σS + αDσD, with
αD representing a dendritic attenuation factor. The passive
component would cause a left shift in the response function,
whose strength is quantified by αD. In the experiments, this
factor appeared to be relatively large (∼ 0.4). However, since
in the experiments the dendritic electrode did not reach the
calcium triggering zone at the apical bifurcation (Larkum
et al. 2004), this factor may be much smaller in reality. Thus,
the left shift of the response function induced by the passive
dendritic input may be negligible compared to the induced
gain increase (cf. Fig. 9a).
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7 Discussion

Large populations of neurons have a large number of degrees
of freedom, giving rise to very rich and complex collective
dynamics. In the network models reviewed in this article,
the study of such a rich behavior can be simplified, because
it can be reduced to the study of the time development of
the distribution of the variables that characterize the single-
neuron dynamics (e.g., the depolarization in the case of IF
models). However, even with such a simplification, the equa-
tions governing the network dynamics are still difficult to
solve. For example, in the case of weak enough synaptic
interactions, the equation governing the distribution of the
depolarizations of IF neurons is a Fokker–Planck equation.
Although the dimensionality of the equation is low (the only
dynamical variable is the depolarization), the boundary
conditions, corresponding to the threshold for emitting a
spike and to the lower bound of the depolarization, make
it extremely difficult to find a general analytical solution.
The only exact solutions known can be obtained under the
assumption that the statistics of the synaptic input are statio-
nary (La Camera et al. 2008). For simple IF models, howe-
ver, it is possible to simplify further the study of the time-
dependent network dynamics in at least two situations: (1)
when the relaxation dynamics of the Fokker–Planck equa-
tion are significantly faster than the time scale over which
the input varies (as in the case of slow synaptic currents),
and (2) when the amplitude of the modulations of the input
statistics are small (perturbation theory). In both cases, we
have shown here that it is possible to reduce the study of
neural populations to the analysis of the response of single
neurons to noisy inputs. This approach is possible also in the
case of real neurons, for which the responses can be measured
in experiments.

What could these experiments reveal that was not known
for the neuronal model used to develop the theory? The expe-
riments provided us with an estimate of the parameters of
the neuron model, which is crucial for quantitative mode-
ling studies. However, there are at least two other impor-
tant, unexpected results that emerged from the analysis of
the experimental measurements and that turned out to be
independent of the specific neuronal model that was used
to design the experiment itself. The first result is that popu-
lations of real neurons respond fast (Köndgen et al. 2008),
significantly faster not only than any single neuron (which
was expected), but also faster than predicted by simple IF
models. The linear response to sinusoidal currents is not atte-
nuated up to frequencies of a few hundreds Hz. The second
unexpected result is related to adaptation on multiple time
scales. A quantitative analysis of the response of rat pyra-
midal and fast-spiking neurons to long lasting, noisy stimuli
with stationary statistics revealed that the activity of corti-
cal neurons is modulated over multiple time scales ranging

from hundreds of milliseconds to seconds. The response of
the neurons could be modeled with IF neurons with multiple
mechanisms of adaptation and facilitation. Every neuron had
up to four mechanisms operating on different time scales.
Moreover, the time scales varied widely from neuron to neu-
ron, allowing a population to show responses on almost a
continuum of time scales.

In the second part of this review, we have considered the
single-neuron response to inputs that are distributed on the
dendritic tree. The simplicity of the IF model contrasts with
the complexity of the dendritic arborization of some pyra-
midal neurons, with their regenerative membrane currents
and clustered synaptic inputs (Spruston 2008). The exten-
ded geometry of cortical neurons and their nonlinear dentri-
tic properties may offer additional computational power by
exploiting nonlinear dendritic properties (Poirazi et al. 2003;
Polsky et al. 2004), like the multiplicative gain modulation
of the somatic response function reviewed here.

The gain of the response function can be modulated by
various mechanisms, e.g., through the action of neuromo-
dulators (Zhang and Arsenault 2005; Thurley et al. 2008),
the strength of after-hyperpolarization currents (Higgs et al.
2006), or a balanced change of noisy excitation and inhibi-
tion (Hô and Destexhe 2000; Destexhe et al. 2001; Doiron
et al. 2001; Chance et al. 2002; Longtin et al. 2002; Mitchell
and Silver 2003). These forms of gain modulation are imple-
mentable in point neurons, and were not considered here.
Other forms require instead multi-compartmentalization, like
those arising from passive dendritic integration (Prescott and
De Koninck 2003; Mehaffey et al. 2005; Capaday and van
Vreeswijk 2006).

We reviewed a dendritically controlled gain modulation
mediated by BAC firing and dendritic calcium spikes. This
phenomenon relies on regenerative dendritic calcium conduc-
tances and can be tuned by acting directly on those conduc-
tances (Larkum et al. 2004), e.g. by selectively blocking them
through activation of dendritic GABAA and GABAB recep-
tors (Pérez-Garci et al. 2006). These tuning options extend
the functionality of pyramidal neurons by allowing them to
distinguish between synaptic drivers, modulators and dis-
ruptors (see Sherman and Guillery 1998 and Fig. 7c). Recent
experimental evidence from awake rats suggests that these
different types of inputs may also play a functional role in
vivo (Murayama et al. 2008).

The mechanism of BAC-firing and BAC-firing-induced
gain modulation is related to a specific type of neural code,
a burst-timing code, which is different from both firing rate
codes (e.g., of Figs. 1, 8a) and spike-timing codes. A calcium
spike, triggered by the joint occurrence of a back-propagating
AP and the dendritic input, elicits in turn several consecutive
sodium spikes at the soma within roughly 30 ms (Larkum
et al. 1999). This mechanism allows a coincidence signal-
ling to downstream neurons. Since inputs to the soma and

123



316 Biol Cybern (2008) 99:303–318

the apical tree may originate from different cortical sources
(Budd 1998; Oda et al. 2004), burst-timing could provide a
way to detect and signal the coincident occurrence of bottom-
up and top-down signals.

While in the present review we have focussed on the
current-to-frequency transfer function and its modulation by
temporal and spatial inputs, other aspects of the neuronal inte-
gration determine the encoding of synaptic inputs. Among
these are the spatial distribution of inputs along dendrites
as pioneered by Rall (1967), nonlinear dendritic interactions
(for reviews see Koch and Segev 2000, Segev and London
2000), or the impact of high conductance states (Destexhe
et al. 2003; Geisler et al. 2005).

For us, the ability of simplified models to capture much of
the rich and varied experimental phenomenology of cortical
neurons embedded in an in vivo-like environment indicates
the success of the reductionist approach in neurophysiology.
We also hope that recent observations, like gain modulation
by distal dendritic inputs or the divergence of the response
functions in prefrontal cortex neurons (Arsiero et al. 2007),
can open the door for new quantitative models and their appli-
cation to analysis of network behavior. While such an interac-
tion between theory and experiment is a widely consolidated
tradition in physics, it is becoming only slowly established
in neuroscience.
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