
A Modular Data Infrastructure for
Location-Based Services

Shijun Yu and Stefano Spaccapietra

Database Laboratory, I&C, EPFL, Switzerland
shijun.yu@epfl.ch, stefano.spaccapietra@epfl.ch

Abstract. Knowledgable Location-based Services (LBS) aim at enab-
ling mobile users to specify their requests and profiles on the move and
providing them with context-aware and personalized local information
relevant to their current activity and request. Therefore, it opens up new
challenges in data infrastructure, knowledge representations and data
management etc. In this paper, firstly we will discuss the characteristics
of LBS in terms of data management, and then present our data archi-
tecture. Finally, we will explain how the knowledge is incrementally set
up and maintained in a modular manner.

1 Introduction and Motivation

Traditional data management applications operate in well-structured informa-
tion environments and benefit from full-fledged strategies (e.g. SQL) that provide
the needed functionality to represent, manage and query well-structured data.
Web-based application environments, on the other hand, face a cumbersome task
trying to provide the same functionality for the huge amount of heterogeneous
data resources that reside on the Web. This new framework entails an emphasis
on elicitation of data semantics, to improve the chances for correct interpreta-
tion of the data by heterogeneous partners (users and agents) that do not adhere
a priori to common coordinated behavior. In parallel, users’ increased mobility
has lead to the development of Location-Based Services (LBS), i.e. services tai-
lored to provide information that is selected taking into account the current
location of the user on the move. Current LBS rely on traditional data man-
agement techniques, integrating all the data they need into a single centralized
repository and providing all their users with the same services. We foresee that
a new generation of LBS, which we call knowledgeable LBS, will be developed
to provide enhanced services, namely contextualized and personalized informa-
tion retrieval, and constant evolution to acquire new knowledge as available and
as requested by users. Given the commonality between knowledgeable LBS and
semantic web services in terms of facing an unbounded information space, LBS
will likely use semantic web technology, enabling them to be used not only by
users on the move, but also via the web, and exchange data and services with
any agent within the semantic web. LBS services will nevertheless retain their
specificities, namely:

I.-Y. Song et al. (Eds.): ER Workshops 2008, LNCS 5232, pp. 364–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147967266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Modular Data Infrastructure for LBS 365

– Locality, Mobility and Dynamics. LBS web services will provide in-
formation about a specific region, in particular information related with the
current real or virtual location of the user. To fulfill this capability, LBS have
to build and maintain knowledge repositories describing all locally relevant
data stored in a limited number of data sources. When the user moves from
her/his current place to a remote one (e.g. from Paris to London), the pre-
vious sources and knowledge become useless for upcoming queries from the
user. Therefore, LBS need the capacity to dynamically acquire new sources
and build the corresponding new knowledge into its repositories. Alterna-
tively, LBS can be specialized to only serve a specific region. In this case, it
will be up to users to switch from one LBS to another (just like cellphone
users today switch from one telecommunication provider to another one).
This paper gives some hints on how LBS may become knowledgeable about
a specific region, which we see as a basic functionality for 2nd generation
LBS.

– Trading comprehensiveness for rapidity. LBS intend to serve people
on the move, i.e. they have to provide rapid rather than comprehensive
responses to user queries. Well-known centralized management strategies
that call for long set up processes and static solutions are not well suited to
LBS needs. This departs significantly from e.g. data warehousing frameworks
[4] that have similar data heterogeneity problems but different data quality
and comprehensiveness requirements. Suitable query processing strategies
need to be developed.

– Modularity. LBS obviously have a strong specific focus on spatial and tem-
poral information and related constraints. In addition to space and time
challenges, LBS aiming at context-awareness have to be highly sensitive to
the current state of affairs when responding to user requests. Similarly, they
have to care about personalizing services based on knowledge they can ac-
quire about user’s characteristics. This multiplicity and diversity of concerns
make LBS a complex software whose processes constantly need to adjust to
running circumstances. To make this possible while keeping performance
we propose a modular data architecture, more easily manageable than the
centralized approach in current LBS.

2 Related Work

Many different strategies can be applied in a LBS to organize, acquire and main-
tain the heterogeneous data involved in LBS. Earlier LBS were mainly concerned
about a specific application, for instance, Active-Badge [9] to obtain the latest
target’s location, EasyLiving [7] to ’find a colleague in the building’. In these sys-
tems, LBS infrastructures were relatively simple and mostly oriented towards to
a single application supported by a central database. From a practitioners’ view-
point, a middleware-based architecture [1] is well-suited for LBS design due to its
application-independence, adaptability to multiple platforms and dynamicity. A
positioning service, for example, is an obvious component of a LBS middleware

366 S. Yu and S. Spaccapietra

model [3]. Similar proposals are also embodied in [2] and commercial products at
IBM, ORACLE and Microsoft. In CRUMPET project [6], client-mediator-server
three-tier approach was employed to improve the context-aware interactions be-
tween the user and services.

Crucial components for knowledgeable LBS are those supporting semantic
interoperability and data reusability. As we have learnt from semantic web re-
search, knowledge sharing and reasoning capabilities call for ontology manage-
ment services. LBS need an ontological approach to solve typical issues about
concept classification, knowledge inference, and concept similarity evaluation,
just to name a few. We therefore propose a knowledge infrastructure relying on
a domain ontology, alike e.g. a tourism ontology. In line with a web services view,
we see the LBS ontology as an ontology of services and service usability. Because
of this service orientation, the LBS ontology is to be equipped with specific fea-
tures, such as links between services to show functional equivalence used to plan
alternative services. Beyond service descriptions, our LBS ontology includes rel-
evant contextual information that is essential to refine service usability given
the current state of the local world. Similarly, it includes knowledge about user
characterization used for personalization purposes. This makes up three knowl-
edge modules that together define what we call the modular core ontology [5]
as shown in Figure 1. Different from most ontologies, the LBS ontology has to
have the generic knowledge and know-how to deal with space and time aspects
and reasoning. For example, it has to know about points, lines and areas and
about topological constraints. To emphasize this, Figure 1 shows two knowledge
containers about space and time included in the core ontology. However, they
are drawn differently because of the difference in nature wrt the user, context
and service modules. Notice that Figure 1 only shows the repositories in the
infrastructure, not the corresponding process components (cf. Section 6) used
to build and maintain the repositories. Complementing the core ontology with
rich terminological knowledge is important to support the variety of cultural
and linguistic habits of LBS partners, through flexibility of vocabulary in the
exchanges between the LBS and its partners (users, service providers, knowledge
providers). The framework for these exchanges is provided by the mappings (cf.
Figure 1) between LBS knowledge and the specific descriptions of the current
LBS partners. We denote the latter as user/service/context profiles.

This paper presents and discusses the knowledge architecture that organizes
the various components mentioned above, and how this knowledge is incremen-
tally set up and maintained.

3 Our LBS’s Data Infrastructure

By definition, a LBS holds an integrated view of data and services from sources
local to a specific region (e.g. a city and its suburbs). Occasional extension of
the geographic coverage can be achieved by considering the LBS as a peer in
a peer-to-peer architecture [10]. Whenever the LBS is unable to answer a user
query because the local data does not lead to a possible answer, before replying

A Modular Data Infrastructure for LBS 367

negatively it may forward the query to geographically neighboring LBSs. For
instance, let us assume that user Shirley, currently in Lausanne, has to attend
a meeting in Geneva later in the day. She asks for time-tables of relevant buses
in Geneva. The LBS serving Lausanne, aware it is unable to answer her query,
may forward the query to the neighboring LBS in Geneva. This paper does not
address such typical P2P issues, it focuses instead on semantic data management
for a single LBS.

Regarding data management for a single LBS, we do not propose to inte-
grate or align all data from the sources into a single repository. Instead, LBS
knowledge only includes an abstract view of the source data. Thus, for example,
the detailed description of a service as stated by the service provider remains
at the source, while the abstract view maintained in the LBS only records the
main characteristics of the service, i.e. the minimal information that is needed
to quickly estimate if, given a specific query, the service may be relevant or not
for the querying user. Whenever more detailed information about a service is
needed, the sources are directly queried to extract the instantiations and other
properties of services that may be of interest to the requesting user. This ap-
proach shows two benefits: firstly, sources can autonomously maintain their data,
while the LBS is just responsible for suggesting users where to find appropriate
services. Secondly, the sources can protect their data based on their own privacy
regulations and can constrain users’ access so as to only provide their data if
certain conditions are satisfied.

In order to build a knowledgeable LBS system capable of actually relating con-
cepts from different sources, disambiguating the terms in queries, and supporting

User profiles Service profiles

Shared Terminology

Thesauri Core_Ontology Terms External
Knowledge

Service
Profiles

Mapping

S ervice profile 1

Service profile 2

Service profile n

...

Modular Core Ontology

Context
Module

User
Module

Service
Module

Time Space

User1 profile s

User2 profile s

UserM profile s

...

User
Profiles

Mapping

Context profiles

...Context
profile 1

Context
profile 2

Context
profile i

Context Profiles Mapping

Fig. 1. The Basic Data Infrastructure in our LBS

368 S. Yu and S. Spaccapietra

query-service matching according to multiple criteria, so as to efficiently respond
to user queries, the data infrastructure we propose includes six repositories inter-
connected via corresponding mappings (see Fig. 1). Two repositories, called Core
Ontology and Shared Terminology, contain the domain-relevant knowledge built
by the LBS and LBS administrators, and its related terms. Three other repos-
itories contain knowledge on the external actors with whom the LBS interacts,
i.e. users, services, and context providers. We say these repositories respectively
contain the user profiles, the service profiles and the context profiles. Finally, the
last repository (not shown in Fig. 1) is a working repository that contains the
queries being processed by the LBS, thus holding data specific to a given query,
and possibly the historical record of this data. For term similarity, we refer to this
query data as query profiles. The infrastructure components are briefly described
hereinafter to give an overall but intelligible view of the proposed infrastructure.

4 The Modular Core Ontology

The core ontology (CO) is the repository for the semantics of the data managed
by the LBS. It is the kernel of the LBS’s data infrastructure and it is used to
structure the diverse aspects of service-related information and perform reason-
ing about it. It basically describes taxonomies of interest, encompassing a set of
definitions of classes, properties, relations, axioms and constraints. These tax-
onomies organize information in complementary sub-domains. Services, users,
context, space and time are the main sub-domain we have identified as essential
to LBS. These sub-domains are quite heterogeneous and each one can be pretty
complex in itself. Therefore, for better management and improved performance,
we propose that the core ontology be a modular ontology composed by one mod-
ule per sub-domain. A module is defined as a smaller ontology, which covers a
sub-domain within the domain of the larger ontology. This fits perfectly with
the LBS core ontology and its multiple taxonomies. Moreover, building mod-
ular ontologies is nowadays feasible. Several proposals exist on how to build a
modular ontology, how to maintain modules individually as well as maintain the
inter-module links that allow interactions between modules, and how to perform
distributed reasoning within a modular organization [5]. Modular ontologies have
been claimed to solve scalability issues and speed up reasoning, benefits that are
for sure also relevant for LBS. However, the primary benefit we see in a modular
ontology is its improved understandability and easiness of design and adminis-
tration. A modular organization allows autonomous development of each module
by an administrator with specific expertise in the sub-domain. Moreover, consid-
ering the semantic web and its world of specialized services, the development of
modular approaches can improve the ontology’s reusability. If good sub-domain
repositories are available, it is much easier to reuse them than to elaborate a
brand new one from scratch.

Whether modular or not, reuse is anyway the approach to follow when start-
ing building the core ontology. Initializing the core ontology means inserting all

A Modular Data Infrastructure for LBS 369

concepts that are assumed to be useful for the targeted application(s). Once
the targeted knowledge domain identified, a clever designer looks for existing
ontologies in the same or similar domain. If any one is found, its import can
form the initial set-up for the core ontology. For example, if a tourist-support
application is targeted, the designer will look for, and find, a tourism ontology
whose concepts include accommodation, food, transport, and leisure services.
Very likely, many of the imported concepts will be generic enough to be suit-
able for the new LBS and its service module. However, not all of them will be
relevant for local use, and not all of them will be formulated in a way that
is consistent with local habits. Therefore, in a second step, the core ontology
is turned into a local domain ontology (e.g. tourism support in the Canton de
Vaud, Switzerland). This can be done by acquiring and adding location-specific
information (i.e. contextual data), such as local landmarks and local calendars,
and enriching existing information, such as adding the preconditions for using a
given available service, e.g. to use a motor-boat rental service the user needs to
hold a valid sailing licence. Conversely, making the ontology local also includes
removing generic concepts that are locally irrelevant (e.g. downhill skiing for an
LBS about Amsterdam).

At this point, the LBS is fully ready to start operation. As long as the LBS
is in use, the core ontology is expanded based on the queries received and an-
swers given. Identification of new requirements by the ontology manager will
also lead to ontology expansion, but this is very much similar to normal ontol-
ogy evolution, not specific to LBS, and will not be discussed here. Notice that
for the administration of the core ontology given this incremental strategy it is
advisable that elements in the ontology be qualified as either prospective or con-
firmed. A prospective element is one that has been entered in the initialization
phase but has not yet been used (up to now). A confirmed element is one that
has been actually used during the processing of at least one query. Prospective
elements should sooner or later become confirmed elements. Elements that re-
main prospective elements for too long are candidate for deletion, to be triggered
by the ontology managers whenever it is felt that this is a reasonable enhance-
ment to ontology performance (smaller ontologies may be explored and updated
faster than large ontologies). More sophisticated maintenance strategies may be
defined, based on usage metrics, relevance feedback and other usability criteria.
They are not investigated here.

5 The Shared Terminology

In our proposal, the set of terms hold by the shared terminology is a superset
of the terms in the core ontology. This superset is intended to provide extended
terminological support to facilitate interoperability among components of the
data infrastructure. It helps in solving heterogeneity issues (from the syntactic
level to semantic level) such as differences in the vocabulary of data sources, core
ontology and user queries, and related ambiguities. A typical example is the use
of synonyms, e.g. a user querying for soccer matches while the ontology records

370 S. Yu and S. Spaccapietra

information on football matches. The shared terminology is queried by the LBS
whenever the core ontology cannot identify a concept used in a query. For in-
stance, a multi-lingual shared terminology may be used to overcome language
limitations of a LBS based on a monolingual core ontology. An English-based
LBS may thus be able to answer queries from French-speaking user.

We propose to initially populate the shared terminology with the concepts in
the core ontology, which we call internal terms. Next, each internal term is com-
plemented with its definition(s) extracted from certain thesauri. Subsequently,
the shared terminology is further enriched by introducing what we call external
terms, i.e. terms (from the thesauri) that are somehow relevant to the internal
terms, but are absent from the core ontology. Relevant means there is a relation-
ship between the internal term and the imported external term. For instance,
the internal term ’car rental’ may be related to the external term ’hire a car’
with a semantic equivalence (synonymy) relationship. During LBS operation any
new term appearing in user queries or in service-profiles will be identified thanks
to the shared terminology manager and added to it in order to capture the ter-
minologies of users and services that differ from the terminology of the LBS
designers. Because the shared terminology manager can use any external ontol-
ogy to identify the unknown term, we do not expect the identification process to
fail. Should this happen, the query or service description using the term cannot
be accepted and further human interaction is needed to solve the issue.

6 Information Profiling and Semantics Matching

Service Profiles. In our proposal, the descriptions of specific services are au-
tonomously created by service providers and are kept and maintained at the
corresponding data sources, external to the LBS. These service descriptions, to-
gether with some metadata about the data source (e.g. owner name, last update
date), form what we call a service profile (see detailed definitions in [11]). Ser-
vice profiles are acquired by the LBS when the data source joins the LBS. The
acquisition process includes
Service Profile Matcher. This process component, the SP matcher, is respon-
sible for acquiring the service profiles, recognizing the terms and concepts in the
service descriptions, evaluate their matching with the knowledge in the service
module of the core ontology, and accordingly establish the mappings between
service profiles and service module. This mapping is used at query time to re-
trieve the services relevant to users’ queries. The matching process uses a set of
pre-defined syntactic and semantic rules to transform the heterogeneous service
profiles into the format consistent with the LBS core ontology. The matching
also produces the mapping of the core ontology into service descriptions, i.e.
the syntactic and semantic support needed to transform users’ queries into the
format that the data sources can understand. The process is repeated for the
classes, properties, and other features that the service profile encodes. The goal
is not to fully copy the service profile descriptions into the ontology, but to en-
sure that the core ontology service module holds enough information about the

A Modular Data Infrastructure for LBS 371

service to be able to evaluate the effectiveness of the service as a response to
users’ queries.
User Profiles. The LBS needs to know about its users to achieve its person-
alization goal. Descriptions of users, mostly in terms of ¡attribute, value¿ pairs
about e.g. age, profession, preferences and dislikes, are traditionally called user
profiles. We assume these profiles are stored in a dedicated repository that may
be within the LBS or in a site elsewhere located but accessible by the LBS.
Same as for service profiles, user profiles need to be understood by the LBS,
i.e. the LBS must identify what the data in the user profile means and how it
can be related to context and service data. The LBS user module maintains the
concepts generically related to users, possibly abstracted from the actual user
profiles.
User Profiles Matcher. This process component, the UP matcher, plays for
user profiles management the same role and functionality the SP matcher plays
for service profiles. A specificity of the UP matcher is to extract from the user
profile information to guide the presentation of the query results to the user.
Context Profiles. The LBS needs to know what information participates into
the description of the local framework (e.g., local events and places worth record-
ing, local cultural habits such as shops opening hours), and the current status
of the local world (e.g., local traffic conditions and whether the current day is
a working day or a holiday). The LBS also needs to know existing correlations
between context data and user/service data. This information identifies e.g. user
preferences and service accessibility that are context-dependent.. These spec-
ifications form the context module, while factual context data is dynamically
acquired from given data sources, e.g. weather data is extracted from the web
pages of the local meteorological station. For each data source, we call context
profiles the description of the locally available context data. They may contain,
for example, a set of URLs with associated description of which kind of data is
available and how it can be extracted, or a pointer to a tourist office database
or set of XML files such as an event schedule.
Context Profiles Matcher. Similarly to the other matchers, this one is respon-
sible for establishing and maintaining the mapping between the context module
and the context profiles.
Query Profiles and Query Relaxation Profiles. The components in the
basic infrastructure are those needed to understand user queries, refine it us-
ing contextual and user knowledge, and identify services that may match user’s
interest. Additional functionality may be achieved in terms of smarter query
processing and calls for additional information that we define hereinafter as
query profiles and query relaxation profiles (not shown in Figure 1). A query
profile holds for each user query a description of its successive reformulations
computed by the multi-step query processing strategy, as well as the relevant
subsets of the user profile (conveying the user data that has been found rele-
vant for this specific query) and of the context data (conveying the contextual
data that has been found relevant for this specific query). Query profiles are

372 S. Yu and S. Spaccapietra

stored within the LBS as element of a sequence of queries that we makes up a
user interaction, i.e. an exchange between the user and the LBS that leads the
user, through a series of questions & answers, to get the desired information. In
addition, query relaxation is a very common topic in LBS. Whenever the user
needs additional results or a perfect matching can not be accomplished, a query
relaxation strategy is activated. The strategy calls for user specifications about
what can be relaxed (i.e. which selection criteria can be softened to a larger
selection) and which ordering of relaxations is to be preferred. We call query
relaxation profile this user-driven and query-specific specification. The analysis
of query profiles can assist to refine the relaxation rules and ranking functions
for better recommendation and more efficient query relaxation.

7 Interactions between Components

This section briefly shows a usage scenario to illustrate the interplay of the
different components in the data infrastructure. We first show a set-up scenario,
followed by a query scenario.
Set-up Scenario. Let us assume a software company has an LBS skeleton, i.e.
all the software to run the planned location-based services, and wants to set-up
a first version of its LBS servicing tourists visiting the city of Lausanne. Setting
up this specific LBS is a knowledge acquisition process. As we already men-
tioned, the first task is to find and import one of the existing ontologies for the
tourism domain. The imported concepts form a first draft for the service mod-
ule, generically describing standard services in support of traveling tourists. The
second initialization step is acquisition of the local context. This can be achieved
through import of data files acquired from local providers (e.g. the local tourism-
related organizations such as cultural associations, local press, movie distribu-
tors, transport companies, and so on). Alternatively, data can be captured from
public websites using knowledge extraction techniques (e.g. [8]). Captured and
acquired data are formatted to define and populate the context module. Such a
priori knowledge of context may be needed to perform the following step, which
is acquisition of service descriptions from local service providers. As stated, we
assume that local providers will make their service descriptions available, not
necessarily following a fixed format or adhering to a fixed terminology. This is
where the LBS will start building the shared terminology, in its attempt to un-
derstand what a given service description means. For example, retrieving the
service description term from WordNet and associating it to the corresponding
term already in the service module. Acquiring service knowledge is a sophisti-
cated task, as the goal is not to import service descriptions but to build the
abstract view of services that forms the service module. This knowledge ab-
straction step relies on linguistic techniques (to identify major relevant terms)
as well as on semantic techniques (to only retain what is useful in differentiating
the service from the other services). Building the service module obviously in-
cludes building the mapping between the module and the service profiles. Once
the service and context modules are set up, the LBS is ready to start receiving

A Modular Data Infrastructure for LBS 373

queries from users. Here the question is whether user profiles will come from the
user device or will have to be retrieved from some external repository of user
profiles. Given the sensitivity of the issue, the former is likely to prevail. This
means the LBS has to run a user profile understanding process, equivalent to the
service profile understanding process. However, some generic knowledge about
users characteristics can be initialized a priori within the user module. Actual
user profiles will be matched against this initial set-up, the matching possibly
leading to enriching the user module and the shared terminology.
Query Scenario. Here we just sketch what happens in the proposed LBS. User
queries in our approach are formulated by stating which kind of service the
user is interested in, and the spatial (e.g. proximity) and temporal (e.g. current
availability) conditions that are to be taken into account while selecting specific
services in response to the query. The user query can also specify thematic
(non-spatial and non-temporal) conditions to refine the search for services of the
given kind. The hypothetical query ”Give me nearby restaurants still serving
Swiss traditional cuisine after 2pm today” denotes restaurant as the desired a
kind of service, together with the specification of spatial, temporal, and thematic
conditions. Query processing within the LBS includes the following phases: 1)
understanding the query (are the terms and the service they denote known in the
core ontology or in the shared terminology? If not, search external ontologies);
2) retrieving from the service module the prototypical description of this kind of
services in order to check preconditions for using services of this kind and check
that conditions stated in the query can be actually evaluated (e.g. that the type
of cuisine offered by a restaurant is known); 3) personalizing the query, i.e. check
if relevant knowledge in the user profile allows refining the query, e.g. refining
a query for a restaurant into a query for a restaurant within the price-range
defined in user’s preferences; 4) contextualizing the query, i.e. check if context
data allows further refinement, e.g. replacing the qualitative expression ”cheap
restaurant” with the quantitative expression ”restaurant with average price less
than 40 CHF”; 5) executing the query, i.e. find relevant services in the order of
preference, if any, as stated in the reformulated query. Notice that the order in
which to execute phases 2, 3, and 4 can be changed without influencing the final
result.

8 Conclusion and Future Work

In this paper, we first discussed the features characterizing data management
in a LBS, i.e. locality, mobility, dynamics, heterogeneity, on the fly interoper-
ability, and modularity. We emphasized the split in data organization between
knowledge that is elaborated by the LBS itself (the core ontology and the shared
terminology) and knowledge that is provided by external partners (users, con-
text, and service providers). The core ontology represents the domain-specific
conceptual views in a unified fashion. In addition, the shared terminology pro-
vides terminological support to overcome the heterogeneity problem that often

374 S. Yu and S. Spaccapietra

results from the diversity of the cultures and languages, as well as from the lack
of the knowledge of the LBS’ structure and naming for users.

Our modular data infrastructure is mainly based on OWL (W3C recom-
mended Web Ontology Language). Its full-fledged support to processing queries
and reasoning over a large scale of ontology repositories still calls upon the con-
vergence of many efforts from both the semantic web community and industrial
practitioners. We can envision many potential challenges in deploying the future
LBS, e.g. defining a robust ontology query language, developing more powerful
ontology management tools, enhancing reasoning capabilities on complex data
types such as spatio-temporal data etc.

References

1. Bernstein, P.A.: Middleware: a model for distributed system services. Communi-
cations of the ACM 39(2), 86–98 (1996)

2. Cole, A., Duri, S., Munson, J., Murdock, J., Wood, D.: Adaptive Service Binding
Middleware to Support Mobility. In: Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW 2003) (2003)

3. Jacobsen, H.-A.: Middleware for Location-Based Services. In: Schiller, J., Vois-
ard, A. (eds.) Chapter of the book Location-Based Services, Morgan Kaufmann
Publisher, San Francisco (2004)

4. Jensen, C., Friis-Christensen, A., Pedersen, T., Pfoser, D., Saltenis, S., Tryfona, N.:
Location-Based Services - A Database Perspective. In: Proceedings of the Eighth
Scandinavian Research Conference on Geographical Information Science, pp. 59–68
(2001)

5. Parent, C., Spaccapietra, S., Stuckenschmidt, H. (eds.): Ontology Modularization.
Springer, Heidelberg (to appear, 2008)

6. Schmidt-Belz, B., Laamanen, H., Poslad, S., Zipf, A.: Location-based Mobile
Tourist Services - First User Experiences. In: Proceedings of International Con-
ference for Information and Communication Technologies in Travel and Tourism
(ENTER), Helsinki, Finland (2003)

7. Shafer, S., Krumm, J., Brumitt, B., Meyers, B., Czerwinski, M., Robbins, D.:
The New Easyliving Project at Microsoft Research. In: Proceedings of the Joint
DARPA/NIST Smart Spaces Workshop (1998)

8. Tezuka, T., Lee, R., Kambayashi, Y., Takakura, H.: Web-Based Inference Rules
for Processing Conceptual Geographical Relationships. In: Proceedings of the 2th
International Conference on Web Information Systems Engineering WISE (2001)

9. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.
ACM Transaction on Information Systems 10(1), 91–102 (1992)

10. Yu, S., Spaccapietra, S., Cullot, N., Aufaure, M.-A.: User Profiles in Location-
based Services: Make Humans More Nomadic and Personalized. In: Proceedings
of IASTED International Conference on Databases and Applications, Innsbruck,
Austria (2004)

11. Yu, S.: Contextualized and Personalized Location-based Services. Thesis No. 3896,
EPFL, Switzerland (2008)

	A Modular Data Infrastructure for Location-Based Services
	Introduction and Motivation
	Related Work
	Our LBS's Data Infrastructure
	The Modular Core Ontology
	The Shared Terminology
	Information Profiling and Semantics Matching
	Interactions between Components
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

