
I.-Y. Song et al. (Eds.): ER Workshops 2008, LNCS 5232, pp. 55–65, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Scientific Model Management System

Fabio Porto1, José Antônio de Macedo1, Javier Sanchez Tamargo1,
Yuanjian Wang Zufferey1, Vânia P. Vidal2, and Stefano Spaccapietra1

1 EPFL-IC – Database Laboratory
Lausanne, Switzerland

{fabio.porto,jose.macedo,javiersancheztamargo,
yuanjian.wangzufferey,stefano.spaccapietra}@epfl.ch

2 UFC - Department of Computing
Ceará, Fortaleza, Brazil
vvidal@lia.ufc.br

Abstract. Computational models of biological systems aim at accurately simu-
lating in vivo phenomena. They have become a very powerful tool enabling
scientists to study complex behavior. A side effect of their success unfortu-
nately exists and is observed as an increasing difficulty in managing data,
metadata and a myriad of programs and tools used and produced during a re-
search task. In this work we aim at supporting scientists during a research en-
deavour by using Scientific Models as a main guiding element for describing,
searching and running computational models, as well as managing the corre-
sponding results. We assume a data-oriented perspective for scientific model
representation materialized into a data model with which users describe scien-
tific models and corresponding computational models, and a query language
with which a scientist specifies simulation queries. The model is grounded in
XML and tightly related to domain ontologies, which provide formal domain
descriptions and uniform terminology. Scientists may search for scientific mod-
els and run simulations that automatically invoke the underlying programs on
provided inputs. The results of a simulation may generate complex data that can
be queried in the context of the scientific model. Higher-level models can be
specified through views that export a unified representation of underlying sci-
entific models.

1 Introduction

Multiple large-scale scientific projects are expected to produce a never before ob-
served amount of experimental and simulation data. Current technology for data man-
agement is clearly unable to cope with the needs to store, index, search, analyse,
process and integrate such massive, complex and very often-heterogeneous data. Ad-
ditionally, the very aim of scientific exploration requires a different perspective on
data management, one that can cope with expected knowledge evolution and world-
wide collaboration.

A promising approach is based on the concept of scientific models [1], which are
formal representations synthesizing the understanding about a studied phenomenon,
entity or process. It allows scientists to simulate the behaviour of the real world and
compare it against experimental results.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147967265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 F. Porto et al.

From a data perspective, scientific models encompass all the information used and
produced during a scientific exploration. It is contextualized by its scientific domain,
bibliographic references, a description of the observed phenomenon and, in some
cases, some mathematical formulae and provenance information. A computational
model, in this paper, refers to a realisation of a scientific model through computa-
tional resources, software and hardware. Basically, a scientist or engineer creates a
computational implementation that simulates the behaviour of the studied phenome-
non and its interaction with interfacing environment, according specifications in the
scientific model.

Transforming a scientific model into a computational one can be a complex task, if
at all possible, but once realised allows scientists to confront simulation against ex-
perimental results, leading eventually to an accurate representation of the studied
phenomenon. This process known as model tuning includes both modifying programs
(i.e. changing the behaviour) and fitting input parameter and set-up values (i.e. speci-
fying initial simulation state). In many cases, when experimental data are available,
regression analysis, provide formal procedures for model fixing [2].

It is a fact that the complexity of specifying and running a computational model
and managing all the resources produced during a scientific endeavour deviates the at-
tention off the phenomenon being investigated to implementation concerns [3]. State
of the art approaches to computational simulation rescue to scientific workflows lan-
guages, such as SCUFL and BPEL, to specify workflows and to their corresponding
running environments [4,5, 6,7] for models evaluation. For small scale non data inten-
sive simulations, scientist may choose to use tailored environments like MATLAB [8]
and Neuron [9].

Whilst some of these have attracted a large user community [10], they fail to pro-
vide an integrated scientific model environment as proposed in this paper, in which
the studied phenomenon, the derived models and data therein produced are integrat-
edly managed.

In this work we aim at supporting scientists in specifying, running, analysing and
sharing scientific models and model’s data. To this end we sketch a scientific model
management system architecture and detail a data model and query language for
specifying scientific models and running simulations. We assume a data-oriented per-
spective for scientific model representation, materialized into a data model with
which users describe scientific models and derived computational models, and a
query language with which a scientist specifies simulation queries. The model is
grounded in XML and tightly related to domain ontologies, which provide formal
domain descriptions and uniform terminology. Scientists may search for scientific
models and run simulations that automatically invoke the underlying programs on
provided inputs. The results of a simulation may generate complex data that can be
queried in the context of the scientific model. Higher-level models can be specified
through views that export a unified representation of underlying scientific models.

The remaining of this paper is structured as follows. Section 2 gives a brief intro-
duction to the system architecture. Next, section 3 introduces a running example ex-
tracted from the neuroscience domain. Section 4 describes the data model and section
5 presents the simulation query language. Finally, section 6 concludes discussing our
achievements so far and future works.

 Towards a Scientific Model Management System 57

2 Scientific Model Management System

A scientific model management system (SMMS) supports scientists in designing, cre-
ating, searching and running scientific models, and in managing the results of simula-
tions and analysis. Figure 1 depicts the main system functions.

The system functions are structured into four layers. A user layer provides the
interface for scientists to create and edit elements of the model and to request system
services, such as running simulations, querying and reasoning. Users may query sci-
entific model meta-data as well as simulation results.

Fig. 1. Scientific Model Management System Architecture

The metadata management layer stores scientific model metadata and supports
metadata management services. In this work, scientific model metadata is based on a
set of ontologies that guarantees uniform terminology among models and scientists. A
transformation and selection service allows scientists to map ontology fragments to
XML trees, which are then used in data model elements description. The catalog ser-
vice manages metadata about scientific model and data, as well as supporting infor-
mation such as ontologies, views (see section 5.5) and transformation rules.

The service layer supports simulation evaluation, querying of simulation results
and reasoning. We have extended the query processing system CoDIMS [11] to cope
with simulation queries evaluation.

Finally, a data management layer supports distributed scientific models manage-
ment and wrappers implementing complex datatypes, offering access to simulation
results, such as graphs and time series.

In this paper, the details of the architecture are not further explored. Instead, the
following sections present the backbone of the system in the form of a data model and
simulation language. Similarly, the details regarding ontology managing, transforma-
tion and alignment are left to future work.

58 F. Porto et al.

3 A Neuroscience Scientific Model

In this section we introduce a running example taken from scientific models devel-
oped for the neuroscience domain. According to Kandel [12], “the task of neural
science is to explain behavior in terms of the activities of the brain”. Numerous com-
putational neuroscience groups investigate scientific models that aim at explaining
such behavior. A classical example is the axon membrane action potential model pro-
posed by Hodgkin and Huxley (HH) [13] that describes how action potentials traverse
the cell membrane. An action potential is a pulse-like wave of voltage that can trav-
erse certain types of cell membranes, such as the membrane of the axon of a neuron.
The model quantitatively computes the membrane potential between the interior and
the extracellular liquid, based on the flow of ions of sodium (Na+), potassium (K+)
and a leakage one representing all other channel types. The mathematical equation
proposed by HH is presented below:

I = m3 h gNa (E – ENa) + n4 gK (E – EK) + gL (E – EL) (1),

where gi, i={Na, K, l}, are function of time dependent variables, representing the
membrane conductance, and Ei model the equilibrium potential for each ion channel,
while E is the membrane potential. Finally, n, m and h are parameters controlling the
probability of the sodium or potassium gates to be opened. The total ionic current
across the membrane of the cell is modeled by the variable I.

The action potential model defined by HH simulates the variation on voltage in the
cell when applied to a neuron compartment. From a conceptual point of view, one
can represent a single neuron model with its various compartments and the membrane
behavior given by the HH model by the ontology in Figure 2. The Hodgkin-Huxley
class models the corresponding model with the input and output parameters conform-
ing to equation (1).

From the scientific model specification, a computational neuroscientist will con-
ceive programs that implement the behavior defined by equation 1. Next, when run-
ning a simulation, the program receives input values for the parameters identified in
(1) and produces the total ionic current across the membrane (variable I in (1)).

In the next section, the HH model is used as a running example illustrating the sci-
entific model data model elements.

Fig. 2. Single Neuron with Hodgkin-Huxley model domain ontology

 Towards a Scientific Model Management System 59

4 The Scientific Model Data Model

The backbone of the SMMS is a data oriented semantically based data model and
simulation language. During a scientific exploration, a scientist registers data and
metadata describing the scientific and corresponding computational models. Scientific
model metadata provides provenance, contextual and descriptive information aiding
on model search and querying. Similarly, computational model metadata is used as
the basis for the automatic evaluation of simulations and serves as context for the in-
put and output data. Thus, the data model identifies the following main composing
elements: the scientific model, the computational model and simulations. The follow-
ing subsections detail each one of these layers.

4.1 The Scientific Model Layer

The first layer describes a Scientific Model (SM). It accompanies the first step in an
experiment or simulation specification, in which scientists describe the research prob-
lem being pursued. It considers the scientific domain, setting the context to the prob-
lem, and the formal problem specification in the form of mathematical formulae, if
adequate. A formal description of a SM is given in (1) and includes: a resource defini-
tion R, a list of bibliographic references (B), possibly images (I), and annotations (A).
R is a resource description defined as a tuple <LSID, D>. LSID is an unified identifier
for the life science specified as urn:lsid:authority.org:namespace:object:revision,
where urn:lsid is the LSID protocol identifying label, authority.org is a DNS refer-
ence, and the remaining field names are self explanatory [14]. D is a free text resource
description. We use domain ontologies to formally describe the domain covered by
the scientific model (OSMD) and to explain the mathematical formulae (OMF). The
LSID identification attribute hooks the scientific model to its computational models
and simulations.

Thus, a scientific model is defined as a 6-tuple SM=<R, OSMD, OMF, B, I, A> (1).

Fig. 3. The HH scientific model representation

The HH model, presented in section 3, can be depicted as a scientific model. Its da-
ta view is illustrated in Figure 3. It provides metadata to support basic search queries
over a scientific model database and reasoning capabilities on the theory specified by
the scientific model ontology.

60 F. Porto et al.

4.2 The Computational Model Layer

A Computational Model (CM) realises a Scientific Model through a computational
implementation. From the point the view of the research task, a scientist develops
software that reproduces the behavior specified by the scientific model. The objective
of the computational element is to describe its components and provide sufficient
metadata to allow automatic instantiation of a CM when requested by a simulation
query (see section 5.4). The computational model may comprehend a series of orches-
trated programs whose scheduling is hidden by an exposed façade entry point. Indeed,
a computational model is the basis for a simulation query that provides values match-
ing CM input requirements to produce the simulation output.

A CM specification comprehends two ontologies: environment and domain. The
former describes the execution environment associated to the CM, including: pro-
gramming language specification, programming environment parameters, documenta-
tion, input and output parameters, initialization procedure, and executing programs.
The set of input parameters expected by a CM can be divided into two groups: set-up
and input parameters. The CM set-up parameters include state information that should
hold during various simulations. Set-up parameters may also introduce run-time con-
trol values, such as frequency of output graph update etc. The set-up parameter are re-
ferred to in the data model as IS ={i1, i2,…, in}, where each instance ij=<v, P> of Is
corresponds to a value v and its corresponding parameter P in Parameters.

Additionally, for each computational model, an outputWrapper specifies methods
for obtaining its results. Given the different formats and procedures used by generic
programs when producing output, each CM shall indicate the outputWrapper class
that knows how to capture its output and return it to the system to feed an eventual
pipeline.

The CM domain ontology contextualizes CM parameters according to the OSMD on-
tology. Contextualization is obtained by associating each parameter to its semantic
meaning as an instance of a ontology concept. In fact, we propose a transformation of
the domain ontology into a XML serialization tree, in which nodes correspond to on-
tology concepts, and edges, from parent to children are either ontology roles, having
the role domain being the parent node in XML, or is-a relationships. Thus, as shown
in Figure 4, the output variable “I” is mapped to the XML path “Neu-
ron/Axon/Hodgkin-Huxley/I”, which in turn corresponds to a path in the ontology
specified in DL-SWRL [15] as:

Neuron(?x) ^ isComposedByCompartmentType(?x, ?y) ^ Axon(?y) ^
isComposedByCompartmentBehavior(?y, ?z) ^ CompartmentBehavior(?z) ^
isComposedByMembraneChannel(?z, ?a) ^ HodgkinHuxley(?a) ^
hasTotalIonicCurrent(?a, ?I) → TotalIonicCurrent (?I)

A CM model is formally defined as a 7-tuple CM=<R, LSIDSM, XOE, XOD, Mi,
Mo, A> (2).

In (2), R is the CM resource identification; LSIDSM is a reference to the associated
scientific model, XOE and XOD, are the XML serializations of the environment ontol-
ogy, of XML type Environment, and of the domain ontology, of XML type Neuron,
respectively. In addition, Mi (Mo) defines mappings between the underlying program

 Towards a Scientific Model Management System 61

input (output) parameters and corresponding domain ontology properties (XML tree
leave node). Finally, A corresponds to annotations identifying authoring information.

Figure 4 illustrates the representation of a computational model implementing the
scientific model SM01.

Fig. 4. A Hodgkin-Huxley Computational Model

4.3 Simulation Layer

The third layer in the scientific model data model specifies a simulation query (S).
Whilst the two first layers present metadata about a scientific model and its computa-
tional implementation, a simulation query combines CMs into an evaluation. A simu-
lation query specification provides the initial state of the simulation through its input
parameter values and a particular set-up. Section 5 will describe the simulation query
language.

5 Simulation Language

Syntactically, a simulation query is specified as an expression comprising a head and
a body. The body is a boolean expression composed of a conjunction of simulation
query predicates, whereas the head lists variables containing the expected simulation
results, necessarily appearing in one of the simulation predicates in the body. We start
by presenting the syntax and semantics of simulation query predicates.

5.1 Simulation Predicate

A simulation query predicate is specified as:

Si((Vi,Wi) ; (Xi’, Xo’) ; (Ii,Oi) ; IS) (3).

62 F. Porto et al.

In (3), Si labels the simulation query predicate according to the CM resource iden-
tification. In order to easy references to the computational model input and output
values, two sets of variables are defined, respectively, Vi and Wi. These variables re-
fer to values provided as input or produced as output when running the underlying
CM. Indeed, users interface with simulations queries by providing input parameter
and set-up values, and by receiving back the output values computed as a function of
these inputs. The set of input and output parameters’ values are provided by the XML
documents Xi’ and Xo’, respectively, whereas IS represents simulation set-up parame-
ters. Note that the associated CM definition specifies the schemas for Xi’ and Xo’. For
example, using the CM example in Figure 4, the Xi’ document can be obtained from
the result of the XPath expression “/CM/DomainOntology” over the HH CM XML
definition, and by filling its leaf nodes with the input values. Thus, /Neuros/Axon/
Hogking-Huxley/m = 0,1, illustrates a possible value assignment for the input pa-
rameter m. Finally, the mappings Ii(Oo) define the correspondence between the input-
output variables in Vi and Wi and the input-output parameter values in Xi’ and Xo’.

Definition 1. correspondence assertions in Ii and Oi are specified as $x = Path, where
$x is a variable in {Vi ∪ Wi} and Path is an XPath [16] expression pointing to a data
element in Xk’, k={i,o}, whose child node is either an input parameter value or an
output value.

Having described the syntax of individual simulation predicates, the semantics of
body expressions can be announced. Initially, the semantics of a single simulation
predicate is exposed followed by one for complete body expressions.

5.2 Semantics of a Single Simulation Predicate

A single simulation predicate returns a boolean value of its evaluation according to
the definition in Def 2 below with respect to the its syntax in (3) and the CM specifi-
cation in (2).

Definition 2. A simulation predicate Si is assumed to be true iff given a Xi’ holding
the set of input parameter values to the program implementing the corresponding CM,
according to Mi, it exists a Xo’ whose leaf values are produced by the evaluation of
the referred program and that is built from the mappings in Mo.

5.3 Semantics of the Body of a Simulation Expression

Once the semantics of a single simulation predicate is specified as a boolean expres-
sion, more elaborate conjunctive expressions can be composed to form the body of a
simulation. The semantics of a conjunction of simulation predicates in the body of a
simulation is defined in Def 3.

Definition 3. Given a conjunction of simulation predicates s= s1 ∧ s2 ∧…∧ sn, s is
considered to hold true if the conjunctive expression on the right evaluates to true.
Moreover, if more than one simulation predicates si and sj in s, refer to the same vari-
able, for instance $x, then they share a single associated value. In addition, the shared
variable must hold a single binding to a value, either provided as input or produced as
output by an underlying program computation.

 Towards a Scientific Model Management System 63

Note that the restriction regarding sharing variables among simulation predicates
leads to data-dependency relationships, in which the simulation predicate holding the
associated value to the shared variable shall precede in evaluation order the remaining
simulation predicates sharing that particular variable. Moreover, variable sharing in-
troduces a particular mode of value assignment to data elements in Xi‘, replacing that
of the node corresponding to its associated path.

Finally, given a body that evaluates true, then the head of the simulation identifies
the variables in the simulation predicates whose values are returned as the simulation
outputs, such that if K is the set of variables in the head then

K ⊆ (Vi ∪ Wi), for 1 ≤ i ≤ n, with n being the number of the simulation predicates
in the body.

5.4 A Simulation Query

A simulation query combines the head and its body into a simulation clause as illus-
trated in (4), according to Def 1, 2 and 3.

S(K) = S1((V1,W1) ; (Xi1’, Xo1’) ; (I1,O1) ; IS1) ∧
 S2((V2,W2) ; (Xi2’, Xo2’) ; (I2,O2) ; IS2) ∧ (4)
 …. ∧
 Sn((Vn,Wn) ; (Xin’, Xon’) ; (In,On) ; ISn)

An example of a simulation query is depicted in Figure 5. This particular query re-
turns the total ionic current across the membrane ($I) according to the parameters
values specified in the input document HHCM01I. As discussed before, the user must
provide a mapping from each query variable to the corresponding data element of the
domain ontology XML serialization document. In this example, the input and output
XML documents, Xi’ and Xo’, are illustrated by documents HHCM01I and
HHCM01O, respectively, both of type Neuron.

S($I, $Z) = CM01(($m,$h,$G_Na,$G_K,$G_L,$E_Na,$E_K,$E_L,$I);
 (HHCM01I, HHCM01O);
 ($m = /Neuron/Axon/ Hodgkin-Huxley/m,
 ….1,
 $I = /Neuron/Axon/ Hodgkin-Huxley/I)) ∧
 CM022 (($I , $Z); (ACM02I, ACM02O);
 ($Z=/Analysis/result))

Fig. 5. Simulation query example

5.5 Simulation View

One may want to register a simulation so that it can be re-executed later on or in-
cluded in a more complex simulation. A registered simulation is called a view, bor-
rowing the term from database literature [17], as it provides users with an external

1 The remaining mappings are not shown due to lack of space.
2 The CM02 computational model has purposely not been described.

64 F. Porto et al.

perspective of a simulation through the set of input parameter values that configure
the computational models taking part into the simulation view. In addition, a simula-
tion view establishes correspondences between the exported parameters and the ones
specified on each simulation predicate taking part in the body of the simulation de-
scribing the view. In (5) a simulation view is depicted:

 Sv((V , W) ; (Xiv’, Xov’) ; (Iv,Ov) ; (ISv, Ms)) =
 S1((V1,W1) ; (Xi1’, Xo1’) ; (I1,O1) ; IS1) ∧

 S2((V2,W2) ; (Xi2’, Xo2’) ; (I2,O2) ; IS2) ∧ (5)
 …. ∧
 Sn((Vn,Wn) ; (Xin’, Xon’) ; (In,On) ; ISn).

The body of the simulation view reflects the one in ordinary simulations, express-
ing conjunction of simulation predicates. The difference appears in the head of the
formulae. Indeed, the latter exports an integrated view of the simulation predicates’
input and output parameters appearing in the body of the formulae and specified in
Xik’and Xok’, 1 ≤ k ≤ n. The two sets of correspondences, Ik and Ok, map the external
view in {Xiv’, Xov’} to the corresponding parameters in the simulation predicates in
the body, {Xik’, Xok’}. Thus, a correspondence assertion is expressed as
Sv.path/dataelement ≡ Si.path/dataelement, where path is an XPath expression. In the
same line as the input/output parameters, ISv expresses the uniform view of set-up pa-
rameter values appearing in the body of the formulae and Ms asserts the correspon-
dences between the set-up data elements in ISv and those in the body.

6 Conclusion

Managing in silico simulations have become a major challenge for eScience applica-
tions. As science increasingly depends on computational resources to aid solving ex-
tremely complex questions, it becomes paramount to offer scientist mechanisms to
manage the wealth of knowledge produced during a scientific endeavor. This paper
presents initial results aiming to contribute to this idea. We propose a data centric
semantic based data model with which scientists represent scientific models and asso-
ciated computational models. Furthermore, the data model supports specifying and
running simulations as a function of computational models over inputs. The intention
of this work is to provide a basic backbone from which more complex services can be
developed as their needs come. We have developed a first prototype system that im-
plements the data model and the simulation query language on top of the CoDIMS
system. A first scientific model management system architecture is proposed with a
set of minimal services that scientists may expect from such an environment.

There are many future works already being explored. Indeed, the investigation of
scientific hypothesis may introduce uncertainty to the data model. Another problem is
related to the format and semantic mismatch between computational models data in a
simulation. We are interested in studying how the results on heterogeneous databases
and ontologies can be applied to the scenario discussed here. Finally, the integration
of simulation results with knowledge in ontologies and the exploration of their con-
tent as complex data structures within a query language is also a subject of future
research.

 Towards a Scientific Model Management System 65

References

[1] Hunter, J.: Scientific Models – A User-oriented Approach to the Integration of Scientific
Data and Digital Libraries. In: VALA 2006, Melbourne (February 2006)

[2] Jaqaman, K., Danuser, G.: Linking data to models: data regression. Nature Reviews, Mo-
lecular Cell Biology V(7), 813–819 (2006)

[3] Silvert, W.: Modelling as a discipline. International Journal General Systems V30(3), 1–
22 (2000)

[4] Oinn, T., Greenwood, M., Addis, M.: Taverna: Lessons in creating a workflow envi-
ronment for the life sciences. Concurrence Computation: Pract. Exper., 1–7 (2000)

[5] Akram, A., Meredith, D., Allan, R.: Evaluation of BPEL for Scientific Workflows. Clus-
ter Computing and the Grid, CCGRID V1(16-19) (2006)

[6] http://www.gridworkflow.org/snips/gridworkflow/space/XScufl
[7] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Kepler, M.: An Extensible

System for Design and Execution of Scientific Workflows. In: SSDBM (2004)
[8] MATLAB (last access, 24/06/2008), http://en.wikipedia.org/wiki/Matlab
[9] Neuron (last access, 24/06/2008), http://www.neuron.yale.edu

[10] Roure, D., Goble, C., Stevens, R.: Designing the myExperiment Virtual Research Envi-
ronment for the Social Sharing of Workflows. In: e-Science 2007 - Third IEEE Int. Conf.
on e-Science and Grid Computing, Bangalore, India, December 10-13, 2007, pp. 603–610
(2007)

[11] Porto, F., Tajmouati, O., Silva, V., Schulze, B., Ayres, F.: QEF - Supporting Complex
Query Applications. In: CCGRID 2007, Rio de Janeiro, Brazil, pp. 846–851 (2007)

[12] Kandel, E., Schwarts, J., Jessel, T.: Principles of NeuroScience, 4th edn. McGraw-Hill,
New York (2000)

[13] Hodgkin, A., Huxley, A.: A quantitative description of ion currents and its applications to
conduction and excitation in nerve membranes. J. Physiol (Lond.) 117, 500–544 (1952)

[14] (last accessed, 26/04/2008), http://lsids.sourceforge.net/
[15] Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining

Logic Programs with Description Logic. In: Proc. WWW 2003, Budapest (May 2003)
[16] (last accessed, 26/04/2008), http://www.w3.org/TR/xpath
[17] Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 2nd edn. Benja-

min/Cummings (1994)

	Towards a Scientific Model Management System
	Introduction
	Scientific Model Management System
	A Neuroscience Scientific Model
	The Scientific Model Data Model
	The Scientific Model Layer
	The Computational Model Layer

	Simulation Language
	Simulation Predicate
	Semantics of a Single Simulation Predicate
	Semantics of the Body of a Simulation Expression
	A Simulation Query
	Simulation View

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

