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Abstract. Computational models of biological systems aim at accurately simu-
lating in vivo phenomena. They have become a very powerful tool enabling 
scientists to study complex behavior. A side effect of their success unfortu-
nately exists and is observed as an increasing difficulty in managing data, 
metadata and a myriad of programs and tools used and produced during a re-
search task. In this work we aim at supporting scientists during a research en-
deavour by using Scientific Models as a main guiding element for describing, 
searching and running computational models, as well as managing the corre-
sponding results. We assume a data-oriented perspective for scientific model 
representation materialized into a data model with which users describe scien-
tific models and corresponding computational models, and a query language 
with which a scientist specifies simulation queries. The model is grounded in 
XML and tightly related to domain ontologies, which provide formal domain 
descriptions and uniform terminology. Scientists may search for scientific mod-
els and run simulations that automatically invoke the underlying programs on 
provided inputs. The results of a simulation may generate complex data that can 
be queried in the context of the scientific model. Higher-level models can be 
specified through views that export a unified representation of underlying sci-
entific models.  

1   Introduction 

Multiple large-scale scientific projects are expected to produce a never before ob-
served amount of experimental and simulation data. Current technology for data man-
agement is clearly unable to cope with the needs to store, index, search, analyse, 
process and integrate such massive, complex and very often-heterogeneous data. Ad-
ditionally, the very aim of scientific exploration requires a different perspective on 
data management, one that can cope with expected knowledge evolution and world-
wide collaboration. 

A promising approach is based on the concept of scientific models [1], which are 
formal representations synthesizing the understanding about a studied phenomenon, 
entity or process. It allows scientists to simulate the behaviour of the real world and 
compare it against experimental results.  
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From a data perspective, scientific models encompass all the information used and 
produced during a scientific exploration. It is contextualized by its scientific domain, 
bibliographic references, a description of the observed phenomenon and, in some 
cases, some mathematical formulae and provenance information. A computational 
model, in this paper, refers to a realisation of a scientific model through computa-
tional resources, software and hardware. Basically, a scientist or engineer creates a 
computational implementation that simulates the behaviour of the studied phenome-
non and its interaction with interfacing environment, according specifications in the 
scientific model. 

Transforming a scientific model into a computational one can be a complex task, if 
at all possible, but once realised allows scientists to confront simulation against ex-
perimental results, leading eventually to an accurate representation of the studied 
phenomenon. This process known as model tuning includes both modifying programs 
(i.e. changing the behaviour) and fitting input parameter and set-up values (i.e. speci-
fying initial simulation state). In many cases, when experimental data are available, 
regression analysis, provide formal procedures for model fixing [2]. 

It is a fact that the complexity of specifying and running a computational model 
and managing all the resources produced during a scientific endeavour deviates the at-
tention off the phenomenon being investigated to implementation concerns [3]. State 
of the art approaches to computational simulation rescue to scientific workflows lan-
guages, such as SCUFL and BPEL, to specify workflows and to their corresponding 
running environments [4,5, 6,7] for models evaluation. For small scale non data inten-
sive simulations, scientist may choose to use tailored environments like MATLAB [8] 
and Neuron [9].  

Whilst some of these have attracted a large user community [10], they fail to pro-
vide an integrated scientific model environment as proposed in this paper, in which 
the studied phenomenon, the derived models and data therein produced are integrat-
edly managed.     

In this work we aim at supporting scientists in specifying, running, analysing and 
sharing scientific models and model’s data. To this end we sketch a scientific model 
management system architecture and detail a data model and query language for 
specifying scientific models and running simulations. We assume a data-oriented per-
spective for scientific model representation, materialized into a data model with 
which users describe scientific models and derived computational models, and a 
query language with which a scientist specifies simulation queries. The model is 
grounded in XML and tightly related to domain ontologies, which provide formal 
domain descriptions and uniform terminology. Scientists may search for scientific 
models and run simulations that automatically invoke the underlying programs on 
provided inputs. The results of a simulation may generate complex data that can be 
queried in the context of the scientific model. Higher-level models can be specified 
through views that export a unified representation of underlying scientific models.  

The remaining of this paper is structured as follows. Section 2 gives a brief intro-
duction to the system architecture. Next, section 3 introduces a running example ex-
tracted from the neuroscience domain. Section 4 describes the data model and section 
5 presents the simulation query language. Finally, section 6 concludes discussing our 
achievements so far and future works. 
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2   Scientific Model Management System 

A scientific model management system (SMMS) supports scientists in designing, cre-
ating, searching and running scientific models, and in managing the results of simula-
tions and analysis. Figure 1 depicts the main system functions. 

The system functions are structured into four layers. A user layer provides the  
interface for scientists to create and edit elements of the model and to request system 
services, such as running simulations, querying and reasoning. Users may query sci-
entific model meta-data as well as simulation results.  

 

Fig. 1. Scientific Model Management System Architecture 

The metadata management layer stores scientific model metadata and supports 
metadata management services. In this work, scientific model metadata is based on a 
set of ontologies that guarantees uniform terminology among models and scientists. A 
transformation and selection service allows scientists to map ontology fragments to 
XML trees, which are then used in data model elements description. The catalog ser-
vice manages metadata about scientific model and data, as well as supporting infor-
mation such as ontologies, views (see section 5.5) and transformation rules. 

The service layer supports simulation evaluation, querying of simulation results 
and reasoning. We have extended the query processing system CoDIMS [11] to cope 
with simulation queries evaluation.  

Finally, a data management layer supports distributed scientific models manage-
ment and wrappers implementing complex datatypes, offering access to simulation 
results, such as graphs and time series. 

In this paper, the details of the architecture are not further explored. Instead, the 
following sections present the backbone of the system in the form of a data model and 
simulation language. Similarly, the details regarding ontology managing, transforma-
tion and alignment are left to future work. 
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3   A Neuroscience Scientific Model 

In this section we introduce a running example taken from scientific models devel-
oped for the neuroscience domain. According to Kandel [12], “the task of neural  
science is to explain behavior in terms of the activities of the brain”. Numerous com-
putational neuroscience groups investigate scientific models that aim at explaining 
such behavior. A classical example is the axon membrane action potential model pro-
posed by Hodgkin and Huxley (HH) [13] that describes how action potentials traverse 
the cell membrane. An action potential is a pulse-like wave of voltage that can trav-
erse certain types of cell membranes, such as the membrane of the axon of a neuron. 
The model quantitatively computes the membrane potential between the interior and 
the extracellular liquid, based on the flow of ions of sodium (Na+), potassium (K+) 
and a leakage one representing all other channel types. The mathematical equation 
proposed by HH is presented below:                                   

I = m3  h gNa  (E – ENa  ) + n4  gK (E – EK ) + gL (E – EL ) (1), 

where gi,  i={Na, K, l}, are function of time dependent variables, representing the 
membrane conductance, and Ei model the equilibrium potential for each ion channel, 
while E is the membrane potential. Finally, n, m and h are parameters controlling the 
probability of the sodium or potassium gates to be opened.  The total ionic current 
across the membrane of the cell is modeled by the variable I.  

The action potential model defined by HH simulates the variation on voltage in the 
cell when applied to a neuron compartment.  From a conceptual point of view, one 
can represent a single neuron model with its various compartments and the membrane 
behavior given by the HH model by the ontology in Figure 2. The Hodgkin-Huxley 
class models the corresponding model with the input and output parameters conform-
ing to equation (1). 

From the scientific model specification, a computational neuroscientist will con-
ceive programs that implement the behavior defined by equation 1. Next, when run-
ning a simulation, the program receives input values for the parameters identified in 
(1) and produces the total ionic current across the membrane (variable I in (1)). 

In the next section, the HH model is used as a running example illustrating the sci-
entific model data model elements. 

 

Fig. 2. Single Neuron with Hodgkin-Huxley model domain ontology 
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4   The Scientific Model Data Model 

The backbone of the SMMS is a data oriented semantically based data model and 
simulation language. During a scientific exploration, a scientist registers data and 
metadata describing the scientific and corresponding computational models. Scientific 
model metadata provides provenance, contextual and descriptive information aiding 
on model search and querying. Similarly, computational model metadata is used as 
the basis for the automatic evaluation of simulations and serves as context for the in-
put and output data. Thus, the data model identifies the following main composing 
elements: the scientific model, the computational model and simulations. The follow-
ing subsections detail each one of these layers. 

4.1   The Scientific Model Layer 

The first layer describes a Scientific Model (SM). It accompanies the first step in an 
experiment or simulation specification, in which scientists describe the research prob-
lem being pursued. It considers the scientific domain, setting the context to the prob-
lem, and the formal problem specification in the form of mathematical formulae, if 
adequate. A formal description of a SM is given in (1) and includes: a resource defini-
tion R, a list of bibliographic references (B), possibly images (I), and annotations (A). 
R is a resource description defined as a tuple <LSID, D>. LSID is an unified identifier 
for the life science specified as urn:lsid:authority.org:namespace:object:revision, 
where urn:lsid is the LSID protocol identifying label, authority.org  is a DNS refer-
ence, and the remaining field names are self explanatory [14]. D is a free text resource 
description. We use domain ontologies to formally describe the domain covered by 
the scientific model (OSMD) and to explain the mathematical formulae (OMF). The 
LSID identification attribute hooks the scientific model to its computational models 
and simulations. 

Thus, a scientific model is defined as a 6-tuple SM=<R, OSMD, OMF, B, I, A>  (1). 

 

Fig. 3. The HH scientific model representation 

The HH model, presented in section 3, can be depicted as a scientific model. Its da-
ta view is illustrated in Figure 3. It provides metadata to support basic search queries 
over a scientific model database and reasoning capabilities on the theory specified by 
the scientific model ontology. 
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4.2   The Computational Model Layer 

A Computational Model (CM) realises a Scientific Model through a computational 
implementation.  From the point the view of the research task, a scientist develops 
software that reproduces the behavior specified by the scientific model. The objective 
of the computational element is to describe its components and provide sufficient 
metadata to allow automatic instantiation of a CM when requested by a simulation 
query (see section 5.4). The computational model may comprehend a series of orches-
trated programs whose scheduling is hidden by an exposed façade entry point. Indeed, 
a computational model is the basis for a simulation query that provides values match-
ing CM input requirements to produce the simulation output. 

A CM specification comprehends two ontologies: environment and domain. The 
former describes the execution environment associated to the CM, including: pro-
gramming language specification, programming environment parameters, documenta-
tion, input and output parameters, initialization procedure, and executing programs. 
The set of input parameters expected by a CM can be divided into two groups: set-up 
and input parameters. The CM set-up parameters include state information that should 
hold during various simulations. Set-up parameters may also introduce run-time con-
trol values, such as frequency of output graph update etc. The set-up parameter are re-
ferred to in the data model as IS ={i1, i2,…, in}, where each instance ij=<v, P> of Is 
corresponds to a value v and its corresponding parameter P in Parameters.  

Additionally, for each computational model, an outputWrapper specifies methods 
for obtaining its results. Given the different formats and procedures used by generic 
programs when producing output, each CM shall indicate the outputWrapper class 
that knows how to capture its output and return it to the system to feed an eventual 
pipeline. 

The CM domain ontology contextualizes CM parameters according to the OSMD on-
tology. Contextualization is obtained by associating each parameter to its semantic 
meaning as an instance of a ontology concept. In fact, we propose a transformation of 
the domain ontology into a XML serialization tree, in which nodes correspond to on-
tology concepts, and edges, from parent to children are either ontology roles, having 
the role domain being the parent node in XML, or is-a relationships. Thus, as shown 
in Figure 4, the output variable “I” is mapped to the XML path “Neu-
ron/Axon/Hodgkin-Huxley/I”, which in turn corresponds to a path in the ontology 
specified in DL-SWRL [15] as:  

Neuron(?x)  ^ isComposedByCompartmentType(?x, ?y)  ^ Axon(?y)  ^ 
isComposedByCompartmentBehavior(?y, ?z)  ^ CompartmentBehavior(?z)  ^ 
isComposedByMembraneChannel(?z, ?a)  ^ HodgkinHuxley(?a)  ^ 
hasTotalIonicCurrent(?a, ?I)  → TotalIonicCurrent (?I) 

A CM model is formally defined as a 7-tuple CM=<R, LSIDSM, XOE, XOD, Mi, 
Mo, A> (2). 

In (2), R is the CM resource identification; LSIDSM is a reference to the associated 
scientific model, XOE and XOD, are the XML serializations of the environment ontol-
ogy, of XML type Environment, and of the domain ontology, of XML type Neuron, 
respectively. In addition, Mi (Mo) defines mappings between the underlying program 
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input (output) parameters and corresponding domain ontology properties (XML tree 
leave node). Finally, A corresponds to annotations identifying authoring information.  

Figure 4 illustrates the representation of a computational model implementing the 
scientific model SM01. 

 

Fig. 4. A Hodgkin-Huxley Computational Model 

4.3   Simulation Layer 

The third layer in the scientific model data model specifies a simulation query (S). 
Whilst the two first layers present metadata about a scientific model and its computa-
tional implementation, a simulation query combines CMs into an evaluation. A simu-
lation query specification provides the initial state of the simulation through its input 
parameter values and a particular set-up. Section 5 will describe the simulation query 
language. 

5   Simulation Language 

Syntactically, a simulation query is specified as an expression comprising a head and 
a body. The body is a boolean expression composed of a conjunction of simulation 
query predicates, whereas the head lists variables containing the expected simulation 
results, necessarily appearing in one of the simulation predicates in the body. We start 
by presenting the syntax and semantics of simulation query predicates. 

5.1   Simulation Predicate 

A simulation query predicate is specified as: 

Si((Vi,Wi) ; (Xi’, Xo’) ; (Ii,Oi) ; IS) (3). 
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In (3), Si labels the simulation query predicate according to the CM resource iden-
tification. In order to easy references to the computational model input and output 
values, two sets of variables are defined, respectively, Vi and Wi. These variables re-
fer to values provided as input or produced as output when running the underlying 
CM. Indeed, users interface with simulations queries by providing input parameter 
and set-up values, and by receiving back the output values computed as a function of 
these inputs. The set of input and output parameters’ values are provided by the XML 
documents Xi’ and Xo’, respectively, whereas IS represents simulation set-up parame-
ters. Note that the associated CM definition specifies the schemas for Xi’ and Xo’. For 
example, using the CM example in Figure 4, the Xi’ document can be obtained from 
the result of the XPath expression “/CM/DomainOntology” over the HH CM XML 
definition, and by filling its leaf nodes with the input values. Thus, /Neuros/Axon/ 
Hogking-Huxley/m = 0,1, illustrates a possible value assignment for the input pa-
rameter m. Finally, the mappings Ii(Oo) define the correspondence between the input-
output variables in Vi and Wi and the input-output parameter values in Xi’ and Xo’. 

Definition 1. correspondence assertions in Ii and Oi are specified as $x = Path, where 
$x is a variable in {Vi ∪ Wi} and Path is an XPath [16] expression pointing to a data 
element in Xk’, k={i,o}, whose child node is either an input parameter value or an 
output value. 

Having described the syntax of individual simulation predicates, the semantics of 
body expressions can be announced. Initially, the semantics of a single simulation 
predicate is exposed followed by one for complete body expressions.  

5.2   Semantics of a Single Simulation Predicate 

A single simulation predicate returns a boolean value of its evaluation according to 
the definition in Def 2 below with respect to the its syntax in (3) and the CM specifi-
cation in (2). 

Definition 2. A simulation predicate Si is assumed to be true iff given a Xi’ holding 
the set of input parameter values to the program implementing the corresponding CM, 
according to Mi, it exists a Xo’ whose leaf values are produced by the evaluation of 
the referred program and that is built from the mappings in Mo. 

5.3   Semantics of the Body of a Simulation Expression 

Once the semantics of a single simulation predicate is specified as a boolean expres-
sion, more elaborate conjunctive expressions can be composed to form the body of a 
simulation. The semantics of a conjunction of simulation predicates in the body of a 
simulation is defined in Def 3. 

Definition 3. Given a conjunction of simulation predicates s= s1 ∧ s2 ∧…∧ sn, s is 
considered to hold true if the conjunctive expression on the right evaluates to true. 
Moreover, if more than one simulation predicates si and sj in s, refer to the same vari-
able, for instance $x, then they share a single associated value. In addition, the shared 
variable must hold a single binding to a value, either provided as input or produced as 
output by an underlying program computation.  
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Note that the restriction regarding sharing variables among simulation predicates 
leads to data-dependency relationships, in which the simulation predicate holding the 
associated value to the shared variable shall precede in evaluation order the remaining 
simulation predicates sharing that particular variable. Moreover, variable sharing in-
troduces a particular mode of value assignment to data elements in Xi‘, replacing that 
of the node corresponding to its associated path. 

Finally, given a body that evaluates true, then the head of the simulation identifies 
the variables in the simulation predicates whose values are returned as the simulation 
outputs, such that if K is the set of variables in the head then  

K ⊆ (Vi ∪ Wi), for 1 ≤ i ≤ n, with n being the number of the simulation predicates 
in the body.   

5.4   A Simulation Query 

A simulation query combines the head and its body into a simulation clause as illus-
trated in (4), according to Def 1, 2 and 3. 

S(K) = S1((V1,W1) ; (Xi1’, Xo1’) ; (I1,O1) ; IS1) ∧ 
  S2((V2,W2) ; (Xi2’, Xo2’) ; (I2,O2) ; IS2) ∧   (4) 
   ….      ∧ 
  Sn((Vn,Wn) ; (Xin’, Xon’) ; (In,On) ; ISn) 

An example of a simulation query is depicted in Figure 5. This particular query re-
turns the total ionic current across the membrane ($I) according to the parameters 
values specified in the input document HHCM01I. As discussed before, the user must 
provide a mapping from each query variable to the corresponding data element of the 
domain ontology XML serialization document. In this example, the input and output 
XML documents, Xi’ and Xo’, are illustrated by documents HHCM01I and 
HHCM01O, respectively, both of type Neuron. 

 

S($I, $Z) = CM01(($m,$h,$G_Na,$G_K,$G_L,$E_Na,$E_K,$E_L,$I); 
   (HHCM01I, HHCM01O); 
                          ($m = /Neuron/Axon/ Hodgkin-Huxley/m, 
                            ….1, 
                        $I = /Neuron/Axon/ Hodgkin-Huxley/I)) ∧ 
                 CM022 (($I , $Z); (ACM02I, ACM02O); 
                        ($Z=/Analysis/result)) 

Fig. 5. Simulation query example 

5.5   Simulation View 

One may want to register a simulation so that it can be re-executed later on or in-
cluded in a more complex simulation. A registered simulation is called a view, bor-
rowing the term from database literature [17], as it provides users with an external 
                                                           
1 The remaining mappings are not shown due to lack of space. 
2 The CM02 computational model has purposely not been described. 
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perspective of a simulation through the set of input parameter values that configure 
the computational models taking part into the simulation view. In addition, a simula-
tion view establishes correspondences between the exported parameters and the ones 
specified on each simulation predicate taking part in the body of the simulation de-
scribing the view. In (5) a simulation view is depicted: 

                                 Sv((V , W) ; (Xiv’, Xov’) ; (Iv,Ov) ; (ISv, Ms) )  =  
                                           S1((V1,W1) ; (Xi1’, Xo1’) ; (I1,O1) ; IS1) ∧ 

   S2((V2,W2) ; (Xi2’, Xo2’) ; (I2,O2) ; IS2) ∧   (5) 
    ….      ∧ 
   Sn((Vn,Wn) ; (Xin’, Xon’) ; (In,On) ; ISn). 

The body of the simulation view reflects the one in ordinary simulations, express-
ing conjunction of simulation predicates. The difference appears in the head of the 
formulae. Indeed, the latter exports an integrated view of the simulation predicates’ 
input and output parameters appearing in the body of the formulae and specified in 
Xik’and Xok’, 1 ≤ k ≤ n. The two sets of correspondences, Ik and Ok, map the external 
view in {Xiv’, Xov’} to the corresponding parameters in the simulation predicates in 
the body, {Xik’, Xok’}. Thus, a correspondence assertion is expressed as 
Sv.path/dataelement ≡ Si.path/dataelement, where path is an XPath expression. In the 
same line as the input/output parameters, ISv expresses the uniform view of set-up pa-
rameter values appearing in the body of the formulae and Ms asserts the correspon-
dences between the set-up data elements in ISv and those in the body.  

6   Conclusion 

Managing in silico simulations have become a major challenge for eScience applica-
tions. As science increasingly depends on computational resources to aid solving ex-
tremely complex questions, it becomes paramount to offer scientist mechanisms to 
manage the wealth of knowledge produced during a scientific endeavor.  This paper 
presents initial results aiming to contribute to this idea. We propose a data centric  
semantic based data model with which scientists represent scientific models and asso-
ciated computational models. Furthermore, the data model supports specifying and 
running simulations as a function of computational models over inputs. The intention 
of this work is to provide a basic backbone from which more complex services can be 
developed as their needs come. We have developed a first prototype system that im-
plements the data model and the simulation query language on top of the CoDIMS 
system. A first scientific model management system architecture is proposed with a 
set of minimal services that scientists may expect from such an environment.  

There are many future works already being explored. Indeed, the investigation of 
scientific hypothesis may introduce uncertainty to the data model. Another problem is 
related to the format and semantic mismatch between computational models data in a 
simulation. We are interested in studying how the results on heterogeneous databases 
and ontologies can be applied to the scenario discussed here. Finally, the integration 
of simulation results with knowledge in ontologies and the exploration of their con-
tent as complex data structures within a query language is also a subject of future  
research.  
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