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EPnP: An Accurate O(n) Solution to the PnP Problem
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Abstract We propose a non-iterative solution to the
PnP problem—the estimation of the pose of a cali-
brated camera from n 3D-to-2D point correspondences—
whose computational complexity grows linearly with n.
This is in contrast to state-of-the-art methods that are
O(n5) or even O(n8), without being more accurate. Our
method is applicable for all n ≥ 4 and handles properly
both planar and non-planar configurations. Our central
idea is to express the n 3D points as a weighted sum of
four virtual control points. The problem then reduces
to estimating the coordinates of these control points
in the camera referential, which can be done in O(n)
time by expressing these coordinates as weighted sum
of the eigenvectors of a 12 × 12 matrix and solving a
small constant number of quadratic equations to pick
the right weights. Furthermore, if maximal precision is
required, the output of the closed-form solution can be
used to initialize a Gauss-Newton scheme, which im-
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proves accuracy with negligible amount of additional
time. The advantages of our method are demonstrated
by thorough testing on both synthetic and real-data. 1

Keywords Pose estimation · Perspective-n-Point ·
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1 Introduction

The aim of the Perspective-n-Point problem—PnP in
short—is to determine the position and orientation of
a camera given its intrinsic parameters and a set of n

correspondences between 3D points and their 2D pro-
jections. It has many applications in Computer Vision,
Robotics, Augmented Reality and has received much
attention in both the Photogrammetry [21] and Com-
puter Vision [12] communities. In particular, applica-
tions such as feature point-based camera tracking [27,
18] require dealing with hundreds of noisy feature points
in real-time, which requires computationally efficient
methods.

In this paper, we introduce a non-iterative solution
with better accuracy and much lower computational
complexity than non-iterative state-of-the-art methods,
and much faster than iterative ones with little loss of
accuracy. Our approach is O(n) for n ≥ 4 whereas all
other methods we know of are either specialized for
small fixed values of n, very sensitive to noise, or much
slower. The specialized methods include those designed
to solve the P3P problem [9,24]. Among those that han-
dle arbitrary values of n [8,6,13,11,24,29,7,2,9], the
lowest-complexity one [7] is O(n2) but has been shown

1 The Matlab and C++ implementations of the algo-
rithm presented in this paper are available online at
http://cvlab.epfl.ch/software/EPnP/
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Fig. 1 Comparing the accuracy of our method against state-of-the-art ones. We use the boxplot representation: The blue boxes
denote the first and third quartiles of the errors, the lines extending from each end of the box depict the statistical extent of the data,
and the crosses indicate observations that fall out of it. Top row. Accuracy of non-iterative methods as a function of noise when using
n = 6 3D-to-2D correspondences: AD is the method of Ansar and Daniilidis [2]; Clamped DLT is the DLT algorithm after clamping
the internal parameters with their known values; and EPnP is our method. Bottom row. Accuracy of iterative methods using n = 6:
LHM is Lu et al.’s method [20] initialized with a weak perspective assumption; EPnP+LHM is Lu et al.’s algorithm initialized with
the output of our algorithm; EPnP+GN, our method followed by a Gauss-Newton optimization.

to be unstable for noisy 2D locations [2]. This is cur-
rently addressed by algorithms that are O(n5) [24] or
even O(n8) [2] for better accuracy whereas our O(n) ap-
proach achieves even better accuracy and reduced sen-
sitivity to noise, as depicted by Fig. 1 in the n = 6 case
and demonstrated for larger values of n in the result
section.

A natural alternative to non-iterative approaches
are iterative ones [19,5,14,17,20] that rely on mini-
mizing an appropriate criterion. They can deal with
arbitrary numbers of correspondences and achieve ex-
cellent precision when they converge properly. In par-
ticular, Lu et al. [20] introduced a very accurate algo-
rithm, which is fast in comparison with other iterative
ones but slow compared to non-iterative methods. As
shown in Fig. 1 and Fig. 2, our method achieves an ac-
curacy that is almost as good, and is much faster and
without requiring an initial estimate. This is significant
because iterative methods are prone to failure if poorly
initialized. For instance, Lu et al.’s approach relies on

an initial estimation of the camera pose based on a
weak-perspective assumption, which can lead to insta-
bilities when the assumption is not satisfied. This hap-
pens when the points of the object are projected onto a
small region on the side of the image and our solution
performs more robustly under these circumstances. Fur-
thermore, if maximal precision is required our output
can be used to initialize Lu et al.’s, yielding both higher
stability and faster convergence. Similarly, we can run
a Gauss-Newton scheme that improves our closed-form
solution to the point where it is as accurate as the one
produced by Lu et al.’s method when it is initialized by
our method. Remarkably, this can be done with only
very little extra computation, which means that even
with this extra step, our method remains much faster.
In fact, the optimization is performed in constant time,
and hence, the overall solution still remains O(n).

Our central idea is to write the coordinates of the
n 3D points as a weighted sum of four virtual control
points. This reduces the problem to estimating the coor-
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Fig. 2 Comparing computation times of our method against the
state-of-the-art ones introduced in Fig. 1. The computation times
of a MATLAB implementation on a standard PC, are plotted
as a function of the number of correspondences. Our method
is both more accurate—see Fig. 1—and faster than the other
non-iterative ones, especially for large amounts of noise, and is
almost as accurate as the iterative LHM. Furthermore, if maximal
precision is required, the output of our algorithm can be used to
initialize a Gauss-Newton optimization procedure which requires
a negligible amount of additional time.

dinates of the control points in the camera referential,
which can be done in O(n) time by expressing these
coordinates as weighted sum of the eigenvectors of a
12 × 12 matrix and solving a small constant number
of quadratic equations to pick the right weights. Our
approach also extends to planar configurations, which
cause problems for some methods as discussed in [23,
25], by using three control points instead of four.

In the remainder of the paper, we first discuss re-
lated work focusing on accuracy and computational com-
plexity. We then introduce our new formulation and
derive our system of linear and quadratic equations.
Finally, we compare our method against the state-of-
the-art ones using synthetic data and demonstrate it
using real data. This paper is an expanded version of
that in [22], where a final Gauss-Newton optimization
is added to the original algorithm. In Section 4 we show
that optimizing over a reduced number of parameters,
the accuracy of the closed-solution proposed in [22] is
considerably improved with almost no additional com-
putational cost.

2 Related Work

There is an immense body of literature on pose estima-
tion from point correspondences and, here, we focus on
non-iterative approaches since our method falls in this

category. In addition, we will also introduce the Lu et
al. [20] iterative method, which yields very good results
and against which we compare our own approach.

Most of the non-iterative approaches, if not all of
them, proceed by first estimating the points 3D posi-
tions in the camera coordinate system by solving for
the points depths. It is then easy to retrieve the cam-
era position and orientation as the Euclidean motion
that aligns these positions on the given coordinates in
the world coordinate system [15,3,30].

The P3P case has been extensively studied in the lit-
erature, and many closed form solutions have been pro-
posed such as [6,8,9,11,24]. It typically involves solving
for the roots of an eight-degree polynomial with only
even terms, yielding up to four solutions in general, so
that a fourth point is needed for disambiguation. Fisher
and Bolles [8] reduced the P4P problem to the P3P one
by taking subsets of three points and checking consis-
tency. Similarly, Horaud et al. [13] reduced the P4P
to a 3-line problem. For the 4 and 5 points problem,
Triggs [29] derived a system of quadratic polynomials,
which solves using multiresultant theory. However, as
pointed out in [2], this does not perform well for larger
number of points.

Even if four correspondences are sufficient in gen-
eral to estimate the pose, it is nonetheless desirable
to consider larger point sets to introduce redundancy
and reduce the sensitivity to noise. To do so, Quan and
Lan [24] consider triplets of points and for each one
derive four-degree polynomials in the unknown point
depths. The coefficients of these polynomials are then
arranged in a (n−1)(n−2)

2 × 5 matrix and singular value
decomposition (SVD) is used to estimate the unknown
depths. This method is repeated for all of the n points
and therefore involves O(n5) operations.2 It should be
noted that, even if it is not done in [24], this complex-
ity could be reduced to O(n3) by applying the same
trick as we do when performing the SVD, but even
then, it would remain slower than our method. Ansar
and Daniilidis [2] derive a set of quadratic equations ar-
ranged in a n(n−1)

2 ×
(

n(n+1)
2 + 1

)
linear system, which,

as formulated in the paper, requires O(n8) operations
to be solved. They show their approach performs better
than [24].

The complexity of the previous two approaches stems
from the fact that quadratic terms are introduced from
the inter-point distances constraints. The linearization
of these equations produces additional parameters, which
increase the complexity of the system. Fiore’s method [7]
avoids the need for these constraints: He initially forms

2 Following [10], we consider that the SVD for a m× n matrix
can be computed by a O(4m2n + 8mn2 + 9n3) algorithm.
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a set of linear equations from which the world to cam-
era rotation and translation parameters are eliminated,
allowing the direct recovery of the point depths without
considering the inter-point distances. This procedure al-
lows the estimation of the camera pose in O(n2) oper-
ations, which makes real-time performance possible for
large n. Unfortunately, ignoring nonlinear constraints
produces poor results in the presence of noise [2].

By contrast, our method is able to consider nonlin-
ear constraints but requires O(n) operations only. Fur-
thermore, in our synthetic experiments, it yields results
that are more accurate than those of [2].

It is also worth mentioning that for large values of n

one could use the Direct Linear Transformation (DLT)
algorithm [1,12]. However, it ignores the intrinsic cam-
era parameters we assume to be known, and therefore
generally leads to less stable pose estimate. A way to
exploit our knowledge of the intrinsic parameters is to
clamp the retrieved values to the known ones, but the
accuracy still remains low.

Finally, among iterative methods, Lu et al.’s [20]
is one of the fastest and most accurate. It minimizes
an error expressed in 3D space, unlike many earlier
methods that attempt to minimize reprojection residu-
als. The main difficulty is to impose the orthonormal-
ity of the rotation matrix. It is done by optimizing al-
ternatively on the translation vector and the rotation
matrix. In practice, the algorithm tends to converge
fast but can get stuck in an inappropriate local min-
imum if incorrectly initialized. Our experiments show
our closed-form solution is slightly less accurate than
Lu et al.’s when it find the correct minimum, but also
that it is faster and more stable. Accuracies become
similar when after the closed-form solution we apply
a Gauss-Newton optimization, with almost negligible
computational cost.

3 Our Approach to the PnP Problem

Let us assume we are given a set of n reference points
whose 3D coordinates are known in the world coordi-
nate system and whose 2D image projections are also
known. As most of the proposed solutions to the PnP
Problem, we aim at retrieving their coordinates in the
camera coordinate system. It is then easy and standard
to retrieve the orientation and translation as the Eu-
clidean motion that aligns both sets of coordinates [15,
3,30].

Most existing approaches attempt to solve for the
depths of the reference points in the camera coordinate
system. By contrast, we express their coordinates as a
weighted sum of virtual control points. We need 4 non-
coplanar such control points for general configurations,

and only 3 for planar configurations. Given this for-
mulation, the coordinates of the control points in the
camera coordinate system become the unknown of our
problem. For large n’s, this is a much smaller number
of unknowns that the n depth values that traditional
approaches have to deal with and is key to our efficient
implementation.

The solution of our problem can be expressed as a
vector that lies in the kernel of a matrix of size 2n× 12
or 2n × 9. We denote this matrix as M and can be
easily computed from the 3D world coordinates of the
reference points and their 2D image projections. More
precisely, it is a weighted sum of the null eigenvectors
of M. Given that the correct linear combination is the
one that yields 3D camera coordinates for the control
points that preserve their distances, we can find the ap-
propriate weights by solving small systems of quadratic
equations, which can be done at a negligible computa-
tional cost. In fact, for n sufficiently large—about 15 in
our implementation—the most expensive part of this
whole computation is that of the matrix M�M, which
grows linearly with n.

In the remainder of this section, we first discuss
our parameterization in terms of control points in the
generic non-planar case. We then derive the matrix M
in whose kernel the solution must lie and introduce the
quadratic constraints required to find the proper com-
bination of eigenvectors. Finally, we show that this ap-
proach also applies to the planar case.

3.1 Parameterization in the General Case

Let the reference points, that is, the n points whose 3D
coordinates are known in the world coordinate system,
be

pi, i = 1, . . . , n .

Similarly, let the 4 control points we use to express
their world coordinates be

cj , j = 1, . . . , 4 .

When necessary, we will specify that the point co-
ordinates are expressed in the world coordinate system
by using the w superscript, and in the camera coordi-
nate system by using the c superscript. We express each
reference point as a weighted sum of the control points

pw
i =

4∑
j=1

αijcw
j , with

4∑
j=1

αij = 1 , (1)

where the αij are homogeneous barycentric coordinates.
They are uniquely defined and can easily be estimated.
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Fig. 3 Left: Singular values of M�M for different focal lengths. Each line represents the mean of 100 synthetic trials. Right: Zoom of
the last eigenvalues. For large focal lengths the perspective camera may be effectively approximated by an affine camera model, and
hence the dimension of the null-space of M�M will tend to 4. In contrast, for small focal lengths the camera will be purely perspective,
and only one singular value of M�M will be exactly zero due to the scale ambiguity. Our method takes into account all the possible
dimensionalities of the null space between 1 and 4.

The same relation holds in the camera coordinate sys-
tem and we can also write

pc
i =

4∑
j=1

αijcc
j . (2)

In theory the control points can be chosen arbitrar-
ily. However, in practice, we have found that the sta-
bility of our method is increased by taking the centroid
of the reference points as one, and to select the rest
in such a way that they form a basis aligned with the
principal directions of the data. This makes sense be-
cause it amounts to conditioning the linear system of
equations that are introduced below by normalizing the
point coordinates in a way that is very similar to the
one recommended for the classic DLT algorithm [12].

3.2 The Solution as Weighted Sum of Eigenvectors

We now derive the matrix M in whose kernel the solu-
tion must lie given that the 2D projections of the ref-
erence points are known. Let A be the camera internal
calibration matrix and {ui}i=1,...,n the 2D projections
of the {pi}i=1,...,n reference points. We have

∀i , wi

[
ui

1

]
= Apc

i = A
4∑

j=1

αijcc
j , (3)

where the wi are scalar projective parameters. We now
expand this expression by considering the specific 3D
coordinates

[
xc

j , y
c
j , z

c
j

]� of each cc
j control point, the

2D coordinates [ui, vi]
� of the ui projections, and the

fu, fv focal length coefficients and the (uc, vc) principal
point that appear in the A matrix. Eq. 3 then becomes

∀i , wi

⎡
⎣

ui

vi

1

⎤
⎦ =

⎡
⎣

fu 0 uc

0 fv vc

0 0 1

⎤
⎦

4∑
j=1

αij

⎡
⎣
xc

j

yc
j

zc
j

⎤
⎦ . (4)

The unknown parameters of this linear system are
the 12 control point coordinates

{
(xc

j , y
c
j , z

c
j)

}
j=1,...,4

and the n projective parameters {wi}i=1,...,n. The last
row of Eq. 4 implies that wi =

∑4
j=1 αijz

c
j . Substitut-

ing this expression in the first two rows yields two linear
equations for each reference point:
4∑

j=1

αijfuxc
j + αij(uc − ui)zc

j = 0 , (5)

4∑
j=1

αijfvy
c
j + αij(vc − vi)zc

j = 0 . (6)

Note that the wi projective parameter does not ap-
pear anymore in those equations. Hence, by concate-
nating them for all n reference points, we generate a
linear system of the form

Mx = 0 , (7)

where x =
[
cc
1
�, cc

2
�, cc

3
�, cc

4
�]�

is a 12-vector made of
the unknowns, and M is a 2n × 12 matrix, generated
by arranging the coefficients of Eqs. 5 and 6 for each
reference point. Unlike in the case of DLT, we do not
have to normalize the 2D projections since Eqs. 5 and 6
do not involve the image referential system.
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The solution therefore belongs to the null space, or
kernel, of M, and can be expressed as

x =
N∑

i=1

βivi (8)

where the set vi are the columns of the right-singular
vectors of M corresponding to the N null singular val-
ues of M. They can be found efficiently as the null
eigenvectors of matrix M�M, which is of small con-
stant (12×12) size. Computing the product M�M has
O(n) complexity, and is the most time consuming step
in our method when n is sufficiently large, about 15 in
our implementation.

3.3 Choosing the Right Linear Combination

Given that the solution can be expressed as a linear
combination of the null eigenvectors of M�M, find-
ing it amounts to computing the appropriate values for
the {βi}i=1,...,N coefficients of Eq. 8. Note that this ap-
proach applies even when the system of Eq. 7 is under-
constrained, for example because the number of input
correspondences is 4 or 5, yielding only 8 or 10 equa-
tions, which is less than the number of unknowns.

In theory, given perfect data from at least six points
and a purely perspective camera model, the dimension
N of the null-space of M�M should be exactly one
because of the scale ambiguity. In contrast, if one con-
siders an affine camera model, the null-space of M�M
would have dimensionality four, because of the depth
uncertainty of the four control points. Since a perspec-
tive camera with a large focal length may be approxi-
mated by an affine model, the value of N is not clear
beforehand, and it could be any value between 1 and
4. This effect is be observed in Fig. 3, that plots the
singular values of M�M for a perspective camera with
different values of the focal length. Furthermore, be-
cause of the presence of noise, no eigenvalue will be
strictly zero, but may be very small.

In this section, we therefore show that the fact that
the distances between control points must be preserved
can be expressed in terms of a small number of quadratic
equations, which can be efficiently solved to compute
{βi}i=1,...,N for N = 1, 2, 3 and 4. The techniques we
describe here could be extended to the case N >= 5
which might be necessary for a perfectly affine camera
with noisy observations. However, we have not found
it necessary to do so in any of our experiments on real
and synthetic data.

In practice, instead of trying to pick a value of N

among the set {1, 2, 3, 4}, which would be error-prone if

several eigenvalues had similar magnitudes, we compute
solutions for all four values of N and keep the one that
yields the smallest reprojection error

res =
∑

i

dist2(A[R|t]
[
pw

i

1

]
,ui) , (9)

where dist(m̃,n) is the 2D distance between point m
expressed in homogeneous coordinates, and point n.
This improves robustness without any noticeable com-
putational penalty because the most expensive opera-
tion is the computation of M�M, which is done only
once, and not the solving of a few quadratic equations.
The distribution of values of N estimated in this way
is depicted by Fig. 4.

We now turn to the description of the quadratic
constraints we introduce for N = 1, 2, 3 and 4.

Case N = 1: We simply have x = βv. We solve for
β by writing that the distances between control points
as retrieved in the camera coordinate system should
be equal to the ones computed in the world coordinate
system when using the given 3D coordinates.

Let v[i] be the sub-vector of v that corresponds to
the coordinates of the control point cc

i . For example,
v[1] will represent the vectors made of the three first
elements of v. Maintaining the distance between pairs
of control points (ci, cj) implies that

‖βv[i] − βv[j]‖2 = ‖cw
i − cw

j ‖2 . (10)

Since the ‖cw
i − cw

j ‖ distances are known, we compute
β in closed-form as

β =

∑
{i,j}∈[1;4] ‖v[i] − v[j]‖ · ‖cw

i − cw
j ‖∑

{i,j}∈[1;4] ‖v[i] − v[j]‖2
. (11)

Case N = 2: We now have x = β1v1 + β2v2, and our
distance constraints become

‖(β1v
[i]
1 + β2v

[i]
2 ) − (β1v

[j]
1 + β2v

[j]
2 )‖2 = ‖cw

i − cw
j ‖2 . (12)

β1 and β2 only appear in the quadratic terms and we
solve for them using a technique called “linearization”
in cryptography, which was employed by [2] to estimate
the point depths. It involves solving a linear system in
[β11, β12, β22]� where β11 = β2

1 , β12 = β1β2, β22 = β2
2 .

Since we have four control points, this produces a linear
system of six equations in the βab that we write as 3:

Lβ = ρ , (13)

3 We use the indices a and b for the β’s in order to differentiate
from the indices i and j used for the 3D points.
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Fig. 4 Effective number N of null singular values in M�M. Each vertical bar represents the distributions of N for a total of 300
experiments. On the left, we plot the results for a fixed image noise of σ = 10 pixels and an increasing number of reference points, and
the results on the right correspond to a fixed n = 6 number of reference points and increasing level of noise in the 2D projections.

where L is a 6 × 3 matrix formed with the elements of
v1 and v2, ρ is a 6-vector with the squared distances
‖cw

i −cw
j ‖2, and β = [β11, β12, β22]� is the vector of un-

knowns. We solve this system using the pseudoinverse
of L and choose the signs for the βa so that all the pc

i

have positive z coordinates.
This yields β1 and β2 values that can be further

refined by using the formula of Eq. 11 to estimate a
common scale β so that cc

i = β(β1v
[i]
1 + β2v

[i]
2 ).

Case N = 3: As in the N = 2 case, we use the six dis-
tance constraints of Eq. 12. This yields again a linear
system Lβ = ρ, although with larger dimensionality.
Now L is a square 6 × 6 matrix formed with the ele-
ments of v1, v2 and v3, and β becomes the 6D vector
[β11, β12, β13, β22, β23, β33]�. We follow the same proce-
dure as before, except that we now use the inverse of L
instead of its pseudo-inverse.

Case N = 4: We now have four βa unknowns and, in
theory, the six distance constraints we have been using
so far should still suffice. Unfortunately, the lineariza-
tion procedure treats all 10 products βab = βaβb as
unknowns and there are not enough constraints any-
more. We solve this problem using a relinearization
technique [16] whose principle is the same as the one
we use to determine the control points coordinates.

The solution for the βab is in the null space of a
first homogeneous linear system made from the origi-
nal constraints. The correct coefficients are found by
introducing new quadratic equations and solving them
again by linearization, hence the name “relinearization”.
These new quadratic equations are derived from the

fact that we have, by commutativity of the multiplica-
tion

βabβcd = βaβbβcβd = βa′b′βc′d′ , (14)

where {a′, b′, c′, d′} represents any permutation of the
integers {a, b, c, d}.

3.4 The Planar Case

In the planar case, that is, when the moment matrix of
the reference points has one very small eigenvalue, we
need only three control points. The dimensionality of
M is then reduced to 2n × 9 with 9D eigenvectors vi,
but the above equations remain mostly valid. The main
difference is that the number of quadratic constraints
drops from 6 to 3. As a consequence, we need use of the
relinearization technique introduced in the N = 4 case
of the previous section for N ≥ 3.

4 Efficient Gauss-Newton Optimization

We will show in the following section that our closed-
form solutions are more accurate than those produced
by other state-of-the-art non-iterative methods. Our al-
gorithm also runs much faster than the best iterative
one we know of [20] but can be slightly less accurate,
especially when the iterative algorithm is provided with
a good initialization. In this section, we introduce a re-
finement procedure designed to increase the accuracy
of our solution at very little extra computational cost.
As can be seen in Figs. 1 and 2, computing the solution
in closed form and then refining it as we suggest here
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yields the same accuracy as our reference method [20],
but still much faster.

We refine the four values β = [β1, β2, β3, β4]� of the
coefficients in Eq. 8 by choosing the values that min-
imize the change in distance between control points.
Specifically, we use Gauss-Newton algorithm to mini-
mize

Error(β) =
∑

(i,j) s.t. i<j

(‖cc
i − cc

j‖2 − ‖cw
i − cw

j ‖2 ,
)

(15)

with respect β. The distances ‖cw
i − cw

j ‖2 in the world
coordinate system are known and the control point co-
ordinates in camera reference are expressed as a func-
tion of the β coefficients as

cc
i =

4∑
j=1

βjv
[i]
j . (16)

Since the optimization is performed only over the four
βi coefficients, its computational complexity is indepen-
dent of the number of input 3D-to-2D correspondences.
This yields fast and constant time convergence since,
in practice, less than 10 iterations are required. As a
result, the computational burden associated to this re-
finement procedure is almost negligible as can be ob-
served in Fig. 2. In fact, the time required for the op-
timization may be considered as constant, and hence,
the overall complexity of the closed-form solution and
Gauss-Newton remains linear with the number of input
3D-to-2D correspondences.

5 Results

We compare the accuracy and speed of our approach
against that of state-of-the-art ones, both on simulated
and real image data.

5.1 Synthetic Experiments

We produced synthetic 3D-to-2D correspondences in a
640×480 image acquired using a virtual calibrated cam-
era with an effective focal length of fu = fv = 800
and a principal point at (uc, vc) = (320, 240). We gen-
erated different sets for the input data. For the cen-
tered data, the 3D reference points were uniformly dis-
tributed into the x,y,z interval [−2, 2]× [−2, 2]× [4, 8].
For the uncentered data, the ranges were modified to
[1, 2]×[1, 2]×[4, 8]. We also added Gaussian noise to the
corresponding 2D point coordinates, and considered a

percentage of outliers, for which the 2D coordinate was
randomly selected within the whole image.

Given the true camera rotation Rtrue and transla-
tion ttrue, we computed the relative error of the es-
timated rotation R by Erot(%) = ‖qtrue − q‖/‖q‖,
where q and qtrue are the normalized quaternions cor-
responding to the rotation matrices. Similarly, the rel-
ative error of the estimated translation t is determined
by Etrans(%) = ‖ttrue − t‖/‖t‖.

All the plots discussed in this section were created
by running 300 independent MATLAB simulations. To
estimate running times, we ran the code 100 time for
each example and recorded the average run time.

5.1.1 The Non-Planar Case

For the non-planar case, we compared the accuracy and
running times of our algorithm, which we denote as
EPnP, and EPnP+GN when it was followed by the op-
timization procedure described above, to: AD, the non-
iterative method of Ansar and Daniilidis [2]; Clamped
DLT, the DLT algorithm after clamping the internal
parameters with their known values; LHM, the Lu et
al.’s [20] iterative method initialized with a weak per-
spective assumption; EPnP+LHM, Lu et al.’s algorithm
initialized with the output of our algorithm.

On Fig. 1, we plot the rotational errors produced
by the three non-iterative algorithms, and the three it-
erative ones as a function of noise when using n = 6
points. We use the boxplot representation4, where each
column depicts the distribution of the errors for the
300 different simulations. A concise way to summarize
the boxplot results is to plot both the mean and me-
dian results for all simulations: The difference between
the mean and the median mainly comes from the high
errors represented as red crosses in the boxplots. The
greater it is, the less stable the method. This is shown
in Fig. 5a, where in addition to the rotation error we
also plot the translation error. The closed form solution
we propose is consistently more accurate and stable
than the other non-iterative ones, especially for large
amounts of noise. It is only slightly less accurate than
the LHM iterative algorithm. When the Gauss-Newton
optimization is applied the accuracy of our method be-
comes then similar to that of LHM and, as shown in
Fig. 5b, it even performs better when instead of using
well spread data as in the previous case, we simulate
data that covers only a small fraction of the image.

4 The boxplot representation consists of a box denoting the
first Q1 and third Q3 quartiles, a horizontal line indicating the
median, and a dashed vertical line representing the data extent
taken to be Q3 + 1.5(Q3 − Q1). The red crosses denote points
lying outside of this range.
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Fig. 5 Non Planar case. Mean and median rotation and translation errors for different experiments.
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Fig. 6 Median error as a function of required amount of computation, itself a function of the number of points being used, for our
approach and the LHM iterative method [20].

In Fig. 5c, we plot the errors as a function of the
number of reference points, when the noise is fixed to
σ = 5. Again, EPnP performs better than the other
non-iterative techniques and very nearly as well as LHM.
It even represents a more stable solution when dealing
with the uncentered data of Fig. 5d and data which in-
cludes outliers, as in Fig. 5e. Note that in all the cases
where LHM does not converge perfectly, the combina-
tion EPnP+LHM provides accurate results, which are
similar to the EPnP+GN solution we propose. In the
last two graphs, we did not compare the performance
of AD, because this algorithm does not normalize the
2D coordinates, and hence, cannot deal well with un-
centered data.

As shown in Fig. 2, the computational cost of our
method grows linearly with the number of correspon-
dences and remains much lower than all the others.
It even compares favorably to clamped DLT, which is
known to be fast. As shown in Fig. 6, EPnP+GN re-
quires about a twentieth of the time required by LHM to
achieve similar accuracy levels. Although the difference
becomes evident for a large number of reference points,
it is significant even for small numbers. For instance,
for n = 6 points, our algorithm is about 10 times faster
than LHM, and about 200 times faster than AD.

5.1.2 The Planar Case

Schweighofer and Pinz [25] prove that when the refer-
ence points lie on a plane, camera pose suffers from an
ambiguity that results in significant instability. They
propose a new algorithm for resolving it and refine the
solution using Lu et al.’s [20] method. Hereafter, we will
refer to this combined algorithm as SP+LHM, which we
will compare against EPnP, AD, and LHM. We omit

Clamped DLT because it is not applicable in the pla-
nar case. We omit as well the EPnP+GN, because for
the planar case the closed-form solution for the non-
ambiguous cases was already very accurate, and the
Gauss-Newton optimization could not help to resolve
the ambiguity in the rest of cases.

Fig. 7 depicts the errors as a function of the image
noise, when n = 10 and for reference points lying on
a plane with tilt of either 0 or 30 degrees. To obtain
a fair comparison we present the results as was done
in [25] and the errors are only averaged among those
solutions not affected by the pose ambiguity. We also
report the percentage of solutions which are considered
as outliers. When the points are lying on a frontoparal-
lel plane, there is no pose ambiguity and all the meth-
ods have a similar accuracy, with no outliers for all the
methods, as shown in the first row of Fig. 7. The pose
ambiguity problem appears only for inclined planes, as
shown by the bottom-row graphs of Fig. 7. Note that
for AD, the number of outliers is really large, and even
the errors for the inliers are considerable. EPnP and
LHM produce a much reduced number of outliers and
similar results accuracy for the inliers. As before, the
SP+LHM method computes the correct pose for almost
all the cases. Note that we did not plot the errors for
LHM, because when considering only the correct poses,
it is the same as SP+LHM.

As in the non-planar case, the EPnP solution pro-
posed here is much faster than the others. For example
for n = 10 and a tilt of 30o, our solution is about 200
times faster than AD, 30 times faster than LHM, even
though the MATLAB code for the latter is not opti-
mized.
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Fig. 7 Planar case. Errors as a function of the image noise when using n = 6 reference points. For Tilt=0o, there are no pose
ambiguities and the results represent the mean over all the experiments. For Tilt=30o, the errors are only averaged among the
solutions not affected by the pose ambiguity. The right-most figure represents the number of solutions considered as outliers, which
are defined as those for which the average error in the estimated 3D position of the reference points is larger than a threshold.

5.2 Real Images

We tested our algorithm on noisy correspondences, that
may include erroneous ones, obtained on real images
with our implementation of the keypoint recognition
method of [18]. Some frames of two video sequences are
shown in Fig. 8. For each case, we trained the method
on a calibrated reference image of the object to be de-
tected, for which the 3D model was known. These refer-
ence images are depicted in Fig. 8-left. At run time, the
method generates about 200 correspondences per im-
age. To filter out the erroneous ones, we use RANSAC
on small subsets made of 7 correspondences from which
we estimate the pose using our PnP method. This is ef-
fective because, even though our algorithm is designed
to work with a large number of correspondences, it is
also faster than other algorithms for small numbers of
points, as discussed above. Furthermore, once the set
of inliers has been selected, we use all of them to re-
fine the camera pose. This gives a new set of inliers
and the estimation is iterated until no additional in-
liers are found. Fig. 8-right shows different frames of
the sequences, where the 3D model has been reprojected
using the retrieved pose.

6 Conclusion

We have proposed an O(n) non-iterative solution to the
PnP problem that is faster and more accurate than the
best current techniques. It is only slightly less accurate
than one the most recent iterative ones [20] but much
faster and more stable. Furthermore, when the output
of our algorithm is used to initialize a Gauss-Newton
optimization, the precision is highly improved with a
negligible amount of additional time.

Our central idea—expressing the 3D points as a
weighted sum of four virtual control points and solv-
ing in terms of their coordinates—is very generic. We
demonstrated it in the context of the PnP problem but
it is potentially applicable to problems ranging from the
estimation of the Essential matrix from a large number
of points for Structure-from-Motion applications [28] to
shape recovery of deformable surfaces. The latter is par-
ticularly promising because there have been many ap-
proaches to parameterizing such surfaces using control
points [26,4], which would fit perfectly into our frame-
work and allow us to recover not only pose but also
shape. This is what we will focus on in future research.
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Reference Image Pose in frame #25 Pose in frame #120 Pose in frame #240

Reference Image Pose in frame #37 Pose in frame #46 Pose in frame #150

Fig. 8 Real images. Top. Left: Calibrated reference image. Right: Reprojection of the model of the box on three video frames. The
camera pose has been computed using the set of correspondences depicted by the thin blue lines. Bottom. Left: Calibrated reference
image. Right: Reprojection of the model of the box on three video frames. Observe how a good detection is achieved even when the
model suffers from occlusions.
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