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Abstract

We present a two-dimensional granular model for the mechanical behavior of an ensemble of globular grains during solidification.
The grain structure is produced by a Voronoi tessellation based on an array of predefined nuclei. We consider the fluid flow caused
by grain movement and solidification shrinkage in the network of channels that is formed by the faces of the grains in the tessellation.
We develop the governing equations for the flow rate and pressure drop across each channel when the grains are allowed to move, and we
then assemble the equations into a global expression that conserves mass and force in the system. We show that the formulation is con-
sistent with dissipative formulations of non-equilibrium thermodynamics. Several example problems are presented to illustrate the effect
of tensile strains and the availability of liquid to feed the deforming microstructure. For solid fractions below gs ¼ 0:97, we find that the
fluid is able to feed the deformation at low strain, even if external feeding is not permitted. For solid fractions above gs ¼ 0:97, clusters of
grains with ‘‘dry” boundaries form and fluid flow becomes highly localized.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The last-stage solidification of alloys is a critical step in
casting and welding processes during which several defects
can form [1]. In addition to porosity, the most severe of
these defects is probably hot cracking, i.e. a spontaneous
failure of the material while it is still semi-solid. This defect,
which typically occurs in dilute and hard alloys, limits the
productivity of cast houses and restricts the range of alloys
that can be produced [2]. It also severely limits the welda-
bility of this class of alloys.

In dilute alloys, solid grains are separated by thin con-
tinuous liquid films up to high volume fraction of solid gs

(typically up to gs � 0:95), especially at high-angle grain
boundaries, where coalescence of solid grains is made diffi-
cult by the large grain boundary energy [3]. As stresses and
strains are generated in the not yet fully coherent solid, the
presence of these liquid films together with the low perme-
ability of the mushy zone near gs ¼ 0:95, which prevents
efficient feeding, makes the material extremely brittle
[4,5]. Deformation induced by thermal and solidification
shrinkage tends to localize at these liquid films, which act
as a brittle phase. They pose little resistance to tensile
strains and, as they open, the newly created volume cannot
be fed by intergranular liquid. The so-called ‘‘brittle
range”, meaning the gs range where the mushy zone exhib-
its low strength and low ductility, can be measured, for
example, by tensile tests on partially solidified alloys [6–8].

Accurate prediction of hot cracking requires the knowl-
edge of:

1359-6454/$34.00 � 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actamat.2008.12.006

* Corresponding author. Address: Alcan Centre de Recherches de
Voreppe, ZI Centr’Alp, 725 rue Aristide Bergès, BP 27, Voreppe FR-
38341, France.

E-mail address: stephane.vernede@alcan.com (S. Vernède).
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(1) the thermal history of the cast or welded part. This is
usually done using volume-averaged multi-phase heat
and mass transfer models [9,10];

(2) realistic mechanical constitutive equations for the
semi-solid alloy [7]; and

(3) conditions under which a hot tear will form, also
known as a hot cracking criterion [11–13].

Hot tearing models based on such data have been imple-
mented successfully in casting simulation codes by several
authors [14–16].

These existing models treat the material as a continuum
whose properties are represented by volume-averaged
quantities at a length scale that is large compared to the
microstructure but small compared to the variations of
macroscopic fields. By their very construction, they cannot
include the important transitions in the microstructure at a
high volume fraction of solid, such as the localization of
liquid films to the periphery of increasingly large grain clus-
ters, as described by percolation theory [17]. Thus, the loss
of locality of the length scale implies that no appropriate
representative volume element can be defined. This limits
the utility of such models, because it is in precisely this tran-
sition region that hot cracks form, as recently demonstrated
experimentally by Gourlay and Dahle [18,19], emphasizing
the importance of the granular nature of solidifying alloys.

In order to go beyond the limits imposed by the volume-
averaged methods, in this work we adapt granular or dis-
crete element models (DEM), which have been developed
in the context of the mechanics of granular materials [20–
22]. These models simulate the behavior of a large number
of spherical grains, which may be either rigid [20,21] or
deformable [22]. They consider the interactions between
the grains due to solid–solid contact but neglect the influ-
ence of the surrounding medium. To extend these models
to the case of semi-solid alloys at high solid fraction, we
must consider not only the solidification of each grain,
but also the influence of fluid flow on the mechanical
behavior of the mushy zone.

The first model using the granular approach for the
solidification and coalescence of globular grains in two
dimensions was proposed by Mathier et al. [23]. This work
was further developed by two of the present authors [24].
In Ref. [25], a percolation analysis was presented that iden-
tified the various transitions in the mushy zone that appear
naturally in this approach, as well as a model for liquid
feeding. However, all these contributions made the major
assumption that the grains remained fixed. In the present
contribution, we derive a two-dimensional (2-D) granular
mechanical model for globular microstructures that
includes both the flow of intergranular liquid and the dis-
placement of solid grains.

2. Solidification model

The 2-D mechanical model that we present here is based
on the solidification model presented in detail in previous

publications [24,26]. The model is appropriate for inocu-
lated alloys whose final grain structure is fine and globular.
For the sake of completeness, we briefly recall the main fea-
tures of this solidification model before presenting the
mechanical DEM approach.

Consider a population of grains distributed randomly in
space with a specified average density. Nucleation is
assumed to be instantaneous, and the temperature differ-
ence across a typical grain is taken to be small compared
to the undercooling i.e., a small thermal gradient. The final
grain structure is therefore close to the Voronoi tessellation
of the original set of nuclei [27]. Beginning with a random
distribution of nucleation centers, the Voronoi tessellation
of the set is computed from the mediatrix of the segments
connecting two neighbor nucleation centers (see Fig. 1).
A 2-D grain is then identified as an ensemble of triangles
having the nucleation center as one corner and two vertices
on the grain boundary. Computation in the model pro-
ceeds in two steps. In the first step, the interface of each
grain during growth is approximated by a linear segment
parallel to the grain boundary. In this step, we neglect sol-
ute flux between elementary triangles, which reduces the
solute diffusion calculation to a one-dimensional problem
in each triangle. We assume complete mixing in the liquid.
Back-diffusion in the solid can be easily incorporated in the
model [26,24]. In the second step, the sharp corners of the
polyhedral grains are smoothed using a procedure that
accounts for the local curvature undercooling. Further
details of this model, together with a discussion of its lim-
itations and domain of validity, are given in Ref. [24].

3. Mechanical model

3.1. Basic hypotheses

We begin the mechanical model with the microstructure
computed by the solidification model. The idea is to derive
a DEM for the mechanical response of the mushy zone that

Fig. 1. Left, grain as computed with the Voronoi tessellation method.
Right, notations for a liquid channel used as the basic element of the
mechanical model.
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retains the main physical aspects at the scale of the grains
yet is simple enough to be computationally tractable. To
that end, the following assumptions are made:

(1) The grains are undeformable. This assumption is ade-
quate to obtain insight into the physics of hot tearing,
where deformations are small. A more complete model
of the rheology of the mushy zone should also include
deformation of the solid, which is known to be impor-
tant for volume fractions of solid gs J 0:6, known as
the traction coherency solid fraction [7,28,29].

(2) Grain movement can occur only by translation. This
hypothesis seems very restrictive, but experimental
studies have shown that at high temperature and high
solid fraction the most important deformation mech-
anism is grain boundary sliding [6]. Making this
assumption greatly improves the computational effi-
ciency of the model, because detection of contacts
between polygonal grains is difficult if rotations are
permitted [20].

(3) Liquid channels smaller than a predefined coalescence

interaction distance d, on the order of a few nanome-
ters, are taken to be fully solid [23,3]. Using such a
cut-off improves the computational behavior of the
model by eliminating very large coefficients that
would otherwise appear in the matrix of the linear
system derived in Section 3.5.

(4) The intergranular fluid is Newtonian and incompress-

ible, and no-slip conditions apply at the solid–liquid

(s� ‘) interface. We adopt this constitutive model
for the fluid even though the channels between grains
are very thin. We note that measurements by Israel-
achvili [30] and Tabeling [30,31] showed that the vis-
cosity observed in bulk samples is still valid for films
as thin as 5 nm. Another effect observed in thin films
is slipping at s� ‘ interfaces, which may be due to
the formation of a nanometer scale air gap [32,31].
This phenomenon occurs when the shear stress
exceeds a critical value, and might be an interesting
phenomenon to consider in hot tearing, especially if
gas porosity appears at grain boundaries. It is not
included in this work.

3.2. Notation

Our model considers the liquid network formed between
the grains. The basic element is a liquid channel sur-
rounded by two solid grains, designated a and b in
Fig. 1. The element has four integration points. The first
two points are the grain centers, denoted Oa and Ob for
grains a and b, respectively. At these points, we consider
two conjugate vector quantities, the velocity of the grain

Vf gOa
(or Vf gOb

) and the force exerted by the grain on a
liquid channel Ff ga (or Ff gb). The two other integration
points are the ends of the liquid channel, denoted i and j.
The conjugate quantities considered at these points are
the fluid flux Ui (or Uj) and the pressure P i (or P j). Upper-

case letters are used for these entities at the integration
points, whereas lowercase letters are used for the associated
fields (e.g. vf g for the velocity and p for the pressure at any
point in the liquid channel).

Relative translation between neighboring grains can
produce a mismatch at the extremities of the channel. With
reference to Fig. 1, we introduce the following length mea-
sures: L is the length of the s� ‘ interface for one channel,
Lc is the length of the channel where the two grains effec-
tively face each other and Lja is the length of the s� ‘ inter-
face from the center of the channel to the extremity of grain
a near vertex j. We also define Lia ¼ L� Lja. The half-width
of the channel is designated as h. Note also that, even
though the channel can be curved at its extremities, it is
modeled with straight lines for the calculation of the pres-
sure field.1 The special case where relative motion of the
grains causes their faces to no longer align anywhere i.e.,
Lc ¼ 0, is treated in Section 3.6.

The volume change associated with solidification shrink-
age i.e., due to the density difference (qs � ql) between the
solid and liquid phases, produces a compensating flow in
the liquid near the interface. It is most convenient to
develop the expressions for the flow in terms of the normal
and tangential components of the velocity, denoted with
superscripts ‘‘n” and ‘‘t”, respectively

Vf ga ¼
V t

a

V n
a

� �
¼

V t
Oa

V n
Oa
� bv�

 !
ð1Þ

where b is the solidification shrinkage ðb ¼ qs=ql � 1Þ, and
v� is the speed of the s� ‘ interface as given by the solidi-
fication model. We choose the element normal vector nf g
to point toward the liquid from grain a, and the tangential
vector tf g is directed from vertex i to vertex j. Note that,
due to this orientation convention, the fluid velocity at
the interface with grain b is written as:

Vf gb ¼
V t

Ob

V n
Ob
þ bv�

 !
ð2Þ

Symmetry of the solidification model implies that the veloc-
ity v� of the s� ‘ interface of grain b is equal to that of its
neighbor grain a. The coordinates in the tf g and nf g direc-
tions are noted X and Y, respectively. The origin is defined
at the center of the channel (see Fig. 1).

3.3. Integration of the constitutive equations

The scaling analysis given in Appendix A shows that the
X-direction momentum balance in the channel reduces to
the following simpler relation between the pressure in the
liquid channel pðX Þ and the fluid velocity:

1 Note that the flux balances that we introduce in the next section with
the polyhedral envelope of the grains are strictly the same as those done
for the rounded grains. Indeed, as the fluid will be considered as
incompressible, the mass of fluid in between the grains and their
polyhedral envelope remains constant.
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@p
@X
¼ l

@2vX

@Y 2
ð3Þ

where l is the dynamic viscosity. The volumetric flow rate
in the channel /i!jðX Þ from vertex i to vertex j is defined by

/i!jðX Þ ¼
Z h

�h
vX ðX ; Y ÞdY ð4Þ

We also have the continuity equation for a constant density
fluid in two dimensions,

@vX

@X
þ @vY

@Y
¼ 0 ð5Þ

Integrating Eq. 5 over the width of the channel and using
the definition of /i!j in Eq. (4) gives

@/i!j

@X
¼ �V n ð6Þ

where

V n ¼ V n
b � V n

a ¼ V n
Ob
� V n

Oa
þ 2bv� ð7Þ

represents a source or sink in the channel. Note that if the
velocity of the grains is zero (or uniform) i.e., V n ¼ 2bv�,
Eqs. (3) and (6) reduce to those given in Ref. [24], where
we considered only the shrinkage-induced intergranular
flow.

Eqs. (3) and (6) are integrated in Appendix B for the
general case. To provide a better understanding of the
underlying physics, let us consider a few special cases where
the grain and/or liquid movement isolates the individual
contributions of certain important phenomena. Since the
governing equations are linear, solutions for cases that

combine these phenomena can be obtained by superposi-
tion of these simple cases. The cases are illustrated in
Fig. 2.

Case (a), corresponding to the top line of Fig. 2, neglects
shrinkage-induced flow (qs ¼ ql) and considers an imposed
pressure differential between vertices i and j. The grain
velocities are set to zero for this case. In the part of the
channel where the two s� ‘ interfaces face each other,
the fluid velocity profile vX ðY Þ has the usual parabolic pro-
file given by

vX ðX ; Y Þ ¼
1

2l
@p
@X
ðY 2 � h2Þ ¼ P i � P j

2lLc

@p
@X
ðY 2 � h2Þ ð8Þ

Thus, the volumetric flow rate at the vertices i and j is given
by:

UiðP i; P jÞ ¼
2h3

3lLc
ðP i � P jÞ ¼ �UjðP i; P jÞ ð9Þ

This equation describes the flow between two parallel
planes. In two dimensions, any contact between neighbor-
ing grains blocks all flow in the channel, whereas in three
dimensions the liquid can flow around the contact. To in-
clude this important 3-D feature in our 2-D model, we as-
sume that, when two grains make contact, a small ‘‘pipe”
remains open. The radius of this pipe, rp, is estimated to
be of the same order of magnitude as the radius of curva-
ture at the grain corner, derived in Ref. [24] (see Fig. 1).
Moreover, if the solidification microstructure were to be
extended in the third dimension, there would be one such
pipe with an average grain diameter Dav. Summing the flow
rates for the channel and the pipe gives

Fig. 2. Representation of the various individual constraints imposed on a liquid channel and on the grains: (a) simple flow in between two immobile
grains; (b) normal displacement of the grains; (c) tangential displacement of the grains.

S. Vernède et al. / Acta Materialia 57 (2009) 1554–1569 1557



Author's personal copy

UiðP i; P jÞ ¼
2h3

3lLc
þ

pr4
p

8lDavLc

 !
ðP i � P jÞ ¼ �UjðP i; P jÞ

ð10Þ
where we have represented the flow rate in the pipe using
the standard Poiseuille solution.

We show in Appendix A that the pressure loss in the
part of the channel where the s� ‘ interfaces of the two
grains do not face each other can be neglected with respect
to the remaining terms. Therefore, the pressure is constant
in these locations, and decreases linearly from P i to P j

along Lc. This simple pressure profile in the liquid channel
can be integrated to obtain the forces exerted by the grains
on the liquid to yield

Ff gaðP i; P jÞ ¼
ðP j � P iÞh

P iLia þ P jLja

� �
ð11Þ

and

Ff gbðP i; P jÞ ¼
ðP j � P iÞh
�P iLib � P jLjb

� �
ð12Þ

Of course, the opposite force is exerted by the fluid on the
grains.

Next, we consider the individual effect of a grain dis-
placement in the normal direction, with V t

Oa
¼ V t

Ob
¼ 0

and P i ¼ P j ¼ 0 (Fig. 2, case (b)). Eqs. (3) and (4), com-
bined with a no-slip condition at the s� ‘ interfaces, link
the pressure gradient in the X-direction to the fluid flow.

Ui!jðX Þ ¼ �
2

3l
@p
@X

h3 ð13Þ

With the help of Eq. (6), we have then:

2h3

3l
@2p

@X 2
¼ V n

b � V n
a ð14Þ

Integrating Eq. (14) twice in X and considering the imposed
symmetry on the pressure gives

pðV n
a; V

n
bÞ ¼

3l V n
b � V n

a

� �
4h3

X 2 � Lc

2h

� �2
" #

ð15Þ

This term represents the change in pressure induced by the
fluid flow required to compensate the channel expansion
(V n

b > V n
a) or constriction (V n

b < V n
a). Eq. (15) can be inte-

grated once more over the length of the channel to obtain
the forces exerted by the grains on the liquid:

Ff gaðV n
a; V

n
bÞ ¼

0

�lðLc=2hÞ3ðV n
b � V n

aÞ

� �
ð16Þ

and

Ff gbðV n
a; V

n
bÞ ¼

0

lðLc=2hÞ3ðV n
b � V n

aÞ

� �
ð17Þ

The symmetry of the formulation implies that at the center
of the channel

/i!jjX¼0ðV n
a; V

n
bÞ ¼ 0 ð18Þ

As the fluid is incompressible, a flux balance is readily writ-
ten at the channel vertices as

UiðV n
a; V

n
bÞ ¼ LibV n

b � LiaV n
a ð19Þ

UjðV n
a; V

n
bÞ ¼ LjbV n

b � LjaV n
a ð20Þ

The final case that we consider isolates the effect of tangen-
tial displacement of the grains (Fig. 2, case(c)). This situa-
tion corresponds to pure shear of the liquid channel, and
thus we have:

Ff gaðV t
a; V

t
bÞ ¼

�lðLc=2hÞðV t
b � V t

aÞ
0

� �
ð21Þ

and

Ff gbðV t
a; V

t
bÞ ¼

lðLc=2hÞðV t
b � V t

aÞ
0

� �
ð22Þ

Note that we have neglected the shear forces in the portions
of the channel where the two grains do not face each other.
Considering the flow relative to the initial (reference) con-
figuration, the average tangential displacement of the
grains induces a fluid flow at each vertex given by

UiðV t
a; V

t
bÞ ¼ 2h

V t
b þ V t

a

2
ð23Þ

UjðV t
a; V

t
bÞ ¼ �2h

V t
b þ V t

a

2
ð24Þ

If V t
a ¼ �V t

b, there is no net flow in the channel i.e., the li-
quid experiences a perfectly symmetric shear stress.

For a more general situation in which all three of the
phenomena just discussed may occur, the various contribu-
tions to the fluid flow and to the forces on the grains can be
written as the sum of the individual simple cases with the
result

Ff ga ¼
ðP j � P iÞh� lðLc=2hÞðV t

b � V t
aÞ

�lðLc=2hÞ3V n þ P iLia þ P jLja

 !
ð25Þ

Ff gb ¼
ðP j � P iÞhþ lðLc=2hÞðV t

b � V t
aÞ

lðLc=2hÞ3V n � P iLib � P jLjb

 !
ð26Þ

Ui ¼
2h3

3lLc
þ

pr4
p

8lDavLc

 !
ðP i � P jÞ þ 2h

V t
b þ V t

a

2
þ LibV n

b � LiaV n
a ð27Þ

Uj ¼
2h3

3lLc
þ

pr4
p

8lDavLc

 !
ðP j � P iÞ � 2h

V t
b þ V t

a

2
þ LjbV n

b � LjaV n
a ð28Þ

We now proceed to develop these expressions into a form
suitable for a finite element formulation.

3.4. Elementary matrix

In order to obtain a matrix form, we collect the primi-
tive variables into a vector Uf gT ¼ ðP i; P j; V n

a; V
n
b; V

t
a; V

t
bÞ

with the associated flow rates and forces into a second vec-
tor Wf gT ¼ ðUi;Uj; F n

a; F
n
b; F

t
a; F

t
bÞ. The superscript ‘‘T”

indicates the transpose of the vector. Eqs. (25)–(28) can
then be written in matrix form as
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Wf g¼

Ui

Uj

F n
a

F n
b

F t
a

F t
b

0
BBBBBBBB@

1
CCCCCCCCA
¼½E� Uf g¼

þC1 �C1 �Lia þLib þh þh

�C1 þC1 �Lja þLjb �h �h

þLia þLja þC2 �C2 0 0

�Lib �Ljb �C2 þC2 0 0

�h þh 0 0 þC3 �C3

�h þh 0 0 �C3 þC3

0
BBBBBBBB@

1
CCCCCCCCA

P i

P j

V n
a

V n
b

V t
a

V t
b

0
BBBBBBBB@

1
CCCCCCCCA

ð29Þ

where

C1¼
2h3

3lLc
þ

pr4
p

8lDavLc

 !
; C2¼ l

Lc

2h

� �3

; C3¼ l
Lc

2h
ð30Þ

Note that, unlike the usual formulation of mechanical prob-
lems using the finite element method, we have chosen to
group together the normal and tangential components of
the forces and velocities acting on grains a and b. One
should also keep in mind that the component V n

a ¼ V n
Oa
�

bv� (or V n
b ¼ V n

Ob
þ bv�) includes both grain displacement

and solidification shrinkage.
It is interesting to compute the power dissipation _X in

the channel by

_X ¼ Vf gb � Ff gb þ Vf ga � Ff ga þ P iUi þ P jUj ð31Þ
or equivalently by

_X ¼ Uf gT ½E� Uf g ð32Þ
Expanding Eq. (32) using Eq. (29), we obtain

_X ¼ 2h3

3lLc
ðP i � P jÞ2 þ l

Lc

2h

� �3

ðV n
b � V n

aÞ
2 þ l

Lc

2h
ðV t

b � V t
aÞ

2

ð33Þ
Thus, the element matrix of the system is positive definite
and represents a quadratic form related to dissipation in
the channel.

It is convenient to decompose the matrix ½E� into its sym-
metric and antisymmetric parts, ½S� and ½A�, respectively:

½S� ¼

þC1 �C1 0 0 0 0

�C1 þC1 0 0 0 0

0 0 þC2 �C2 0 0

0 0 �C2 þC2 0 0

0 0 0 0 þC3 �C3

0 0 0 0 �C3 þC3

0
BBBBBBBBB@

1
CCCCCCCCCA

ð34Þ

and

½A� ¼

0 0 �Lia þLib þh þh

0 0 �Lja þLjb �h �h

þLia þLja 0 0 0 0

�Lib �Ljb 0 0 0 0

�h þh 0 0 0 0

�h þh 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð35Þ

Inserting this decomposition into the power dissipation
yields

_X ¼ Uf gT ð½S� þ ½A�Þ Uf g ¼ Uf gT ½S� Uf g ð36Þ

since Uf gT ½A� Uf g � 0. The antisymmetric part of ½E�; ½A�,
represents coupling between the pressure in the fluid chan-
nels and the displacement of the grains. This term does not
dissipate energy in our formulation.

This form of the matrix is consistent with the Onsager–
Casimir theory of transport phenomena [33]. Consider the
two sets of conjugate quantities. One set is invariant under
time reversal (P i; P j; Ff ga; Ff gb), whereas the other set
(Ui;Uj; Vf ga; Vf gb) changes sign. The symmetric matrix
½S� couples quantities that have different behavior with
respect to time reversal, whereas the anti-symmetric matrix
½A� couples the quantities with the same behavior. For
example, Ui is related to P i; P j by ½S� and is related to
Vf ga, Vf gb by ½A�. It is interesting to note that this funda-

mental relation is obtained by a simple integration of the
fluid flow equations [34]. The usual volume-averaged for-
mulation with the same set of unknowns for describing
semi-solid materials (pressure in the liquid, velocity or
deformation rate in the solid) does not reveal the symme-
tries inherent in the present model.

3.5. Global problem

To assemble the global problem from the contributions
of the individual elements, both the unknown velocities at
the grain centers and the resulting forces are expressed in a
global coordinate system ðX ; Y Þ (see Fig. 3). One has, for
example:

F X
a

F Y
a

 !
¼

nX �nY

nY nX

� �
F n

a

F t
a

� �
ð37Þ

where N X and NY are the components of the channel nor-
mal vector in the global frame. The pressures and fluxes for
each channel in the global coordinate system are obtained
by the usual transformation rules i.e.,

Wf g0 ¼ ½Q� Wf g¼ ½Q�½E� Uf g¼ ½Q�½E�½Q�T Uf g0 ¼ ½E�0 Uf g0 ð38Þ

where ð Wf g0ÞT ¼ ðUi;Uj; F X
a ; F

X
b ; F

Y
a ; F

Y
b Þ; ð Uf g0ÞT ¼ ðP i; P j;

V X
a ; V

X
b ; V

Y
a ; V

Y
b Þ and ½E�0 ¼ ½Q�½E�½QT �. The transformation

matrix ½Q� is given by:

Fig. 3. Construction of the global problem from the elementary matrices.
The sum of forces on each grain is zero and the sum of fluxes flowing in
and out of each vertex is zero.
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½Q� ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 nX 0 �nY 0

0 0 0 nX 0 �nY

0 0 nY 0 nX 0

0 0 0 nY 0 nX

0
BBBBBBBB@

1
CCCCCCCCA

ð39Þ

Since V n
a ¼ V n

Oa
� bv� and V n

b ¼ V n
Ob
þ bv�, Eq. (29) in the

ðX ; Y Þ frame becomes

Ui

Uj

F X
a

F X
b

F Y
a

F Y
b

0
BBBBBBBB@

1
CCCCCCCCA
¼ ½Q�½E�½Q�T

P i

P j

V X
Oa

V X
Ob

V Y
Oa

V Y
Ob

0
BBBBBBBBB@

1
CCCCCCCCCA
þ ½Q�½E�

0

0

�bv�

þbv�

0

0

0
BBBBBBBB@

1
CCCCCCCCA

ð40Þ

The last term, which we call Bf g0, is associated with solid-
ification shrinkage and is known from the external solidifi-
cation model. The balance of mass and force is obtained by
summing Eq. (40) over all elements. This procedure is sim-
ilar to the matrix assembly in the standard finite element
method i.e., each contribution associated with a given li-
quid channel with a local numbering (a, b, i, j) (Section
3.4) is added to the global matricial problem with a global
numbering of all the grains and vertices. The result is writ-
ten in the compact form

½Etot�0 Utotf g0 ¼ � Btotf g0 ð41Þ
where the vector of unknowns Utotf g contains the velocities
of the N g grains ðV X

Oa
; V Y

Oa
Þ in the global frame and the pres-

sures P i at the N v vertices.
Integration points located at the external boundary of

the global domain are subject to boundary conditions.
An imposed flux on a channel vertex and an imposed force
on a grain are Neumann-type boundary conditions in this
formulation. These are taken into account by adding the
imposed constraint into the global vector � Btotf g0. Bound-
ary conditions specifying either the velocity of a grain or an
imposed pressure at a channel vertex are essential bound-
ary conditions. These are included in the formulation using
a penalty method, as in a standard finite element method.

Finally, the linear system of Eq. (41) is solved with a
standard LU decomposition. The velocities computed in
the Utotf g are used to update the grains positions at the
next time step.

3.6. Detection of contact

The present model is intended to be used for the study of
hot cracking i.e., for gs J 0:9, so that the width of the liquid
channels is very small compared to the grain size and the
displacement of the grains is very limited. It is important
in the implementation of the model to detect and account
for contact between grains. Eq. (9) shows that the pressure
drop in a channel tends to infinity as ð1=hÞ3 as h! 0, and

this is sufficient to prevent the interpenetration of the grains
in the simulation as long as the time step is sufficiently small.
In some highly constrained situations we found it necessary
to implement a dynamic time step refinement procedure in
order to prevent grain interpenetration.

It is more problematic to handle the changes of the envi-
ronment of the grains i.e., modifications of their nearest
neighbors. This typically occurs after large displacements
of the grains, especially for channels that are short to begin
with. There are a few additional situations where the grains
can interpenetrate (see Ref. [8] for further details). These
cases are handled by revising the list of the first neighbors
after each time step [20]. In the example problems pre-
sented in the next section, the volume fraction of solid is
high and the system is thus sufficiently constrained that this
phenomenon does not occur.

a

b

Fig. 4. Boundary conditions for two traction tests along the X axis: (a)
ideal feeding from the upper boundary; (b) no feeding. The grains or
clusters of grains are colored with various grey levels.
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4. Results

4.1. Boundary conditions

To use the model to investigate the mechanical behavior
of the mushy zone, two test cases were analyzed where a
tensile load was applied to a small ensemble of grains com-
prising a square volume element of edge LV . Boundary con-
ditions for the two cases are shown in Fig. 4. Since two
phases are present, boundary conditions are needed for
either the pressure or the flow rate for the liquid channels,
and for either the velocity or the applied forces on the solid
grains.

The two cases differ only in the boundary conditions
applied on the top surface. In the first case (Fig. 4(a)), a
pressure P 0 is imposed on both the liquid and the solid, cor-
responding to an average hydrostatic pressure on the sys-
tem.2 The fluid flow is free, thus allowing feeding from
the upper boundary. We refer to this case as ‘‘ideal feed-
ing” because it simulates a sample in contact with a liquid
reservoir (a feeder) at pressure P 0. In the second case, we
also impose a pressure P 0 on the upper surface of the solid
grains but the fluid flow is set to zero. This simulates a sit-
uation where feeding is impossible.

The remaining boundary conditions are the same for
both cases. The fluid flow and the horizontal X-component
of the grain velocity are zero on the left boundary, while
the Y-component of the grain velocity is free i.e., no forces
along the vertical axis. This set of boundary conditions is
equivalent to a symmetry plane. On the bottom boundary,
the flux and the Y-component of the velocity are zero while
the X-component is free. On the right boundary, a velocity
_eLV is imposed on the solid in the X-direction to study the
effect of an imposed strain rate _e. The fluid flow is zero on
the right boundary.3

We note that these boundary conditions are similar to
those of the model derived by Lahaie and Bouchard for a
regular arrangement of hexagonal grains [35]. In our
numerical calculations, the solidification of the system is
calculated first, before the mechanics of the mushy zone
is computed, without allowing any further solidification
i.e., at fixed solid fraction. This implies that gs is fixed, so
that there is no solidification shrinkage.

4.2. Tension tests

Fig. 5(a) shows the stress–strain curves for a sample
solidified at constant _T =-1 K s-1, up to three volume frac-
tions of solid (gs ¼ 0:92, 0.94 and 0.96). Each sample was
then strained along the X-direction at a rate

_e ¼ 4� 10�3s�1. The results for the two tests, ideal and
no feeding, are shown with open and filled symbols, respec-
tively. As can be seen, the two tests give the same stress–
strain response at strains up to about 2.5% for gs ¼ 0:92,
1.2% for gs ¼ 0:94 and 0.3% for gs ¼ 0:96. Beyond these
strains, the stress increases abruptly when feeding is not
allowed, whereas it remains low and even decreases past
a maximum in the case of ideal feeding.

These results can be understood by looking at the local
deformation mechanisms shown in Fig. 6, corresponding to
the isothermal mushy zone strained at gs ¼ 0:92. This
domain contains 200 grains having an average diameter
of 100 lm. Note that the computation of a traction test
simulation on such a mushy zone takes about 30 s on a per-
sonal computer with a 2 GHz Intel Core Duo processor.
Fig. 6(1) shows the grain structure with the liquid channels
at the onset of deformation i.e., for e ¼ 0. The grains are
identified by assigning various gray levels, and the velocity
of each grain is displayed with small arrows in Fig. 6(1a)

a

b

Fig. 5. Stress as a function of strain for a square domain strained at a rate
_e ¼ 4� 10�3s�1. Open and filled symbols correspond to ideal and no
feeding, respectively. (a) gs < 0:97, (b) gs > 0:97.

2 To represent the hydrostatic pressure on the solid, a force is imposed
on each grain at the boundary. This force is oriented along the normal to
the boundary and is equal to �P 0Lb where Lb is the length of the external
boundary of the grain.

3 Note that, for boundary conditions, the liquid flux is considered in the
frame of the solid grains. In the laboratory frame, a fluid flux is observed
due to the advection of the solid.
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(the scale at the bottom of the figure gives the modulus of
the velocity). When two grains establish a solid bond i.e.,
the width of the corresponding channel goes to zero, they
are shaded with the same gray scale, making it easy to rec-
ognize the formation of grain clusters as solidification pro-
gresses [25]. At this relatively low volume fraction of solid
(gs ¼ 0:92), only a few such clusters of grains have formed.

In Fig. 6(1b), the fluid flow in each channel is repre-
sented by lines whose width is proportional to their magni-
tude, the direction being indicated by a black triangle. The

scale used for this flow representation is again shown at the
bottom of the figure. As two grains get closer together, they
squeeze the liquid out of the channel; conversely, as they
move away from each other, liquid is pumped into the
channel. In both cases, the width of the corresponding line
varies along the channel length. The flow can also be
important in channels of fixed width that feed other regions
of the mushy zone. As can be seen in Fig. 6(1b), deforma-
tion of the mush is accommodated by fluid flow, but these
flows remain small and localized. Long-range feeding of

Fig. 6. Isothermal mushy zone with gs ¼ 0:92 and deformed at a strain rate _e ¼ 4� 10�3s�1 along the horizontal X-direction: (1) mushy zone at 0% strain;
(2) mushy zone at 4% strain with ideal feeding from the upper face; (3) mushy zone at 4% strain without feeding from the upper face. In (a), the grains (or
grain clusters) are shown with various grey levels together with their velocity represented with small arrows. In (b), the flow in the channels is represented
with a line of thickness proportional to the intensity and a triangle indicating the direction. In (c), the forces between the grains are represented with lines
of variable thickness proportional to the modulus. A grey hue (red) corresponds to traction and a dark hue (blue) to compression. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the mush is not necessary at low strain, and therefore both
cases give the same behavior of the mush (see Fig. 5).

The stresses in the sample are also very low at low strain,
as indicated in Fig. 6(1c). The interaction forces between
the grains via the liquid channel are represented by a line
connecting nucleation centers, whose width is proportional
to the magnitude of the force (scale shown at the bottom),
and whose gray scale level (or colour) indicates whether the
force is tensile or compressive. At low volume fraction of
solid and strain, the forces are very low and the corre-
sponding lines are barely visible in Fig. 6(1c).

Fig. 6(2) shows the same mushy zone after 4% deforma-
tion for the ideal feeding case, while Fig. 6(3) shows the
case where feeding is prohibited. The overall deformation
is indicated in (a), where the initial volume element is
drawn as a dashed-line square. It is important to note that
deformation is localized to a few channels, roughly ori-
ented normally to the tensile direction. The fluid tends to
flow from channels oriented in the direction of the stress
to channels oriented perpendicular to the stress. The grains
tend to be pulled inward along the vertical Y-direction as
we try to pull the mushy zone in the X-direction. This is
also reflected by the forces shown in Fig. 6(2c) and (3c),
which essentially correspond to traction along the horizon-
tal X-direction and to compression along the Y-direction.

It is also interesting to note that fluid flow is much more
important in the case of ideal feeding (Fig. 6(2b)) compared
to the case of no feeding (Fig. 6(3b)), even though the
imposed strain rate is the same. This shows that redistribu-
tion of fluid occurs over larger distances with the accumu-
lation of deformation. Fluid flow from the upper boundary
is clearly visible in Fig. 6(2b), and this flow relaxes the
stresses in the upper part of the sample (Fig. 6(2c)).

If the mush cannot be fed from the upper boundary
(Fig. 6(3)), redistribution of the fluid channels and of
the grains also occurs as deformation increases. However,
since no feeding from the top surface is allowed, the fluid
follows a more difficult path, and the stresses in the sam-
ples are higher. Note that, as no liquid flow is allowed on
any boundary for this case and the solid grains are rigid,
the total volume of the specimen (grains + liquid) is
constant.

In summary, at low strain, deformation is accommo-
dated by local redistribution of the liquid. This deforma-
tion is localized in liquid channels oriented roughly
perpendicular to the stress direction. As deformation
increases, more channels get closed and fluid redistribution
occurs on a larger scale. At that point, the ability to feed
the mush from some liquid reservoir becomes important.

4.3. Transition in the feeding mechanism

As the volume fraction of solid in the volume element
increases, the difference between the ideal-feeding and no-
feeding cases occurs at lower strain (Fig. 5). The reason
for this is fairly obvious, as the width of the liquid channels
decreases with increasing gs.

However, for gs > 0:97 (Fig. 5(b)), the behavior of the
two cases is different even at the limit e! 0. To understand
this new response, consider Fig. 7, which shows a mushy
zone with gs ¼ 0:975 deformed at the same strain rate
_e ¼ 4� 10�3s�1. At the onset of deformation (e ¼ 0,
Fig. 7(1a)), it can be seen that the solid grains start to form
significant numbers of grain clusters. Moreover, Fig. 7(1b)
shows that there is a significant redistribution of fluid, even
though the deformation of the mush is zero at that stage.
The fluid is located predominantly at the boundaries of
the clusters which move as a single larger grain. It is inter-
esting to compare this figure with Fig. 6(1b), which repre-
sents a mushy zone under the same straining and feeding
conditions but at a lower solid fraction.

The same mushy zone is represented in Fig. 7(2) at
0.05% deformation i.e., after 0.125 s. The very small defor-
mation is localized to just a few channels that are located at
the edges of the clusters and oriented normal to the tensile
axis. Local redistribution of the liquid is difficult and most
of the fluid to accommodate deformation is brought from
the upper boundary even at this low strain level. Therefore,
above gs ¼ 0:97, the deformation mechanism due to local
fluid redistribution is no longer possible, due to the pres-
ence of relatively large clusters and thinner liquid channels.
It is interesting to note that the volume fraction of solid at
which the mechanical behavior of the mush changes corre-
sponds precisely to the value gs;1%ilc at which 1% of the
liquid channels become isolated and the permeability of
the mush deviates from the Kozeny–Carman relationship
[25].

The mechanical model we have presented shows that
this solid fraction also corresponds to the point where
accommodation of deformation by fluid flow becomes
extremely difficult. Therefore, this point can be associated
with the ductility minimum point observed experimentally
[6,13], also called coalescence solid fraction by some
authors [7]. We find this point at a value gs ¼ 0:97, whereas
the experiments performed on inoculated globular micro-
structures give instead a value of gs ¼ 0:95 [7]. This differ-
ence is probably due to the 2-D nature of our model, which
tends to underestimate the size of the last liquid films (seg-
ments in a 2-D Voronoi model instead of polyhedral sur-
faces in three dimensions).

4.4. Discussion

The effect of external loads on the response in the model
can be deduced easily from the linearity of the matrix ½E�
(Eq. (29)). In particular, an increase in the metallostatic
pressure P 0 applied on the upper surface of Fig. 4 simply
shifts the stress response of the solid network.4 This
response corresponds to the Terzaghi effective stress i.e.,

4 From a numerical point of view, it is clear that zero grain displacement
and a uniform pressure is a solution of the problem. Because the system is
linear, this implies that any solution can be shifted by a uniform amount of
pressure without affecting the displacement of the grains.
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the behavior of the mush depends only on the difference
between the applied stress and the hydrostatic pressure
[36]. Similarly, the stress response of the mushy zone varies
linearly with the strain rate.

On the other hand, the evolution of the mushy zone with
strain requires a numerical calculation. The stress–strain
curves in Fig. 5 can be compared qualitatively with exper-
imental data (see e.g. [6–8]). For solid fractions lower than
gs;1%ilc (Fig. 5), the strain at which the stress increases
abruptly corresponds well to the experimental strains at
fracture for the corresponding value of gs. However, the
shape of the stress–strain curve and the magnitude of the
stress are clearly different from the experimental values.
At higher solid fractions, the strain at which the stress
increases abruptly no longer correlates well with the exper-
imental observations.

We have not considered solid deformation in the model.
For a solid fraction lower than the ductility minimum
(gs < gs;1%ilc), solid deformation certainly plays a role in
the overall behavior of the mush, but grain displacement
is the dominant deformation mechanism. The model repro-
duces the strain at which interlocking of the grains occurs,
even though rotations were not considered, but it cannot
reproduce the shape of the stress–strain curve. At higher
solid fractions (gs > gs;1%ilc), solid deformation is clearly

the dominant mechanism. The ductility increase observed
experimentally at high gs-value corresponds to the strength
increase of the solid network due to its progressive
percolation.

This 2-D model demonstrates a transition in the
mechanical behaviour of the mush as the solid fraction
increases. We have included the 3-D aspects of that transi-
tion in a simplified way. Further work is done in our group
to extent the present approach to 3-D.

4.5. First consequences on hot tearing criteria

Hot tearing criteria based on the feeding ability of the
mush [11,16,12] predict the hot cracking sensitivity of
alloys fairly well. Such criteria are based on a critical strain
rate, which seems to be particularly applicable in processes
such as DC casting, where thermally induced stresses are
essentially perpendicular to the thermal gradient [37,38].
However, in tensile test experiments where the applied
stress is parallel to the thermal gradient, hot cracking is
found to be largely independent of the stain rate [8,38].
As mentioned in the previous section, the response of the
present model is at first sight proportional to the strain
rate. However, the granular nature of the model makes it
strongly strain-dependent.

Fig. 7. Isothermal mushy zone with gs ¼ 0:975 strained with _e ¼ 4� 10�3s�1. Feeding from the upper face is allowed: e ¼ 0 (1), e ¼ 0:05% (2). In (a), the
grains and grain clusters are shown with various grey levels and their velocity is indicated with small arrows. In (b), the flow in the channels is displayed
with lines of thickness proportional to the intensity and triangles indicating the direction.
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The criterion for hot tear nucleation is usually written in
the form

pl < pc ð42Þ
where pl is the local pressure in the liquid and pc represents
the cavitation pressure at which a pore nucleates. As a first
approximation, this cavitation pressure can be estimated as
the overpressure required to overcome capillary forces at
the liquid–pore interface. Since pores will form at high so-
lid fraction i.e., in very narrow liquid channels, their radius
of curvature is dictated by the width of the channel, as
illustrated in Fig. 8. At the triple junction between the li-
quid, solid and pore, the equilibrium condition is given by:

cgl cos H ¼ cgs � csl ð43Þ

where csl; cgl and cgs are the interfacial energy between solid
and liquid, liquid and pore, and solid and pore, respec-
tively, and H is the dihedral angle. Therefore, the radius
of the pore R is given by:

R ¼ h
cos H

ð44Þ

where h is the half width of the liquid channel (see
Fig. 8(b)). Therefore

pc ¼ Dpc ¼ �
cgl

R
¼ �

cos Hcgl

h
¼ �

cgs � csl

h
¼ � I

h
ð45Þ

where I is called the ‘‘impregnation factor”. Since liquid
metals wet their own solid very well i.e., csl 	 cgl, the value
of I is typically close to cgl e.g., 1 J m-2 for Al.

Using such relationships, the maximal cavitation pres-
sure pc;max is plotted in Fig. 9 as a function of deformation
for isothermal mushy zones with various solid fractions
deformed at a strain rate _e ¼ 4� 10�3 s-1. The pressure cor-
responds to the pressure necessary for cavitation of a pore
in the widest channel of the mush, hmax. This channel width
decreases with increasing gs and increases considerably
with strain, in particular for high solid fraction samples.
Note that this evolution is largely independent of the other
parameters.

The variations of pc due to strain are therefore more
important than those induced by the strain rate. This phe-
nomenon can explain the apparent insensitivity of hot
cracking to strain rate, at least for tensile test experiments.
This idea is further illustrated in Fig. 10, where a mushy
zone is represented at various strain levels. In this test,
the strain rate _e is equal to 4� 10�3s�1; gs ¼ 0:92 and feed-
ing from the upper boundary is not allowed. The localiza-
tion of the fluid flow and the grain velocity are represented
on the same picture. Channels in which feeding is not rep-
resented (white channels) correspond to those in which a
pore has nucleated. In order to reach depressions capable
of producing a pore by cavitation, the pressure at the upper
boundary was fixed to P 0 ¼ �120 kPa. The impregnation
factor I in these simulations was fixed to 1 J m-2.

Fig. 10 clearly shows the nucleation of pores in the larg-
est channels, where deformation has been localized. Note
that this approach allows an estimation of the appearance
of damage in the mushy zone, but cannot model fracture,
which would require explicit modeling of the deformation
of the solid grains.

5. Conclusion

This paper has presented the development of a 2-D
granular model for the mechanical behavior of mushy
zones that brings valuable insight into the interrelations
between intergranular flow and grain movement. The
model is based on conservation of mass and force at the
level of the intergranular region. It produces naturally a
form that is consistent with non-equilibrium thermody-
namics. The whole mechanical problem can thus be
expressed as a minimization of dissipation. Therefore, the
results of the present simulations are well suited for contin-
uum models based on a dissipation potential [7].

The model accounts directly for the random nature of
grain nucleation, and for the progressive formation of
grain clusters during solidification [25]. In addition, the
granular nature of the material is modeled, which leads
to further localization of deformation and feeding (besides
the localization due to grain clusters). Both of these impor-

Fig. 8. (a) Equilibrium of forces at triple junction. (b) Shape of the
meniscus between two grains.

Fig. 9. Maximum value of the cavitation pressure in the mushy zone as a
function of strain for an impregnation factor I of 1 J m�2.
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tant phenomena cannot be resolved using typical volume-
averaged formulations that smear out the details of the
grain structure.

The formulation of the model requires only a few inte-
gration points for each grain. Computation times are there-
fore very low and leave room for further extensions, in
particular to three dimensions.
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Appendix A. Scaling analysis and simplification of the

equations

The X-component of the momentum balance for a con-
stant density Newtonian fluid in a 2-Dliquid channel is
given by

ql
@vX

@t
þ vX

@vX

@X
þ vY

@vX

@Y

� �
¼ ql

DvX

Dt
¼ � @p

@X
þ l

@2vX

@X
þ @

2vX

@Y 2

� �
ð46Þ

We follow the procedures in Ref. [39] to put this equation
in dimensionless form. To that end, we define the following
scaled variables:

X 
 ¼ X
Lc
; Y 
 ¼ Y

2h
; v
X ¼

vX � V t
a

V t ; v
Y ¼
vY � V n

a

V n ;

t
 ¼ tV t

Lc
; p
 ¼ p � P i

DP X
ð47Þ

where V t ¼ ðV t
b� V t

aÞ;V n ¼ ðV n
b� V n

aÞ and DP X ¼ ðP j� P iÞ.
Substituting these scaled variables into Eq. (46) gives

4h2qlV T

lLc

Dv
X
Dt

¼ � 4h2DP X

lV T Lc

@p


@X 

þ 4h2

L2
c

@2v
X
@X 
2

þ @
2v
X
@Y 
2

ð48Þ

The factor 2h=Lc that appears in several terms can be ex-
pressed in terms of the solid fraction gs:

2h
Lc
¼ 2

H tot

Ltot

1� g1=2
s

g1=2
s

 !
ð49Þ

where Htot is the height of the elementary triangle and Ltot is
the length of its base. For a regular hexagonal network of
solid grains this is constant, given by

2h
Lc
¼

ffiffiffi
3
p 1� g1=2

s

g1=2
s

 !
ð50Þ

which is precisely the term introduced by Lahaie and Bou-
chard in their hot tearing criterion [35]. We are interested in
solid fractions gs J 0:8 for which ðg�

1
2

s � 1Þ � ð1� gsÞ=
2 K 0:1.

To estimate the relative magnitude of the various terms,
we consider the typical values of the physical parameters in
an inoculated Al–Cu alloy ql � 2440 kg m�3; l � 1:5�
10�3 Pa s; Lc � 10�4 m [40]. Moreover, in DC casting the
typical strain rate is on the order of _e � 10�3 s�1 [2] and
thus V t � Lc _e � 10�7 m s�1. Thus

4h2qlV
t

lLc
� 10�6 	 1 ð51Þ

and the transient and inertial terms of Eq. (48) are negligi-
ble. Similarly,

4h2

L2
c

� 10�2 	 1 ð52Þ

and we can reasonably neglect the term in @2vX=@X 2. This
leaves the simplified equation describing the flow in a
channel:

@2v
X
@Y 
2

¼ 4h2DP X

lV tLc

@p


@X 

ð53Þ

Applying the same procedure to the equation for the Y-
component of the fluid velocity gives:

Fig. 10. Mushy zone at various strain levels with gs ¼ 0:92 and _e ¼ 4� 10�3s�1. Feeding from the upper face is not allowed. Grain velocity (black arrows)
and fluid flow (grey/red lines) are represented on the same picture. The channels on which feeding is not represented (white channels) correspond to those
where a pore has nucleated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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@2v
Y
@Y 


¼ 2hDP Y

lV n

@p


@Y 

ð54Þ

To estimate of the pressure variation in the channel, we set
the dimensionless groups to one [39]:

DP X �
lV tLc

4h2
;DP Y �

lV n

2h
ð55Þ

and thus

DP Y

DP X
� 2h

Lc
ð56Þ

Thus, to a first approximation, we can neglect the variation
of pressure across the channel in comparison to the varia-
tion of pressure along the channel. Therefore, even though
fluid flow exists in the Y-direction due to solidification
shrinkage or grain displacement, the Poiseuille equation
gives a good approximation of the flow.

In the derivation of the model, we considered only the
dissipation along the channels and neglected the dissipa-
tion at triple junctions. Indeed, the dissipation along the
channels is mainly due to viscous losses, whereas the dissi-
pation at triple junctions is due to the direction change of
the flow. Such losses are proportional to the kinetic energy
of the flow [41]. However, Eq. (51) shows that the ratio
between kinetic energy and viscous dissipation (Reynolds
number) is on the order of 10�5 and therefore it is reason-
able to neglect the dissipation at triple junctions.

Appendix B. Detailed integration of the constitutive

equations

B.1. Basic equations

Considering that @p=@X is constant along the width of
the channel (see Appendix A), the integration of Eq. (3)
(see main section) gives:

vX ðX ; Y Þ ¼
1

2l
@p
@X
ðY 2 � h2Þ þ V t

b � V t
a

2h
Y þ V t

b þ V t
a

2
ð57Þ

where a non-slip condition is considered at the s� ‘ inter-
faces. Therefore, we have:

Ui!jðX Þ ¼ �
2

3l
@p
@X

h3 ð58Þ

and from Eq. (6) we get:

2h3

3l
@2p

@X 2
¼ V n ð59Þ

where the source term V n for the flow in the channel is gi-
ven by:

V n ¼ V n
b � V n

a ¼ V n
Ob
� V n

Oa
þ 2bv� ð60Þ

Finally, the pressure and velocity profiles are given by:

pðX Þ ¼ 3lV n

4h3
X 2 � Lc

2

� �2
 !

þ P j � P i

Lc
X þ P i þ P j

2
ð61Þ

vX ðX ; Y Þ ¼
3V n

4h3
X þ P j � P i

2lLc

� �
ðY 2 � h2Þ

þ V t
b � V t

a

2h
Y þ V t

b þ V t
a

2
ð62Þ

The integration of Eq. (62) gives the fluid flux in the
channel:

Ui!jðX Þ ¼ �V nX þ 2h3

3lLc
ðP i � P jÞ þ 2h

V t
b þ V t

a

2
ð63Þ

B.2. Liquid flux

The mass balance in each channel must be completed by
a mass balance at each vertex. As the fluid is considered
incompressible, one hasX

s

Us
i ¼ 0 ð64Þ

where the summation is carried out over the three channels
s ¼ 1; 2; 3 connected to vertex i (see Fig. 3). It is possible to
show that this summation is equivalent to [8]

X
s

2ðhsÞ3

3lLs
c

ðP i � P jÞ þ 2hs V t
b þ V t

a

2
þ LibV n

b � LiaV n
a ¼ 0

ð65Þ
where the indices of the grains (a and b) correspond to the
neighbors of each channel.

B.3. Forces

In order to get a representation of the stress tensor, let
us consider the pressure variation in the Y-direction. For
an incompressible fluid, we have

r � vf g ¼ 0 ð66Þ
As the speed profile along the X-axis is already defined (Eq.
(62)), we get

@vY

@Y
¼ � @vX

@X
¼ � 3V n

4h3
ðY 2 � h2Þ ð67Þ

Thus

vY ¼ �
V n

4h3
Y 3 þ 3V n

4h
Y þ V n

b þ V n
a

2
ð68Þ

The variation of pressure in the Y-direction is obtained
from the momentum balance equation,

@p
@Y
¼ l

@2vY

@Y 2
ð69Þ

We get the variation of pressure along the Y-direction

p ¼ � 3V n

4h3
Y 2 þ f ðX Þ ð70Þ

where f ðX Þ is the pressure in the channel for the line Y ¼ 0,
which we take to be equal to the pressure profile of Eq.
(61). Finally, the pressure profile is:
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pðX ; Y Þ ¼ 3lV n

4h3
X 2 � Lc

2

� �2

� Y 2

 !
þ P j � P i

Lc
X þ P i þ P j

2

ð71Þ
As shown in the scaling analysis, the pressure loss in the Y-
direction is negligible in comparison to the pressure varia-
tion in the X-direction. Note that we found here the rela-
tionship DP Y =DP X � h2=L2

c whereas the scaling analysis
gives a relationship DP Y =DP X � h=Lc (Eq. (56)).

The stress tensor in the liquid can be derived from

½r�ðX ; Y Þ ¼
�p þ 2l @vX

@X l @vX
@Y þ

@vY
@X

� �
l @vX

@Y þ
@vY
@X

� �
�p þ 2l @vY

@Y

 !
ð72Þ

and thus

½r�ðX ; Y Þ ¼
 
�p þ 3lV n

2h3 ðY 2 � h2Þ ð3lV n

2h3 X þ P j�P i

Lc
ÞY þ l

V t
b�V t

a

2h

00 �p � 3lV n

2h3 ðY 2 � h2Þ

!

ð73Þ
where p is given by Eq. (71). Note that the @X vY term is nil.
This stress field is coherent, as we can check that:

r � ½r�ðX ; Y Þ ¼ 0f g ð74Þ
For the simplicity of the equations, we choose to neglect
the variation of pressure in the Y-direction (Eq. (61)).
Thus, we should also neglect the Y 2 terms in the diagonal
of the stress tensor as they are exactly of the same order.

½r�ðX ; Y Þ ¼ �p ð3lV n

2h3 X þ P j�P i

Lc
ÞY þ l

V t
b�V t

a

2h

00 �p

 !
ð75Þ

Note that the divergence of this tensor is not zero. How-
ever, considering this stress tensor, the sum of forces and
of rotational momentum on the boundaries of a channel
are zero, which is the condition for the coherency of the
numerical scheme.

Eq. (75) gives the stress tensor in the part of the channel
where the two grains match. In the part where they do not
match, we simply consider that we have a homogeneous
pressure equal to the pressure of the integration point (P i

or P j; see Fig. 2). Thus, we can integrate the force exerted
by a grain on the liquid

Faf g ¼
ðP j � P iÞh� l Lc

2h ðV
t
b � V t

aÞ
�l Lc

2h

� �3
V n þ P iLia þ P jLja

 !
ð76Þ

and

Fbf g ¼
ðP j � P iÞhþ l Lc

2h ðV
t
b � V t

aÞ
l Lc

2h

� �3
V n � P iLib � P jLjb

 !
ð77Þ
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