
A limits of acceptability approach to model evaluation

and uncertainty estimation in flood frequency estimation

by continuous simulation: Skalka catchment, Czech Republic

Sarka Blazkova1 and Keith Beven2,3,4

Received 3 December 2007; revised 5 February 2009; accepted 6 April 2009; published 27 June 2009.

[1] In this study continuous simulation flood frequency predictions on the Skalka
catchment in the Czech Republic (672 km2, range of altitudes from 460 to 1041 m above
sea level), are compared against summary information of rainfall characteristics, the flow
duration curve, and the frequency characteristics of flood discharges and snow water
equivalent using the generalized likelihood uncertainty estimation limits of acceptability
approach outlined by Beven (2006). Limits of acceptability have been defined, prior to
running the Monte Carlo model realizations for subcatchment rainfalls, discharges (using
rating data) at 5 sites within the catchment, and snowwater equivalent in 13 snow zones, 4 of
which have observed data. Flood frequency and flow duration data at the outlet of the
whole catchment are not used in the evaluation but are used to test the predictions. In order
to get sufficient behavioral models to assess adequately the prediction uncertainty it was
necessary to refine the model structure, sample the model space more densely, and, in the
end, relax the limits of acceptability to allow for a strong realization effect in predicted
flood frequencies. We use a procedure of scoring deviations relative to the limits of
acceptability to identify the minimum extension of the limits across all criteria to obtain a
sample of 4192 parameter sets that were accepted as potentially useful in prediction.
Results show that individual model realizations, with the same parameter values, of similar
length to the observations can vary significantly in acceptability. Long-term simulations
of 10,000 years for retained models were used to obtain uncertain estimates of the 1000 year
peak and associated flood hydrographs required for the assessment of dam safety at the
catchment outlet.
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1. Introduction

[2] The estimation of flood frequency by continuous
simulation provides an alternative method to direct statistical
estimation for catchments where there are limited historical
records of flood peaks. It was first applied using long
observed rainfall records to drive a hydrological model
calibrated on observed discharges [e.g., James, 1965]. Beven
[1986a, 1986b, 1987] first used a calibrated stochastic
rainfall model as the input to a continuous simulation model
as an extension of the analytical storm-based derived distri-
bution approach of Eagleson [1972], and also first took
account of the realization effect of reproducing the character-
istics of a short record of flood peaks. Later studies using
continuous simulation for flood frequency estimation include
Cameron et al. [1999, 2000a], Lamb [1999], Calver et al.

[1999], Lamb and Kay [2004], and Cameron [2006] in the
UK and Blazkova and Beven [1995, 1997, 2002, 2004] in the
Czech Republic.
[3] This approach has the potential to represent properly

the way in which rainfall characteristics, antecedent condi-
tions in a catchment, and flood runoff generation processes
change with time and severity of an event. Both rainfall and
runoff generation can also vary in space, particularly on
larger catchments, in a way that might be important in
predicting flood peak magnitudes. This potential, however,
is dependent on being able to specify good model structures
and the parameters for rainfall and runoff models in the face
of limited data availability. Thus, there will inevitably be some
uncertainty associated with both the identification of param-
eter values [e.g., Cameron et al., 1999; Blazkova and Beven,
2002, 2004; Blazkova et al., 2002], particularly for ungauged
catchments [e.g., Blazkova and Beven, 2002; Lamb and Kay,
2004; Jones and Kay, 2007], and in the prediction of future
rainfall forcing [e.g., Cameron et al., 2000a; Kay et al., 2006].

2. Novelty of the New Methodology

[4] In previous applications of this methodology in the
Czech Republic these uncertainties have been evaluated by
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considering the residuals between observed and predicted
data within the Monte Carlo realization based generalized
likelihood uncertainty estimation (GLUE) methodology
[Beven and Binley, 1992; Beven and Freer, 2001; Beven,
2006, 2009]. This includes a past study of a large catchment
[Blazkova and Beven, 2004] with a lower elevation range and
more uniform spatial pattern of inputs than in the Skalka
catchment studied here. Here, this is extended in a number of
novel ways, relative to earlier studies of estimating flood
frequency by continuous simulation. In particular, (1) the
evaluation of model realizations makes use of the GLUE
limits of acceptability approach outlined by Beven [2006],
with model realizations evaluated against 114 different limits
of acceptability; (2) the evaluation of discharge predictions
takes account of the observational errors in discharges
derived from rating curve interpolation and extrapolation
using fuzzy regression; (3) the stochastic model of inputs
attempts to reproduce and evaluate the strong spatial patterns
of rainfall, snow depths and temperatures across a larger
catchment; and (4) both the hydrological model and stochas-
tic inputs models were modified as a result of total model
rejections early in the study. Within this version of GLUE,
all models that survive the multicriteria tests of acceptability
are then used in prediction of the frequency characteristics
for the catchment, weighted by a likelihood measure that
depends on performance of the model within the limits of
acceptability.
[5] Following a brief description of the catchment stud-

ied and the semidistributed version of the rainfall-runoff
model Topography-Based Model of Catchment Hydrology
(TOPMODEL) [e.g., Beven, 1986a, 1986b, 1987, 2001] used
in the simulations, the extended GLUE multiple limits of
acceptability calibration strategy is described. In this strategy,
models are treated as hypotheses about system response, to
be rejected if the predictions fall outside of the limits of
acceptability [Beven, 2006]. In the initial phase of this study,
all the models tried could be rejected under the defined limits
of acceptability. This led to modifications of both the sto-
chastic rainfall model and the hydrological model to try and
improve the description of the catchment system. There are
many details of the study that are not easily summarized in a
short paper, but more details of the component models have
been included in the auxiliary material to this paper.1

3. Skalka Catchment

[6] The Skalka catchment in the headwaters of the Eger
River lies across the border of the Czech Republic and
Germany. Eger (Ohre in Czech) is a tributary of the River
Elbe. The Eger catchment down to the Skalka dam has
an area 671.7 km2, an average altitude of 592 m above sea
level, with a range from 460 m to 1041 m (Figure 1). Past
observations of discharges are available at a number of
subcatchment gauging stations (see Table 1). The common
period of observation for the available precipitation gauges is
1971–1999, i.e., 29 years, from which the annual average
precipitation has been computed. The subcatchments have
been divided into 13 elevation zones for snow accumulation
and melt computation (Table S2). The gauging station at
Cheb, downstream of the Eger and Roslau subcatchments, for

which data were available from an earlier 60 year period prior
to the construction of the Skalka dam, has not been used in
the model calibration process but has been retained for later
evaluation of the model predictions.
[7] Observed floods at Hohenberg are markedly smaller

than on the Roslau in spite of the fact that the Eger upstream
of Hohenberg is about the same area as the Roslau upstream
of Arzberg. This can be explained, at least in part, by the
geologies of the Eger and Roslau catchments which are rather
different. The Eger subcatchment is much less geologically
variable and consists mostly of granites, with some phyllites,
slates, and quartz porphyry. There are also tertiary and
quaternary sediments associated with the Eger graben and
some local storage in weathered granite. The Roslau sub-
catchment has a variety of relatively impermeable rocks, but
also some limestones and dolomite, with local karst devel-
opment (www.geologie.bayern.de). We therefore expect that
different model parameterizations will be needed in repre-
senting the hydrology of the different subcatchments.
[8] There are also significant spatial differences in mean

annual rainfalls across the subcatchments (Table S1). In
the lower part of the Eger (subcatchment 2) there are some
ponds and some small hydropower schemes, which should
not have a significant effect on floods but which might affect
the flow duration curves.

4. Modifications to the Flood Frequency Version
of TOPMODEL

[9] A continuous simulation flood frequency version of
TOPMODEL [Beven and Kirkby, 1979; Beven, 1987, 2001]
has been used in this study, with multiple subcatchments
the outputs of which are routed using a constant wave veloc-
ity, map-derived, width function algorithm [Beven, 1979].
Snowmelt is an important driver for floods in this catchment
and a multiple elevation snow accumulation melt component
has been introduced. A number of other important changes in
the model from the version used by Blazkova and Beven
[2004] have been implemented as a result of initial runs in the
study that revealed deficiencies in the simulations for this
catchment, and to take advantage of having more data
available for the estimation of the m storage depletion param-
eter. This parameter controls the shape of the recession. With
only one value ofm (as in the original TOPMODEL structure)
it was not possible tomodel low flows correctly, particularly at
the Hohenberg site on the Eger. The modeled recession
discharges were too low which was obvious on the modeled
hydrographs and in the flow duration curve. Water balance
calculations suggested that this might in part be due to an
underestimation of rainfall inputs (see next section). There are
also a number of small detention ponds in this subcatchment
which might also have had an effect. However, consideration
of the geology also suggested that the original exponential
transmissivity profile assumption of this catchment was not
adequate in this catchment under drier conditions.
[10] Unlike the study of Blazkova and Beven [2004] in this

study discharge data were available for a recession curve
analysis to estimate the recession characteristics for the
different subcatchments using both hourly and daily data
(Table S3). These data have been analyzed with the recession
analysis program of Lamb and Beven [1997] (MRCtool)
using various recession lengths in the program. This analysis
allowed the range of the m parameters for the subcatchments

1Auxiliary materials are available in the HTML. doi:10.1029/
2007WR006726.
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to be constrained but also suggested that the base flow
component of TOPMODEL should be modified to allow
the possibility of a minimum base flow (Qmin) maintained by
long-term storage in each subcatchment. Qmin is sampled in
such a way that discharge continuity will be maintained if all
subcatchments are at their local Qmin value.
[11] Since the flow duration curve at Hohenberg was still

not adequately matched in the initial GLUE sampling, a
further modification for the lower Eger subcatchment has
been introduced such that an additional deficit (SDref ) has to
be satisfied before fast surface runoff occurs. More complete
details of these modifications to the hydrological model are
given in the auxiliary material, including a full table of the

model parameters varied in the Monte Carlo sampling for
each subcatchment (Tables S4–S6). This process of modifi-
cation of the model in different subcatchments is the type of
learning process suggested by Beven [2007].

5. Precipitation and Temperature Model
for a Large Catchment With a Strong
Elevation Gradient

[12] The hourly time step stochastic precipitation model
used in the study is based on that used in past studies of this
type in the Czech Republic [Blazkova and Beven, 1995,
1997, 2002, 2004]. The features of this model include the

Figure 1. The Skalka catchment on the Ohre (Eger) River with the numbers of subcatchments, flow
gauges, temperature, and precipitation stations; dashed-dotted lines are subcatchment boundaries.

Table 1. Flood Statistics for Gauged Discharge Stations in the Skalka Catchmenta

Subcatchment
or Interbasin

Area
(km2)

Cumulative
Area
(km2)

Water Gauge Station
(Figure 1)

Catchment Area
of Station
(km2)

Number of Years
of Observation

Mean Flood
(m3/s)

Estimated 100 Year
Return Period Floodb

(m3/s)

Upper Eger 114.420 114.42 Marktleuthen on Eger 114.42 67 (1937–2004) 20.28 50.37
Lower Eger 209.376 323.796 Hohenberg on Eger 298.8 37 (1967–2004) 29.94 74.38
Upper Roslau 130.65 130.65 Lorenzreuth on Roslau 122.2 39 (1966–2004) 22.64 56.25
Kossein 94.82 94.82 Marktredwitz on Kossein 72.2 34 (1971–2004) 15.91 39.52
Lower Roslau 91.11 316.58 Arzberg on Roslau 290.04 28 (1977–2004) 53.86 133.80
Ohre 31.3240 671.7 Cheb on Ohre 683.34 60 (1887–1959) 89.98 223.52

aData from Landesamt fuer Wasserwirtschaft Muenchen and CHMI.
bEstimated on the basis of Hosking and Wallis [1997] using the software of Hosking [1997].
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separate treatment of low-intensity and high-intensity events.
In this larger catchment there is a greater range of elevation
than in previous applications of the approach and so the
precipitation model has been extended to take account of the
gradient of precipitation in this catchment, the accumulation
and melting of snow in 13 different elevation bands in the
catchment, the potential for storms to move across the
catchment from different directions on the basis of meteoro-
logical classification [Hydrometeorological Institute, 1967;
Kakos, 1977, 1978], the significant input of fog drip in the
upper parts of the catchment [Tesař et al., 1995], and the
potential for some events to produce rainfalls only over
the lower part of the catchment. Full details are given in the
auxiliary material. These changes improved the performance
of the model in fitting the flow duration curves. Complete
details of the semidistributed rainfall and temperature models
are given in the auxiliary material.

6. Model Evaluation Using Limits
of Acceptability

[13] In the manifesto for the equifinality thesis [Beven,
2006] an approach to model evaluation on the basis of limits
of acceptability for use within the GLUE methodology was
outlined. In this approach it was suggested that the limits of
acceptability be defined prior to making runs of a model on
the basis of a careful assessment of the potential effects of
observation error and input errors to define a range of
‘‘effective observational error.’’ Behavioral models are then
those that provide predicted variables that fall within the
limits of acceptability. The performance of each model can
still be associated with a likelihood weight that summarizes
how close the predictions of the model are to the original
observations. Here we are comparing model outputs against
summary information of the flow duration curve and the
frequency characteristics of flood discharges, snow water
equivalent and hourly and daily rainfall frequencies. To
ensure that modeled floods maintain an appropriate seasonal

distribution, an evaluation of the proportion of winter floods
is also made. Details of how the limits of acceptability were
defined across the multiple evaluation criteria are as follows.

6.1. Rainfalls

[14] In the case of rainfall there is a commensurability or
representational error in going from the point raingauge
information (see Figure 1) on hourly and daily rainfall
frequencies to the subcatchment values. We also found it
necessary to modify the stochastic rainfall model to include a
component of fog drip and a correction to the subcatchment
annual average precipitation due to elevation. Thus the
subcatchment rainfalls generated by the rainfall model com-
ponent cannot easily be directly compared with the gauged
data. Limits of acceptability were defined by putting bounds
on the subcatchment hourly and daily rainfall frequency
information estimated from the point raingauge sites by
bootstrapping from the distributions of estimates of the aver-
age subcatchment rainfalls from the point measurements.
Excluding one measurement point at a time and reestimating
the subcatchment rainfalls allows a range of possible sub-
catchment rainfalls to be defined directly from the mea-
surements. The largest percentage of model rejections (about
3 per cent) was on the lower bound for the daily averages
in the headwater subcatchments.

6.2. Flow

[15] In the case of flow, the model realizations are com-
pared against flood frequency characteristics at the gauging
sites shown in Table 1 and Figure 1, allowing for error in the
observed flood peak discharges. This involves the estimation
error associated with going from the direct measurements of
water level to a discharge through a rating curve. The errors
involved have been assessed by obtaining the original flow
measurements used to determine the rating curve that are
available at the Marktleuthen, Hohenberg and Arzberg sites.
Limits of acceptability were defined as fuzzy bounds for a
log-log fuzzy regression derived using the HBS1 algorithm
of Hojati et al. [2005]. Figure 2a shows the resulting ob-
servation uncertainties at Hohenberg. Rating curves for
Marktleuthen andArzberg are shown in the auxiliarymaterial
(Figure S2a and S3a). It is worth noting that for these sites
the 95% prediction bounds of a log-log statistical regression
were only slightly narrower. The advantage of fuzzy regres-
sion in this case is that it can take account of uncertainty in the
individual rating curve measurements, which is known to be
significant for higher discharges. The uncertainties in dis-
charge measurement have been used in setting limits of
acceptability for the flow duration curves at these sites. For
the evaluation of the predicted flow duration curves, nine
different quantiles have been used in model evaluation (from
about 25 to 90% exceedence).
[16] The rating curve uncertainties are also used in setting

limits of acceptability for flood frequency. In model evalu-
ation for each site only the plotting positions for events close
to the 1.07, 2, 5 and 10 year return periods (ev1 reduced
variate values of�1, 0.37, 1.5, and 2 to 2.25) have been used
to reduce the additional effect of uncertainty in estimating
exceedence probabilities for longer return periods given only
relatively short periods of observations. Uncertainty in the
plotting position has been allowed for by fitting a fuzzy linear
regression through the observations, with plotting position
expressed in terms of the ev1 reduced variate (Figure 2b, also

Figure 2a. Rating curve at Hohenberg; fuzzy estimate and
bounds using HBS1method. Here circles are observed points
of current metering, squares are selected plotting positions
used as criteria, and Q (m3/s) is the discharge.
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Figures S2b and S3b). Again the HBS1 algorithm has been
used (for details, see the auxiliary material), with the obser-
vation uncertainties from the rating curve input to the
analysis. In Figures 2b, S2b, and S3b the estimated discharge
peaks are also plotted at their estimated plotting positions.

6.3. Snow

[17] In the case of snow water equivalent, there is also an
issue of commensurability or representational error [see
Beven, 2006] in that the estimates of frequency quantiles
are derived from the measurements at particular locations but
the model is predicting average snow water equivalents over
different elevation zones in a way that tries to take account of
the general increase of precipitation with elevation. Clearly
only some of the 13 elevation zones contain one of the 4
measurement sites, and even within those zones there is the
possibility of heterogeneity of snow water equivalents in
space and time due to land cover, aspect, wind drift and all
the other processes affecting the snowpack.
[18] The starting point for setting limits of acceptability in

this case was the estimates of maximum annual snow water
equivalent for different probabilities of exceedence at each
of the four observation sites (on the basis of 10, 10, 35, and
39 years of record at Hohenberg, Weissenstadt, Cheb, and
As, respectively, Table S7). Because of the relatively short
lengths of observed records available only the sample esti-
mates of return period of 2 years were used, again to reduce
the effect of the additional sampling uncertainty for exceed-
ence probabilities for longer return periods. A fuzzy regres-
sion using the HBS1 method was then carried out for the
4 points against elevation as a way of extrapolating from the
measurement sites to all 13 elevation zones. Uncertainty in
estimating the snow water equivalent frequency in each zone
was computed by bootstrapping the observed data in each of

the four stations as an input to the regression (Figure 3).
Given that there are only four observed points, fuzzy regres-
sion here has the advantage of allowing some constraint over
the variability in snow accumulation in the different elevation
zones since here a statistical regression produces unrealisti-
cally wide prediction limits. On the basis of the fuzzy regres-
sion, limits of acceptability were set for each zone.

6.4. Season of the Annual Peak

[19] In the Skalka catchment the annual peak can come in
any season but the vast majority occur in wintertime. Table 2
shows the percentage of annual peaks in winter for each
observed series. On the basis of these data, limits of accept-
ability and a trapezoidal weighting function have been
constructed to allow an additional fuzzy constraint on the
model realizations (Figure 4).

Figure 2b. Hohenberg fuzzy regression with uncertainty of
Q on ev1 reduced variate in the linear range, i.e., approx-
imately between ev1 reduced variate = �1 and 2. Vertical
lines show plotting positions which have been used as crite-
ria for computing scores. Q is the discharge, ev1 is the axis
of the Gumbel distribution reduced variate, and circles are
the observed annual maxima used for computing the linear
relationship.

Figure 3. Fuzzy bounds for the dependence of maximum
annual snow water equivalents on elevation for median;
squares are the medians of observed data.

Figure 4. Weighting function for evaluating the percentage
of annual floods occurring in winter; black dashed lines are
an estimate from observations with the acceptability limits
and the solid line is the trapezoidal weighting function.
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6.5. Initial Model Evaluations

[20] Each model run requires parameter values to be
defined for the precipitation, temperature and hydrological
model components. These are generated randomly by tak-
ing independent samples from within specified ranges (see
Tables S4 and S5), since little information is available to be
able to specify how these parameters might interact. Initial
runs were used to assess sensitivity of individual parameters
and suggested that some parameter values could be fixed (see
Table S4). Each model run is then assessed as to whether
the results are within the specified limits of acceptability on
the following measures: (1) four selected plotting positions
(at approximately ev1 reduced variate = �1, 0.37, 1.5 and
2 to 2.25) in subcatchments 1 to 5; (2) nine quantiles of
flow duration curve in subcatchments 2 and 5; (3) the median
(2 years return period) of maximum annual snow water equiv-
alent in 13 snow zones; and (4) percentage of annual floods
occurring in winter in 6 subcatchments.
[21] Taking account of both upper and lower bounds, this

gives a total of 114 limits of acceptability that we would like

acceptable models to satisfy. The predam construction flood
frequency curve and flow duration curves at the dam site at
Cheb (Figure 1) are not used in evaluation and are left for
validation.
[22] In evaluating the model predictions, we would wish

that all the predictions of a behavioral model should lie within
the limits of acceptability for all the evaluation criteria.
Within the GLUE methodology, the set of behavioral models
is then used in prediction, each weighted by some likelihood
measure that summarizes performance over all the evaluation
criteria. Here a trapezoidal weighting function has been used
for each criterion. Figures 5a and 5b show, for the estimate
of the approximately 10 year flood at the Marktleuthen site,
the limits of acceptability (point b–d) and the trapezoid used
in defining the weighting function. The trapezoid allows a
central area of maximum weight (halfway between the points
b–c and c–d, respectively) that can be used to reflect an
estimate of the error in the original discharge measurements
used to generate the rating curves.
[23] There is an important realization effect in produc-

ing model outputs for flood peaks, flow duration curves and
snow water equivalent estimates, depending on the length of
the simulation. In comparing model outputs with observations

Table 2. Percentages of Annual Floods Occurring in Winter

Subcatchment
or Interbasin

Water Gauge Station
(Figure 1)

Number of Years
of Observation Season 1 Season 2 Season 3 Season 4

Winter in Percent
of Years

Upper Eger Marktleuthen on Eger 67 56 3 4 4 83.6
Lower Eger Hohenberg on Eger 37 31 2 2 2 83.8
Upper Roslau Lorenzreuth on Roslau 39 32 2 3 2 82.1
Kossein Marktredwitz on Kossein 34 24 0 8 2 70.6
Lower Roslau Arzberg on Roslau 28 25 0 1 2 89.3
Ohre Cheb on Ohre 60 43 4 9 4 71.7

Figure 5a. Flood frequency curve at Marktleuthen (sub-
catchment 1); thick solid black lines are the initial accept-
ability limits, circles are the observed annual floods, gray
lines are the 4192 simulations, dashed lines are the 5 and 95%
uncertainty bounds from the trapezoidal weighting, and thin
solid black lines are the behavioral simulations with scores
on all criteria <1. Points a to e corresponding to Figure 5b.

Figure 5b. (top) Trapezoidal weighting function; full line
trapezoid is the original limits of acceptability, dashed lines
are the estimate and acceptability bounds, and dashed�dotted
are the lines of the expanded trapezoid. Points a–e
correspond to the Figure 5a. (bottom) Scores; squares are
points to which the bounds have to be expanded.
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it is then important to use the same record length, since the
observations are only one possible realization of all possible
sequences of floods for a particular site. Thus the length
of simulation for the initial model evaluations is 67 years
(longest observed series) but the evaluations for each obser-
vation site are based on the same length of record as the
observations in each case. Tests of running multiple simu-
lations for a fixed parameter set showed that this realization
effect could be significant, even when comparing with
the 67 years of record at Markleuthen (see discussion of the
results below). This realization effect will also affect the
evaluation of the results at the Cheb gauging station that
is used as the ‘‘validation’’ site. This 60 year record is for a
period mostly before the observations at the other sites.

7. Results

7.1. Calibration of Parameter Ranges

[24] Some preliminary calibration of parameter ranges was
done to find out if there were any simulations, which could
fulfill all the criteria. It became clear that the lower Eger
subcatchment needs different ranges than the other sub-
catchments for a number of the parameters. This, however,
was not enough to bring the model realizations acceptably
close to the observed frequency and duration estimates. Thus

the improvements to the model structure described above
were gradually introduced. Using the parameter ranges of
Tables S4 and S5, parameter sets were sampled randomly.
With all the improvements to the model components imple-
mented, a total of 610,000 short simulations of 67 years with
an hourly time step were run. A parallel system of 22 PCs
(most of them with 2 processors) was used running the open
Mosix systemwhich distributes the model runs automatically
across the available processors. 50 tasks of 50 short simu-
lations each are handled at the same time. Computation of the
67 year realizations required about 90 days of computation
on the parallel system.
[25] Only 39 behavioral simulations were found that

fulfilled all the acceptability criteria (though we note that
no other study, to our knowledge, has attempted to evaluate
a rainfall-runoff model on so many separate, albeit related,
criteria). There are a number of options at this point. One
would be to sample the model space more densely to check
that areas of behavioral models are not beingmissed. 610,000
samples does not represent a dense sample when sampling a
model space of 46 dimensions, especially given the realiza-
tion effect of short simulations noted above.We could also try
to refine the prior estimates of model parameter ranges,
distributions and interactions, should information be avail-
able to do so (but normally the only real information is an
analysis of the posterior behavioral parameter sets). Another
option would be to add a statistical model inadequacy
component (following, for example, Kennedy and O’Hagan
[2001]) though it is not clear that it would be possible to
formulate simple statistical error models across all sites and
types of measures in this case. A further option, that has been
taken here, is to relax the limits of acceptability to obtain a
wider sample of models that will be treated as behavioral, and
then to evaluate whether that sample is fit for purpose. One
justification for this is the effect of different input realizations
on acceptability. Taking just one of the behavioral param-
eter sets and generating 10,000 input sequences of the same
length as the observed flood series results in a range of critical
values for acceptability (Figure 6a) across a range of evalua-
tion criteria (Figure 6b; see Figure S8 for a more complete
demonstration of the realization effect). It follows that other

Figure 6a. Distribution of critical normalized scores for a
single parameter set with all absolute scores <1 in original
simulation over 10,000 input realizations. The normalized
score is the scaled deviation within the range from the
minimum (set to �1) to maximum (set to +1) original limits
of acceptability. The critical score of a simulation is the
largest absolute value of the score from all the 114 limits
of acceptability when normalized in this way. Values >1
represent realizations with critical scores outside the original
limits of acceptability on one or more criteria.

Figure 6b. Histogram of occurrences of the individual
critical scores; on the x axis are the 114 criteria of accept-
ability. For the simulations of the Figure 6a the criterion num-
ber 38 (underprediction of low-magnitude floods at Arzberg)
was critical most often.
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parameter sets with relatively low critical values for accept-
ability might be fully behavioral given other input realiza-
tions. Computing constraints mean that this realization effect
cannot be explored fully. It should also be noted that this
reveals a constraint on how well a particular realization of
observations is representative of possible future probabilities
of extremes and how well we might expect a model condi-
tioned on data that was mostly collected after the construction
of the Skalka dam might reproduce the predam data at the
Cheb site that is being used as verification data in this study.
We feel that the demonstrated realization effect is therefore
an adequate reason to relax the limits of acceptability, but
will return to this issue in the discussion of the results.

7.2. Relaxing the Limits of Acceptability

[26] Relaxing the limits can then be considered as a
multicriteria minimization problem. We want to minimize
the degree to which we must expand the limits to obtain a
given number of models that are acceptable across all the
criteria. This requires putting the different evaluation mea-
sures on a common scale. This is easily achieved within the
limits of acceptability approach by treating each evaluation in
terms of a normalized score that has the value�1 at the lower
limit, 0 at the observed value and +1 at the upper limit, noting
that the scaling can then be nonsymmetric for under- and
overprediction limits (see Figure 5b). Values outside the
predefined limits of acceptability will have normalized score
values either less than�1 or greater than +1. The model runs
can then be ranked in terms of the maximum excursions away
from the initial limits for each of the 114 measures being
considered. The minimization can then be treated as a Pareto
set problem (details are given in the auxiliary material) to
retain models that are not dominated on any single criteria by
any other model as the absolute value of all the scaled limits
are increased together. The degree of relaxation can be
examined in obtaining sets of acceptable models of differ-
ent size. In this way a set of best models (in terms of the

normalized scores) can be defined. Note that this is not the
same as the multicriteria Pareto optimal set used by Gupta
et al. [1998] and others, since the methodology used here will
include any models that satisfy the extended limits but which
are behind the Pareto front (as shown in Figure 7). Table 3
shows how more simulations are included in the acceptable
set as the allowable scores are gradually increased.
[27] After computing 610,000 simulations, the 4192 best

simulations have been selected on the maximum score
measure (absolute score values up to the value of 1.48, i.e.,
requiring expansion by a factor of 1.48). Some criteria,
however, are easier to match than others. The limits did not
have to be relaxed at all on 44 out of the 114 criteria. These
are, mostly, for overprediction (positive scores) in the flow
duration quantiles and for either overprediction or under-
prediction in different elevation zones of the median of
annual maximum snow water equivalent.
[28] Table 4 shows the limiting criteria as the critical nor-

malized score is gradually increased for the ranked models
in the set. Difficult criteria tomatch aremaximum snowwater
equivalent in the three highest-elevation zones where there is
no direct observation and the estimates have been extrapo-
lated, albeit with uncertainty. These also occupy relatively
small areas (12.5, 6.25 and 8.16% of the subcatchment area,
respectively). The percentage of winter floods can be both
over and underpredicted. The most difficult criteria to match
are the underprediction limits on the flow duration curves at
Hohenberg (Figure 8) and Arzberg (Figure S5).

7.3. Defining a Likelihood Measure After Relaxing
the Limits of Acceptability

[29] Having defined a set of 4192 acceptable models by
expanding the scores in this way within the GLUE method-
ology it is also possible to assign different likelihood weights
to each model according to how well it has performed in the
evaluations. Here, a trapezoidal function has been used for
each of the criteria, such that after expansion of the limits, all
models will have a positive weight on all the evaluation cri-
teria (Figure 5b). The central part of the trapezoid corre-
sponding to observation error is given a maximum weight
and the weight for that criterion reduces to zero at the
maximum positive and negative scores after expansion.
The individual weights were then combined by taking the
sum of the individual weights over all the criteria and
rescaling such that the sum of weights for all models in the
behavioral set is unity.
[30] The resulting prediction quantiles for flood fre-

quency estimates for each of the gauging sites are shown in
Figures 5a, 9, S5, S6, and S7 in comparison with the observed

Figure 7. A simplified case of Pareto front constructed
from two contradictory criteria: the overprediction of smaller
floods at Marktleuthen and the underprediction of flow dura-
tion at Hohenberg. Here 19,460 simulations (small circles)
that can be treated as acceptable on those two criteria with
critical scores of 1.48 are shown; big circles are the simula-
tions on the Pareto front.

Table 3. Number of Behavioral Simulations (From a Total of

610,000) as Critical Score for Acceptance Over All Criteria is

Increased

Limits
Relaxed by

Number of Behavioral
Simulations

Maximum
Score

0.00 39 1.00
0.25 597 1.25
0.30 1037 1.30
0.35 1603 1.35
0.40 2311 1.40
0.45 3219 1.45
0.48 4192 1.48
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series and the acceptability limits (simulations are shown
as fitted Wakeby distributions). At Marktleuthen (Figure 5a)
the prediction limits span the (uncertain) observations well,
while at Hohenberg (Figure 9), despite the difficulty of repro-
ducing the full flow duration curve (Figure 8), the observed
flood frequency curve lies within the 5 and 95% bounds of
the simulations, albeit close to the upper bound. The uncer-
tainty in the predicted discharges at the 100 year return period
(ev1 reduced variate = 4.61) is very high for these short
simulations.

7.4. Predictions at the Predam Gauging Site at Cheb

[31] It will be recalled that the data from one site was not
used in the model evaluations but was retained for testing the
model predictions. This was the site at Cheb, downstream of
the junction between the Eger and Roslau, where data were
collected for 60 years prior to the construction of the Skalka
dam. This site has the second largest sample of annual
maximum discharges, but for a different period to the
periods at the other sites used in defining the behavioral
model set. Figures 10 and 11 show the prediction quantiles
for flood frequency and flow duration at the dam site in
comparison with observed series of annual floods and Czech
Hydrometeorological Institute (CHMI) regional estimate of
flow duration (on the basis of regression of statistical char-
acteristics on physical-geographic characteristics which is
checked and if needed modified on the basis of relations
within the river network [see Novický et al., 1993]). The
observed points of the 60 years fall mostly within the range of
the simulated prediction limits for this site, except for the very
lowest return periods (Figure 10), remembering that this
flood record (1887–1959) overlaps only with the record at
Markleuthen (1937–2004) and not with any of the other sites
used in conditioning the model realizations in GLUE. For
the 7most extreme floods atMarkleuthen (above ev1 reduced
variate = 2), only one is common with the Cheb period (in
1954), and only 2 are common with all the other sites (1987
and 1999). This is evidence of a realization effect in the
observations that affects the shape of the apparent flood
frequency curve. From the normalized plot of observed flood
frequencies of all sites it is obvious that the earlier period had
lower small floods and generally higher floods in the range of
ev1 reduced variate about 1 and 2 (Figure S9). Figure 11 also
shows a flow duration curve for the Cheb site constructed
from 7 years of observation 1931–1938, i.e., also before the
period of measurement of most of the other stations.

Figure 8. Flow duration curve at Hohenberg; thick solid
black lines are the flow duration curve from observed data
with acceptability limits, circles are the quantiles, gray lines
are the 4192 simulations, thin solid black lines are the
behavioral simulations with scores on all criteria <1, and
dashed lines are the 5 and 95% uncertainty bounds from the
trapezoidal weighting.

Table 4. Critical Scores for Acceptance of Ranked Simulations

With Description of Limiting Criterion

Rank Score
Number

of Criterion Description of Criterion

1 0.91 101 Arzberg snow lower bound
8 0.93 65 Arzberg duration upper bound
9 0.94 15 Hohenberg flood 5 years lower bound
11 0.95 66 Arzberg duration upper bound
12 0.95 52 Hohenberg duration lower bound
14 0.96 20 Lorenzreuth flood 10 years upper bound
15 0.97 40 Arzberg flood 10 years lower bound
25 0.98 16 Hohenberg flood 10 years lower bound
33 1.00 53 Hohenberg duration lower bound
34 1.00 38 Arzberg flood 2 years lower bound
42 1.03 39 Arzberg flood 5 years lower bound
43 1.03 28 Markredwitz flood 10 years upper bound
48 1.05 1 Marktleuthen flood 1 year upper bound
51 1.06 110 Hohenberg winter floods lower bound
52 1.06 37 Arzberg flood 1 year lower bound
70 1.09 112 Markredwitz winter floods lower bound
78 1.10 85 Markredwitz snow highest zone upper bound
79 1.10 82 Lorenzreuth snow highest zone upper bound
83 1.10 111 Lorenzreuth winter floods lower bound
85 1.11 27 Markredwitz flood 5 years upper bound
93 1.11 14 Hohenberg flood 2 years lower bound
507 1.24 70 Arzberg duration lower bound
1052 1.30 64 Arzberg duration upper bound
4192 1.48 19 Lorenzreuth flood 5 years upper bound

Figure 9. Flood frequency curve at Hohenberg; thick
solid black lines are the acceptability limits, circles are the
observed floods, gray lines are the 4192 simulations with
scores on all critera <1.48, dashed lines are the 5 and 95%
uncertainty bounds from the trapezoidal weighting, and thin
solid black lines are the behavioral simulations with scores
on all criteria <1.
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7.5. Long Simulations

[32] Regulations for the assessment of dam safety gener-
ally require estimates of high return period discharges. In the
past, estimates of the 1000 year event on the basis of sta-
tistical analysis of rather short records, or regionalizations
based on short records at multiple sites have been used to
estimate the 1000 year event. This has then normally been
combined with two design hydrographs (from rain and from
snowmelt) for evaluating the performance of the dam and
spillway under such extreme conditions.
[33] Frequency estimation by continuous simulation

allows this restriction to be relaxed. Under the assumption
that the models identified above provide an acceptable
representation of the hydrology of the catchment, long
simulations can be run to get more precise estimates of the
frequency characteristics for such long return periods, subject
to the uncertainty in representing the current hydrology by
the set of 4192 models that have been considered most
acceptable. At least 10 times the record length is required
to reduce the sampling variability of the required event
frequency. Thus, simulations of 10,000 years have been
computed with the 4192 models considered acceptable.
[34] This does give rise to a problem in the generation

of stochastic rainfalls. The distributions used in the stochas-
tic rainfall models here are infinite tailed. In generating
10,000 years of rainfall events, there is thus a very small
but finite probability of generating unrealistically large rain-
storms (though seeCameron et al. [2000b] for a variation that
imposes an asymptotic upper limit to the distribution). UFA
(Institute of Atmospheric Physics, Prague) provides esti-
mates of probable maximum precipitation (PMP) in the
Czech Republic [Rezacova et al., 2005]. Thus in carrying
out the long simulation runs, an additional criterion was
imposed as by Blazkova and Beven [2004] using 1 h, 1 day
and 3 days PMP. There were 341 cases when PMP was
exceeded by less than 10% and there was no penalization

imposed for that. In 111 realizations rainfall peaks were
simulated between 10 and 50% greater than PMP estimates
and the weight of the simulations was reduced to one half. In
34 realizations the rainfall extremes were more than 50%
larger than PMP estimates and, as a result, these realizations
were rejected. In fact only 19 series have been rejected
because in 15 series both 1 and 3 day PMP limits were
exceeded. Details are in Table S8. The resulting likelihood
weighted flood frequency quantile estimates at the dam site
from the resulting set of 4173 long model runs are shown in
Figure 12a, together with the cumulative likelihood weighted
density for the 10, 100, and 1000 year return period peaks
(Figure 12b). A frequency analysis of the 60 years of
observations at this site again falls within the range of the
long-term simulations, except at the very lowest return
periods (see the comments above and Figure S9). The long-
term simulations show how uncertainty in the flood dis-
charges is high at return periods greater than 100 years, an
uncertainty that might be important in assessing dam safety.
[35] In making such assessments, continuous simulation

also allows a sample of flood hydrographs associated with the
1000 year events to be saved. These will also have a variety of
volumes, which might be significant in assessing the poten-
tial for spillway failure.

8. Discussion and Conclusions

[36] The use of continuous simulation for flood frequency
estimation is based on the assumption that both the stochastic
weather generation and the runoff generation model compo-
nents are an adequate representation of conditions in the
catchment of interest. Here it was found that, even after
making modifications to the model, using the limits of
acceptability approach within GLUE, only 39 models (from
a sample of 610,000 parameter sets) could be found that
simultaneously satisfied all the 114 limits of acceptability

Figure 10. Flood frequency curve at the Skalka dam site
(flood series of Cheb station) which was not used in the
evaluation; circles are the observed annual floods, gray lines
are the 4192 simulations with scores on all critera <1.48,
dashed lines are the 5 and 95% uncertainty bounds from the
trapezoidal weighting, and thin solid black lines are the
behavioral simulations with scores on all criteria <1.

Figure 11. Flow duration curve at the Skalka dam site
(series of the Cheb station) which was not used in the
evaluation; thick solid black line is the regional estimate of
CHMI, circles are the quantiles, dashed-dotted curve is the
flow duration from 7 years of observed data at Cheb, gray
lines are the 4192 simulations, dashed lines are the 5 and 95%
uncertainty bounds from the trapezoidal weighting, and thin
solid black lines are the behavioral simulations with scores on
all criteria <1.
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criteria for evaluation of flood frequency and flow duration at
all the gauging sites, median annual maximum snow water
equivalent in all elevation zones and proportion of winter
floods.
[37] It has been noted that 610,000 runs was a very small

sample for a parameter space of 46 dimensions. Thus, it is
possible that more models might exist that would satisfy all
the requirements, particularly because an examination of the
realization effect showed that the critical score for acceptance
of a model was dependent on the particular input realization
over lengths of record equivalent to the observed flood series
(Figures 6a and 6b). It was also the case that some of the
ranges of acceptability were based on extrapolations from
only a small number of measures that made it difficult to
properly estimate the associated uncertainty (e.g., the max-
imum snow water equivalents in the uppermost elevation
bands that proved difficult to satisfy).
[38] Thus, to obtain a set of models that might be useful in

prediction, we allowed extension of the limits of acceptability
in a way that, by normalizing the limits of acceptability for
different evaluation criteria to a common scale, allowed the
4192 best models (in a Pareto sense over all criteria) to be
identified with a minimal extension on each of 114 criteria.
This is one way of avoiding the rejection of models that might
be acceptable given a different input realization (a Type II
error) at the expense of increasing the possibility of accepting
a poor model (a Type I error). We note that these models
might not all be at the Pareto optimal front (Figure 7) but are
consistent with the equifinality concepts of Beven [2006].
This set of models was shown to provide reasonable esti-

mates of flood frequencies at higher return periods at the
gauging sites in comparison with statistical estimates and
regionalized estimates. Reproduction of the flow duration
characteristics for some of the more base flow dominated
sites was less successful. The 4192 retained models were then
used in long 10,000 year continuous simulations to provide
uncertain estimates of the 1000 year return period peaks
required to evaluate dam safety (we could equally analyze the
results to obtain estimates of the 1000 year return period
maximum flood volumes in a particular time period, or
multiple time periods if volume rather than peak flow is
more important in the potential for failure of a particular
dam). As a product of these continuous simulations it is also
possible to provide a sample of hydrographs associated with
the 1000 year flood peaks.
[39] Are these predictions then useful, relative to standard

methods for estimating the 1000 year event for dam safety
evaluation? The process of continuous simulation does allow
them to be consistent in mass balance terms, and does allow
the nonlinear effects of antecedent conditions on runoff
generation to be represented. It also provides a selection of
predicted hydrographs with which to test dam safety under
extreme conditions. However, the small number of models
able tomatch all the 114 evaluation criteria might suggest that
either the stochastic weather model or the runoff generation
and routing models (or, in fact, the prior estimates of the
limits of acceptability) might need some reconsideration. In
particular, it would appear that the low-flow regime on the
more permeable lower Eger subcatchment to Hohenberg
might need to be improved, while some measurements of
snow accumulation on the upper elevation zones would be
valuable in improvingmodel evaluation. Such improvements
might be useful in constraining the very high prediction
uncertainties associated with return periods of greater than
100 years, but at the present time it is important that dam
safety assessments recognize the uncertainty in the estimates
of both peaks and associated flood volumes.
[40] The value of the extended GLUE limits of accept-

ability approach in forcing a more rigorous and thoughtful

Figure 12a. Flood frequency curve at the Skalka dam site
(Cheb station) from the long simulations; ev1 reduced variate
is 6.91 for return period 1000 years, circles are the observed
annual floods, gray lines are the 4173 simulations with scores
on all critera <1.48, dashed lines are the 5 and 95% uncer-
tainty bounds from the trapezoidal weighting, thin solid
black lines are the behavioral simulations with scores on all
criteria <1.

Figure 12b. Cumulative likelihood weighted density for
the 10 (dotted line), 100 (dashed line), and 1000 (solid line)
year return periods peaks based on 10,000 year runs of 4173
models with critical scores <1.48.
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examination of both the observational data and model per-
formance has been demonstrated. A formal procedure for
extending the limits of acceptability across multiple criteria
to find models that might provide useful predictions has also
been demonstrated. Model failures, relative to the original
limits of acceptability, provide evidence on which model
improvements, reconsideration of observation uncertainties,
or user assessments of fit for purpose of a particular model
structure and its predictions, might be based.
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ČSR, Vodohospod. Technickoekon. Inf., 20(4), 127–131.

Kay, A. L., R. G. Jones, and N. S. Reynard (2006), RCM rainfall for UK
flood frequency estimation. Part II. Climate change results, J. Hydrol.,
318, 163–172, doi:10.1016/j.jhydrol.2005.06.013.

Kennedy, M. C., and A. O’Hagan (2001), Bayesian calibration of mathe-
matical models, J. R. Stat. Soc. Ser. A, 63(3), 425–450.

Lamb, R. (1999), Calibration of a conceptual rainfall-runoff model for flood
frequency estimation by continuous simulation, Water Resour. Res.,
35(10), 3103–3114, doi:10.1029/1999WR900119.

Lamb, R., and K. J. Beven (1997), Using interactive recession curve anal-
ysis to specify a general catchment storage model, Hydrol. Earth Syst.
Sci., 1(1), 101–113.

Lamb, R., and A. L. Kay (2004), Confidence intervals for a spatially gen-
eralized, continuous simulation flood frequency model for Great Britain,
Water Resour. Res., 40, W07501, doi:10.1029/2003WR002428.
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