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Abstract

Twinned dendrite growth has been found to occur in aluminum alloys when critical thermal
conditions (G ≈ 100 K/cm, vs ≈ 1 mm/s) and a slight convection in the melt are present
during directional solidi�cation. Split in their trunk by a coherent (111) twin plane, such
dendrites grow along 〈110〉 directions with a complex branch structure of 〈110〉, but also
sometimes 〈100〉 secondary arms. To explain the twinned dendrite growth kinetics advan-
tage, Eady and Hogan suggested that the Young Laplace equation involving the solid-liquid
interfacial energy γsl and the twin energy γt at the triple junction stabilizes a grooved tip(1).
Wood et al proposed instead that torque terms associated with the anisotropy of γs` stabilize
a sharp pointed tip(2). Finally, Henry suggested the possibility of the existence of a doublon,
initiated precisely by a grooved tip, that would evolve depending on the solute content(3).
In a recent experimental work, we have shown that the doublon conjecture is probably not
valid for high solute content aluminum alloys, whereas it could be valid at low composition.
In the present work, the twinned dendrite tip morphology and growth kinetics have been
investigated using a 3D phase �eld method implemented on a massively parallel computer.
The twin boundary energy has been imposed via an appropriate boundary condition �x-
ing the angle of the phase �eld gradient with respect to the boundary. Besides this angle,
various experimental conditions such as thermal gradient, gradient direction, velocity of the
isotherms and compositions have been investigated. The growth kinetics obtained under
such conditions has been compared with that of regular dendrites.

Introduction

Feathery grains are often found as defects in semi-continuously cast billets or slabs of alu-
minum alloys (4; 5). They are made of 〈110〉 dendrite trunks split in their centre by a (111)
twin plane, with 〈110〉, but also sometimes 〈100〉 side arms(6). Experience has shown that
such structures nucleate and grow under relatively high thermal gradient and solidi�cation
speed (G ≈ 100 K/cm and vs ≈ 1 mm/s), when some convection is present in the melt
(7). Despite the fact that the alternated sequence of twinned and untwined regions appears
progressively misoriented with respect to G, twinned dendrites clearly have a growth ki-
netic advantage over ordinary columnar dendrites. It has been suggested that this is due to
two phenomena: the di�erence in dendrite tip morphology and solutal interactions between
regular and twinned dendrites.
In terms of dendrite tip shape, Eady and Hogan(1) �rst proposed the existence of a groove
at the dendrite tip that is stabilized by the Young-Laplace equation:

2γs` cos θ − γt = 0 (1)
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where γs` is the solid-liquid interfacial energy, θ is the angle formed by the groove with respect
to the twin plane and γt is the twin boundary energy. This schematic shape is shown in Fig.
1a, with the equilibrium condition at the triple junction. The interfacial energy related to
the coherent twin boundary at the center of the dendrite trunk promotes the formation of
a cusp at the dendrite tip. However, this simple two dimensional representation does not
take into account the second main curvature radius of the tip (i.e. the three dimensional
component of the system) or the anisotropy of γs`.
Wood et al(2) modi�ed Lu and Hunt's model for dendritic solidi�cation(8) by imposing a
�xed angle between the dendrite tip and the twin plane. From their simulation results, it
was concluded that an edgy or sharp dendrite was more advantageous in terms of solute
segregation and growth undercooling with respect to regular dendrites having a dendrite
tip with a larger radius of curvature. This situation is shown in Fig. 1b. Their predictions
implied that twinned dendrites were supposed to grow under relatively low thermal gradient,
which is not supported by experimental evidence. Moreover, an edgy dendrite tip requires
to consider torque terms in the mechanical equilibrium condition at the triple junction. In
order to make these terms su�ciently large, the solid-liquid interfacial energy anisotropy
must be large too. However, it has been shown recently that it is actually very low in Al
alloys, typically ≈ 1% (9; 10). Even though this anisotropy could be slightly increased by
the addition of solute elements such as Zn or Mg(11; 12), an edgy tip would not satisfy the
equilibrium conditions in such alloys.
Finally, a doublon morphology was conjectured by Henry(3) based on experimental obser-
vations made in dilute industrial alloys. As can be seen in Fig. 1c, a doublon is a double
dendrite tip that grows with a thin liquid channel, a few microns wide, in its center. It would
be initiated by the small groove necessary to accommodate the twin energy, like in Eady and
Hogan's hypothesis. Under equilibrium conditions, this liquid channel would see its compo-
sition increase with a temperature decrease (for k0 < 1, where k0 is the partition coe�cient),
and eventually, solidify near the solidus temperature, with a �nal liquid composition close to
c0/k0, where c0 is the nominal composition. The doublon conjecture was supported mainly
by two experimental evidences: (i) in a section parallel to the twin plane, no secondary arms
were clearly observed and growth seemed to be cellular rather than dendritic. The in-plane
spacing λ// of these cellular trunks was much smaller than the distance λ⊥ separating two
successive rows of twinned dendrite trunks(3); (ii) using High Resolution Transmission Elec-
tron Microscopy (HRTEM), the solute composition in a region close to the twin plane was
measured to be close to c0 for an Al-4.3wt.% Cu-0.3wt.% Mg alloy.

Figure 1: Schematic view of twinned dendrite tip morphologies according to Eady and
Hogan(1) (a), Wood and Hunt(2) (b) and Henry(3) (c).



In a recent investigation, however, Salgado-Ordorica and Rappaz(6) showed that, for higher
solute-content binary aluminum alloys, the primary spacings λ// and λ⊥ were about the same
with well developed dendrite side arms within the twin plane and away from it. Furthermore,
no clear solute segregation at the dendrites trunk center was measured. In summary, if the
edgy twinned dendrite tip can certainly be ruled out, a grooved or doublon type dendrite
tip, whose depth might depend on the solute nature and content, are still two possible
morphologies.
The objective of the present work is then to correlate these somewhat contradictory exper-
imental observations with numerical simulations reproducing the physical conditions under
which twinned dendrites are supposed to grow. The phase �eld method, which has been
widely used over the last ten years in order to study the solidi�cation of metallic alloys
(13; 14; 15), has been chosen for this study. Its main advantage resides in the fact that
the liquid-solid interface does not need to be tracked during solidi�cation. Instead, a �xed
and regular mesh is de�ned and a scalar variable, the phase �eld φ, describes the transition
from one phase to the other. Such a method has been implemented onto a massively parallel
computer and the boundary conditions as well as the thermophysical properties of the alloy
have been adapted so as to reproduce the growth of half of a twinned dendrite with a mirror
symmetry with its untwined counterpart.

Phase �eld model

A phase �eld model similar to the one described by Boettinger et al(13) has been imple-
mented. The free energy functional F of the considered domain V is given by:

F =

∫
V

(
f(T, c, φ) +

ε2

2
|∇φ|2

)
dV (2)

where f is the volumetric local free energy, function of temperature T , solute c and phase �eld
φ. This parameter de�nes the solid and the liquid and varies continuously from φ = 1 in the
liquid to φ = 0 in the solid. The parameter ε, together with a parameter W of a double well
potential entering into f , de�ne the solid-liquid interface energy γs`, and thickness δ. The
thickness of the di�use interface needs to be arti�cially enhanced to match the capabilities
of nowadays computer for calculations relevant to 3D dendrite solidi�cation. Instead of a
few nanometers, which would be a realistic value for metallic alloys, δ is set to values in the
range of 0.1− 1 µm (16). The anisotropy of γs` is introduced via the parameter ε as:

ε(~n) = ε̄η(~n) (3)

where ~n = (nx, ny, nz) is the unit vector normal to the interface in the crystallographic
reference frame, and η is a function that describes the orientation dependence of γs`. For
materials with a cubic structure, the equivalent form of the spherical harmonics that respect
the cubic symmetry can be written as(15; 17):

η(~n) = 1 + ε4(Q− 3/5) + ε6(3Q+ 66S − 17/7) + ε8(65Q2 − 94Q− 208S + 33) (4)

with Q = n4
x + n4

y + n4
z and S = n2

xn
2
yn

2
z. The anisotropy coe�cients ε4, ε6, ε8 that appear in

eq. 4 can induce various dendrite growth directions (higher order terms are not considered).
For ε4 > 0 and ε6 = ε8 = 0, the normal 〈100〉 directions are selected. For ε4 = ε8 = 0 and
ε6 < 0, dendrites grow along 〈110〉(3). For mixed values, e.g., ε4 6= 0, ε6 6= 0 and ε8 = 0, it has
been shown recently that 〈hk0〉 growth directions can vary from 〈100〉 to 〈110〉 depending



on the strength of the coe�cients (11). The phase equation that describes the evolution of
φ is given by the functional derivative of F , i.e.(13):

δφ

δt
= −Mφ

δF

δφ
= −Mφ

∂f

∂φ
− ~∇ · (ε2~∇φ) + ~∇ ·

∣∣∣~∇φ∣∣∣2 ε ∂ε

∂(~∇φ)
(5)

where Mφ is equivalent to an interface kinetic coe�cient. The solute di�usion equation is
given by:(18)

∂c

∂t
= ~∇ ·

[
D̄

(
~∇c+

(1− k0)c

φ+ k0(1− φ)
~∇φ
)]

(6)

with

cl =
c

φ+ k0(1− φ)
and D̄ = Ds +

φ

φ+ k0(1− φ)
(Dl −Ds) (7)

where cl is the liquid composition, c the average composition (c = φcl + (1 − φ)cs), Dl and
Ds are the di�usion coe�cients in the liquid and the solid, respectively, and D̄ is an average
di�usion coe�cient in the di�use interface thickness.
In order to model the growth of twinned dendrites, some considerations have to be made.
As stated before, these dendrites are split in their trunk center by a mirror symmetry plane.
Fig. 2 shows a schematic representation of the calculation domain with a nucleus located at
the bottom-left corner of the domain. The twin plane has been set as one domain boundary,
in the present case the left yz plane, with a wetting angle condition imposed in a way similar
to that of Sémoroz et al.(19) for dendrite growth in thin coatings. Instead of the condition
~∇φ · ~nb = 0 (where ~nb is the normal to the boundary) usually set for a symmetry plane,

a condition ~∇φ · ~nb = −|~∇φ| cos θ is imposed. For the sake of simplicity in the following,
this boundary will be referred to as the twin plane. The wetting angle θ remains constant
throughout the calculation and is measured within the solid, e.g., an angle larger than 90◦

corresponds to a grooved dendrite tip. A constant thermal gradient G is applied at an angle
(α) with respect to the twin plane along the vertical y-axis. A constant cooling rate Ṫ , is
also imposed, thus allowing to update simply the temperature of each point of the domain
at each time step (no heat equation is solved). Cell size was set to 0.1 µm.
Within this phase �eld approach, the arti�cially increased non-equilibrium e�ects associated
with a thick solid-liquid interface have not been corrected yet. As the solute anti-trapping
term developed by Echebarria et al (20), which scales with the interface thickness and solidi�-
cation velocity, is not included in our formulation, the results only give qualitative trends but
nevertheless point out interesting features of twinned dendrite growth. Typical properties of
the alloy used for the modeling of twinned dendrite growth are shown in Table I.

Table I

Thermophysical Properties of an Al - 9 at. % Zn

Ds (m
2/s) Dl (m

2/s) Γ (K−1) Lv (J/m
3) k0 Tm (◦C) m (◦C)

1.16× 10−13 2.7× 10−9 2.3× 10−7 1× 109 0.395 660 -357

This phase �eld model, already implemented succesfully in 2D in the Calcosoft R©-PHF mod-
ule, has been adapted up to 3D calculations using an explicit �nite di�erence method (FDM)
and a �xed orthogonal grid. The program has been written in order to be run on distributed



Figure 2: Calculation domain with the imposed thermal conditions and the Young-Laplace's
equation imposed at the left yz boundary.

memory parallel machines. Thus, the 3D grid was divided in as many sub-grids as processors
were to be involved in the calculation and the Message Passing Interface (MPI)(22) was used
to exchange nodal values at the sub-grid boundaries. All calculations done in this work have
been performed on a large cluster of AMD Opteron bi-processors at 2.4 Ghz with 4 Gbytes
of memory each. Typically, 64 processors were used for 3D calculations of a 30×60×30 µm3

domain size.

Results and Discussion

In a �rst approach, the actual crystallographic growth direction of twinned dendrites has
been supposed to be irrelevant for their tip shape and 2D simulations were performed in the
xy plane of Fig. 2. A nucleus of a dendrite that should grow along 〈100〉 directions, i.e.,
ε4 = 0.04, ε6 = ε8 = 0 in eq. (4), was located at the bottom-left corner of a 2D domain.
In this particular case, initial undercooling ∆T = 5 K, G = 1 × 105 K/m and Ṫ = −100
K/s, so the expected solidi�cation speed vs=|Ṫ |/G at steady-state is 1 mm/s. The G vector
is perfectly aligned with the vertical axis (α = 0). Fig. 3 shows the isovalue φ = 0.5 in a
20× 40 µm2 domain, after 0.11 s for 4 di�erent wetting conditions on the vertical-left twin
boundary: θ = 90◦, 93◦, 95◦ and 100◦. Wetting on the bottom boundary corresponds to a
standard symmetry condition θ = 90◦. Please note that this horizontal dendrite arm grows
faster than the vertical one mainly because it is more undercooled with respect to the vertical
thermal gradient. Although steady-state has not been reached in these simulations, it can
be seen that the dendrite tip tends to grow away (split) from the twin plane when a wetting
angle θ > 90◦ is imposed. As this angle is increased, tip splitting occurs earlier and, since
the detached tip grows freely away from the boundary, it develops slightly faster. Such a
behaviour has already been observed by Niederberger et al under isothermal conditions for
a dendrite growing in thin coatings (21).
The extension of this situation to 3D is shown in Fig. 4b and can be compared with the 2D
case of Fig. 4a obtained under identical conditions: G = 1× 105 K/m, ∆T = 5 K, Ṫ = −70
K/s and θ = 95◦. The solute concentration �eld after 0.06 s of growth is shown for the two
cases with various gray levels (scale shown in the left). The view in Fig. 4b corresponds to
the xy cut of the 3D result containing the dendrite tip and perpendicular to the twin plane.



Figure 3: E�ect of wetting angle on dendrite tip morphology in two dimensions. Dendrite
tip splits earlier from the twin boundary as θ is increased. Domain is 20 x 40 µm2, t = 0.011
s, vs = |Ṫ |/G= 1 mm/s, ∆T = 5 K. The line contours represent the isovalues φ = 0.5.

As solute rejection can occur also in the third dimension in 3D, the dendrite tip grows faster
as compared with the 2D case. Associated consequences of this are: i) for the same wetting
angle, the solid grows away (splits) from the twin boundary at an earlier stage in 3D; ii) the
width of the liquid channel near the twin boundary, on the order of 0.5-2µm, depends on the
depth of the groove and is reduced by about 25% when solute di�usion can occur also parallel
to the twin boundary in 3D. The dendrite tip instantaneous velocity v∗, calculated from the
length covered by the dendrite during ∆t = 0.005 s, is 0.5 mm/s. It is still increasing at
the time step shown in Fig. 4b, thus indicating that steady-state has not been yet achieved
(vs = 0.7 mm/s). From the composition �eld shown in this �gure, the solute content in the
liquid at the tip c∗t (calculated from the average value of c and eq. 7 at φ = 0.5) is only slightly
lower than that exisiting at the bottom of the liquid channel c∗d, e.g., c

∗
t/c
∗
d = 0.984. On the

other hand, the extent of the liquid channel (21 µm) corresponds to a temperature di�erence
of 2.1 K. Taking into acccount the curvature contribution of the tip (0.2 K) and neglecting
that e�ect at the bottom of the doublon, this temperature di�erence can be converted into
the correspondent compositions along the equilibrium liquidus line. One gets c∗t/c

∗
d = 0.942.

The di�erence between these two ratios reveals the contribution of solute trapping, which is
enhanced by the too large interface thickness used in our simulations.

Figure 4: Solute concentration maps after 0.06 s of 2D (a) and 3D (b) 〈100〉 dendrites.
Domain is 20 x 40 µm2, vs = |Ṫ |/G= 0.7 mm/s, ∆T = 5 K, θ = 95◦.

Finally, the e�ect of the direction of G was studied for dendrites growing along 〈110〉 direc-
tions. In this case ε4 = ε8 = 0 and ε6 = −0.0172 in eq. (4), G = 1 × 105 K/m, ∆T = 4 K,
θ = 100◦ and Ṫ = −50 K/m. In Fig. 5a and b, three dimensional views of a quart of these



dendrites are shown for α = 0◦ and 30◦, respectively. The phase isosurface corresponds to
φ = 0.5 after 0.05 s of growth (vs = 0.5 mm/s, v∗ = 0.18 mm/s). The solid attached to
the twin boundary can be clearly identi�ed in the �gure as black �elds that lie within the
corresponding yz twin boundary. It can be seen in Fig. 5a that the dendrite tip still grows
away from the twin plane under the present conditions (reduced vs, 〈110〉 growth). Even
the in-plane 〈110〉 secondary arms also grow or split away from the twin boundary after
some growth distance. However, when the direction of G is misoriented with respect to the
vertical axis (Fig. 5b), the dendrite tip near the twin plane evolves at a higher undercooling
and needs to grow faster (vs(α = 30◦)= 0.58 mm/s, v∗ = 0.22 mm/s). The depth of the
liquid channel between the twin boundary and the dendrite arm aligned with the vertical
axis evolves in a very similar way than that of a dendrite parallel to G, but the side arms
parallel to the twin plane grow away from it at a later stage.

Figure 5: E�ect of G with α = 0◦ (a) and 30◦ (b) from the vertical y-axis, on the 〈110〉
twinned dendrite morphology. The calculation domain was 30× 60× 30 µm3, but only the
solidi�ed region is shown. vs = |Ṫ |/G= 0.5 mm/s, ∆T = 4 K, θ = 100◦.

In summary, it appears that as the Young-Laplace equation is satis�ed at the twinned den-
drite tip, it initiates a groove that degenerates quickly into a small doublon, regardless
whether the calculations are 2D or 3D. For a �xed value of γs`, an increased twin boundary
energy γt, i.e., an increased angle θ, tends to initiate the doublon at an earlier stage. The
same occurs when di�usion in the liquid parallel to the twin plane is accounted for. The
depth of the doublon does not seem to depend on the dendrite growth direction, providing
it is aligned with the thermal gradient. The width of the doublon is very small and the
associated segregation in this region seems to be less important than initially thought, i.e.,
the liquid pool composition at the deepest position of the liquid channel is smaller than
c0/k0. Although this remains to be veri�ed under steady state conditions when the anti-
trapping correction will have been implemented, this reduced segregation is associated with
liquid di�usion in the third dimension parallel to the twin plane. A narrow liquid channel
with a reduced segregation could explain why experimental composition measurements near
twinned dendrite trunks after complete solidi�cation did not reveal an enhanced segregation
compared to regular dendrites(6). Solid state di�usion perpendicular to the twin plane dur-
ing cooling will further reduce any segregation revealing the presence of a doublon during
growth.

Conclusion

Twinned dendrite tip morphology has been investigated through phase �eld modeling. Calcu-
lations have shown that, regardless of its value, a wetting angle imposed at the twin boundary
promotes the formation of an apparent doublon dendrite shape. The thickness of the liquid



channel formed at the twin plane appears to be very narrow, thus quite di�cult to elucidate
experimentally. Moreover, the solute pile-up occurring in this region could be smeared out
both by di�usion in the liquid parallel to the twin plane during solidi�cation and subsequent
solid state di�usion perpendicular to the twin plane during cooling. An extension of this work
is presently being carried out in order to better understand twinned dendrite growth kinetics.
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