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Abstract Problems in fault-tolerant distributed computing
have been studied in a variety of models. These models are
structured around two central ideas: (1) degree of synchrony
and failure model are two independent parameters that deter-
mine a particular type of system, (2) the notion of faulty
component is helpful and even necessary for the analysis of
distributed computations when faults occur. In this work, we
question these two basic principles of fault-tolerant distrib-
uted computing, and show that it is both possible and worthy
to renounce them in the context of benign faults: we present
a computational model based only on the notion of transmis-
sion faults. In this model, computations evolve in rounds, and
messages missed in a round are lost. Only information trans-
mission is represented: for each round r and each process p,
our model provides the set of processes that p “hears of” at
round r (heard-of set), namely the processes from which p
receives some message at round r. The features of a specific
system are thus captured as a whole, just by a predicate over
the collection of heard-of sets. We show that our model han-
dles benign failures, be they static or dynamic, permanent
or transient, in a unified framework. We demonstrate how
this approach leads to shorter and simpler proofs of impor-
tant results (non-solvability, lower bounds). In particular, we
prove that the Consensus problem cannot be generally solved
without an implicit and permanent consensus on heard-of
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sets. We also examine Consensus algorithms in our model.
In light of this specific agreement problem, we show how our
approach allows us to devise new interesting solutions.
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1 Introduction

Problems in fault-tolerant distributed computing have been
studied in a variety of models. Such models are structured
around two central ideas:

1. Degree of synchrony and failure model are two inde-
pendent parameters that determine a particular type of
system.

2. The notion of faulty component is helpful and even nec-
essary for the analysis of distributed computations when
faults occur.

In this paper we question these two basic principles of fault-
tolerant distributed computing, and show that it is both pos-
sible and worthy to renounce them in the context of benign
faults: we present a computational model, suitable for sys-
tems with benign failures, which is based only on the notion
of transmission fault.

Computations in our model are composed of rounds. In
each round, a process sends a message to each process, waits
to receive messages from some processes, and then computes
a new state. Every message received at some round has been
sent at that round. Consequently, any message missed in a
round is definitely discarded. Using the terminology of Elrad
and Francez [18], a round is a communication-closed-layer.
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Most of the solutions to agreement problems that have
been designed for synchronous message-passing systems as
well as for partially synchronous or asynchronous ones
are structured in rounds (e.g., [1,5,14,16,17,41]). However,
concerning impossibility results (lower bounds, non-
solvability, …) in message-passing systems, round-based
computational models have been considered almost always
for synchronous systems. The reason for that lies in the fact
that it is an open question whether round-based models are
equivalent to the ones in which late messages are not dis-
carded.

To the best of our knowledge, Dwork et al. [17] were the
first to define a round-based model for non synchronous com-
puting. More precisely, they generalized the classical round-
based computational model for synchronous systems to a
large class of partially synchronous systems. Then Gafni [22]
extended the round-based model to any type of systems. The
basic idea in his model is to study how a system evolves
round-by-round and to abstract away the implementation of
the communication between processes, be it shared-mem-
ory or message-passing. The properties of the communica-
tion mechanisms and system guarantees are captured as a
whole by a single module that is called Round-by-Round
Fault Detector (for short RRFD) module. More precisely, at
each round r and for each process p, the module provides a
set of suspected processes from which p will not wait for a
message (here, we call messages the pieces of information
that are exchanged, whatever the medium of communica-
tion is). At this point, only non-transmission of information
appears in the model: the reason why a process is suspected
is not specified, whether it is due to the fact that the process is
late or has crashed. In this way, synchrony degree and failure
model are encapsulated in the same abstract entity.

The latter idea seems quite sound since separating syn-
chrony degree and failure model breaks the continuum that
naturally exists between them: for example, message asyn-
chrony means that there is no bound on message delays, and
message loss corresponds to infinite delays. Moreover, cap-
turing synchrony degree and failures with the same abstrac-
tion gives hope for relating different types of systems, in
particular synchronous and asynchronous systems.

Unfortunately, this idea is not followed through to the end
in [22] since the notion of failure model is underhandedly
reintroduced via the one of faulty component. Indeed, the
communication medium is implicitly assumed to be reliable
(no anomalous delay, no loss) and when process p receives no
message from q, the latter process is considered to be respon-
sible for the transmission failure (q is late or has crashed). The
so-called RRFD modules only suspect processes, never links.
Obviously, this impacts the design and correctness proofs of
algorithms: for example, agreement problems are specified
in [22] as usual, exempting faulty processes from making a
decision.

The RRFD model and its general extension GIRAF 1 [25]
are here influenced by the component failure models pro-
posed in the literature, e.g., [5,12,19,20,30,36]. As pointed
out in [37], the component failure models “do not fully cap-
ture the reality of systems subject to (possibly transient) ubiq-
uitous failures”, which are systems in which “faults occur
anywhere in the system and, following a failure, normal
functioning case resume after finite (although unpredictable)
time”. Moreover, the principle of a priori blaming some com-
ponents for transmission failures yields several major prob-
lems [37,38]. First, it may lead to undesirable conclusions:
for example, in the send-omission failure model, the entire
system will be considered faulty even if only one message
from each process is lost. Hence there is no algorithm in this
traditional component failure model that can tolerate such
transient failures, how few they may be. Second, it allows
faulty processes to have deviant behaviors: in decision prob-
lems, it is very common that a faulty process is not obliged
to make a decision. Indeed, even in their uniform versions
[23] that require coordination among all the processes that
decide, including those to which faults are ascribed, deci-
sion problems share the same restricted termination clause
that exempts faulty processes from making a decision. For
example, a process p that is blamed for the non-delivery
of a single message— as this transmission fault is rightly
or wrongly accounted for an omission from p—is allowed
to make no decision even if p is blamed for nothing else.
Finally, as already observed by Dolev [12], it appears that
the real causes of transmission faults, namely sender failure,
receiver failure, or link failure, may be actually unknown.
Transmission faults are often ascribed to some components
in an arbitrary manner that may not correspond to reality.

Moreover, there is no prima facie evidence that the notion
of faulty component is really helpful in the analysis of fault-
tolerant distributed algorithms. We show that our model leads
to the development of new conditions guaranteeing the cor-
rectness of fault-tolerant algorithms, and to shorter and sim-
pler proofs. This is due to the fact that the notion of faulty
component unnecessarily overloads system analysis with
non-operational details. In other words, it is sufficient that
the model just specifies transmission faults (effects) without
accounting for the faulty components (causes).

Santoro and Widmayer [37,38,40] clearly pointed out this
issue. They introduced the Transmission Faults model that
locates faults without specifying their cause. A transmis-
sion fault can be due to a link failure as well as a process
failure. Contrary to classical models in which transmission
faults involve only messages sent or received by an unknown
but static set of processes (the so-called faulty processes),
the Transmission Faults model is well-adapted to dynamic

1 We would like to thank one of the reviewers for having pointed out
the GIRAF model [25].
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failures. However, this model is designed only for synchro-
nous systems. Indeed, Santoro and Widmayer showed that
dynamic failures in synchronous systems have the same neg-
ative effect as asynchronicity. This de facto reintroduces syn-
chrony degree and failure model as two separate parameters
of systems. The Transmission Faults model, also known has
Dynamic/Mobile Faults model, has also been investigated in
[9,11,21,26,39].

Contribution

Our aim is to develop a computational model for distributed
systems that combines the advantages of the RRFD model
[22] and the Transmission Faults model [37,38], but avoids
their drawbacks. We propose a round-based model, called
Heard-Of (HO for short) in which (1) synchrony degree and
failure model are encapsulated in the same high-level abstrac-
tion, and (2) the notion of faulty component (process or link)
has totally disappeared. As a result, the HO model accounts
for transmission faults without specifying by whom nor why
such faults occur. There is no evidence that this leads to a
more powerful model than existing models from a compu-
tational viewpoint. However, we prove the semantic effec-
tiveness of the HO model, and show that it is more elegant
and simpler, specially for the design and correctness proofs
of fault-tolerant distributed algorithms (see Sect. 5). Indeed,
simplicity and conciseness is crucial for model checking [42]
and formal verification of algorithms [8].

A computation in the HO model evolves in rounds. In each
round, a process sends a message to all the others, and then
waits to receive messages from the other processes. Commu-
nication missed in a round is lost. For each round r and each
process p, HO(p, r) denotes the set of processes that p has
“heard of” at roundr , namely the processes from which p
receives some message at roundr. A transmission fault from
q to p at round r is characterized by the fact that q does not
belong to HO(p, r).

Exactly as in the RRFD model [22], the features of a spe-
cific system are captured in the HO model as a whole, just
by a predicate over the collection of the HO(p, r)’s, called a
communication predicate.

The HO model handles benign failures, be they static or
dynamic, permanent or transient, in a unified framework. In
particular, the model can naturally represent link failures,
contrary to models with failure detectors [5,22]. Indeed, in
such models, when the failure detector module indicates to
some process p to stop waiting for a message from q, this is
interpreted as “q is (suspected to be) faulty”. Obviously, such
an interpretation makes no sense if links may lose messages.

Another feature of the HO model is that contrary to the
random model [1,10] or the Failure Detector model, there is
no notion of “augmenting” asynchronous systems with exter-
nal devices (oracles) that processes may query: the communi-

cation predicate corresponding to an HO system is an integral
part of the model and should be rather seen as defining the
environment [7]. The weaker the predicate of an HO sys-
tem is, the more freedom the environment allows the system,
and the harder it is to solve problems. The HO abstraction
(communication predicates) is supported only by the mes-
sages sent in the HO algorithm. In other words, we do not
decouple predicates from the underlying algorithms in our
approach. This is the reason why we encapsulate algorithm
and communication predicate in the same structure that we
shall call an HO machine.

Besides the construction of the HO model, we present var-
ious results about the Consensus problem that illustrate its
semantic effectiveness. Our first result concerns systems that
never partition; it characterizes the minimal communication
predicate needed to solve Consensus in such systems. To do
so, we first introduce the concept of translation of commu-
nication predicates. Informally, a communication predicate
P can be translated into another one P ′ if there is a distrib-
uted algorithm that transforms heard-of sets satisfying P into
new ones satisfying P ′. Any problem that is solvable under
P ′ is then solvable under P instead. The so-defined relation
is reflexive and transitive, and thus orders communication
predicates with respect to their abilities to solve problems. If
P can be translated into P ′, then we say that P is at least as
strong as P ′.

Of special interest is the communication predicate
P∗

sp_uni f which guarantees that at each round, all processes
hear of the same non-empty subset of processes. Such a per-
manent operational agreement on heard-of sets clearly suf-
fices to solve Consensus. Conversely and more surprisingly,
we show that under the condition that there is no heard-of set
partitioning—i.e., at each round, any two processes hear of
at least one common process—if Consensus is solvable with
the communication predicate P , then P is at least as strong as
P∗

sp_uni f . In other words, Consensus cannot be solved with-
out an implicit permanent agreement on the heard-of sets.

Then we describe four basic translations. Using these
translations, we prove several results related to the com-
munication predicate guaranteeing that every round has a
non-empty kernel, i.e., at each round there is some process
that is heard by all. We show that non-empty kernel rounds
can be emulated by majority heard-of sets, and more gener-
ally, can be emulated in any system that never partitions. By
means of these basic translations, we also give a simple direct
proof of the reduction of the worst-case synchronous lower
bounds [15,31] to the general FLP asynchronous impossi-
bility result [20] (this reduction has been previously estab-
lished by Gafni for Atomic-Snapshot asynchronous systems
[22]). This exemplifies how, by getting rid of the first princi-
ple which artificially separates synchrony degree and failure
model, we can describe synchronous and asynchronous sys-
tems in a unified framework, and take advantage of this to
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relate impossibility results that are traditionally considered
as quite different in essence.2

Finally we study how to solve Consensus in systems prone
to partitioning. The HO formalism enables us to describe
well-known Consensus algorithms, and also to design new
solutions. For each Consensus algorithm, we determine a
simple communication predicate which guarantees correct-
ness. Interestingly, all the communication predicates that we
display express conditions that have to hold just sporadically,
contrary to the perpetual correctness condition “Ω” in the
Failure Detector model [4,7]. Hence, the HO model seems
to be a natural formalism for expressing fine-grained condi-
tions with respect to time. Moreover, in many real systems,
we observe series of “bad” and “good” periods with regard
to both synchrony and faults. Since they just require sporadic
conditions on heard-of sets, the algorithms that we examine
are well-adapted to such systems, and so are quite realistic
solutions to the Consensus problem.

This paper is structured as follows. In Sect. 2, we describe
our model, and present many traditional systems in the HO
framework. In Sect. 3, we define the notion of translation and
propose a characterization of the communication predicates
that make Consensus solvable (under certain transmission
fault bounds). In Sect. 4, we give four basic translations, and
highlight the key role played by the “no partitioning” assump-
tion. In Sect. 5, we describe several Consensus algorithms,
and determine HO conditions for their correctness. Section 6
concludes the paper.

2 HO model

As explained in the Introduction, computations in our model
are composed of rounds, which are communication-closed
layers in the sense that any message sent in a round can
be received only at that round. The technical description
of computations is similar to the ones in [17,22], and so
the model generalizes the classical notion of synchronized
rounds developed for synchronous systems [29]. We intro-
duce the notion of kernel of roundr that represents what pro-
cesses share during round r from the operational viewpoint.
As we shall show, this notion plays a key role in solving
Consensus.

2 There is another approach to unify synchronous and asynchronous
models, which consists in developing tools for model-independent
analysis of decision problems, instead of using translations between
system models. More specifically, [24] develops arguments from
algebraic topology for synchronous, partially synchronous, and asyn-
chronous systems as well, while [32] introduces the notion of layering as
a tool for model-independent analysis of the Consensus problem. Note
that the approaches in [24,32] both use the notion of faulty component.

2.1 Heard-of sets and communication predicates

We suppose that we have a non-empty set Π of cardinality
n, a set of messages M , including a null placeholder indi-
cating the empty message. To each p in Π , we associate a
process, which consists of the following components: a set of
states denoted by statesp, a subset ini tp of initial states, for
each positive integer r called round number, a message-send-
ing function Sr

p mapping statesp × Π to a unique (possibly
null) message, and a state-transition function T r

p mapping
statesp and partial vectors (indexed by Π ) of elements of
M to statesp. In each round r , process p first applies Sr

p
to the current state, emits the “messages” to be sent to each
process, and then, for a subset HO(p, r) of Π (indicating the
processes which p hears of), applies T r

p to its current state
and the partial vector of incoming messages whose support is
HO(p, r). The collection of processes is called an algorithm
on Π .

Computation evolves in an infinite sequence of rounds.
For each computation, we determine its heard-of collection
which is the collection of subsets of Π indexed by Π × N

∗:

(HO(p, r))p∈Π, r>0 .

A communication predicate P is defined to be a predicate
over heard-of collections, that is a boolean function over the
collections of subsets of Π indexed by Π × N

∗:

P : (2Π)Π×N∗ −→ {false,true}.
Since we want to define a non-trivial notion of solvability
(see Sect. 2.2), we only consider communication predicates
different from the constant predicate “false”. Moreover,
as we do not want the correctness of algorithms to depend
on the time (or round) at which algorithms start to run (see
Proposition 1), we restrict ourselves to the class of commu-
nication predicates P whose truth-value is invariant under
time translation, i.e., P has the same truth-value for all the
heard-of collections (H O(p, r + i))p∈Π,r>0 , where i is any
given integer. Such a communication predicate will be said
to be time invariant.

For example, consider some condition C over the heard-of
sets in a given round, that is a predicate over collections of
subset of Π indexed (only) by Π :

C : (2Π)Π −→ {false,true}.
Then, the communication predicate

P(C) :: ∃r0 ≥ 0 : C holds at r0

is not time invariant if C is not constant, while

P(C)∞ :: ∀r > 0, ∃r0 ≥ r : C holds at r0,

which expresses that C holds infinitely often, is a time
invariant communication predicate. From now on, the term
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communication predicate will only refer to a non-trivially
false and time invariant predicate.

For any round r , its kernel is defined as the set of processes

K (r) =
⋂

p∈Π

HO(p, r).

Intuitively, it consists of the processes which are heard by all
in round r . More generally, we introduce the kernel K (φ) of
any set φ of rounds as:

K (φ) =
⋂

r∈φ

K (r).

When φ is the set of all the rounds in the computation, this
defines the (global) kernel of the computation:

K =
⋂

r>0

K (r).

It will be convenient to introduce the cokernel of some round,
or more generally of some collection of rounds, as the com-
plement in Π of the above defined kernels. Thus, with the
same notation as above, we let

coK (r) = Π \K (r), coK (φ) = Π \K (φ), coK = Π \K .

Round r is said to be uniform when, for any two processes
p, q in Π ,

HO(p, r) = HO(q, r).

Round r is said to be a nek (for non-empty kernel) round if

K (r) 	= ∅,

and it is said to be split when there exist two processes p, q
in Π such that

HO(p, r) ∩ HO(q, r) = ∅.

Obviously, a nek round is not split, but the converse does
not hold. Moreover, a non-trivial uniform round, that is a
uniform round with a non-empty common heard-of set, is a
nek round.

A nek computation is a computation whose global kernel
is non-empty. In such a computation, there is at least one pro-
cess from which every process hears during the whole com-
putation. A computation is said to be space uniform when
each of its rounds is uniform. It is said to be time uniform
when the sets HO(p, r) do not vary in time:

∀r > 0,∀p ∈ Π : HO(p, r) = HO(p, r + 1).

Finally, a computation is said to be regular when a process
that is not heard by some process at some round is not heard
by any process later:

∀r > 0,∀p ∈ Π : HO(p, r + 1) ⊆ K (r).

Note that regularity is a weak form of the combination of
space and time uniformity.

Equivalently, we could rather consider talked-to sets, den-
oted T T (p, r), and defined by

T T (p, r) = {q ∈ Π : p ∈ HO(q, r)},
which are the dual notion of heard-of sets. Contrary to
HO(p, r), process p cannot know T T (p, r) at the end of
round r , and this is the reason why we have preferred to
express the communication properties of computations in
terms of their heard-of collections instead of their talked-to
collections.

2.2 HO machines

A Heard-Of machine (or HO machine for short) for Π is a
pair M = (A,P) where A is an algorithm on Π and P is
a communication predicate. For example, we shall consider
the HO machines with the communication predicate:

Psp_uni f :: ∀r > 0,∀p, q ∈ Π2 : HO(p, r) = HO(q, r),

that is HO machines with space uniform computations, and
those with regular computations:

Preg :: ∀r > 0, ∀p ∈ Π : HO(p, r + 1) ⊆ K (r).

We shall also consider the class of HO machines that share
the “no split” predicate:

Pnospli t :: ∀r > 0,∀p, q ∈ Π2 :
HO(p, r) ∩ HO(q, r) 	= ∅,

the subclass of HO machines with the communication pred-
icate:

Pnekrounds :: ∀r > 0 : K (r) 	= ∅,

and the one with the stronger communication predicate:

Pnek :: K 	= ∅.

More generally, we introduce the communication predicate:

P f
K :: |coK | ≤ f

which is equivalent to

|K | ≥ n − f.

We shall also consider the weaker predicate:

P f
HO :: ∀r > 0,∀p ∈ Π : |HO(p, r)| ≥ n − f

and more specifically Pmaj
HO = P [ n−1

2 ]
HO that asserts every

heard-of set is a majority set.
A run of (A,P) is totally determined by a set of initial

states (one per process) and a heard-of collection that satis-
fies P . To each run corresponds the collection of the states
(one per process and per round) reached by processes during
the run; we denote p’s state at the end of round r by σ

(r)
p .

By extension, the initial state of p is denoted by σ
(0)
p . In the
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sequel, given a run of M , for any variable X p of process p,

X (r)
p will denote the value of X p after r rounds of this run.
A problem Σ for Π is a predicate over state collections

indexed by Π × N
∗:

Σ :
(

sr
p

)

p∈Π,r>0
−→ Σ

(
(sr

p)p∈Π,r>0

)
∈{false,true},

where sr
p ∈ statesp for every p ∈ Π . An HO machine

M = (A,P) solves a problem Σ if the state collection in
each of its runs satisfies Σ ; then we say that problem Σ is
solvable under P .

Since communication predicates are invariant under time
translation, and round numbers are not part of process states,
correctness of algorithms does not depend on the time at
which algorithms start to run. Formally, for any integer i and
any HO algorithm A with the message-sending and state-
transition functions Sr

p and T r
p respectively, let i A denote the

algorithm defined by the message-sending functions i Sr
p and

the state-transition functions i T r
p such that i Sr

p and i T r
p are

trivial for the first i rounds, and for any round r > i ,

i Sr
p = Sr−i

p and i T r
p = T r−i

p .

Proposition 1 If the HO machine M = (A,P) solves Σ ,
then for any integer i , the HO machine i M = (i A,P) also
solves Σ .

In this paper, we concentrate on the well-known agreement
problem, called Consensus. In this problem, each process p
has an initial value vp from a fixed set V , and must reach an
irrevocable decision on one of the initial values. Thus each
value v in V corresponds to an initial state sv

p of process p,

signifying that p’s initial value is v: σ
(0)
p = sv

p.
Process p has also disjoint sets of decision states Σv

p, one
per value v in V , meaning that p has decided v. Then the
Consensus problem in V is defined as the conjunction of the
following requirements:

Irrevocability. Once a process decides a value, it remains
decided on that value:

∀p ∈ Π,∀v ∈ V,∀r > 0 :
σ (r)

p ∈ Σv
p ⇒ ∀r ′ ≥ r : σ (r ′)

p ∈ Σv
p.

Agreement. No two processes decide differently: 3

∀p, q ∈ Π,∀v,w ∈ V,∀r, r ′ > 0 :
σ (r)

p ∈ Σv
p ∧ σ (r ′)

q ∈ Σw
q ⇒ v = w.

3 Note that under agreement, irrevocability is equivalent to the follow-
ing weaker condition:

∀p∈Π,∀v∈V,∀r >0 : σ (r)
p ∈Σv

p ⇒ ∀r ′ ≥r, ∃v′ ∈V : σ (r ′)
p ∈Σv′

p .

This remark will be used in several places in the sequel.

Integrity. Any decision value is the initial value of some pro-
cess:

∀v ∈ V,∀p ∈ Π,∀r > 0 :
σ (r)

p ∈ Σv
p ⇒ ∃q ∈ Π : σ (0)

q = sv
q .

Termination. All processes eventually decide:

∀p ∈ Π, ∃rp > 0, ∃v ∈ V : σ
(rp)
p ∈ Σv

p.

Since there is no notion of faulty process in the HO model,
a process is never exempted from making a decision. Such a
strong liveness requirement may seem unreasonable in two
respects. Firstly, it may make Consensus needlessly unsolv-
able in the sense that the resulting Consensus specification
might be unsolvable under some communication predicateP
whereas the classical Consensus problem (with the non-uni-
form Termination condition) is solvable in the type of sys-
tems corresponding to P (see Table 1). The paper shows that
this objection does not hold.

Secondly, one may wonder whether an HO algorithm in
which all processes decide can be implemented in systems
with processes that are prone to crash failures. The answer
is yes. Of course, a process that has crashed takes no steps,
and so can make no decision. However, the corresponding
HO process is not heard of any more, and so has no impact
on the rest of the computation.

More precisely, let S be a system with possible process
crash failures, and let P be a communication predicate cor-
responding to S (cf. Table 1). Suppose that there is a round-
based computational model for S with similar notions of
algorithm, run of an algorithm, problem, and solvability (e.g.,
the computational model described in [29] for synchronous
systems with crash failures). Let ΣS be a problem in this
model, and Σ its “entirely uniform” version for the HO
model. Assume that M = (A,P) is an HO machine
solving Σ . Like any HO algorithm, A is also an algorithm in
the model for S. Since a process in S that has crashed can
take no further step, Σ is trivially not solvable in S, and in
particular A does not solve Σ in S. However, we claim that
A solves ΣS :

Proposition 2 If the HO machine (A,P) solves Σ , then A
solves ΣS in S.

We give only the intuitive argument, for lacking of a
formal correspondence between S and P , and between ΣS
and Σ .

Proof (sketched) Let ρS be any run of A in S. By mapping
any process in S that crashes at some point t in round r onto
an HO process that is no more heard of after t , we easily
construct a run ρ of A that extends ρS , i.e., ρS is a subse-
quence of ρ. Since (A,P) solves Σ , ρ satisfies Σ , and so
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the projection ρS satisfies ΣS , which is some “projection”
of Σ on the set of correct processes. ��

In the particular case of Consensus, the above argument
shows that there is no problem of transposing an HO machine
solving the entirely uniform Consensus specification in a sys-
tem S with possible crash failures: the capability of an HO
process to make a decision (in ρ) is just not implemented (in
ρS ) if the corresponding process in S has crashed.

2.3 How to guarantee communication predicates

Obviously, an HO machine is implementable in a system
as soon as the corresponding communication predicate can
be guaranteed by the system. In Table 1, we go over vari-
ous classical types of message-passing systems of interest,
and we examine the communication predicates that they can
guarantee. For each type of system listed in Table 1 except
asynchronous systems with initial crash failures, we use sev-
eral results previously established in [13,17,22]. As for asyn-
chronous systems with at most f initial crash failures, they
clearly support the communication predicate P f

♦uni f defined
by:

P f
♦uni f :: ∃r0 > 0, ∃Π0 ∈ 2Π s.t. |Π0| ≥ n − f,

∀p ∈ Π,∀r ≥ r0 : HO(p, r) = Π0.

Moreover, the positive result by Fischer et al. [20] for initial
crash failures shows that in the case of a majority of correct
processes (2 f <n), space-time uniformity of the heard-of sets
can be achieved from the beginning.4 That is, HO machines
with the predicate

P f
uni f :: ∃Π0 ∈ 2Π s.t. |Π0| ≥ n − f,

∀p ∈ Π,∀r > 0 : HO(p, r) = Π0

can be implemented in any asynchronous system provided a
majority of processes is correct.

3 Communication predicates to solve Consensus

In this section, we address the fundamental question of deter-
mining the computational models in which Consensus is
solvable. In terms of the HO model, it consists in identi-
fying the communication predicates for which Consensus is
solvable.

We partially answer the question by restricting attention
to the class of communication predicates from which nek
rounds can be emulated: in this class of HO models, we prove
that permanent space uniformity is a necessary and sufficient
condition for solving Consensus. In other words, Consensus

4 The algorithm in [20] ensures agreement on the membership of the
initial clique.

cannot be solved without an implicit and permanent consen-
sus on heard-of sets.

We start by formalizing what it means for an HO machine
M = (A,P) to emulate a communication predicate P ′. To
do that, we first define the notion of a k-round translation
from P to P ′, and then its generalization to translations that
take a non constant number of rounds. Translations of the
first type are called uniform translations.

3.1 Uniform translations

Let k be any positive integer, and let A be an algorithm that
maintains a variable NewHOp at every process p, which
contains a subset of Π . We call macro-round ρ the sequence
of the k consecutive rounds k(ρ−1)+1, . . . , kρ. The value of
NewHOp at the end of macro-round ρ is denoted

NewHO(ρ)
p . We say that the HO machine M = (A,P) emu-

lates the communication predicate P ′ in k rounds if for any
run of M , the following holds:

E1: If process q belongs to NewHO(ρ)
p , then there exist

an integer l in {1, . . . , k}, a chain of l + 1 processes
p0, p1, . . . , pl from p0 = q to pl = p, and a sub-
sequence of l increasing round numbers r1, . . . , rl in
macro-round ρ such that for any index i , 1 ≤ i ≤ l,
we have pi−1 ∈ HO(pi , ri ).

E2: The collection
(

NewHO(ρ)
p

)

p∈Π,ρ>0
satisfies predi-

cate P ′.

Condition E1 states that if q is in NewHOp at macro-round
ρ, then p has actually heard of q during this macro-round
through some intermediate processes p1, . . . , pl−1. Hence
this condition excludes trivial emulations of P ′. Condition
E2 states that the variables NewHOp simulate heard-of sets
satisfying P ′. If there exists an algorithm A such that the
HO machine (A,P) emulates P ′ in k rounds, then we write
P �k P ′, and we say that A is a k round translation of P
into P ′.

Note that if P ⇒ P ′, the trivial algorithm in which each
process p writes the value of HO(p, r) into NewHOp at the
end of each round r is a one round translation of P into P ′,
and so P �1 P ′.

3.2 General translations

Now we generalize the previous definition to translations
that take a non-constant number of rounds in time and space.
For that, each process p maintains an additional variable
MacroRoundp initialized to 0. Upon updating NewHOp,
process p increments MacroRoundp by 1. When p sends a
basic message m, it tags m with the current value of
MacroRoundp. Moreover, p ignores any message tagged by
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Table 1 Classical system types and communication predicates

System type Communication predicate

Synchronous system, reliable links, at most f faulty senders |K | ≥ n − f

Synchronous system, at most f omission transmission faults per round [38] ∀r > 0 : ∑
p∈Π |HO(p, r)| ≥ n2 − f

Synchronous system, a block of at most f omission transmission faults [38] ∀r > 0 : |K (r)| ≥ n − f

Synchronous system, reliable links, at most f crash failures |K | ≥ n − f

∧
∀p ∈ Π,∀r > 0 : HO(p, r + 1) ⊆ K (r)

Synchronous communication, asynchronous processes, reliable links, ∀p ∈ Π,∀r > 0 : |HO(p, r)| ≥ n − f

atomic send to all, at most f crash failures [13] ∧
∀p, q ∈ Π2,∀r > 0 : HO(p, r) = HO(q, r)

Synchronous communication, asynchronous processes, ∀p ∈ Π,∀r > 0 : 1 ≤ |HO(p, r)| ≤ 2

reliable links, at most 1 crash failure [13] ∧
∀p, q ∈ Π2,∀r > 0 : HO(p, r) = HO(q, r)

Asynchronous system, reliable links, at most f crash failures ∀p ∈ Π,∀r > 0 : |HO(p, r)| ≥ n − f

Asynchronous system, reliable links, at most f initial crash failures ∀p ∈ Π : |HO(p, 1)| ≥ n − f

∧ (∀p ∈ Π,∀r > 0 : HO(p, r) ⊆ HO(p, r + 1))∧
∃Π0 ⊆ Π, ∃r0 > 0,∀p ∈ Π,∀r > r0 : HO(p, r) = Π0

Same with f < n/2 [20] ∃Π0 ⊆ Π s.t. |Π0| ≥ n − f,∀p ∈ Π,∀r > 0 :
HO(p, r) = Π0

Partially synchronous system, eventual reliable links, ∃Π0 ⊆ Π s.t. |Π0| ≥ n − f, ∃r0 > 0,∀p ∈ Π,∀r > r0 :
at most f crash failures [17] HO(p, r) = Π0

an integer different to the current value of MacroRoundp.
Then rephrasing the condition E1 as follows

E1: If process q belongs to NewHO(ρ)
p , then there exist a

chain of processes p0, p1, . . . ,pl from p0 = q to pl =
p, and a subsequence of l increasing round numbers
r1, . . . , rl such that for any index i , 1 ≤ i ≤ l, we have

ri < ri+1, MacroRound(ri )
pi

= ρ−1, and

pi−1 ∈ HO(pi , ri ).

yields a general definition of translation.
If there exists an algorithm A such that the HO machine

(A,P) emulates P ′, we write P � P ′, and we say that A
translates P into P ′. Obviously, the relation � contains all
the relations �k .

Given an emulation of P ′ by an HO machine (A,P), any
problem that can be solved with P ′, can be solved with P
instead. To see this, suppose that the HO machine (B,P ′)
solves a problem Σ . We compose A and B in the following
way: each process p executes B with rounds that are “split”
by A. More precisely, concurrently with B, every process p
runs A, and so (locally) determines what we call “A macro-

rounds” and maintains the variable A.NewHOp. The algo-
rithm B at process p is then modified as follows: messages
of A during an A macro-round ρ piggyback messages sent
by B at round ρ, and p computes its new state at the end of
macro-round ρ by applying B’s state-transition function at
round ρ to (1) its state (with respect to B) at the beginning
of ρ and (2) the partial vector of B’s messages indexed by
A.NewHO(ρ)

p .

Proposition 3 If Σ is solvable under P ′ and P � P ′, then
Σ is solvable under P .

The relation � is clearly transitive; thus it orders com-
munication predicates with respect to their ability to solve
problems. If both P � P ′ and P ′ � P hold, then we say that
P and P ′ are equivalent, and we denote P � P ′.

As we shall see below, an important class of translations
are those that preserve kernels. More precisely, we introduce
the notion of a kernel preserving translation from P to P ′
which is defined as an emulation of P ′ with an HO machine
M = (A,P) such that for any run of M , we have:

⋂

p∈Π,r∈ρp

HO(p, r) ⊆
⋂

p∈Π

NewHO(ρ)
p ,
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where ρp denotes the set of rounds that together form the
macro-round ρ on p.

3.3 Consensus and nek rounds

Let P∗
sp_uni f denote the communication predicate that guar-

antees any round to be uniform and non-trivial, that is
P∗

sp_uni f = Psp_uni f ∧ P∗ with

P∗ :: ∀r > 0, ∀p ∈ Π : HO(p, r) 	= ∅.

Proposition 4 Let P be a communication predicate such
that P � P∗

sp_uni f . Then for any set of values V , there exists
an algorithm A such that the HO machine (A,P) solves
Consensus in V .

Proof Let A0 be an algorithm on Π such that (A0,P) emu-
lates P∗

sp_uni f , and let us fix an arbitrary order p1, . . . , pn on
Π . Let A be identical to A0, except that

1. at each round, each process sends its knowledge about
initial values to all;

2. at the end of the first macro-round, each process decides
the initial value of the first process in NewHOp , according
to the order p1, . . . , pn .

Note that thanks to E2, every NewHOp is non-empty at the
end of macro-round 1. Moreover, from E1 it follows that the
decision rule is well-defined since each process knows the
initial values of all the processes in the set NewHOp. Hence
the decision rule is well-defined, and termination is satisfied.
Integrity is a straightforward consequence of item 2. Agree-
ment follows from E2. ��

This result can be interestingly compared with the impos-
sibility of Consensus with the communication predicate
P∗

♦uni f (cf. Sect. 2.3). It turns out that eventual space-time
uniformity is not sufficient for Consensus, whereas space uni-
formity alone makes Consensus solvable provided it holds
from the beginning.

Conversely, the following proposition shows that in the
class of HO machines with nek rounds, space uniformity can
be achieved permanently if binary Consensus is solvable. In
other words, Consensus is solvable only if there is an implicit
permanent agreement on the heard-of sets.

Proposition 5 Let P be a communication predicate such
that P � Pnekrounds . If there is an HO machine (A,P) that
solves binary Consensus, then P � P∗

sp_uni f .

Proof Let B be an algorithm that emulates Pnekrounds from
P . From A and B, we design an algorithm C and prove that
(C,P) emulates P∗

sp_uni f .
To simulate a macro-round with C , every process p first

executes one macro-round of B and records the value of

B.NewHOp at the end of the macro-round in some vari-
able Proposep. Then it executes n instances of A in par-
allel, where each solves Consensus (cf. Proposition 1). The
initial value of p for the i th instance of A is the truth-value
of “pi ∈ Proposep”. From the decision values, p sets

C.NewHOp := {pi ∈ Π :
p decides “true” for the i-th Consensus}.

By the agreement condition of Consensus, the emulated
macro-round is uniform. Moreover, since B emulates
Pnekrounds , there is at least one process pi that belongs to
all the B.NewHOp’s, and so all the initial values for the i th
Consensus are equal to “true”. By the integrity condition
of Consensus, the only possible decision value is “true”. In
other words, we have pi ∈ ⋂

p∈Π C.NewHOp. This shows
that the emulated uniform macro-round is non-trivial, and so
E2 is satisfied.

We now argue E1. Consider a C macro-round (made up of
a B macro-round and n executions of A in parallel), and let
pi in C.NewHOp at the end of the C macro-round. By the
integrity condition of Consensus, there is some processes x
such that pi ∈ Proposex . By the Knowledge Transfer the-
orem [6], for one of them, say x1, there is a finite sequence
of processes x2, . . ., xk = p such that during the execution
of the i th instance of A, x1 sends a message m1 to x2, x2

sends a message m2 to x3 after receiving m1, …, xk−1 sends
a message mk−1 to xk = p after receiving mk−2. Moreover,
since E1 holds for B macro-rounds, there is a communication
path from pi to x1 during the first part of the C macro-round.
Hence there is a connection from pi to p during the whole
C macro-round. ��

Since binary consensus is trivially reducible to multi-
valued Consensus, Propositions 4 and 5 provide a charac-
terization of the HO machines with nek rounds that solve
Consensus:

Theorem 1 In the class of communication predicates which
are at least as strong as Pnekrounds , the following assertions
are equivalent:

1. For any set V , there is an algorithm A such that (A,P)

solves Consensus in V ;
2. P � P∗

sp_uni f .

Note that P∗
sp_uni f is the HO counterpart of one of the sys-

tem types described in [13], namely the one with asynchro-
nous processes, synchronous communication, reliable links,
an atomic send-to-all primitive, and at most n − 1 crashes.
Consequently Theorem 1 shows that, among the system types
in [13] for which Consensus is solvable, this special one is
the weakest; indeed all of them can emulate nek rounds.
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Fig. 1 Relationships among
some basic communication
predicates and solvability of
Consensus

4 Basic communication predicate translations

In this section, our aim is to establish some relationships
among communication predicates, and to outline a first
(partial) map of various classes of these predicates that play
a key role for solving Consensus. To do so, we describe
several fundamental translations that are all uniform. Such
translations simply handle union and intersection of heard-
of sets. Interestingly, some of them allow us to amplify our
characterization of nek round communication predicates that
make Consensus solvable. We compare these translations
with other ones that have been given in the literature in the
context of the classical taxonomy of system types. Our main
results are summarized in Fig. 1.

4.1 A two round translation for increasing kernels

First we present a two round translation and prove a lower
bound on the membership of the (new) kernels of macro-
rounds. As a result, the translation increases kernels in some
significant cases. In particular, it transforms Pmaj

HO into

Pnekrounds , that is Pmaj
HO � Pnekrounds . This translation also

provides a direct proof of a very interesting result established
by Gafni [22] relating synchronous and asynchronous sys-
tems.

The translation computes NewHO(ρ)
p from the collection

of heard-of sets in rounds 2ρ − 1 and 2ρ as follows (see
Algorithm 1):

NewHO(ρ)
p :=

⋃

q∈HO(p,2ρ)

HO(q, 2ρ − 1).

Algorithm 1 Translation for increasing kernels

1: Initialization:
2: NewHOp ∈ 2V , initially empty

3: Round r:
4: Sr

p :
5: if r = 2ρ then
6: send 〈 HO(p, r − 1) 〉 to all processes

7: T r
p :

8: if r = 2ρ then
9: NewHOp := ⋃

q∈HO(p,r) HO(q, r − 1)

In this way, we emulate a macro-round ρ whose kernel
satisfies the following key property:

Proposition 6 If all heard-of sets at rounds 2ρ − 1 and 2ρ

contain at least n − f1 and n − f2 processes, respectively,
then

|K̃ (ρ)| ≥ n − f1

(
1 + f2

n − f2

)
,

where K̃ (ρ) = ⋂
p∈Π NewHO(ρ)

p .

Proof Consider the directed graph Gρ whose vertices are the
processes in Π , and there is an edge from p to q if and only
if p belongs to HO(q, 2ρ − 1). For any vertex x in Gρ , let
nbI n(x) and nbOut (x) be the numbers of in-neighbors and
out-neighbors of x , respectively. The number of edges in Gρ

is equal to

E(Gρ) =
∑

x∈Π

nbI n(x) =
∑

y∈Π

nbOut (y),

and since nbI n(x) = |HO(x, 2ρ − 1)|, we have

E(Gρ) ≥ n(n − f1). (1)

123



The Heard-Of model 59

Let us separate the summation
∑

y∈Π nbOut (y) into those

y’s in K̃ (ρ) and those not in K̃ (ρ), and let k̃ρ denote the car-
dinality of K̃ (ρ). Clearly, we have

∑

y∈K̃ (ρ)

nbOut (y) ≤ nk̃ρ. (2)

For the other term in the sum, we show that for any y that
is not in K̃ (ρ), we have

nbOut (y) ≤ f2. (3)

This is true because if y is not in K̃ (ρ), then there exists some
process p such that

y /∈
⋃

q∈HO(p,2ρ)

HO(q, 2ρ − 1),

that is for any q in HO(p, 2ρ), y is not in HO(q, 2ρ − 1). In
other words, none of the out-neighbors of y in Gρ belongs
to HO(p, 2ρ). Since any heard-of set HO(p, 2ρ) has at least
n − f2 elements, nbOut (y) is at most f2. From (1), (2) and
(3) it follows that

n(n − f1) ≤ nk̃ρ + (n − k̃ρ) f2,

and so

k̃ρ ≥ n − f1

(
1 + f2

n − f2

)
.

��

With the communication predicate Pmaj
HO = P [ n−1

2 ]
HO , Prop-

osition 6 can be specialized as follows:

Corollary 1 There is a two round translation of Pmaj
HO into

Pnekrounds , and so Pmaj
HO � Pnekrounds .

Proof Take f1 = f2 = � n−1
2 �, which leads to k̃ρ ≥ 1. ��

Another interesting corollary of Proposition 6 is obtained
with f2 = 1: in this case, Proposition 6 gives

k̃ρ ≥ n − f1 − f1

n − 1
.

Therefore, if f1 ≤ n − 2, then we have k̃ρ ≥ n − f1. In
particular, in a system with at least 3 processes and heard-of
sets of cardinality n − 1 ( f1 = f2 = 1), we can emulate
macro-rounds with kernels of size at least n − 1, and so the
global kernel of f macro-rounds has a membership of over
n − f processes. Considering that the communication predi-
cates defined by ∀r > 0, ∀p ∈ Π : |HO(p, r)| ≥ n −1 and
|K | ≥ n − f are the HO counterparts of asynchronous sys-
tems with at most one crash failure and synchronous systems
with at most f send omission failures, respectively, we derive
the following result relating synchronous and asynchronous
systems:

Corollary 2 Asynchronous message-passing systems with at
most one crash failure can implement the first f rounds of
a synchronous system with at most f send omission failures
among n ≥ 3 processes.

A similar result is shown by Gafni [22] for asynchronous
atomic-snapshot shared memory systems with at most one
crash failure. Note that the very elegant reduction of the omis-
sion failure lower bound to the asynchronous impossibility
result [20] that Gafni derives from his result can also be spun
off from Corollary 2.

4.2 Translating no split rounds into nek rounds

We now show that Pnospli t and Pnekrounds are actually equiv-
alent. Clearly, Pnekrounds implies Pnospli t , and so we have
Pnekrounds � Pnospli t . To prove that Pnospli t � Pnekrounds ,
we present a λ(n) round translation, where λ(n) is the integer
satisfying 2λ(n)−1 < n ≤ 2λ(n), which emulates nek macro-
rounds from no split rounds. This translation, which appears
in Algorithm 2, is an extension from 2 to λ(n) of Algorithm 1.

Each macro-round consists of λ(n) consecutive rounds.
We fix such a macro-round ρ, and we denote r1, . . . , rλ(n)

the sequence of rounds that form ρ.5 Each process p main-
tains a variable Listen p, which is contained in Π and is
equal to HO(p, r1) at the end of round r1. In the following
rounds, p sends the current value of Listen p to all and then
computes the new Listen p as the union of the Listenq ’s it
has just received. That is, at each round r , r2 ≤ r ≤ rλ(n), p
sets

Listen p :=
⋃

q∈HO(p,r)

Listenq .

Theorem 2 Algorithm 2 is a λ(n) round translation of
Pnospli t into Pnekrounds , and so we have Pnospli t �
Pnekrounds .

Algorithm 2 Translating no split rounds into nek rounds
1: Initialization:
2: Listen p ∈ 2V , initially empty
3: NewHOp ∈ 2V , initially empty

4: Round r:
5: Sr

p :
6: send 〈 Listen p 〉 to all processes
7: T r

p :
8: if r ≡ 1 (mod λ(n)) then
9: Listen p := HO(p, r)

10: else
11: Listen p := ⋃

q∈HO(p,r) Listenq

12: if r ≡ 0 (mod λ(n)) then
13: NewHOp := Listen p

5 Precisely, we have r1 = λ(n)(ρ − 1) + 1, . . . , rλ(n) = λ(n)ρ.
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Proof Condition E1 trivially follows from the code of Algo-
rithm 2 (lines 9 and 11). We now prove E2. For that, con-
sider the directed graphs Gi induced by the heard-of sets at
round ri . Let G∗

i denote the directed graph whose vertices are
the processes in Π , and there is an edge from p to q iff there
exists a chain of i + 1 processes x1, . . . , xi+1 from x1 = p
to xi+1 = q such that

x2 ∈ HO(x1, rλ(n)), x3 ∈ HO(x2, rλ(n)−1), . . . ,

and xi+1 ∈ HO(xi , rλ(n)−i+1).

Clearly, G∗
1 = Gλ(n), and Listen p at the end of round rλ(n)

is the set of p’s in-neighbours in G∗
λ(n):

Listen
(rλ(n))
p = {q ∈ Π : (q, p) is an edge of G∗

λ(n)}.
We now prove the following lemma:

Lemma 1 For any index i ∈ {1, . . . , λ(n)}, there is at least
one common in-neighbour to any subset of 2i processes in
the graph G∗

i .

Proof By induction on i .
Basis: i = 1. We have G∗

1 = Gλ(n), and the lemma coincides
with the no split predicate.
Inductive step: Suppose that i ≥ 2 and the lemma holds
in G∗

i−1. Let {p1, . . . , p2i } be any subset of 2i processes.
By inductive hypothesis, p1, . . . , p2i−1 have a common in-
neighbour x1 in G∗

i−1, and p2i−1+1, . . . , p2i have a common
in-neighbour x2 in G∗

i−1. Since the no split predicate holds
at each round, x1 and x2 have a common in-neighbour in
Gλ(n)−i+1, no matter whether x1 = x2 or not; let x denote
this node. By definition of G∗

i , x is a common in-neighbour
to p1, . . . , p2i in this graph. ��Lemma 1

Condition E2 directly follows from Lemma 1 as the spe-
cial case i = λ(n) since n ≤ 2λ(n). ��

Note that since Pmaj
HO implies Pnospli t , Algorithm 2 is a

λ(n) round translation of Pmaj
HO into Pnekrounds . Thus we get

another proof of Corollary 1, but the translation requires λ(n)

rounds instead of two rounds in Algorithm 1.
Combining Theorems 1 and 2, we get the following corol-

lary:

Corollary 3 Let P be a communication predicate satisfying
P � Pnospli t . Then the following assertions are equivalent:

1. There is an algorithm A such that M = (A,P) solves
Consensus;

2. P � P∗
sp_uni f .

4.3 A translation achieving space uniformity

Our third translation achieves space uniformity under the
condition of original non-empty global kernels. More pre-
cisely, we give a f +1 round translation of P f

K into Psp_uni f ∧
P f

K .

Processes propagate and collect all the heard-of sets that
they have ever seen during f + 1 consecutive rounds. At the
end of the macro-round, p’s new heard-of set is the intersec-
tion of the sets of process names that p has just collected at
the last round. Formally, each macro-round consists of f +1
consecutive rounds. Each process p maintains three variables
Listen p, K nown p, and NewHOp, which are all contained
in Π and are equal to Π , {p}, and ∅ at the beginning of each
macro-round, respectively. At each round, p listens to pro-
cessq only if it hears of q at all the previous rounds of the
macro-round, and so p sets:

Listen p := Listen p ∩ HO(p, r).

Moreover, during the f first rounds of any macro-round, each
process p collects the names of all the processes it hears of
in its variable K nown p; for that, it sends K nown p to all
processes and then sets:

K nown p := K nown p ∪
⎛

⎝
⋃

q∈Listen p

K nownq

⎞

⎠.

At the last round of any macro-round, p computes the inter-
section (instead of the union as in the previous rounds of the
macro-round) of the sets K nownq it has just collected. The
code of the translation is given below (see Algorithm 3).

Algorithm 3 Translation for space uniformity
1: Initialization:
2: Listen p ∈ 2V , initially Π

3: NewHOp ∈ 2V , initially ∅
4: K nown p ∈ 2V , initially {p}
5: Round r:
6: Sr

p :
7: send 〈 K nown p 〉 to all processes
8: T r

p :
9: Listen p := Listen p ∩ HO(p, r)

10: if r 	≡ 0 (mod f + 1) then

11: K nown p := K nown p ∪
(⋃

q∈Listen p K nownq

)

12: else
13: NewHOp := ⋂

q∈Listen p K nownq

14: Listen p := Π

15: K nown p := {p}

We fix a macro-round ρ and introduce some notation rel-
ative to ρ. Let r1, . . . , r f +1 denote the sequence of the f +1
rounds that form ρ. Recall that K (ρ) denotes the kernel of
macro-round ρ, i.e., K (ρ) = ⋂r f +1

r=r1 K (r).

We say that process p knows process s at round r if s ∈
K nown(r)

p . If s ∈ K nown(r)
p \K nown(r−1)

p , q ∈ Listen(r)
p ,

and s ∈ K nown(r−1)
q , then we say that p hears of s from q at

round r . Finally, process s is said to be good (at macro-round
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ρ) if s is known by all processes at round r f ; otherwise s is
bad. In other words, the set of good processes is defined by

Good =
⋂

p∈Π

K nown
(r f )
p .

Thus at line (13), every process computes a local approxima-
tion of the set of good processes.

We are going to prove that if K (ρ) contains at least n − f
processes, then at the end of any macro-round the NewHO’s
are all identical and contain K (ρ). For that, we start with
some preliminary assertions, where as previously, X (r)

p den-
otes the value of X p just at the end of round r , except for
X p = Listen p, X p = K nown p, and r = r f+1: in this case,

Listen
(r f+1)
p and K nown

(r f+1)
p denote the values of Listen p

and K nown p in round r f+1 just before lines 14 and 15,
respectively.

Lemma 2 K (ρ) = ⋂
p∈Π,r∈{r1,··· ,r f +1} Listen(r)

p .

Proof Immediate from the definition of Listen(r)
p . ��

Lemma 3 Any process p in K (ρ) is a good process.

Proof Let p be any process in K (ρ). By lines (15) and (11),
it follows that all processes know p at the end of round r1.
Moreover, each K nown p variable is non decreasing in each
macro-round. This shows that p is a good process. ��

Lemma 4 If process p hears of some process s at round rk,
then there exist k − 1 processes p1, . . . , pk−1, each different
from p and s, such that p1 hears of s from s at round r1,
p2 hears of s from p1 at round r2, . . ., pk−1 hears of s from
pk−2 at round rk−1, and p hears of s from pk−1 at round rk.
Moreover, processes p1, . . . , pk−2, and s are all in coK (ρ).

Proof Since p hears of process s at round rk , there exists
some process pk−1 such that pk−1 ∈ Listen(rk )

p and s ∈
K nown(rk−1)

pk−1 . Since Listen p is non-increasing, pk−1 ∈
Listen(rk−1)

p . This implies that pk−1 hears of s at round
rk−1 since p does not know s at this round. In turn, there
exists some process pk−2 such that pk−2 ∈ Listen(rk−1)

pk−1 ,

and s ∈ K nown(k−2)
pk−2 . From s ∈ K nown(rk−2)

pk−2 and s /∈
K nown(rk−1)

p , we deduce that pk−2 /∈ Listen(rk−1)
p . By

Lemma 2, we have pk−2 ∈ coK (ρ).
Step by step, we exhibit k−1 processes p1, . . . , pk−1 such

that for any index i , 1 ≤ i ≤ k − 1, s /∈ K nown(ri−1)
pi , s ∈

K nown(ri )
pi , and pi−1 ∈ Listen(ri )

pi .
For any index i such that 2 ≤ i ≤ k − 2, we have both

s ∈ K nown(ri−1)
pi−1 and s /∈ K nown(ri )

pi+1 .

Therefore, pi−1 /∈ Listen(ri )
pi+1 . By Lemma 2, we deduce that

pi−1 belongs to coK (ρ). Similarly, we have s /∈ K nown(r1)
p2 ,

and so s belongs to coK (ρ), too. From pk−2 ∈ coK (ρ),
it follows that all the processes p1, . . . , pk−2, and s are in
coK (ρ). ��
Lemma 5 If process p knows some bad process s at the end
of round r f +1, then p has heard of s by the end of the round
r f , i.e.,

s ∈ K nown
(r f +1)
p ∧ s /∈ Good ⇒ s ∈ K nown

(r f )
p .

Proof Let s be a bad process; so there exists some process q

such that s /∈ K nown
(r f )
q . Suppose for contradiction that p

hears of s at round r f +1. By Lemma 4, there are f processes
p1, . . . , p f each different from both p and s such that p hears
of s from p f at round r f +1, and processes p1, . . . , p f −1, and

s are all in coK (ρ). Since s /∈ K nown
(r f )
q , Listenq contains

neither p nor p f at this round. Therefore, p and p f are also
in coK (ρ), which contradicts the fact that coK (ρ) is of size
at most f . ��
Lemma 6 A process is good iff it is known at the end of
round r f by some process in the kernel, i.e., s ∈ Good ⇔
∃p ∈ K (ρ) : s ∈ K nown

(r f )
p .

Proof By definition, a good process is known by all pro-
cesses at round r f .

Conversely, let s be any process known by some process
p in K (ρ) at round r f . Assume, for the sake of contradiction,
that s is bad. Since p is in K (ρ), every process q receives a
message from p at round r f +1, and so K nownq contains s
at the end of round r f +1. By Lemma 5, we deduce that every
process already knows s at round r f . This contradicts that s
is a bad process. ��
Lemma 7 For any process p, at the end of round r f +1,
NewHOp is composed of all the good processes, i.e.,

NewHO
(r f +1)
p = Good.

Proof Obviously, we have Good ⊆ NewHO
(r f +1)
p .

Conversely, let s be any process in NewHO
(r f+1)
p ; s is

known at round r f by all the processes in Listen
(r f +1)
p , and

in particular by those in K (ρ) by Lemma 2. From Lemma 6,
it follows that s is a good process since K (ρ) is non-empty.

��
Lemma 7 says that all the NewHOp’s are equal after

f + 1 rounds, and so the collection of the NewHO’s sat-
isfies Psp_uni f at the end of each macro-round. Moreover,
Lemma 3 implies that the translation preserves kernels, and
so emulates P f

K ∧ Psp_uni f . Since E1 is clearly guaranteed,
we have proved the following theorem:

123



62 B. Charron-Bost, A. Schiper

Theorem 3 Algorithm 3 is a f + 1 translation of P f
K into

P f
K ∧ Psp_uni f , and so we have P f

K � P f
K ∧ Psp_uni f .

Combining the latter theorem with Proposition 4, we der-
ive a f + 1 round algorithm A such that the HO machine
(A,P f

K ) solves Consensus. Thus we check that at least for
nek machines, the strong termination requirement, namely
“every process eventually decides”, does not make the Con-
sensus specification harder to solve. Note that the first f
rounds of A are identical to those of the FloodSet algorithm
[29] which is a well-known Consensus algorithm devised for
synchronous systems with at most f crash failures. These
two algorithms only differ in round f +1: Algorithm 3 com-
putes the intersection of the K nown p’s instead of union in
FloodSet. Hence, substituting intersection for union just at
the last round is sufficient to guarantee a general agreement
among all processes under the only communication predicate
P f

K (without regularity).
Interestingly, if we substitute

NewHOp := NewHOp ∩ (∩q∈Listen p K nownq
)

for

NewHOp := ∩q∈Listen p K nownq

at line (13) in Algorithm 3, the resulting algorithm trans-
lates P f

K into P f
K ∧ Psp_uni f ∧ Preg . Considering that the

communication predicates P f
K and P f

K ∧ Preg are the HO
counterparts of synchronous systems with at most f send
omission failures and with at most f crash failures respec-
tively, we get an automatic procedure which both guarantees
space uniformity and masks send omissions into crash fail-
ures.

4.4 A two round translation for increasing time uniformity

We now describe a two round translation that increases time
uniformity in the sense that it emulates regular runs. This
translation can be viewed as a refinement of our first trans-
lation (Algorithm 1), with in addition a mechanism for the
transition from a macro-round to the next one which guaran-
tees regularity. The basic idea of this mechanism is at each
macro-round and for each process to compute an approxima-
tion of the kernel of the previous macro-round.

More precisely, each process p maintains a variable
Approx K p whose initial value is Π . At the end of round
2ρ, p sets

Approx K p :=
⋂

q∈HO(p,2ρ)

(
HO(q, 2ρ − 1) ∩ Approx K (ρ−1)

q

)
,

where Approx K (ρ−1)
q denotes the value of Approx Kq at

the end of the macro-round ρ −1. The heard-of set at macro-

round ρ for process p is now defined by:

NewHOp :=
⋃

q∈HO(p,2ρ)

(
HO(q, 2ρ − 1) ∩ Approx K (ρ−1)

q

)
.

The resulting algorithm is called Algorithm 4.

Algorithm 4 Translating no split rounds into regular rounds

1: Initialization:
2: Approx K p ∈ 2V , initially equal to Π

3: NewHOp ∈ 2V , initially empty

4: Round r = 2ρ:
5: Sr

p :
6: send 〈 Approx K p ∩ HO(p, r − 1) 〉 to all processes

7: T r
p :

8: Approx K p := Approx K p ∩(⋂
q∈HO(p,r) Approx Kq ∩ HO(q, r − 1)

)

9: NewHOp := ⋃
q∈HO(p,r) Approx Kq ∩ HO(q, r − 1)

Theorem 4 Algorithm 4 translates Pnospli t into Preg, and
so we have Pnospli t � Preg. Moreover, it preserves global
kernels.

Proof Condition E1 immediately follows from the code of
Algorithm 4, line 9. For the same reason, the algorithm pre-
serves kernels. We now prove E2. According to the code of
the algorithm, if x /∈ NewHO(ρ)

q , then for any s in

HO(q, 2ρ), we have x /∈ HO(s, 2ρ − 1) ∩ Approx K (ρ−1)
s .

Because of the no split predicate, for any process y,
HO(y, 2ρ) intersects HO(q, 2ρ), and so there exists s ∈
HO(y, 2ρ) such that x /∈ HO(s, 2ρ − 1) ∩ Approx K (ρ−1)

s .
Hence x /∈ Approx K (ρ)

y . It follows that for any process p,

x /∈ NewHO(ρ+1)
p . In other words, we have showed that

∀p ∈ Π : NewHO(ρ+1)
p ⊆

⋂

q∈Π

NewHO(ρ)
q ,

i.e., regularity holds.
Moreover, by definition of Approx K p, we easily get

∀p ∈ Π :
ρ⋂

r=1

K (2r − 1) ⊆ Approx K (ρ)
p .

It follows that Algorithm 4 preserves global kernels. ��
From the latter point, we derive the following corollary:

Corollary 4 ∀ f ∈ {1, . . . , n − 1} : P f
K � P f

K ∧ Preg.

Since the communication predicates P f
K and P f

K ∧ Preg

are the HO counterparts of synchronous systems with at most
f send omission failures, and synchronous systems with at
most f crash failures, respectively [22], Algorithm 4 pro-
vides a general method to convert synchronous algorithms
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tolerant of f crash failures into ones tolerant of f omission
senders.

Algorithm 4 is similar to the two round translation given by
Neiger and Toueg [33] to mask send omission into crash fail-
ures. The only difference between both lies in the processes
that are in charge of stopping information transmission: In
Neiger and Toueg’s algorithm, upon learning it is faulty at
some point, process p self censors for the rest of the compu-
tation whereas in Algorithm 4, p sends the same messages
but the other processes that detect p is faulty do not hear of
p anymore.

Algorithms 1 and 4 can be combined into a three round
translation that increases both space and time uniformity. In
this new translation, each process p inductively computes
NewHOp and Approx K p as follows:

NewHO(ρ)
p :=

⋃

q∈HO(p,3ρ)

(
∪s∈HO(q,3ρ−1)HO(s, 3ρ − 2) ∩ Approx K (ρ−1)

s

)
,

and

Approx K p :=
⋂

q∈HO(p,3ρ)

(
∪s∈HO(q,3ρ−1)HO(s, 3ρ − 2) ∩ Approx K (ρ−1)

s

)
.

In this way, the first f rounds of a synchronous system with at
most f crash failures can be implemented from an asynchro-
nous message-passing system with at most one crash failure.
This three round simulation is identical to the one given by
Gafni [22] from asynchronous atomic-snapshot shared mem-
ory systems: the last two rounds of the simulation actually
correspond to the two round adopt-commit protocol in [22].

4.5 Comparing communication predicates

In the previous sections, we saw several interrelationships
between some basic communication predicates. These rela-
tions and those that are directly derived from the implication
relations are illustrated in Fig. 1 as follows: there is a direct
edge from P to P ′ if P � P ′. We adopt the following nota-

tion: Pmaj
K = P [ n−1

2 ]
K , and

P(maj HO)∞ ::
∀r > 0, ∃r0 ≥ r,∀p ∈ Π : |HO(p, r0)| > n/2.

The dashed line represents the “Consensus line”: a commu-
nication predicate P is above the line iff Consensus is solv-
able under P . The figure is completed with the predicate
PLastV otingrc defined in Sect. 5.5.

5 Consensus and general HO machines

We now examine general HO machines, some with empty
kernel rounds, that solve Consensus. To do so, we first revisit
various classical Consensus algorithms devised for asyn-
chronous or partially synchronous systems. For coordina-
tor-based algorithms, we introduce a generalization of HO
machines, the Coordinated HO machines (or CHO machines
for short).

HO and CHO machine formalisms enable us to express
well-known Consensus algorithms in a fairly concise and
elegant way, and so to extract the algorithmic schemes on
which they are based. This not only gives some new insights
into these Consensus algorithms, but also allows us to design
new ones that are interesting in practice since they are cor-
rect under quite realistic conditions. Moreover, it is striking to
see how easy it is to determine simple conditions that ensure
the correctness of these algorithms from their HO or CHO
counterparts.

5.1 A Consensus algorithm à la Ben-Or: the UniformVoting
algorithm

First, we present a Consensus algorithm that to the best of
our knowledge, has not yet been described in the literature.
It can be viewed as a deterministic version of the Ben-Or
algorithm [1,35]. We call it the UniformVoting algorithm,
see Algorithm 5.

As for all the other algorithms described in Sect. 5, Uni-
formVoting is organized into phases.6 A UniformVoting phase
consists of two rounds. Every process p maintains a variable
x p containing a value in V , initially equal to p’s initial value.
Process p broadcasts x p at the first round of each phase, and
then adopts the smallest value it has just received. Then, p
votes for value v if it has not heard that some process has
started the phase with another value; otherwise, p does not
cast a vote. At the second round, p sends v or “?” to all,
accordingly. In the same message, it sends again the current
value of x p. If each message that p receives at the second
round contains a vote for v, then p decides v (this is why we
call this algorithm UniformVoting). If p receives some val-
ues v different from “?”, then it chooses one such value arbi-
trarily and adopts it for the next phase; otherwise, p adopts
the smallest value of the xq ’s it has just received.

We now argue that if no round is split, then no process
can make a bad decision (agreement). Then we prove that
termination is enforced by just one uniform round, which is

6 A phase consists of a fixed number of consecutive rounds. Basically,
there is no difference between a phase and a macro-round. We have pre-
ferred the term “macro-round” for translations because it seems us more
suggestive in this context, but here we use the classical terminology of
“phase”.
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Algorithm 5 The UniformVoting algorithm
1: Initialization:
2: x p := vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: Round r = 2φ − 1 :
5: Sr

p :
6: send 〈 x p 〉 to all processes

7: T r
p :

8: x p := smallest v received
9: if all the values received are equal to v then
10: votep := v

11: Round r = 2φ :
12: Sr

p :
13: send 〈 x p , votep 〉 to all processes

14: T r
p :

15: if at least one 〈 ∗ , v 〉 with v 	=? is received then
16: x p := v

17: else
18: x p := smallest w from 〈w , ? 〉 received
19: if all the messages received are
20: equal to 〈 ∗ , v 〉 with v 	=? then
21: decide(v)

22: votep := ?

guaranteed by the communication predicate:

P(uni f )∞ :: ∀r > 0, ∃r0 ≥ r,∀p, q ∈ Π2 :
HO(p, r0) = HO(q, r0).

Theorem 5 The HO machine consisting of the UniformVot-
ing algorithm and the predicate Pnospli t ∧ P(uni f )∞ solves
Consensus.

Proof Integrity is trivially satisfied.
The proof of the agreement condition relies on the fact that

if two processes p and q vote for v and v′ at the same phase,
then predicate Pnospli t ensures that v = v′. Moreover, pred-
icate Pnospli t also guarantees that if some process decides v

at round r = 2φ, then all the x p’s remain equal to v from
round r .

For termination, let r0 be a uniform round. There are two
cases to consider.

1. Round r0 is the first round of some phase φ0, i.e., r0 =
2φ0 − 1. Therefore at round r0, either all processes vote
for the same value v or no process votes.

2. Round r0 is the second round of some phase φ0, i.e.,
r0 = 2φ0.

In both cases, all the x p’s are equal at the end of round 2φ0,
and every process has decided at the end of round 2φ0 +2. It
follows that P(uni f )∞ , which is invariant by time translation
(cf. Sect. 2.1) and guarantees one uniform round, enforces
termination of the UniformVoting algorithm. ��

5.2 Coordinated HO machines

Numerous algorithms for Consensus are coordinator-based
(e.g., the Consensus algorithms proposed by Dwork

et al. [17], Chandra and Toueg’s algorithm [5], Paxos [27]).
The correctness of these algorithms is guaranteed by some
properties on coordinators: for example, termination in Pa-
xos requires that during some phase, all processes hear of the
coordinator of the phase. For such algorithms, we introduce
the Coordinated HO machine (or CHO machine for short)
for which algorithms refer to the notion of coordinators, and
predicates deal not only with heard-of sets, but also with
coordinators.

A CHO machine is a pair Mc = (A, P) much like the
ordinary HO machine. Reflecting the fact that the messages
sent by a process p in a round of a CHO machine do not
uniquely depend on the current state, but also on the iden-
tity of a coordinator, the message-sending function Sr

p is
no longer a function from statesp × Π to M but instead a
function

Sr
p : Π × statesp × Π −→ M.

Similarly, the state of process p at the end of a round does
not only depend on its current state and the collection of the
messages it has just received, but also on the identity of its
coordinator. So, the transition function T r

p is now a function

T r
p : statesp × (

MΠ
)∗ × Π −→ statesp

where
(
MΠ

)∗
denotes the set of partial vectors of elements of

M , indexed by Π . The functions (Sr
p)r>0 and (T r

p )r>0 define
the coordinated process p, and the collection of coordinated
processes is called a coordinated algorithm.

As for HO machines, at every round r , each process p
(1) applies the message-sending function Sr

p to the current
coordinator and the current state to generate the messages to
be sent, and (2) applies the state-transition T r

p to the current
state and the incoming messages. The combination of the
two steps is called a coordinated round, and p’s coordina-
tor at r is denoted Coord(p, r). Process p sets out to be its
coordinator if p = Coord(p, r).

We say that r is a uniformly coordinated round if

∀p, q ∈ Π : Coord(p, r) = Coord(q, r)

and r is well coordinated if

∀p ∈ Π : Coord(p, r) ∈ HO(p, r).

As we shall see in the next sections, uniformly and well
coordinated rounds play a key role for guaranteeing correct-
ness of coordinated Consensus algorithms.

A computation of a CHO machine is uniformly coordi-
nated from round r0 if any round r , r ≥ r0, is uniformly
coordinated; a computation is uniformly coordinated if it is
uniformly coordinated from the first round.

Usually, when algorithms are decomposed into phases,
every process keeps the same coordinator during each whole
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phase. The coordinator of process p during phase φ can thus
be denoted by Coord(p, φ).

Given a set of initial states, one per process, each run of a
CHO machine is not uniquely determined by the heard-of set
collection, but also by the coordinator collection according
to space and time, namely (Coord(p, r))p∈Π,r>0. A CHO
machine for Π consists of a coordinated algorithm A and
a predicate over both heard-of sets and coordinator collec-
tions, called a communication-coordinator predicate, which
is invariant by time translation. For example, we shall con-
sider CHO machines with the predicate:

∀r > 0, ∃r0 ≥ r,∀p, q ∈ Π2 :
Coord(p, r0)=Coord(q, r0)∧Coord(p, r0)∈HO(p, r0)

or equivalently,

∀r > 0, ∃r0 ≥ r,∀p, q ∈ Π2 :
Coord(p, r0) = Coord(q, r0) ∧ Coord(p, r0) ∈ K (r0).

Finally, the notion of what it means for a CHO machine
to solve a problem is similar to the one for an HO machine.

Similarly to the heard-of sets, the way processes deter-
mine the name of their coordinators is not specified in the
HO formalism: it may be the result of some computation (in
other words, the CHO machine is emulated by an ordinary
HO machine), or processes may use some external devices
(physical devices or oracles) that are capable of reporting
the name of a coordinator to each process. Most of the CHO
machines that we shall consider can be simulated by ordinary
HO machines, and so this generalization does not seem to
lead to a more powerful computational model (as explained
above, the basic motivation for introducing CHO machines
is to devise Consensus algorithms and to state conditions
for their correctness in a simpler way). In particular, we can
adopt an “off-line” strategy, usually called the rotating coor-
dinator strategy, which consists in selecting Coord(p, r) =
p1+r mod n for every process p in Π .

When Π = {p1, . . . , pn}. Note that fixing the rotating
coordinator strategy, any CHO machine reduces to an HO
machine.

With the rotating coordinator strategy, agreement on the
name of a coordinator is for free, that is every round is uni-
formly coordinated. On the other hand, the on-line strategy
that consists in selecting p’s coordinator in its heard-of set
provides well coordinated rounds for free (in the case heard-
of sets do not vary “too much” in time). A critical point is
to achieve rounds which are both uniformly and well coor-
dinated.

5.3 The CoordUniformVoting machine for Consensus

When looking closer at the UniformVoting machine, we may
think to ensure uniformity of one round, and so termination,

by the help of coordinators: at the beginning of each phase,
coordinators are in charge to make the x p’s values uniform.
More precisely, to each phaseφ, we add a preliminary round
in which every process p that sets out to be coordinator of
phase φ (i.e., p = Coord(p, φ)) broadcasts the value of its
variable x p. Upon receiving a message with value v from
Coord(q, φ), process q adopts this value for xq . Actually,
the additional round allows us to simplify the two rounds of
UniformVoting: each process p just sends its vote instead of
sending both its vote and the value of x p. This yields an algo-
rithm that we call CoordUniformVoting (see Algorithm 6).

Since the decision of one process at some round 2φ of
UniformVoting entails that all the x p’ s are equal, CoordUni-
formVoting still satisfies integrity and agreement. If at some
phaseφ0, all processes agree on some coordinator’s name c,
and this coordinator is in the kernel of φ0, then every pro-
cess hears of and adopts xc’ s value. In that case, all processes
decide on this value at the end of phase φ0. This proves the
following theorem:

Theorem 6 The CHO machine consisting of the CoordUni-
formVoting algorithm and the predicate that guarantees no
split round and uniformly and well coordinated phases infi-
nitely often solves Consensus.

This exemplifies how the use of coordinators transforms
the requirement of a non-trivial uniform round into the one of
agreeing on the name of some process in the kernel. Note that
agreement on the coordinator of a phase φ may be achieved
by a leader election algorithm. At that point, the question is
whether the elected process is actually in the kernel of round
3φ − 2.

Instead of using a leader election algorithm, we can adopt
the rotating coordinator strategy. We denote by CoordUni-
formVotingrc the resulting algorithm. With such a coordina-
tor strategy, having the leader in the kernel at some point in
computation is ensured by

∃φ0 > 0 :
n⋂

i=1

K (φ0 + i) 	= ∅.

Thus using the rotating coordinator strategy, we substitute
uniformity of one round in the UniformVoting machine for
some “temporal stability” guaranteeing a sufficiently long
period with a non-empty kernel.

Algorithm 6 can be simplified by observing that lines 9
to 16 can be removed, if at line 17 the value received is ass-
igned to votep (see Algorithm 7).

5.4 The DLS algorithm

The algorithms described up to now work correctly only if
some invariant properties for the HO’s are satisfied (e.g.,
Pnekrounds or Pnospli t ). Taking a closer look at these algo-
rithms, it turns out that the safety conditions of Consensus
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Algorithm 6 The CoordUniformVoting algorithm
1: Initialization:
2: x p := vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: Round r = 3φ − 2 :
5: Sr

p :
6: if p = Coord(p, φ) then
7: send 〈 x p 〉 to all processes

8: T r
p :

9: if some message 〈 v 〉 is received
10: from Coord(p, φ) then
11: x p := v

12: Round r = 3φ − 1 :
13: Sr

p :
14: send 〈 x p 〉 to all processes

15: T r
p :

16: if all the values received are equal to v then
17: votep := v

18: Round r = 3φ :
19: Sr

p :
20: send 〈 votep 〉 to all processes

21: T r
p :

22: if at least one 〈 v 〉 with v 	=? is received then
23: x p := v

24: if all the messages received are
25: equal to 〈 v 〉 with v 	=? then
26: decide(v)

27: votep := ?

Algorithm 7 Simplified CoordUniformVoting algorithm
1: Initialization:
2: x p := vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?

4: Round r = 2φ − 1 :
5: Sr

p :
6: if p = Coord(p, φ) then
7: send 〈 x p 〉 to all processes

8: T r
p :

9: if received 〈v〉 from Coord(p, φ) then
10: votep := v

11: Round r = 2φ :
12: Sr

p :
13: send 〈 votep 〉 to all processes

14: T r
p :

15: if at least one 〈 v 〉 with v 	=? is received then
16: x p := v

17: if all the messages received are
18: equal to 〈 v 〉 with v 	=? then
19: decide(v)

20: votep := ?

may be violated if there are some “bad” periods during which
these predicates do not hold. Thereby, such algorithms can-
not be used in systems with message losses (even very rare),
which considerably limits the scope of these Consensus algo-
rithms.

In a seminal paper [17], Dwork, Lynch, and Stockmeyer
showed how to cope with such bad periods, and designed
an algorithm, that we call DLS, which solves Consensus if
a “sufficiently long” good period occurs. The basic idea of
this algorithm is to satisfy safety conditions no matter how

badly processes communicate, that is even if many failures
occur in the system.

The DLS algorithm was originally described in an
HO-like style [17]. Rounds are grouped into phases, where
each phase φ consists of four rounds. The algorithm includes
the rotating coordinator strategy, and so each phase φ is led
by a unique coordinator. We refer the reader to [17] for the
complete description of DLS.

Dwork et al. [17] proved that their algorithm never vio-
lates integrity and agreement. Moreover, they showed that
it terminates if “there is a majority of correct processes, and
there exists some round GST, such that all messages sent from
correct processors at round GST or afterwards are delivered
during the round at which they were sent.” When shifting
GST after the last time a process crashes, the above condi-
tion actually corresponds to eventual space-time uniformity:

∃ GST > 0, ∃ Π0 s. t. |Π0| > n/2 :
∀p ∈ Π,∀r ≥ GST : HO(p, r) = Π0

which in terms of failure detectors coincides with ♦P [5].
As already mentioned in [17], this termination require-

ment can be drastically weakened: a single well coordinated
phase without “too many” transmission failures entails ter-
mination. Formally, the DLS algorithm is still correct when
replacing eventual space-time uniformity by the following
communication predicate:

∀φ > 0, ∃φ0 ≥ φ, ∃Π0 s.t. |Π0| > n/2 :
(∀p∈Π, ∀r ∈φ0 : HO(p, r)=Π0)∧

(
p1+φ0 mod n ∈Π0

)
.

Variant of DLS: Interestingly, the safety conditions of Con-
sensus, namely integrity and agreement, still hold for any
coordinator strategy, even when several processes lead the
same phase. In other words, the CHO extension of DLS, that
we denote CoordDLS, also satisfies integrity and agreement
whatever the communication-coordinator predicate we con-
sider. For termination, we just have to substitute the condition

(∀p, q ∈ Π2 : Coord(p, φ0) = Coord(q, φ0)) ∧
(∀p ∈ Π : Coord(p, φ0) ∈ Π0).

for the condition p 1+φ0 mod n ∈ Π0 in the above communi-
cation predicate. Thus this variant of DLS solves Consensus
under the condition that there exists some uniform phase7 φ0

whose kernel K (φ0) is a majority set, and which is led by a
single process (coordinator) in K (φ0).

7 By uniform phase, we mean that each round of this phase is uniform.
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5.5 A CHO algorithm “à la Paxos”

The DLS algorithm is based on the rotating coordinator par-
adigm, which ensures permanent agreement on the coordi-
nator, but as mentioned above, it supports a more flexible
coordinator strategy. The idea of using various policies for
determining coordinators has been introduced by Lamport in
the Paxos algorithm [27]. However, the idea is not followed
through to the end in the latter algorithm: the first round of
Paxos enforces the choice of a unique coordinator for the
remaining rounds of the phase, and so the “Consensus core”
in Paxos actually manages a single coordinator per phase.

We have observed here that Paxos is still safe even in
the presence of multiple coordinators in the same phase.
Indeed, multiple coordinators in the same phase can only pre-
vent casting a vote, since this requires a coordinator to get a
majority of (non-null) messages. By the majority condition,
at most one coordinator per phase is able to cast a vote. Thus
we design a new CHO algorithm, called LastVoting (Algo-
rithm 8), which follows the basic line of Paxos, but manages
possible multiple coordinators per phase. LastVoting is struc-
tured as Paxos, except the first round that is removed. This
is because LastVoting proceeds in numerically consecutive
phases, and so a phase automatically gets a chance to com-
plete. Note that the first two rounds of every phase in Paxos
are needed only when the coordinator changes. We always
remove the first of these two rounds. The second of these
two rounds is needed in LastVoting only when the coordina-
tor changes. Agreement on a single coordinator (also called
leader) is not achieved by the algorithm anymore, but is part
of the conditions that guarantee termination.

The Consensus core in Paxos shares many common fea-
tures with DLS: as for DLS, the coordinator of a Paxos phase
does not cast a vote and misses its turn if it does not receive
conclusive information from enough (namely a majority of
the) processes. This is the basic reason why DLS and Pa-
xos both tolerate link failures. On the other hand, the two
algorithms differ in the values of the coordinators’ votes. In
DLS, the coordinator of a phase votes for some value v if v

is a majority value (i.e., it has heard that at least n/2 pro-
cesses find v acceptable) whereas the coordinator of a Paxos
phase votes for the most recent value it has heard of. This is
why the coordinator of a Paxos phase can cast a vote (and
so can make a decision) even if the preceding round is not
uniform. In that respect, our LastVoting algorithm is similar
to Paxos.

In the following theorem, we show that LastVoting is alw-
ays safe (even in the presence of multiple coordinators at
some phases), and we exhibit a very simple condition that
enforces termination. Interestingly, the latter condition only
involves one phase, and the corresponding communication-
coordinator predicate is non-stable, contrary to the “Ω con-
dition”—classically supposed for Paxos termination—that

Algorithm 8 The LastVoting algorithm
1: Initialization:
2: x p ∈ V , initially vp {vp is the initial value of p}
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false
5: readyp a Boolean, initially false
6: tsp ∈ N, initially 0

7: Round r = 4φ − 3 :
8: Sr

p :
9: send 〈x p , tsp〉 to Coord(p, φ)

10: T r
p :

11: if p = Coord(p, φ) and
number of 〈ν , θ〉 received > n/2 then

12: let θ be the largest θ from 〈ν , θ〉 received
13: votep := one ν such that 〈ν , θ〉 is received
14: commitp := true

15: Round r = 4φ − 2 :
16: Sr

p :
17: if p = Coord(p, φ) and commitp then
18: send 〈votep〉 to all processes

19: T r
p :

20: if received 〈v〉 from Coord(p, φ) then
21: x p := v ; tsp := φ

22: Round r = 4φ − 1 :
23: Sr

p :
24: if tsp = φ then
25: send 〈ack〉 to Coord(p, φ)

26: T r
p :

27: if p = Coord(p, φ) and
number of 〈ack〉 received > n/2 then

28: readyp := true

29: Round r = 4φ :
30: Sr

p :
31: if p = Coord(p, φ) and readyp then
32: send 〈votep〉 to all processes

33: T r
p :

34: if received 〈v〉 from Coord(p, φ) then
35: decide(v)

36: if p = Coord(p, φ) then
37: readyp := false
38: commitp := false

requires uniformly and well coordinated phases permanently
from some point in the computation [7].

Theorem 7 The HO machine that consists of the LastVoting
algorithm and the communication-coordinator predicate:

∀φ > 0, ∃φ0 ≥ φ, ∃c0 ∈ Π,∀p ∈ Π :⎧
⎨

⎩

|HO(c0, 4φ0−3)|>n/2 ∧ |HO(c0, 4φ0−1)|>n/2
∧
(Coord(p, φ0) = c0) ∧ (Coord(p, φ0) ∈ K (φ0))

solves Consensus.

Proof The above communication-coordinator predicate enf-
orces termination of the LastVoting algorithm. Indeed, if the
predicate holds, the conditions of lines 17, 27, and 34 are all
true at phase φ0.

Integrity follows from the fact that the decision is on
votep, thatvotep is always set to one of the x p values received
(line 13), and that x p is only updated with votep received
(line 21).
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For agreement, let φ1 be the first phase at which some
process makes a decision. Let p be such a process and let v

be its decision value. Lines 27 and 31 imply that p’s coor-
dinator at phase φ1, denoted c, has received more than n/2
acknowledgements at round 4φ1 − 1 and vote(4φ1−1)

c = v.

Moreover, c has received more than n/2 non-null messages
at round 4φ1 − 3.

For any phase φ ≥ φ1, let Πφ denote the set of processes
that have updated their timestamp variables at least once since
phase φ1:

Πφ = {q ∈ Π : ts(φ)
q ≥ φ1}.

The heart of the proof is the following lemma, which says
that from phase φ1, each process q may barter the value of
xq only for v.

Lemma 8 At any phase φ ≥ φ1, the following holds:

1. Πφ is a majority set, i.e., |Πφ | > n/2.

2. For any process q in Πφ , we have x (4φ−2)
q = v.

Proof By induction on φ − φ1.
Basis: φ = φ1. Any process q in Πφ1 executes line (21), and
so has received a vote from its coordinator c′ =Coord(q, φ1).
Hence c′ casts a vote at round 4φ1 − 3, and so c′ receives
more than n/2 non-null messages at this round. Since each
process sends at most one non-null message at round 4φ1−3,
we have c′ = c. It follows that

x (4φ1−2)
q = vote(4φ1−3)

c = v.

Moreover, c receives more than n/2 acknowledgements, and
so more than n/2 processes execute line 21 at phase φ1. This
shows that Πφ1 is a majority set.
Inductive step: Suppose that φ > φ1, |Πφ−1| > n/2, and for

any q ∈ Πφ−1, x (4φ−5)
q = v. At phase φ, any process q in

Πφ−1 either lets tsq unchanged or sets tsq to φ. It follows
that Πφ contains Πφ−1, and so Πφ is a majority set.

Let q be any process in Πφ . We consider two cases.

1. Process q does not execute line 21 at phase φ. Then
ts(φ)

q = ts(φ−1)
q and x (φ)

q = x (φ−1)
q . It follows that q

belongs also to Πφ−1. The inductive hypothesis implies

that x (φ−1)
q = v.

2. Process q updates tsq and xq at phase φ. Let c′ =
Coord(q, φ). From lines 17, 18, and 20, it follows that c′
has casted a vote and vote(4φ−3)

c′ = x (4φ−2)
q . Therefore c′

has received more than n/2 non-null messages at round
4φ − 3. Since each process sends at most one non-null
message at this round, one of them has been sent by
a process in the majority set Πφ−1. Line 12 implies
that the largest timestamp received by c′ at round
4φ −3 is at least equal to φ1. From the inductive hypoth-
esis we derive that vote(4φ1−3)

c′ = v. Hence x (4φ−2)
q = v,

as needed. ��Lemma 8

Let p′ be a process that decides v′ at phase φ, and let c′
denote the coordinator of p′ at phase φ. By definition of φ1,
we have φ ≥ φ1. We are going to prove that v = v′. For that,
we proceed by induction on φ − φ1.

Basis: φ = φ1. Process c′ has necessarily received more than
n/2 acknowledgements at phase φ = φ1. Since each process
sends at most one such message per phase, we have c = c′,
and so

v′ = vote(4φ1−3)

c′ = vote(4φ1−3)
c = v.

Inductive step: Let φ > φ1 and assume that any decision
value at phases φ1, . . . , φ − 1 is equal to v. Process c′ has
definitely casted a vote for v′ at round 4φ − 1, and so more
than n/2 processes q set xq to v′ and tsq to φ at round 4φ−2.

Such processes share the same coordinator, namely c′. It fol-
lows that c′ has received more than n/2 non-null messages
at round 4φ − 3. By point (1) in Lemma 8, at least one of
them has been sent by some process in Πφ. From line 12 and

point (2) in Lemma 8, it follows that vote(4φ−3)

c′ =v. ��

Rotating coordinator: Similarly to CoordUniformVoting,
we can use the rotating coordinator strategy to determine
coordinators in LastVoting: we denote by LastVotingrc the
resulting algorithm. With such a coordinator strategy, the
existence of a uniformly and well coordinated phase is
ensured by the following communication predicate
PLastV otingrc :

PLastV otingrc :: ∃φ0 > 0 :
n⋂

i=1

K (φ0 + i) 	= ∅.

Observe that when (i) choosing the off-line strategy of the
rotating coordinator in LastVoting, and (ii) requiring that
the condition at line 11 always holds (which means that the
coordinator sends a vote in every phase, see line 18), the
resulting algorithm, denoted CT, corresponds to the Rotating
Coordinator algorithm described in [5] for solving Consen-
sus with the failure detector ♦S.

Because of point (ii), it turns out that CT is safe only
under some non-trivial invariant property of the heard-of
sets, namely the no split predicate Pnospli t . More precisely,
agreement may be violated if two coordinators receive mes-
sages from disjoint sets of processes (i.e., there is no process
heard by both). This point is not discussed in [5] because
the authors assume no link failure and a majority of cor-
rect processes, which guarantees Pmaj

HO , and so Pnospli t . If
this assumption does not hold, then the Rotating Coordina-
tor algorithm blocks forever, which is translated in the HO
model by the fact CT is not safe.8 The failure detector ♦S or

8 At two places in each phase, processes in the Rotating Coordinator
algorithm wait for at least n/2 messages to advance to the next round.
In the HO model, advancing from one round to the next is automatic,
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the predicate P♦nek play a role only for the termination con-
dition of Consensus. Obviously, the notion of failure detec-
tors makes no sense in the context of link failures. However,
our remark shows that basically, the Rotating Coordinator
algorithm does not tolerate link failures, and more generally
dynamic failures. To make it safe in the presence of such fail-
ures—which is a quite reasonable requirement—, it is suffi-
cient just to add the test “number of 〈ν , θ〉 received > n/2”
at line 11.

5.6 A non-coordinated algorithm without HO invariant

The DLS and the LastVoting algorithms show that, if we resort
to coordinators, Consensus can be solved without invariant
properties for the heard-of sets, i.e., communication predi-
cates of the form:

P(�C) :: ∀r ≥ 0 : C holds at r,

where C is a predicate over the heard-of sets at a given round
(e.g., Pnekrounds or Pnospli t ). This naturally leads us to ques-
tion whether Consensus is solvable without both (i) invariant
properties for the HO’s and (ii) coordinators. As we shall
show below, the answer is yes if there exist rounds in which
heard-of sets have a membership larger than 2n/3 (Algo-
rithm 9). We leave the question open in the case heard-of
sets are only majority sets.

For that, we design an HO algorithm that we call One-
ThirdRule (Algorithm 9). A similar algorithmical schema is
used in the first round of [3], in [35], and in the fast rounds of
Fast Paxos [28]. Each phase of the OneThirdRule algorithm
consists of one single round. Safety conditions of Consen-
sus, namely integrity and agreement, are always satisfied: if
some process decides v at line 10 of round r , then in any
round r ′ ≥ r , only v can be assigned to any x p, and hence
only v can be decided. Liveness is ensured by the following
condition:

∃r0 > 0, ∃Π0 s.t. |Π0| > 2n/3,∀p ∈ Π :
(HO(p, r0)=Π0)∧(∃rp >r0 : |HO(p, rp)| > 2n/3).

The first part, namely the existence of some uniform round
r0 with an enough large kernel, makes the system “space
uniform” in the sense that at the end of round r0, all pro-
cesses adopt the same value for x p. The second part of the
condition forces every process p to make a decision at the
end of round rp. These observations establish the following
result:

Theorem 8 The HO machine consisting of the OneThird-
Rule algorithm and the communication predicate P(C0)∞ ,

and so is not under the control of processes. This is why executions of
the Rotating Coordinator algorithm that block (because some process
does not eventually hear of a majority of processes) are translated in the
HO model into unsafe executions of the CT algorithm.

where C0 holds at round r0 if

∃ Π0 s.t. |Π0| > 2n/3,∀p ∈ Π : HO(p, r0) = Π0,

solves Consensus.

Algorithm 9 The OneThirdRule algorithm

1: Initialization:
2: x p := vp {vp is the initial value of p }

3: Round r:
4: Sr

p :
5: send 〈 x p 〉 to all processes

6: T r
p :

7: if |HO(p, r)| > 2n/3 then
8: x p := the smallest most often received value
9: if more than 2n/3 values received are equal to x then
10: decide(x)

Note that, contrary to all the algorithms we have described
up to now, a decision is possible in just one round: if all the
initial values are identical9 and few transmission faults occur
at the beginning (i.e., C0 holds at round 1), then every process
decides at the end of the first round. Hence, the OneThird-
Rule algorithm which is a very simple algorithm that does
not require any coordinator election procedure, may be quite
efficient. Furthermore, the condition for its correctness is sat-
isfied in many real systems. Indeed, one uniform round and
“not too many” transmission faults (i.e., heard-of sets with
a cardinality greater than 2n/3) in some subsequent round
is sufficient to entail decision. This may seem to be a strong
condition in the classical context of permanent and static
failures, such as crash failures, but it is a realistic assumption
in systems with transient failures (e.g., crash recovery). For
all these reasons, we think that it would be very interesting
to develop this solution in many real applications requiring
Consensus among processes.

5.7 Summary

Table 2 summarizes the various HO and CHO Consensus
algorithms described in this section, with their correctness
requirements. Because of time invariance (cf. Sect. 2.1), the
corresponding communication predicates guarantee condi-
tions on rounds that must hold infinitely often, but not nec-
essarily permanently, at least for the last four algorithms.
The latter solutions are quite relevant in practice, since one
can observe that real systems alternate between “bad” and
“good” periods. Note that some of these requirements cap-
ture conditions that in the past have been expressed in terms
of failure detectors, requiring conditions to eventually hold
forever, and thus suitable for permanent failures only.

9 In the context of Atomic Broadcast, messages can sometimes be spon-
taneously ordered, which translates into identical initial values for Con-
sensus.
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Table 2 HO and CHO Consensus algorithms and their correctness conditions with communication predicates

Algorithm Predicate for safety Predicate for liveness

UniformVoting no split rounds ∀r > 0, ∃r0 ≥ r : r0 is uniform

CoordUniformVoting no split rounds ∀φ > 0, ∃φ0 ≥ φ : φ0 is uniformly and well coordinated

CoordUniformVotingrc no split rounds ∀φ > 0, ∃φ0 ≥ φ : ⋂n
i=1 K (φ0 + i) 	= ∅

CoordDLS none ∀φ > 0, ∃φ0 ≥ φ :

⎧
⎪⎪⎨

⎪⎪⎩

φ0 is uniform

K (φ0) is a majority set

φ0 is uniformly and well coordinated

LastVoting none ∀φ > 0, ∃φ0 ≥ φ :
{ ∀p ∈ Π,∀r, s.t. 4φ0−3 ≤ r ≤ 4φ0 : |HO(p, r)| > n/2

φ0 is uniformly and well coordinated

LastVotingrc none ∀φ > 0, ∃φ0 ≥ φ :
{ ∀p ∈ Π,∀r, s.t. 4φ0 < r < 4(φ0 + n) : |HO(p, r)| > n/2

⋂n
i=1 K (φ0 + i) 	= ∅

OneThirdRule none ∀r > 0, ∃r0 ≥ r : r0 is uniform and |K (r0)| > 2n/3

6 Conclusion

The paper proposes a new computational model for fault-
tolerant distributed systems, which is suitable for describing
benign failures in a unified framework. Apart from allow-
ing concise expressions of Consensus algorithms, the model
overcomes the limitations of the traditional approaches by
getting rid of two basic principles—independence of syn-
chrony degree and failure model; notion of faulty compo-
nent—on which previous models are all based. In particular,
our approach allows us to handle (1) transient failures and
(2) failures that hit all the components of the system (links
and processes). By contrast, classical models are limited to
static faults both in time and space.

As we have observed, a second key point of the HO model
is to make sporadic conditions sufficient to solve Consensus,
in contrast to the classical models obtained by “augmenting”
asynchronous systems with external devices (like failure
detectors [5], or other oracles). Indeed, in such augmented
asynchronous systems, only stable properties—i.e., proper-
ties that once they hold, hold forever—can be usefull for
solving problems like Consensus. In the HO formalism, we
can give a precise meaning to the statement “the system works
correctly for long enough”, and we prove that such sporadic
conditions are sufficient to make Consensus solvable whereas
in augmented asynchronous models, Consensus requires sta-
ble properties of the type “eventually and forever the system
behaves correctly”.

Besides, it is striking to see how, by removing the barrier
between synchrony degree and failure model, the HO for-
malism enables us to give direct proofs of important results
in fault-tolerant distributed computing. In this way, we can
unify results for synchronous and asynchronous systems, and
give a simple proof of the weakest predicate that makes Con-
sensus solvable under some fault bounds.

In this paper, we dealt with benign failures only, but the HO
model can be extended to handle more severe faults. Indeed,
we pursue our approach in a sequel paper [2] where we show
how to cope with value faults: messages may be corrupted,
i.e., at any round r , the message received by process q from
p may be different of the message that p ought to send to
q. This novel framework covers the classical Byzantine fail-
ures [34] as well as the dynamic transmission faults studied
in [37,38]. Thus, we derive new Consensus algorithms toler-
ating both benign and value faults, be they static or dynamic,
permanent or transient. Besides, it would be worth extend-
ing the notion of translation introduced in Sect. 3 to the HO
model with value failures, and studying the connection with
the translations of Neiger and Toueg [33] from Byzantine to
benign failures in synchronous systems.
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