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Abstract. Nowadays, crowds of virtual characters are used in many do-
mains such as neurosciences, psychology, and computer sciences. Since as
human beings, we are natural experts in human being representation and
movement, it makes it that much harder to correctly model and animate
virtual characters. This becomes even more challenging when consider-
ing crowds of virtual characters. Indeed, in addition to the representation
and animation, there is the mandatory trade-off between rich, realistic
behaviors and computational costs. In this paper, we present a crowd en-
gine, to which we introduce and extra layer which allows its characters
to produce gaze behaviors. We thus enhance crowd realism by allowing
the characters composing it to be aware of their environment and other
characters and/or a user.

1 Introduction

Real-time crowd simulation has become a topic of increasingly high interest.
Virtual crowds are used in many domains ranging from the movie or gaming
industries to neurology and psychology. Simulating real-time crowds is a very
challenging topic. First, as humans, we are natural experts when it comes to
human representation and animation. It makes it that much harder to create
realistic virtual characters, both in aspect and movement. In addition, dealing
with crowds of characters rises a mandatory trade-off between rich and realis-
tic representations and behaviors, and computational costs. Individual character
animation may provide realistic results but is computationally expensive. Con-
versely, global crowd behavior design is much faster but results in a loss of
character individuality.

We believe that an important aspect which can greatly enhance crowd sim-
ulation realism is for the characters to be aware of their environment, other
characters and/or a user. This can partly be achieved with the navigation and
path planning algorithms present in our crowd engine.

In this paper, we propose a method, integrated in the crowd simulation
pipeline, to obtain more advanced behaviors than what navigation can provide.
To add attentional behaviors to crowds, we are confronted to two issues. The
first one is to detect the points of interest for characters to look at. The second
one is to edit the character motions for them to perform the gaze behavior.
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Fig. 1. Examples of gaze behaviors for virtual crowd characters.

2 Related Work

2.1 Real-Time Crowd Simulation

Simulating crowds in real time is a challenging task that is usually divided into
the following topics: rendering, navigation, and behavior.

To render large crowds, the best approach is to use a level-of-detail ap-
proach [1]: high quality rendering techniques are used for virtual humans close
to the camera, while faster, less accurate methods are exploited at farther dis-
tances. Many solutions use impostors for their efficiency. Impostors are 2D an-
imated images, mapped onto a quad formed by 2 triangles. One pioneer work
in this domain was achieved by Dobbyn et al. [2]: they used pre-computed rigid
meshes in front of the camera, and switched seamlessly to impostors for more
distant characters. Later, Millan and Rudomin [3] presented a solution combin-
ing impostors and instanced geometries, maximizing the use of the GPU. More
recently, Kavan et al. [4], presented a virtual human new level of detail, called
polypostor : they are composed of a small set of 2D polygons, and animated by
displacing their vertices. To avoid crowds of cloned entities, much work has been
achieved on color variety, or how to modulate the colors of body parts for each
instance of a same characters [5, 2, 6]. A recent study [7] has demonstrated that
variety at the color level has much more impact on the user than varying the
animations solely.

In the domain of navigation and behavior, many approaches have been stud-
ied to efficiently simulate large crowds. The pioneer work of Reynolds [8, 9] pre-
sented simple rules to easily steer individuals for performing basic actions, such as
“seek”, “flee”, etc. Other important branches of study on crowd navigation were
introduced: approaches can be Physics-based [10, 11], sociology/psychology-
based[12, 13], example-based [14–16], and hybrid [13, 17].

2.2 Simulation of Attentional Behaviors

Attention Models The synthesis of human vision and perception is a complex
problem which has been tackled in many different ways. Models of synthetic
vision based on memory have been developed for the navigation of characters
[18, 19]. Other proposed models relied on bottom-up, stimulus-driven rules [20,
21] and saliency maps [25–28]. Similarly, much work has been conducted in the
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simulation of visual attention and gaze in Embodied Conversational Agents [22–
24]. On a different note, [29] described an eye movement model based on saccade
empirical models and statistical models of eye-tracking data, and [30] proposed a
head-neck model based on biomechanics. All these methods give very convincing
results but are prohibitive in terms of computational times or not applicable to
crowd simulations.

Motion Editing A large category of motion editing techiniques use analytic
Inverse Kinematics (IK) [31, 32]. In this domain, [33] proposed a method to edit
a pre-existing animation to satisfy a set of user defined constraints for human like
figures. [34] extended this method to remove footskate from motion captured an-
imations. [35] used Kalman filters and a set of rules to assign varying importance
to a set of tasks which they then solved with a dedicated IK solver. [36] pro-
posed a hierarchical Cyclic Coordinate Descent algorithm to deal with spacetime
constraints for human-like figures. These analytic methods are dedicated to the
positionning of end-effectors, whereas we are interested in controlling the final
orientation of the eyes, head, and spinal joints over time. Several other methods
use Jacobian based IK solvers to edit motions [37, 38]. While these methods are
generic enough to possibly use any kind of constraints, the use of Jacobian in-
version causes prohibitive computational costs that are not compatible with our
framework.

3 System Overview

Our crowd engine is composed of 3 main elements, illustrated in Figure 2: the
variety component, the navigation component, and the real-time component.
The variety and navigation components are processed off-line, before launching
the simulation, while the real-time component represents our pipeline, which is
run at each frame of the simulation.

The variety component takes care of the visual appearance of pedestrians
composing the crowd: it generates the human instances, vary their color, shape,
and height. This component is also responsible for generating all the animations
that will be used at runtime. Many locomotion animations are generated at vari-
ous speeds with a locomotion engine (see next section), and some quieter actions,
such as talking, standing, sitting, are hand-designed. Variations are applied to
these animations, e.g., hand on the hip, in the pocket, and finally, they are all
stored in a dedicated database that is later uploaded at runtime.

The navigation component is responsible for analyzing and structuring the
environment. From the geometry of an environment, we create a navigation
graph [39, 40], which is then used to compute many paths for pedestrians to
follow. Semantic information can also be input in the navigation graph to locally
trigger special behaviors in the crowd.

Finally, the real-time component is our main pipeline. It is composed of 4
steps, which are successively processed as follows:
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– The Scaler applies scores to each vertex of our navigation graph in order to
know which level of detail is applied to which humans.

– The Simulator navigates each individual towards its next waypoint, using
different algorithms, depending on the score obtained in the Scaler.

– The Animator has to update the posture of each virtual human. Once again,
depending on the score obtained by each virtual human, the animation pro-
cess is different.

– The Renderer first takes care of computing the shadows for the characters as
well as the scene. In a second pass, it displays the crowds and environment.

Fig. 2. system overview

The attentional behaviors are added to the walking character motion after
the Animator part of the pipeline, in the Gaze module depicted in Figure 2. The
first step is to define the interest points, i.e. the points in space which we consider
interesting and which therefore attract the characters’ attention. We use several
different methods to do this depending on the result we want to obtain:

– The interest points can be defined as regions in space which have been de-
scribed as interesting (see Section 4). In this case, they will be static.
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– They can be defined as characters evolving in space. All characters may
then potentially attract the attention of other characters as long as they are
in their field of view. In this case, we have dynamic constraints, since the
characters move around.

– They can be defined as a user if we track a user interacting with the system.
A coupled head- and eye-tracking setup allows us to define the position of
the user in the 3D space as depicted in Figure 3. Characters may then look
at the user.

Fig. 3. A user is tracked in a CAVE environment. His position and orientation is used
to interact with the characters walking in the virtual environment.

The second step to obtain the desired attentional behaviors consists in com-
puting the displacement map which allows for the current character posture to
achieve the gaze posture, i.e. to satisfy the gaze constraints. Once the displace-
ment map has been computed, it is dispatched to the various joints composing
the eyes, head, and spine in order for each to contribute to the final posture. Fi-
nally, this displacement is propagated in time in order for the looking or looking
away motions to be smooth, natural, and human-like.

4 Crowd Engine

As introduced in Section 3, our crowd engine is divided into 3 important ele-
ments: the variety and navigation components, that are pre-processed, and the
real-time pipeline, which is run at each frame of the simulation.

Variety. To generate thousands of individuals, a naive approach is to design as
many humans as there are people in the crowd. Obviously, such an approach is
impossible, since it would require armies of designers, and an infinite memory.
The common and more reasonable approach is to use human templates. A human
template is a virtual human defined by its skeleton, its mesh, which is skinned
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to the skeleton, and its set of textures. To create large crowds, a small group of
human templates are instantiated several times. For each instance, one texture
is randomly chosen within the template’s available set. Then, color and shape
variety techniques are applied, so that instances of a same template and using
the same texture are still different [6]. To generate many locomotion animations
for each human template, we use a motion-capture-based locomotion engine [41,
42]. This allows us to obtain adapted locomotion cycles that will be used at
runtime to animate the characters. Using an IK system, upper body variations
are also applied to further vary the crowd: the characters are thus able to have
a hand in their pocket, or next to their ear to make a phone call. Note that
the generated animations are skeletal, i.e., they can be applied to meshes that
are deformed at runtime. In our crowd engine, we use such meshes only at the
forefront of the camera, for the animation process is very costly. The second and
third levels of detail we use, i.e., static meshes and impostors, are pre-computed
and saved in the database too.

Navigation. Given an environment geometry, a navigation graph can be com-
puted [39, 40]: the vertices of the graph represent circular zones where a pedes-
trian can walk freely without the risk of colliding with any static object com-
posing the environment. Graph edges represent connections between vertices. In
the environment, they are viewed as intersections (or gates) between two circu-
lar zones (vertices). From a navigation graph, path requests can be issued from
one vertex to another. Using an algorithm based on Dijkstra’s, we are able to
devise many different paths that join one point of the environment to another
one. It is possible to provide the navigation graph with a second model of the
environment, which usually has a much more simple geometry, annotated with
information. This second model is automatically analyzed, its meta-information
retrieved, and associated to the corresponding vertices. Using this technique
allows to make virtual humans look at specific points in the environment, for
instance. We further detail this technique in Section 5.

Real-Time Pipeline. The first stage of our pipeline is the Scaler. The Scaler
receives in input the navigation graph, and the view frustum of the camera.
Based on this data, each vertex of the graph, and thus each pedestrian situated
inside this vertex, is provided with two scores. The first one determines which
navigation algorithm should be used for simulating the characters, but is beyond
the scope of this paper. The second score determines which level of detail (LOD)
will be used to render the characters in the vertex: deformable mesh (skeletal
animation skinned at runtime), static mesh (pre-computed animations of the
same mesh), or impostors (2D images representing frames of animation of the
character). The second stage, the simulator, employs the first score to make
each virtual human progress on its path. The Animator uses the second score to
correctly update each pedestrian’s position:

– If the LOD is the highest, the Animator needs to update the skeleton pos-
ture of human instances. The skinning of the mesh is later achieved in a
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shader, at the Renderer phase. With this high-level representation, it is also
possible to add more detailed animations, that can be either pre-computed,
or procedural. Procedural gaze variations are inserted in the Gaze part of
the pipeline, after the Animator, but only to those pedestrians having the
highest LOD. We further detail how this is done in the next Section.

– If the LOD is lower (static mesh or impostor), the job of the Animator
is much different: it consists in retrieving the next frame of animation of
the LOD, i.e., a static and already deformed mesh, or a 2D image of the
same posture, and send it to the Renderer. Note that with such LOD, it is
impossible to provide humans with procedural animations. The gaze system
presented below is thus limited to deformable meshes. This limitation is
however not too troubling, because characters using these representations
are farther from the camera, and thus, won’t be visible since they will be
either hidden by other characters or too far away for the user to be able to
see their eyes. Moreover, it is possible to define the range from the camera
at which the highest LOD will remain.

Fig. 4. Various examples depicting the crowd simulation engine at work.

The last stage of the pipeline is the Renderer. It takes care of rendering the
environment and the crowd, as well as their respective shadows. Once again, the
rendering process for a human instance varies, depending on the LOD it uses. If
the representation is a deformable mesh, then the skeleton posture is sent to the
GPU, where the deformation of the mesh will be achieved. If it is a static mesh,
the deformation has been pre-computed and the work is limited to rendering the
vertices of the mesh. Finally, in the case of impostors, the shader receives the
correct coordinates of the texture that should be mapped onto two triangles.

Figure 4 depicts the results obtained with this crowd engine. It enables us to
realistically simulate hundreds of characters in real-time.

5 Gaze Behaviors For Crowds

In the previous section, we explained the overall crowd engine pipeline. In the
present section, we explain how we adapt the character motions to obtain the
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desired attentional behaviors. As mentioned, this motion adaptation takes place
at the end of the Animator part of the pipeline, in the Gaze module depicted in
Figure 2.

5.1 Interest Points

The first step is to define where and when each character should look. As men-
tioned in Section 3, the method to do this varies depending on the setup and
the results we want to obtain.

The first is to use the meta-information present in the environment model
as described in Section 4. This meta-information allows to describe the various
environmental elements as “interesting” to look at. If this is the case, they will
attract character attention. Characters will perform the gaze behavior in prox-
imity of these elements and as long as they are in their field of view. These types
of interest points are always at the same position in the scene; they are static
elements.

The second method we use to define interest points is by assigning them
to other characters in the scene. We may assign different levels of interest to
different characters. In this way, some of them will attract attention more than
others. As for the environmental elements, characters will attract the attention
of other characters when in their proximity and as long as they remain in their
field of view. These types of interest points are moving entities; they are therefore
dynamic.

Finally, the third type of interest point is the user. A person using our system
may be tracked using a coupled head- and eye-tracker. In this way, we can track
the user position and gaze in the crowd engine 3D space. In this case, the user
will be the interest point. Moreover, since we can track the user’s gaze, the user’s
interest points (where he looks at) may become interest points for the characters
in the environment. They will thus seem to unconsciously imitate the user. They
will seem to try and find out what the user is looking at.

5.2 Motion adaptation

In order to obtain convincing results, we then have to adapt the character mo-
tions in order for them to look at the interest points. Since the characters and
the interest points may be dynamic, we have to compute the joint displacements
to be applied to the base motion at each timestep.

The skeletons we use are composed of 86 joints. Our method adjusts 10 of
them: 5 spinal cord joints, 2 cervical joints, 1 head joint and 2 eye joints, in
order for the characters to align their gaze to the interest points. By considering
only this subset of the full skeleton, we greatly reduce the complexity of our
algorithm. This allows us to have very small computational times and thus to
animate a large number of characters.

Our method consists of two distinc phases. The first one computes the dis-
placement maps to be applied to the various joints in order to satisfy the gaze
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constraints. We name this spatial resolution. The second component is the tem-
poral resolution. This allows to propagate the displacement maps over an auto-
matically defined number of frames onto the original motion. We thus ensure a
smooth and continuous final movement.

Fig. 5. Various examples depicting the types of possible gaze behaviors.

Spatial Resolution The purpose of the spatial resolution is to find a dis-
placement map that modifies the initial motion in order to satisfy a given gaze
contraint At each timestep, and for each deformable mesh in the crowd, if there is
an active constraint, we launch an iterative loop starting with the bottom of the
kinematic chain (lumbar verterbrae) and ending with the top of the kinematic
chain (the eyes). At each iteration, we calculate the total remaining rotation to
be done by the average eyes position (global eye) to satisfy the constraint. How-
ever, since the eyes are not the only joints to adjust, we dispatch this rotation
to the other recruited joints.

To determine the contribution of each joint to the complete rotation we take
inspiration from the work of [43]. The authors proposed a set of formulae to
define the angle proportions to be assigned to the spine joints depending on
the type of rotation to be done (pitch, yaw or roll). We use the formula they
propose for the linearly increasing rotation distribution around the vertical axis.
In our model, the rotations around the sagittal and frontal axes are very small
in comparison to those in the vertical axis. We therefore keep the same formula
for all types of rotations:

ci = (−i − n)(
2

n(n − 1)
) i = 1...9 (1)

where n is total number of joints through which to iterate and i is the joint
index with i = 1 the lowest lumbar vertebra and i = 9 the global eye. At each
step, ci determines the percentage of remaining rotation to be assigned to joint
i. The total rotation to be done by each joint for the character to satisfy the
constraint may then by calculated by spherical linear interpolation (slerp) using
these contribution values.
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The remaining rotation to be done by each eye joint is then computed in
order for them to converge on the interest point. Moreover, for interest points
in the 30◦ composing the central foveal area, only the eye joints are recruited.
For the 15◦ farther on each side composing the central vision area, only the eye,
head, and cervical joints are recruited. Small movements therefore do not recruit
the heavier joints.

Temporal Resolution The time it takes to look at something or someone
depends, amongst other things, on where it is placed in the field of view. It will
take less time to perform the gaze movement to look at something just in front
than at something in the periphery.

When initiating a gaze movement, we therefore define how long it will take
to perform it. We first define the upper and lower bounds for the movement
duration. The lower bound is set to 0, which corresponds to no movement, i.e.
the character already facing the interest point. The upper bound is set to 2
seconds, which corresponds to a 180◦ movement. We then simply interpolate
between the two to obtain the duration of the gaze movement.

Moreover, this duration is different if considering the eye joints, the head and
cervical joints, or the joints composing the remainder of the spine. The duration
for the head to move is 2 times smaller than for the spine. Similarly, the duration
for the eyes to converge is 5 times smaller than for the head. In this way, we allow
for the lighter joints to move more rapidly than the others. The eyes therefore
converge on the interest point well before any of the other joints attain their
final posture. Our final movement therefore allows for the eyes to converge on
the interest point and then recenter with respect to the head as the remainder
of the joints move to satisfy the constraint.

As previously mentioned, some of the gaze constraints may be dynamic, i.e.
in the case where the constraint is either another moving character or the system
user. We therefore recompute the displacement map to satisfy the constraint at
each timestep. We can assume that the constraint’s position from one frame to
the next one does not change much. We therefore recompute the rotation to
be done at each frame but maintain the total contribution ci to apply which
we calculated before the initiation of the gaze motion. However, we reset the
contributions to 0 if the gaze constraint changes. More specifically, when the
current constraint location is farther than a pre-determined threshold from the
constraint location at the previous frame. The newly calculated rotations to
be performed by the joints to attain the new constraint’s position are then
distributed over the appropriate number of frames.

Finally, if the gaze behavior is deactivated, either because the character has
been looking at a point of interest for too long or if there are no more interest
points, the character will look back in front of him.

The added gaze motions strongly increase the human-like behaviors of crowd
characters. By adding this functionality to the crowd simulation engine, we ob-
tain a crowd of characters which seem to be aware of their environment and of
other characters, as depicted in Figure 5.
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6 Conclusion

In this paper, we have described how to improve the realism of a crowd simulation
by allowing its pedestrians to be aware of their environment and of the other
characters present in this environment. They can even seem to be aware of
a user interacting with this environment. We have explained the various setups
which allow for crowd characters to gaze at environment objects, other characters
or even a user. Finally, we have described a method to add these attentional
behaviors in order for crowd characters to seem more individual.
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