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Abstract. The need for nodes to be able to generate their own address
and verify those from others, without relying on a global trusted author-
ity, is a well-known problem in networking. One popular technique for
solving this problem is to use self-certifying addresses that are widely
used and standardized; a prime example is cryptographically generated
addresses (CGA). We re-investigate the attack models that can occur in
practice and analyze the security of CGA-like schemes. As a result, an
alternative protocol to CGA, called CGA++, is presented. This protocol
eliminates several attacks applicable to CGA and increases the overall
security. In many ways, CGA++ offers a nice alternative to CGA and
can be used notably for future developments of the Internet Protocol
version 6.

1 Introduction

Cryptographically generated addresses (CGA) is a technique that creates a fixed
size address by hashing the address owner’s public key with the help of a cryp-
tographic hash function. This technique enables the address owner to assert
address ownership by creating a relation between the address and the address
owner’s public/private key pair.

An example where this technique can be used is in Internet Protocol version
6 (IPv6) addresses. The 64-bits of these addresses known to be the interface
identifier are then generated with the help of CGA as proposed by Aura [1,2].

The main advantage of CGAs is that they are self-certified; a trusted third
party or a public-key infrastructure (PKI) is not needed to generate the IPv6
address or to verify other addresses. Self-certified addresses are extensively used
in protocols such as Secure Neighbor Discovery [3], Shim6 [4] and the IPv6
mobility support [5]; they offer features such as duplicate address detection and
proof of address ownership.

The idea of cryptographically generated addresses first appeared in the child-
proof authentication for mobile-IPv6 (CAM) protocol by O’Shea and Roe [6];
this was later improved by Nikander [7]. An alternative method was proposed
by Montenegro and Castelluccia [8] under the name “statistically unique and
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cryptographically verifiable addresses” (SUCV). Finally, the actual model was
presented by Aura [1] and appears as an RFC [9].

The drawback of the early proposals of CGA, namely the small number
of bits of the address to accommodate the result of the cryptographic hash
function, is solved by Aura in [1] by using hash extensions. With this technique,
the resistance of the scheme against impersonation is increased at the cost of
increasing the time needed for address generation while keeping the necessary
operations required for the verification constant. This is realized by scaling,
with the help of a relation defined by the security parameter, the effort needed
to break the system in the future due to the progress of technology. This implies
an increase in the cost of address generation; the exponential growth over time
of computing power compensates this increase.

To the best of our knowledge, no work has been published, besides the RFC
documents and the unpublished work in [2], on the analysis of CGA since the
original proposal [1]. As also observed in the original proposal, CGA is suscep-
tible to a global time-memory trade-off attack that eliminates the effect of hash
extensions in the long run at the cost of storage. Such an attack is assumed to be
impractical in [1]. Moreover, due to lack of authentication, CGA is vulnerable to
a replay attack where an attacking node is capable of sniffing and storing signed
messages from a target node and replay them later.

In this work, we present a detailed security/efficiency analysis of CGA and
a proposal to solve security problems related to self-certifying address gener-
ation and verification in CGA. This protocol, mainly based on the ideas of
CGA, is called CGA++. In the analysis part, a novel security framework is
provided, which enables us to evaluate the security of CGA-like schemes, includ-
ing CGA++. In this design, we mitigate the global time-memory trade-off attack
by reducing its effect to a specific network. Furthermore, we introduce digital
signatures in order to overcome the lack of authenticity in CGA and to increase
the security when no hash extensions are used. CGA++ offers an alternative to
CGA and can be used in practice for future development of IPv6.

The organization of the paper is as follows. Section 2 introduces the prelimi-
naries for IPv6 addresses including the system model and the necessary notation
throughout the paper. In Section 3 and 4, we provide the specification and the
analysis of CGA, respectively. We introduce the design of CGA+4+ in Section 5
followed by its analysis in Section 6. The compatibility and the applications of
CGA-++ are discussed in Section 7. We conclude the paper in Section 8.

2 Preliminaries

The objective for using CGA is to generate self-certified IPv6 addresses. For the
sake of clarity, we adhere to the conventions and the notations from [10, 11].
IPv6 addresses are 128-bit data blocks constructed by the concatenation of
two 64-bit words: subnet prefix and interface identifier [10]. The former is located
on the most significant 64-bit, which is used to determine the nodes’ location in
the Internet topology. The latter, being comprised of the least significant 64-bits,



sec u, g

Subnet Prefix

64 bits Interface Identifier (64 bits)

Fig. 1. Format of an IPv6 address. The parameters sec, u and g are placed at the most
significant three, seventh and eighth bit of the interface identifier, respectively.

acts as an identity of the node whose generation process is the main target of
this work. See Fig. 1 for the general overview of IPv6 addresses.

In the address format, there are several parameters in the interface identifier,
which have special semantics. The first parameter set is comprised of the v and
g bits, located in the seventh and the eighth bit of the interface identifier. The
combination © = g = 1 is unused for other purposes and suggested by Aura
to indicate the use of CGA [1]. The other value in the interface identifier is the
security parameter sec, a three-bit user defined parameter used to determine the
length of the hash extension in the protocol. In CGA, this parameter is used to
scale the relation in the hash extension. We provide the necessary notation used
in the rest of the paper in Table 1.

In the original RFC [9], the proposed hash function is SHA-1 [12]. The re-
cently discovered weaknesses of SHA-1 led to a modification of the CGA specifi-
cation to enable the support of alternative hash functions [13]. Therefore, in this
paper, we denote the hash function used in the protocol as H and assume this
hash function to be ideal: it is optimally collision, preimage and second-preimage
resistant.

We assume, throughout the paper, that (mobile) nodes are capable of dealing
with Internet protocols and are also equipped with and capable of calculating
basic cryptographic algorithms. Moreover, we assume an increase of performance
of mobile nodes following Moore’s law. Yet, of course, there will always be a
market for low-end devices. But it is unlikely for them to be isolated and mobile,
and even if they are, they will not be security sensitive.

For the attacker, we ignore the time required to generate valid public/private
key pairs as these can easily be computed and stored, if necessary, in an initial-
ization phase.

3 CGA Specification

The actual protocol for self-certified address generation and verification for IPv6
using CGA appears in RFC 3972 [9], which is based on the ideas from [1]. In
this section, we recall the specification of CGA. CGA uses a technique called
hash extension, which is realized by the security parameter sec; this parameter
linearly scales the number of bits used in the hash extension by imposing 16 x sec
many bits to zero in the hash value denoted by Hash?2.



Data Notation Length
IPv6 Address IPv6 128-bit
Subnet Prefix SP 64-bit
Interface Identifier |Interface ID 64-bit
Public-Key Kpuws Variable length
Private-Key Kopriv Variable length
Digital Signature Sign Variable length
Modifier m 128-bit
Collision Count cc 8-bit
Security Parameter sec 3-bit
u,g flags u, g 1-bit each

Table 1. Notation and data sizes of the various fields used in this article.

The main idea behind CGA is to trade efficiency for security. When gen-

erating a new address, a node has to satisfy certain constraints, i.e. the hash
extension, which decreases the efficiency of the address generation. Because an
attacker needs to do this extra work as well, the level of security increases com-
pared to the setting where no hash extensions are used. The verification, on the
other hand, requires a constant amount of time and does not suffer from an
efficiency decrease. This ensures that an attacking node needs to perform all the
computational work, thereby preventing the denial of service of verifiers.

Address Generation. The procedure for generating an IPv6 address using
CGA is illustrated in Fig. 2 which can be described as follows.

1.

Set the modifier to a random 128-bit value. Select the security parameter
sec and set the collision count to zero.

Concatenate the modifier, 64 + 8 zero bits, and the encoded public-key.
Execute the H algorithm on the concatenation. The leftmost 112 bits of
the result are Hash2.

Compare the 16 x sec leftmost bits of Hash2 with zero. If they are all zero
(or if sec = 0), continue with Step (4). Otherwise, increment the modifier
and go back to Step (2).

Concatenate the modifier, subnet prefix, collision count and encoded public-
key. Execute the H algorithm on the concatenation. The leftmost 64 bits of
the result are Hashl.

Form an interface identifier by setting the two reserved bits v and g in Hash1
both to 1 and the three leftmost bits to sec.

Concatenate the subnet prefix and interface identifier to form an 128-bit
IPv6 address.

If an address collision with another node within the same subnet is detected,
increment the collision count and go back to step (4). However, after three
collisions, stop and report the error.
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Fig. 2. Detailed data flow of the address generation in CGA.

Verification of Address Ownership. The verification of address ownership is
realized by the execution of the following steps. Given the IPv6 address, collision
count and the modifier,

1.

4

Check that the collision count is 0,1 or 2 and that the subnet prefix is equal
to the subnet prefix of the address. The CGA verification fails if either check
fails.

Concatenate the modifier, subnet prefix, collision count and the public-key.
Execute the H algorithm on the concatenation. The 64 leftmost bits of the
result are Hashl.

Compare Hashl with the interface identifier of the address. The differences
in the two reserved bits v and g and in the three leftmost bits are ignored.
If the 64-bit values differ (other than in the five ignored bits), the CGA
verification fails.

Concatenate the modifier, 64 4+ 8 zero bits and the public-key. Execute the
‘H algorithm on the concatenation. The leftmost 112 bits of the result are
Hash2.

Read the security parameter sec from the three leftmost bits of the interface
identifier of the address. Compare the 16 X sec leftmost bits of Hash2 with
zero. If any one of these bits is nonzero, CGA verification fails. Otherwise,
the verification succeeds. If sec = 0, verification never fails at this step.

Analysis of CGA

4.1 Design Rationale

In order to have a better comprehension, we explain the design rationale of
CGA by going through the components inside CGA, especially the computation
of Hash1l and Hash2.



Computation of Hash2. As stated by Aura in [1], the computation of Hash2
is introduced in order to gain security at the expense of efficiency. In CGA, the
values that are used in Hash2 are the modifier and the public-key. The subnet
prefix and the collision count are set to zero.

The idea is to use some common parameters in the domains of Hashl and
Hash2. As Hash2 requires special constraints, the most efficient way to satisfy
this is to impose random data in the domain of Hash2. The modifier is used for
this purpose, it allows the node to comply with the conditions imposed by the
security parameter. The public-key is needed in this computation to assign this
modifier to this node. If the public-key, or any other property specific to address
generator, is not used in the computation of Hash2, an attacking node could
simply send a verification request to this node and retrieve its modifier value.
This would remove the need to compute a valid modifier for the attacker.

It was a design decision of Aura [1] not to include the subnet prefix in the
computation of Hash2 for the sake of efficiency. A mobile node travels frequently
from network to network and thus needs to regenerate its address over and over
again. Assuming a mobile node does not have much computation power, it would
be infeasible to search for a modifier every time it changes network. When not
including the subnet prefix in the Hash2, a mobile node has to regenerate its
Hashl, where the subnet prefix occurs, at the cost of only one hash function
evaluation. Following the same reasoning, the collision count parameter is set to
zero as well. This avoids computing Hash2 again when a collision of the interface
identifier is detected after the creation of the Hashl.

Computation of Hashl. In the computation of the Hashl, all parameters are
used. In the domain of Hashl, the subnet prefix is used in order to avoid a time-
memory trade-off attack as it would be possible to store valid addresses from
each network. Collision count is added to the domain to overcome the scenario
where a duplicate address is generated. Finally, the modifier is used as a “proof”
that the node generated a valid Hash2 and the public-key for the same reasons
as in the Hash2.

4.2 Security Framework

Assume a “CGA-like” protocol design is to be assessed for security with a focus
on the address generation and verification part. More precisely, a protocol is
considered which makes use of two different hash function evaluations where the
output of one is not used as the input for the other. A formal model can be useful
for this task, especially for assessing the security of the considered protocol. Such
a model is proposed in this section and is used in the remainder of this paper to
state facts about the security and efficiency of such “CGA-like” protocols.

Let us denote the time needed for a node to generate an address as T¢, to
verify an address as Ty and to impersonate an address as T4. These times are
stated as a function of T} and T5, which denote the time to compute Hashl and
Hash2, respectively and are expressed in hash function evaluations. The number



of available bits in the address, which is the number of (truncated) output of
Hashl, is denoted by I. We denote the number of bits on which we put a special
condition by s, the (truncated) output of Hash2; here [, s € IN.

Address Generation. Address generation for a legitimate node is not expected
to exceed 2° - Ty in order to meet the conditions of Hash2, plus 77 to generate
the address. The cost of address generation T is therefore:

Te =2°-Th+Th. (1)

Address Verification. To verify an address, the conditions on Hash2 need
to be validated, representing a duration T5. If this validation is successful, the
address needs to be checked in time 77. The time needed for verification, Ty, is

Ty =Ty + To. (2)

Impersonation. In order to impersonate a node, an attacker can proceed in
two ways: by first satisfying the constraints on Hashl and then on Hash2 or vice
versa. Beginning with Hash1, the attacker must first perform a second-preimage
attack on Hashl, which is expected to take no more than 2¢ - T} hash function
evaluations to find another valid parameter set to match the interface identi-
fier. Once fulfilled, the conditions on Hash2 for the generated modifier should
be satisfied, which happens with probability 27° for an ideal hash function.
The total cost Cy p, for impersonation, when beginning with Hashl, becomes
Cam, = (2 Ty + 1) - 28

Starting from Hash2, the conditions on Hash2 are met at a cost of up to
2%.T5 hash function evaluations. Next, Hash1 is created and verified if it collides
with the target address. The probability of hitting this specific Hashl is 27
Therefore, the total cost C4, m,, when beginning with Hash2, becomes Cy g, =
(2° - Ty + Ty) - 2'. An attacker can choose either of these values in order to
minimize his attack cost. Hence, the time for impersonation, T4, in a generic
model becomes

T4 =min(Ca g, Cam,) =min((28- Ty +Tp) - 25, (2° - T +T1) - 2Y.  (3)

4.3 Security of CGA

In order to assess the security of CGA, we begin with discussing the basic prin-
ciples of cryptographic hash functions: collision, preimage and second-preimage
resistance. This allows us to evaluate certain bounds in order to attack the
scheme, assuming that the underlying cryptographic hash function has no known
weaknesses. With the help of the birthday- and the brute-force attack, finding
a collision and a (second) preimage require O(v/2") and O(2") hash function
evaluations, as the digest size n tends to infinity, respectively.



A collision attack is not very powerful in this setting as it means being able to
generate two nodes with the same address without having any control over the
generated address. The preimage attack is equivalent to the second preimage
attack since all the domain parameters of the hash function are known. The
second preimage-attack is the most powerful attack model for this setting. It is
equivalent to being able to generate another valid CGA parameter from a given
address: i.e. impersonation. This attack model and its cost are treated in the
following where the proof follows directly from the cost needed to perform a
second-preimage attack when not using hash extensions (i.e. sec = 0) and our
security framework for the case sec > 0 (cf. Section 4.2).

Lemma 1. Given a network, assume the addresses are generated and verified
by CGA with security parameter sec. Then, the number of operations required
for the impersonation of a specific node is

959 if sec =0,
Ty = { 209+16xsec 4 glbxsec  if] < goe < 3,
259+16xsec | 959 otherwise.

hash function evaluations.

This shows that the resistance of CGA against impersonation is mainly domi-
nated by the increasing values of the security parameter sec.

A Time-Memory Trade-Off Attack on CGA. As observed in [1], a time-
memory trade-off attack can be mounted on CGA in order to impersonate a
node. Details of the time and memory complexities of this attack are not stated
in [1] and they are assumed to be impractical. The following lemma explains this
more specifically.

Lemma 2. Given a number of k > 0 networks each of size approximately 2™
nodes, for 0 < i < k, assume the nodes use CGA for address generation and
verification. Using a time-memory trade-off attack, an attacker needs at most
T calls to the hash function and comparisons of the hash-values in order to
impersonate one random node in the network of size 2. When the number of
attacks A — oo, the number of calls T per attack is asymptotically bounded by

T < 259—min(ni). (4)

In other words, T is independent of the security parameter sec. The storage
requirement is 233~ gigabytes, where min(n;) denotes the smallest value
n;.

Proof. Assume a database is given with valid modifier values m;, j € IN, such
that the condition on Hash2 is satisfied. When targeting a network of size 2™,
a second-preimage for Hashl of a random node is expected after 2°9=™ hash
function evaluations. The cost C, the number of hash function evaluations to
create the database of modifier values, is expected to take no more than C =



259+16xsec—n:  The database is independent of the used subnet prefix and can

be computed once and used for all subsequent attacks in the future. Then, the
259+16><sec7ni

average cost T per attack becomes T = 2°97" + — a1 By selecting the
smallest network size among n;, which maximizes the attack cost, the number
of hash evaluations becomes asymptotically, when the number of attacks go
to infinity, 7' < 299~™in(m) The storage cost is 128 - 259~min(m) bits which
corresponds to 2337min(":) gigabytes. 0
Note that this attack cannot be used to impersonate a specific node. Instead,
it can be used to impersonate a random node in the network. In order to illustrate
the required storage for such an attack, assume an attacker wants to impersonate
an address of a random node in a network of size 2'0, this requires 233716 =
217 gigabytes = 128 terabyte of storage. This is significant but not infeasible.

Authentication. One of the known limitations of CGA, as mentioned in [1],
is the possibility for an attacking node to sniff and store signed messages from
a target node. Once this is done, the attacker obtains the public-key and the
modifier; with these values it can create a valid address using a different subnet
prefix. Sending forged, correctly signed messages is computationally infeasible
but by replaying the sniffed messages, an attacker can mislead legitimate nodes
by convincing them that he owns an address.

This type of attack can also be used to generate an address that already
exists in the network. That is, for a specific security parameter sec, the attacker
can collect many valid modifier and public-keys together with a certain amount
of signed messages from these nodes. Next, a subnet prefix is selected, and with
the help of the stored values, a search is started for a hit in one of the addresses.
This helps to reduce the complexity of the impersonation attack.

Another instance of such an attack is to search for nodes with a non-zero col-
lision count. In the address generation of CGA, the nodes generate an address
and look for a collision in the network. If there is a node with the generated
address, the new node has to generate a new address by increasing the collision
count. Hence, the attacker can look for a non-zero collision count in the network
and use the valid modifier and public-key of this node to generate an existing
address in the network with collision count zero. This helps the attacker to gen-
erate a duplicate addresses; he could even replay signed messages. Nevertheless,
the probability of having a collision in the addresses is low and this attack fully
depends on the non-zero collision count. Still, as the mobility property leads
to the need to generate new addresses for the nodes while travelling from one
network to another, the probability of address collision increases.

4.4 Efficiency of CGA

In CGA, the address generation time T is equal to T = 2'6%%¢¢ 4 1, which
is dominated by the security parameter, assuming sec > 0, whereas the address
verification time Ty is constant, namely equal to two. To illustrate the actual



computational demand, we make the optimistic assumption that a node has
computing power comparable to a modern CPU used in a workstation. Our
simple implementation of CGA, which uses the open source library OpenSSL
[14], computes approximately 285 digests/sec/CPU on a modern workstation
(AMD64). The estimated time needed to comply with Hash2 requirements are
provided in the following table

sec value 1 2 3 4 5 6
Required Time|[0.2 secs|3.2 hrs|24 yrs|1.6 - 10% yrs|1.0 - 10! yrs|6.8 - 10 yrs

These results correspond with the performance results from [1]. This table shows
that the required time for generating a valid address with a high security pa-
rameter sec is currently impractical. However, it will be feasible in the future
due to the exponential growth in the computational capabilities of the nodes. A
possible solution to the efficiency problem for the current use of larger sec values
is to generate these values off-line or search them in parallel, just as presented
in the time-memory trade-off attack.

5 CGA++ Specification

Design Rationale. The main design rationale behind CGA++ follows from the
fact that even if CGA offers a good protocol for self-certified address generation
and verification, it has some limitations. Therefore, our main goal is to fix these
weaknesses without losing too much efficiency. Considering the adoption and the
extensive future use of CGA, one of our main goals is to adhere as closely as
possible to CGA, thus offering an easy transition from CGA to CGA++.

As mentioned, a global time-memory trade-off attack is feasible at the cost of
memory. In order to prevent this global attack the first obvious modification is to
include the subnet prefix in the computation of Hash2. The verifier should make
sure to check full IPv6 addresses and not the so-called link-local addresses as
specified in IPv6 [10]. This has some efficiency loss; nevertheless, we believe this
to be tolerable. Furthermore, an extra authentication mechanism is introduced
by using digital signatures inside the verification process, preventing nearly all
the mentioned attacks against CGA. This has the additional advantage that
when no hash extensions are used (sec = 0) the security of the protocol is in-
creased, compared to CGA. As a result, we propose a more secure, easy to adopt
and compact alternative to CGA.

Address Generation. The general procedure of generating IPv6 address us-
ing CGA++ is depicted in Fig. 3 (note the similarities with Fig. 2). It can be
described as follows.

1. Choose security parameter sec € {0,...,7}. Set the modifier to a random
128-bit value and set the collision count to zero.



Pick random m
select sec
set CC =0

T Increment m
Yes
PSP — (0 r(><>

Address Mask u, g <_- ‘
@ ot |« (70) <] Kyalsan(sPm O
No \@ T

Increment CC

‘ Subnet Prefix ‘Intcrfacc ID ‘

Fig. 3. Detailed data flow of the address generation in CGA++.

2. Concatenate the modifier, subnet prefix and the encoded public-key. Execute
the hash algorithm on the concatenation. Check the most significant 16 x sec
bits of the result. Continue until 16 X sec bits are zero by incrementing the
modifier.

3. Sign the modifier, collision count and subnet prefix with the private-key
corresponding to the public-key used.

4. Concatenate the encoded public-key and the signature. Execute the hash
algorithm on the concatenation. The most significant 64 bits of the result
are Hashl.

5. Form an interface identifier by setting the two reserved bits in Hashl both
to 1 and three bits to sec.

6. Concatenate the subnet prefix and interface identifier to form an 128-bit
IPv6 address.

7. If an address collision is detected, increment the collision count and go back
to step (3). However, after three collisions, stop and report the error.

The address generation of a node begins with satisfying the constraints in the
hash extension as in CGA. The collision count is omitted, instead of being set
to zero, which makes the input to the hash function smaller. Once this is satis-
fied, the address owner signs the subnet prefix, modifier and the collision count
with his private-key. The public-key is concatenated to the signature and the
corresponding interface identifier is obtained by hashing this concatenation.

Verification of Address Ownership. After the address generation has been
performed, the verification of the address ownership is realized by the execution
of the following steps. Given the IPv6 address, the signature and the public-key
of the node,

1. Verify the signature and obtain the modifier, collision count and subnet
prefix.



(a) Benchmark results, in cycles, of the RSA (b) Benchmark results of the

public-key signature system. SHA-1 hash function.
z-bit Generate | Sign | Verify Hashing|| Cycles |Cycles per
signature||a key pair|59 bytes|59 bytes x bytes ||per byte| message
512 3.9-107 |1.1-10%|5.3-10° 8 137.75 | 1,102
768 8.0-107 |2.0-10°]6.0-10° 64 25.62 | 1,640
1,024 || 1.4-10% {2.9-10%|7.0-10° 576 10.14 | 5,841
1,536 || 3.2-10% |6.7-10°(1.0-10° 1,536 8.91 [13,686
2,048 || 6.8-10% |1.2-107|1.3-10° 4,096 8.45 [34,611

Table 2. Measurements taken from ECRYPT benchmarking of cryptographic systems
[15]. These median results are from runs on a AMD Athlon 64 X2 (2.0 GHz).

2. Check that the collision count is 0, 1, or 2 and that the subnet prefix is equal
to the subnet prefix of the address (not the link-local address but the full
IPv6 address). The CGA++ verification fails if either check fails.

3. Read the security parameter sec from the three leftmost bits of the interface
identifier of the address (sec is an unsigned 3-bit integer).

4. Concatenate the modifier, subnet prefix and the encoded public-key. Execute
the hash algorithm on the concatenation. Check if the most significant 16 x
sec bits of the result are zero. The CGA++ verification fails if the check
fails.

5. Concatenate the encoded public-key and the signature. Execute the hash
algorithm on the concatenation and compare the output with the interface
identifier. The differences in the two reserved bits and three bits for sec are
ignored. If the 64-bit values differ (other than in the five ignored bits), the
CGA++ verification fails.

The address verification starts with the usual checks, similar to CGA, in the
IPv6 address of the node to be verified. The signature is verified, then the mod-
ifier, collision count and subnet prefix are extracted. Note that, compared to
CGA, CGA++ does extra authenticity checks using the signature of the address
generator; in order to verify an address only the signature, public-key and the
address are needed.

6 Analysis of CGA++

6.1 Security of CGA++

We analyze CGA++ in a similar fashion as we did for CGA in Section 4. With
the help of digital signatures, we eliminate the lack of authentication in the
verification process. Including the subnet prefix in both domains of Hashl and
Hash2 reduces the scope of a time-memory trade-off attack to a specific network.
The following lemma introduces the computational demand for impersonation,
again the proof follows from our security framework (cf. Section 4.2).



RSA z-bit||Signature time| Logsz of the [|Verification time| Logs of the
key signature time verification time
512 707 9.5 35 5.1
768 1338 10.4 40 5.3
1024 1910 10.9 47 5.5
1536 4432 12.1 69 6.1
2048 7812 12.9 89 6.4

Table 3. Signature and verification time expressed in SHA-1 hash function evaluations
for different RSA key sizes.

Lemma 3. Given a network, assume the addresses are generated and verified by
CGA++ with security parameter sec. Let S denote the time required to compute
a signature expressed in hash function evaluations and assume S < 2'6. Then,
the number of required hash function evaluations needed for impersonation of a
specific node is

T, — 259 (1+9) if sec =0
AT\ 299 18xsee L 959(1 4+ §) if sec > 0.

6.2 Attack Costs and the Efficiency of CGA++

In order to make a comparison with CGA, the timing results to measure the
computational cost of signing messages in terms of hash function evaluations
from ECRYPT Benchmarking of Cryptographic Systems (eBACS) [15] are used.
From now on, we assume the use of the RSA [16] public-key signature scheme
because this is the default in the RFC [9]. Note that CGA++ is independent
from the signature scheme used. The benchmark data regarding measurements
of the signature scheme are stated in Table 2(a) for different key sizes and the
benchmarks on the same architecture using the SHA-1 hash digest are stated in
Table 2(b).

Address Generation. Due to the use of digital signatures, moving from CGA
to CGA++, T; increases from 1 to (1 +5) and T» remains equal to 1. This
increase in time is only significant when sec = 0 as Tg = 2'6%%¢¢ 4 § + 1.
Assuming the node uses a 1024-bit RSA key, the time increases from one hash
function evaluations in CGA to T3 =~ 2199 hash function evaluations in CGA++
(see Table 3). For sec > 0, the time increase is negligible as this is dominated
by the time required to compute the hash extensions.

Address Renewal. In CGA++, the address renewal time is equivalent to the
time needed for address generation to resist the global time-memory trade-off
attack. This is a drawback compared to the constant amount of time needed
by CGA. Assume a mobile node does not have much computation power, say



five times less compared to a more powerful machine. The address renewal time
is less than a second when using sec = 1. When sec > 1, the values of sec
which are currently impractical (cf. Section 4.4), we anticipate the fact that the
performance of mobile nodes (capable of performing cryptographic operations)
will increase accordingly in the future following Moore’s law, which would reduce
the efficiency problem significantly (cf. Section 2).

Address Verification. In both CGA and CGA++, address verification takes
a constant amount of hash function evaluations. In CGA, Ty, = 1, whereas
in CGA++ this amount is increased with a signature verification: Ty, = 1 +
S. Fortunately, the signature verification time is shorter compared to the time
needed to sign a message, but it still consumes the same number of CPU cycles
as 47 hash function evaluations when using 1024-bit RSA keys, see Table 3.
This constant increase is tolerable considering the efficiency of evaluating hash
functions in practice.

Impersonation. The time needed for impersonation in CGA++ is roughly
equivalent to the time needed in CGA when sec > 1, not taking the possibility
of mounting the time-memory trade-off attack into account for CGA, see Lemma
1 and 3. The increase of time needed for impersonation, due to the use of digital
signatures, becomes negligible with respect to the hash extension time. However,
when no hash extensions are used, the digital signature time is significant. As-
suming the use of 1024-bit RSA keys, an attacker would need 2°° hash function
evaluations using CGA, whereas this value increases to 2699 in CGA++.

6.3 Comparison of CGA++4 with CGA

Table 4 summarizes the comparison between CGA and CGA++. The overall
efficiency decreases when moving from CGA to CGA++. The time needed to
generate a new and verify a current address is increased by a constant amount
of time, whereas the time needed to renew an address increases exponentially
when hash extensions are used. The security of CGA++ is improved compared
to CGA. The global time-memory trade-off attack is no longer possible, increas-
ing the security level against impersonation attacks. Moreover, an additional
authentication mechanism is introduced by using digital signatures inside the
protocol. The constant amount of loss in efficiency and gain of security, when
no hash extensions are used, are due to the additional computation needed for
signing and verifying digital signatures.

7 Compatibility and Applications

To facilitate its adoption, it is desirable to design a protocol that is compatible
with the current schemes. Hence, when designing CGA++, one design crite-
rion was to adhere to CGA as closely as possible. CGA offers features for pro-
tocols that require self-certified address generation and verification, where the



I cca CGA++

Time to generate a new address when s =0 1 1+ 209
Time to generate a new address when s > 0[216%¢ 4 1|216%5 4 1 4 2109
Time to verify an address when s = 0 1 14255
Time to verify an address when s > 0 2 2 4258
Impersonation time when s = 0 259 09-9
Impersonation time when s > 0 259 | 289H16xs 4 969.9
Time to renew the address when moving

to a different network when s =0 1 142109
Time to renew the address when moving

to a different network when s > 0 1 210%s 4 1 4 2109
Resistance against the global

time-memory trade-off attack No Yes
Authentication mechanism inside

the verification protocol No Yes

Table 4. Comparison between CGA and CGA++ for IPv6 using a 1024-bit RSA key.
All timings are expressed in hash function evaluations. The parameter sec = s is the
security parameter used for hash extensions.

nodes are assumed to be capable of signing messages as they are equipped with
public/private-key pairs. Therefore, our main contribution to the current design,
using digital signatures, does not harm the compatibility of CGA++ because the
rest of the protocol is nearly the same as CGA.

The Secure Neighbor Discovery [3], Shim6 [4] and IPv6 mobility support
protocol [5] are the main protocols using CGA. The common feature of these
protocols is to use CGA to prove address ownership and continue to sign addi-
tional data with the corresponding private key of the CGA. This is supported
by CGA++ as well.

8 Conclusion

In this work, we have presented a detailed security/efficiency analysis of CGA
together with a proposal to solve some security problems and limitations related
to self-certifying address generation and verification in CGA. This new protocol,
which is very similar to and based on the ideas of CGA, is called CGA++. The
global time-memory trade-off attack, which eliminates the effect of hash exten-
sions in the long run for CGA, is no longer possible. CGA++ has an efficiency
drawback in that the address renewal costs as much as address generation. How-
ever, we believe that this is tolerable; the computational capabilities of mobile
nodes (able to perform cryptographic operations) increase with the progress of
technology and the current used hash extension values are still practical. As
another improvement, we have introduced the use of digital signatures in the
address generation and verification process, which provides authentication in



the protocol and eliminates the effect of replay attacks. Although this leads to
an increase in time required for address generation and verification, it increases
the security of the system, especially when no hash extensions are used. We be-
lieve that, in many ways, CGA++ is a nice practical alternative to CGA, e.g. in
IPv6.
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