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On the Finite Sample Performance of the 
Nearest Neighbor Classifier 
Demetri Psaltis, Robert R. Snapp, and Santosh S. Venkatesh 

Abstruct-The finite sample performance of a nearest neigh- 
bor classifier is analyzed for a two-class pattern recognition 
problem. An exact integral expression is derived for the m-sam- 
ple risk R,  given that a reference m-sample of labeled points is 
available to the classifier. The statistical setup assumes that the 
pattern classes arise in nature with fixed a priori probabilities 
and that points representing the classes are drawn from Eu- 
clidean n-space according to fixed class-conditional probability 
distributions. The sample is assumed to consist of m indepen- 
dently generated class-labeled points. For a family of smooth 
classconditional distributions characterized by asymptotic ex- 
pansions in general form, it is shown that the m-sample risk R,,, 
has a complete asymptotic series expansion 

m 

R ,  -&, -t C c,m-'/" ( m  -+ CO), 
k = 2  

where &, denotes the nearest neighbor risk in the infinite-sam- 
ple limit and the coefficients ck are distributiondependent 
constants independent of the sample size m. This analysis thus 
provides further analytic validation of Bellman's curse of dimen- 
sionality. Numerical simulations corroborating the formal re- 
sults are included, and extensions of the theory discussed. The 
analysis also contains a novel application of Laplace's asymp- 
totic method of integration to a multidimensional integral where 
the integrand attains its maximum on a continuum of points. 

Index Terms-Nearest neighbor classifier, Pattern classifica- 
tion, Curse of dimensionality, Laplace's method of integration. 

I. INTRODUCTION 

ECAUSE of its simplicity and nearly optimal perfor- B mance in the large sample limit, the nearest neigh- 
bor classifier (see Duda and Hart [l], for example) en- 
dures as a fundamental algorithm for pattern recognition 
and signal identification. In its classical manifestation, 
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pattern classes are assumed to generate random points, or 
feature vectors, in some n-dimensional metric space. First, 
a reference sample of m labeled feature vectors is con- 
structed, each label indicating the pattern class from 
which the associated vector originated. The nearest neigh- 
bor classifier then assigns any input feature vector to the 
class indicated by the label of the nearest reference vec- 
tor. 

The simplicity of this nonparametric classifier belies its 
performance. When the reference sample is drawn inde- 
pendently according to a stationary underlying distribu- 
tion, a classical result of Cover and Hart 121 asserts that in 
the infinite-sample limit (m + m), the probability that an 
independently selected feature vector (drawn again from 
the same underlying distribution) is misclassified, is no 
more than twice the (optimal) Bayes error. Thus, if the 
Bayes error is small, the nearest neighbor classifier per- 
forms nearly optimally in the large sample limit. In prac- 
tice, however, the sample must be finite. Furthermore, 
data storage and access costs favor small samples. Thus 
we are led to the following question of theoretical and 
practical import: How rapid& does the statistical risk R, of 
a nearest neighbor classifier approach its infinite-sample limit 
R,? 

For problems with two pattern classes and a one-dimen- 
sional feature space, Cover [3] has shown that the 
infinite-sample limit is approached as rapidly as R, = R, 
+ O(m-2) (m + w) if the probability distributions that 
define the classification problem are sufficiently smooth.' 
More recently, Fukunaga and Hummels [7] have studied 
the rate of convergence of the statistical risk in an n- 
dimensional feature space. Using a series of nonrigorous 
approximations based on a second-order Taylor series 
expansion, they obtained the heuristic estimate 

where r is the gamma function and B is a distribution- 
dependent constant. For large sample sizes m, the approx- 
imation gives m-2/n as the rate of convergence of R, to 

'On an altemative track, early studies have also estimated how the 
conditional finite risk, i.e., the probability of error of a nearest neighbor 
classifier with a given reference sample of m random patterns, converges 
in probability to R,. This has been investigated under a variety of 
conditions by Wagner [41, Fritz [5], and Gyorf~ [6]. 
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R,, which is in accord with Cover's result for one dimen- 
sion ( n  = 1). While the approximation (1) certainly can- 
not hold without qualification-convergence can be 
arbitrarily slow, even in one dimension if smoothness 
conditions are not mandated on the distributions [3]- 
nonetheless, Cover's result for one dimension, together 
with simulation results for smooth distributions in higher 
dimensions suggest that the approximation (1) can be 
made rigorous, at least for sufficiently large sample sizes, 
for a suitably constrained family of smooth distributions. 

In the sequel, we delineate a nontrivial family of 
"smooth" pattern recognition problems for which local 
approximation methods are valid, resulting in rigorous 
large-sample approximations of the form (1). More gener- 
ally, we describe a formal analytic analytic technique, 
using higher-order series expansions, that yields more 
accurate approximations of the statistical risk, over a wide 
range of sample sizes, for the specified problem class. 

Our main result is the demonstration that, if the class- 
conditional distributions are absolutely continuous with 
densities admitting of uniform asymptotic expansions, then 
the m-sample risk of the nearest neighbor classifier can 
be written as a complete asymptotic series expansion: 

(Anciliary conditions required in the demonstration of (2) 
are developed in the body of the paper.) This series 
converges in the sense of PoincarC: the approximation 
error of a truncated series is bounded by the magnitude of 
the first neglected term. Thus, for example, the third term 
in the above expansion can be used to estimate the 
approximation error of Fukunaga and Hummel's second- 
order truncation. The expansion coefficients ck depend 
upon the underlying probability distributions, and are 
determined within the body of the analysis. 

Within its realm of applicability, the formulation (2) 
constitutes a complete solution to the problem in that not 
only is the rate of approach, for large m, of the finite 
sample risk to the limiting behavior determined, but that 
the solution permits the investigation of classifier behav- 
ior for small sample sizes as well by inclusion of a suitable 
number of higher-order terms. Note that the lower-order 
terms of the expansion (2) indicate that an increase in the 
dimensionality of the feature space results in a dramatic 
decrease in the rate of convergence. Indeed, if at least 
one of the coefficients ck is nonzero, then the sample size 
required to achieve a given level of performance grows 
exponentially with n. Thus the leading term in the expan- 
sion provides an analytic validation of Bellman's curse of 
dimensionality. 

Formula (2) is derived by asymptotically integrating an 
exact expression for the m-sample risk, using a generaliza- 
tion of Laplace's method to multidimensional integrals. 
This method may have some intrinsic interest as it in- 
cludes an asymptotic evaluation of a multidimensional 

Laplace-type integral of the form Jge-mh, where m is an 
integer parameter, g and h are functions of the variables 
of integration, and the function h has its minimum on a 
continuum of points in a linear subspace. (In a typical 
Laplace integral, h would have a minimum only at a 
discrete set of points.) 

In Section I1 we review the nearest neighbor classifier 
in the context of a two class problem. The asymptotic 
results and the hypotheses under which they hold are 
formally stated in Section 111. The proofs, which include 
explicit expressions for the leading coefficients in the 
asymptotic expansions, appear in Section IV. The utility 
of this asymptotic formula is confirmed by several numeri- 
cal simulations described in Section V. Additional numer- 
ical experiments suggest that the results can be extended 
to a wider class of smooth problems than those captured 
by our hypotheses. Section VI contains a discussion of the 
hypotheses and outlines extensions. 
On Notation: Logarithms are taken to the base e. We 

denote by r the gamma function I%) = Jrt*-'e-'dt. 
We use the usual notation V 2  = Z ~ = l ( a 2 / a x ~ )  for the 
n-dimensional Laplacian, and 

for the kth power of the n-dimensional Laplacian differ- 
ential operator. 

denote points in 
Euclidean n-space R". Boldface capitals such as X, X', 
denote random vectors drawn from R". For x = 

( x l , . - - , x n )  E R", we use the usual norm 1x1 = ( x :  
+ the induced metric Ix' - X I  denotes the 
distance between any two points x' and x. If A c R" is 
any subset and x E R" any point, we denote the distance 
between x and the closest point in A to x by Ix - AI = 

inf,, A J x  - yl. We denote the smallest closed set that 
contains the subset A c R" by cl(A). For any p 2 0, we 
denote the (closed) ball of radius p at x by 

Boldface letters such as x, x', y, 

B( p ,  x) = {y E R": ly - XI I p )  

With a slight abuse of notation, for any two points x and 
x '  in R" we hereafter denote their difference in spherical 
coordinates as x'  - x = ( p ,  R). Here p = Ix' - X I  is the 
distance between x and X '  and R = (x' - x ) / l x r  - X I  is 
a point on the surface Snp1 of the unit ball: 

= {R E R": [RI = 1). 

If Y is any subset of points in R" we denote x'  5 x and 
p 5 0, interchangeably, to mean that x '  approaches x 
through points in 9. By dr,dx';*., we mean the usual 
(Lebesgue) element of measure in R". We also use d R  to 
denote the element of measure in Sn-l.  (Note that So 
corresponds to the endpoints of the real interval [ - 1,1], 
and integrals over So reduce to discrete sums.) 
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Finally, we summarize our asymptotic notation. Let x 
be a variable taking values in a subset X of a metric 
space, and let x ,  be a limit point of X (which may or may 
not be in XI. Let f and g be functions defined on X. We 
denote: f ( x )  = O ( g ( x ) )  ( x  -+ x, )  if there exists a constant 
K and a neighborhood U of x ,  such that I f 1  I Klgl for all 
x E U n X ;  f ( x )  = o ( g ( x ) )  ( x  + x , )  if for any E > 0 there 
exists a neighborhood U‘ of x ,  such that I f 1  I Elgl for all 
x E V, n X; f ( x )  - g ( x )  ( x  -+ x, )  if f ( x )  - g ( x )  = 
o(g (x ) )  ( x  -+ x,). If the functions f and g depend upon 
additional parameters, but the constants K and neighbor- 
hoods U and U, defined above may be chosen indepen- 
dent of the parameters, then we say that the order rela- 
tions hold unifomzly in the parameters. 

We conclude by reviewing the definition of an asymp- 
totic power series (cf. ErdClyi [SI). Let x denote a real 
parameter. We say that a formal power series X ~ = , u , x - ’  
is asymptotic to the function f ( x )  as x -+ and we write 
f ( x )  - X ~ = , u , x - ’  ( x  -+ m) iff f ( x >  - Cfl_ourx- l  = 

11. NEAREST NEIGHBOR CLASSIFTER 
Let “1” and “2” denote two states of nature corre- 

sponding to two pattern classes, and let PI and P, denote 
their respective prior probability of occurrence. (In what 
follows, we assume that 0 < P I ,  P2 < 1.) The patterns 
themselves are represented by feature vectors X E R” 
which, conditioned on class j E {1,2), are drawn accord- 
ing to the class-conditional probability distribution 5. The 
mixture distribution 

F = P,F, + P2F2 

is then the unconditional distribution for the feature 
vector X. 

Labeled feature vectors, ( X ,  e), are generated from the 
mixture distribution by the following process: first, a pat- 
tern class 8 E {1,2) is chosen at random in accordance 
with the prior probability for each class, P{8 = j )  = 6; 
then, a feature vector X E R”, conditioned upon 8, is 
drawn according to F,. After m independent repetitions 
of this process, a reference sample 

( x  + m) for every N .  

Cm = ((AY,), e(1)),.--, (x“) ,  e(,))), 
is constructed. Here, each X‘” E R” denotes a feature 
vector, with e(’) E {1,2) the corresponding class label. 

Given the m-sample C,, the nearest neighbor classifier 
partitions the feature space R“ as follows: 

Algorithm: To every x E R”, assign the class label 
C(xlC,) E (1,2) given by 

~ ( x l C , )  = e(’) if Ix - ~ ( ” 1  I Ix - for all j # i . ,  

A. Finite Sample Risk 
A labeled test vector ( X ,  0) is now drawn by the same 

process, independent of the m-sample 2,. Let ( X ’ , O ’ )  

’Ties mav be resolved bv anv orocedure. Under our subseauent 

denote the element of Cm chosen by the classifier to be 
the nearest neighbor of ( X ,  e). The classifier’s average 
performance can be quantified in terms of the statistical 
risk. Specifically, the m-sample statistical risk is defined as 

R ,  = L , , P [ ~ ’  = 1, e = 21 + L , , P [ ~ ’  = 2, e = 11, 

where L,, and L,,  are given loss coefficients. Here, L,, 
and L,, are assumed to be zero. If L , ,  = L,, = 1, then 
R, = P[O’ # e], the probability that the nearest neigh- 
bor algorithm assigns X to the incorrect class. For nota- 
tional simplicity, we will assume this zero-one risk func- 
tion. Note, however, that because the risk depends lin- 
early upon the loss coefficients, all that follows can i“e- 
diately !e extended to more general risk functions. 

Let P ( j l X )  denote the a posteriori probability of class j 
conditioned on X. We then have 

R ,  = E w e  z e’lx, x r ) )  = E ( P ( ~ I x ) P A ( ~ I x ~ > >  

+ E(F(lIX’)P(2lX)), 

where the first equality obtains by conditioning the event 
[e’  # 01 first over the values assumed by the test vector 
X ,  and then over the values assumed by the nearest 
reference vector X’, while the second equality follows 
from the independent generation of the test and refer- 
ence vectors. Denoting by F(x’, x) the joint distribution 
function of the pair of random vectors ( X ’ ,  X I ,  we then 
have 

R, = /P(llx)B(2lxf) d F ( x ’ ,  X) 

+ jPA(llx’)P(2lx) dF(x’, X I .  (3) 

In general this integral is quite difficult to evaluate. In 
Section I11 and IV we provide conditions under which this 
integral can be approximated over a large range of sample 
sizes m.  

B. Infinite Sample Limit 
Under rather general conditions, Cover and Hart [2] 

evaluated (3) in the large-sample limit ( m  + w). We 
briefly sketch the main result. Note first that the 
Glivenko-Cantelli theorem (cf. Billingsley [9], for in- 
stance) readily yields X’ + X a.e. Suppose now that the 
class-conditional distributions Fl and F2 are absolutely 
continuous, and the corresponding probability density 
functions f, and f2 are continuous almost everywhere 
(Lebesgue measure) on their probability-one supports. 
Invoking the dominated convergence theorem, we then 
have 

R, = lim R, = ~ E ( P ( I I X ) P ( ~ I X ) ) .  (4) 

This expression for R, can be readily expressed in terms 
of the Bayes risk. Let 

m - m  

r , ( X )  = min {P(lIx), P ( 2 1 ~ ) )  
, , .  

assumptions, ties occur with zero probability. . . ,  
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N’ 
f i < X ’ >  - f ,<x> - c f,,,(fl, x ) p k  

k =  1 

823 

< EpN’ 

denote the conditional Bayes risk given X, and let 

RE = E(r,(X)) 

denote the (unconditional) Bayes risk. Note that by sym- 
metry, 

P(llX)P(21X) = P(l lX)( l  - ?(llX>) 
= r,(X)(1 - rB(X)), 

hence from (41, 

Rzc = 21 E ( r , ( X ) )  - E( r g ( x ) ’ ) )  

= 2 ( R ,  - Var(r,(X)) - R i )  I 2R,(1 - RB). 

As the Bayes classifier is optimal, R ,  must satisfy RE I 
R,  I 2R,. Thus if RE << 1, then the nearest neighbor 
classifier is nearly optimal in the infinite sample limit. 
This optimistic assessment, however, is of practical benefit 
only if R ,  converges to R, at a reasonable rate. In the 
next few sections we examine some nontrivial conditions 
under which this may occur. 

111. CONVERGENCE RATE 
Given the near optimality of the infinite-sample nearest 

neighbor classifier, it is of interest to know how the 
nearest neighbor classifier performs with a finite sample. 
In particular, how rapidly does R ,  approaches R,? For 
one-dimensional feature spaces, Cover [3] showed the 
following: 

If the class-conditional distribution functions F, are 
absolutely continuous, the class-conditional densities 
f ,  have uniformly bounded third derivatives, and the 
mixture density f is bounded away from zero on its 
probability-one support set, then R ,  = R, + O(m-’) 
(m + m). 
If the class-conditional densities are not smooth, then 
the convergence of R, to R, can be arbitrarily slow. 

Our focus here is on obtaining a full asymptotic series 
expansion of the m-sample risk for any given dimensional- 
ity n of the feature space. In particular, this would enable 
a study of the behaviour of R, for relatively small values 
of m. In the following, we list a set of conditions on the 
class-conditional densities under which we prove our main 
theorem. These conditions are not the least restrictive of 
their kind for which the theorem will hold; we present 
them in this form, however, so that technical difficulties 
do not obscure the main thread of the ideas. Moreover, 
for this class of problems, we can obtain relatively simple 
expressions for the coefficients of the asymptotic expan- 
sion for R,. In subsequent sections we provide numerical 
examples indicating a range of applicability outside that 
formally covered in the theorem, and provide discussions 
on the implications of the constraints listed below, and 
the effect of relaxing them. 

Hypotheses: 
H1. For j E {1,2), the class-conditional distributions F, 

are absolutely continuous over R“ and have correspond- 
ing densities f,. 

H2. The mixture density f = Plfl + P2 f2 is bounded 
away from zero a.e? over its probability-one support 
9 c  R”. (We can thus assume, without loss of generality, 
that 9 is compact.) 

H3. There exists a fixed integer N 2 1 such that for 
each j E {1,2) there exist continuous functions fi, Jfl, x) 
defined a.e., on S,- X 9, for which the following asymp- 
totic expansion holds uniformly in x as xf  3 x [x‘ - x = 

( p, a)]: 
N 

\ 0 7  otherwise, 

otherwise, 

define class-conditional probability densities that satisfy 

Remarks: Hypothesis H1 is relatively innocuous, but 
does preclude discrete distributions from this analysis. It 
also relegates “ties” to zero-probability events. 

Hypothesis H2 arises out of a uniformity requirement 
in our proof. In particular, this excludes many standard 
distributions, such as mixtures of normal distributions, 
whose support is infinite. In practice however, these cases 

Hypotheses Hl-H4. 

3Here and elsewhere, with respect to Lebesgue measure. 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:40 from IEEE Xplore.  Restrictions apply. 



824 IEEE TRANSACIIONS ON INFORMATION THEORY, VOL. 40, NO. 3, MAY 1994 

can be well apprommated by problems that satisfy Hy- 
pothesis H2 by truncating the tails of the original distribu- 
tion, i.e., replacing the given distribution by one with 
compact support that agrees with the original distribution 
everywhere except the tails. 

The requisite smoothness in the class-conditional densi- 
ties mandated by Cover’s results for the one-dimensional 
case is incorporated in Hypothesis H3. Additional 
smoothness constraints on the class-conditional densities 
f i  can lead to simple expressions for the functions 
fi,,(fl, x) as we see in the following. 

Example: (Taylor series). We assert that if the functions 
f i  possess a convergent Taylor series everywhere then 
they will have asymptotic expansions of the form (5). First, 
we introduce some notation to simplify subsequent ex- 
pressions. By a multiset, I, of indices from {l;..,n) we 
mean a collection of indices where order does not matter 
and indices can repeat. Let 5 = ((,,.*., 6,) be any point in 
R”. For any multiset I = (i l ,--- ,  i k )  of indices from {l,..., n) 
denote t1 = nf=, 6. For k = 1,2;.., let 3, denote the 

‘I 
family of all multisets of cardinality k from (l,..., n). If 
the functions f i  possess uniformly bounded partial deriva- 
tives of order N + 1 for all x €9, then we can expand f, 
locally in terms of a Taylor series with remainder. Denot- 
ing 5 = x‘ - x, we have 

where, for any multiset I = (i,,..., ik), we define 

Ak 

(7) 

In spherical coordinates let us represent 5 = ( p, fl) = 

( p, +,,.-., A-,)  where the angles 4; take values in the 
following ranges: - 7r/2 s c#+ s 7r/2 for i E {Le.., n - 21, 
and 0 I 4,-, I 27r. We then have 

ti = psin +,-;+, n cos 
n-1 

I = i  
i = l , . - . , n ,  

where, for i = 1, we define sin 4,, = 1. With this transfor- 
mation we can rewrite (6) in the form (5 )  where, as per 
our convention, x’ - x = ( p, Cl), and 

1 n - 1  

k = l;.., N .  (8 )  

Note in particular that the functions 6, k(Cl ,  x) are contin- 

The following assertion is hence proved. 
Assertion I: The class-conditional densities f i  will sat- 

isfy uniform asymptotic expansions of the form (5) if they 
possess uniformly bounded partial derivatives up to order 

uous on S, - , x 9’. 

To prove a converse to the assertion will call for the 
imposition of Tauberian-style conditions to allow for dif- 
ferentiation of the asymptotic series expansion. The uni- 
formity of the expansion does help, however, at least in 
establishing the existence of the first partial derivatives of 

Assertion 2: The coefficients f,,, in the expansion sat- 
4. 
isfy 

f,,,(fl,x) = -f,J-fl,x) 

for a.e. x. In particular, under Hypothesis H3, the class- 
conditional densities f, have continuous first-order partial 
derivatives a.e. on their probability one support. 

Proofi Let x and x’ denote two distinct points with 
p = Ix - xfI and Cl = (x’ - x ) / p .  Then by (51, as p -+ 0, 

f,<xf> = f , ( x )  + f , , , ( f l , x > p  + d p ) ,  

f,(d =f,(xf> + f , , , ( - C l , x ’ ) p  + o( p ) .  

Although the remainders of these two expressions, desig- 
nated by “o(p),” need not be equal, the uniformity re- 
quirement in Hypothesis H3 implies that the sum of the 
above two expressions satisfies 

0 = (f,,*<n, x) +f,,,(-Cl, x ’ > ) p  + o( p ) .  

f , , l ( f l , d  = -f,,,(-.n,x), 

After dividing through by p, and taking the limit p + 0, 
we obtain 

where we have used the continuity of f,,l(fl,x) with 
respect to x. Now let ek denote the kth basis vector in the 
current coordinate system. Then, by Hypothesis H3, 

f , ( x  + €ek> = f , ( x >  +f,,l(sgn(E)ek,x)lEl + d e )  

= f , ( x >  + sgn(E)f,,,(ek,x)lEl + d e )  
=fib> + f , , , ( e , , x ) E  + d e ) .  

The partial derivative in the direction of ek is found to be 

Thus the n first-order partial derivatives exist and are 
continuous (by the assumed continuity of fi,,) a.e. on the 

We will not pursue the issue of a Tauberian converse to 

It is readily seen that Hypothesis H3 implies as asymp- 

probability one support of 4. 
Assertion 1 any further. 

totic expansion for the mixture density f of the form 
N 

f ( x 7  = f(x) + f k ( f l ,  x ) p k  + o( p N >  ( p 3 0) 
k= 1 

(9) 

where 

k + 1 on their probability &e support. I ,  
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Finally, Hypothesis H4 is introduced to avoid technical 
complications arising from boundary effects. The point 
here is essentially this: if both x and its nearest neighbour 
x'  happen to fall within e,, then the classification will be 
correct (with probability one), and there is no contribu- 
tion to R,. Relaxing the requirement of Hypothesis H4 
would necessitate placing smoothness constraints on the 
boundary 9, and would also result in more awkward 
expressions for the coefficients for R, in an asymptotic 
expansion. 

We are now ready to state the main result of this paper. 
Theorem 1: Under Hypotheses Hl-H4, there exists a 

unique set of constants (ck) such that 
N 

R ,  = R ,  + c k m P k / "  + o(m-""In)  ( m  .+ m). 

Corollary 1: If, in Hypothesis H3, the asymptotic expan- 
sions (5) can be replaced by complete asymptotic series 
representations 

k = 2  

X 

then, with the remaining hypotheses intact, there exists a 
unique set of constants {ck) such that the following series 
is asymptotic to R,: 

X 

R ,  - R, + c k m - k / n  ( m  -+ m). 
k = 2  

Remarks: The leading coefficient in the expansion is 
just the infinite-sample risk (see (4)) 

(11) 

that was first derived by Cover and Hart [2]. We describe 
the evaluation of the succeeding coefficients ck in the 
asymptotic expansion in the proof of the theorem. In 
particular, the coefficient c2 evaluates to 

where, for j E (1,2) and k 2 1, 

(12) 

The above form of c2 is somewhat more general than 
those presented in [7] and [lo]. The form of c2 is further 
simplified if it is assumed, in addition, that the class-con- 
ditional densities possess uniformly bounded partial 
derivatives of order N + 1; in this case the expression for 
c2 can be cast in a form equivalent to those reported 
earlier. In general, under this smoothness assumption the 
forms of all the coefficients ck are simplified and, in 
particular, explicit expressions can now be written for the 
ck's involving only partial derivatives of the class-condi- 
tional densities. Expressions for the first seven coefficients 
are listed in the Appendix. 

IV. ASYMPTOTIC ANALYSIS 

The proof of Theorem 1 proceeds in several stages. 
First, we derive an exact integral expression for R, in the 
form 

(13) 

where g and h are nonnegative functions in Euclidean 
2n-space. For large m,  this integral appears to be in a 
form amenable to Laplace's asymptotic method. Recall 
that for one-dimensional integrals of the above form, 
Laplace's method (cf. ErdClyi [8, pp. 36-39], for instance) 
asserts that for large m the dominant contribution to the 
integral arises from a neighborhood of the point where h 
has a (discrete) minimum. (If h has more than one dis- 
crete minimum, then the domain of integration can be 
partitioned so that each subdomain contains only one 
minimum.) Furthermore, if g and h can be represented as 
asymptotic power series in a neighborhood of this mini- 
mum, then the integral itself may be represented as an 
asymptotic power series in reciprocal (noninteger, in gen- 
eral) powers of m,  the coefficients of the asymptotic 
expansion being independent of the size of the neighbor- 
hood assumed around the minimum of h. The method can 
be extended to multidimensional integrals where, for in- 
stance, h has an interior minimum in the domain of 
integration (cf. Fulks and Sather [ll]). 

The evaluation of (13) by this asymptotic technique, 
however, is complicated by the fact that the minima of h 
(defined over R 2 n )  occur on a continuum of points in a 
linear manifold consisting of the intersection of an n- 
dimensional linear subspace with the domain of integra- 
tion Y X Y .  This has two consequences: (i) standard 
results on Laplace integrals when h has discrete minima 
cannot be carried over in toto to the case when h has a 
continuum of minima; (ii) contributions to the integral 
from a continuum of points where h its minima at and 
near the boundary of the domain of integration pose 
particular difficulties in evaluation, and depend, in gen- 
eral, on how smooth the boundary is. 

The second difficulty is finessed by Hypothesis H4 which 
eliminates any contribution to the classifier's error rate in 
the boundary of the domain of integration. We reiterate 
that while we introduce Hypothesis H4 only to avoid 
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certain ensuing analytical complications, the constraint 
has an artificial character. In Section V we present exam- 
ples where Hypothesis H4 is flouted while asymptotic 
expansions for R, of the form governed by the theorem 
continue to hold. This suggests that the hypothesis can be 
weakened or done away with altogether. 

The principal tool in our resolution of the first difficulty 
is a technical result of Fulks and Sather which allows the 
replacement of the multiple integral (13) by a single 
Stieltjes integral. The key to the proof is the asymptotic 
representation of the functions g and h in a generalized 
cylindrical coordinate system. The asymptotic series ex- 
pansion of the finite-sample risk R ,  can now be obtained, 
forfending both difficulties, by identifying a dominant 
component to the integral (13) over a cylindrical domain, 
and evaluating the contributions from the interior and the 
boundary separately. The technique in evaluating each of 
these integral contributions follows the analysis of Fulks 
and Sather [ l l ]  for the discrete minimum case to effec- 
tively show that the Laplace method can be extended to 
this class of integrals. The coefficients of the asymptotic 
expansion for R ,  will be explicitly evaluated in the course 
of the proof. 

A. Technical Lemmas 
We begin by presenting (without proof) two technical 

results in order to avoid breaking up the flow of the proof 
subsequently. The first result is due to Fulks and Sather 
[Ill. 

Lemma I :  Let h be a measurable function on a set 9 
in R M  taking values in the possibly infinite interval {a < s 
< b). Let g be defined and integrable over 9, and define 
the function G ( z )  by 

G(z) = /  gdx. 

If F ( s )  is a continuous function defined on { a  < s < b), 
and such that F(h)g is integrable over 9, then 

{h 1.7) 

The second result we will need is a classical result due 
to Watson [12], frequently referred to in the literature as 
Watson’s lemma. 

Lemma 2: Let G(s)  be a function of the,positive real 
variable s, such that 

m 

G ( s )  - v k d k + ‘ - r ) / p  (s + O ) ,  
k = O  

where r and p are positive constants. Then 

provided that the integral converges throughout its range 
for all sufficiently large m. 

B. Integral Representation of the Risk 
Let X’ = argmin, is , IX - X@)l denote the feature 

vector in the reference sample C, that is closest to the 
random test vector X, and let 8’ be the class label 
associated with X’. Then 

where f , (x ’ (x )  denotes the conditional density of X’ 
given X = x. 

We now obtain an explicit expression for f,(x’lx). The 
event X’ = x’ occurs if one of the reference feature 
vectors X ( j )  assumes the value x’ and every other feature 
vector X‘“), k # j, assumes a value outside B( p, x), the 
(closed) ball of radius p = In’ - X I  at x. (Ties occur with 
zero probability.) Because of the independent nature of 
the training set, the latter may occur with j = 1,2;*., m .  
We thus obtain, 

x’lx) = E ( n P [ X ( k )  E B(lx’ - XI, x)l)f(x’).  
j = 1  k + j  

fm ( 

For p 2 0 and x E R“, let i,b( p, x) denote the probability 
that a feature vector Y E  [w” drawn from the mixture 
distribution F ( y )  lies in the ball of radius p at x: 

It follows that 

f,(x’~x) = m(1 - i,b(lx’ - xi, x)>”-’f(xt). 

We thus obtain the desired integral representation 

R ,  = m ~ ~ g ( x ‘ , x ) e - m h ( x ’ , x ) d x ’  dr, (15) 

where 

and 
h ( x ’ ,  X) = -log(l - i,b( p ,  x)). (17) 

Note the useful feature that h is independent of R. 
Moreover, the absolute continuity of the mixture distribu- 
tion (Hypothesis H1) guarantees that h attains its mini- 
mum value of zero at p = 0, i.e., when x’ = x. Further- 
more, as f is bounded away from zero uniformly on 9 
(Hypothesis H2), h strictly increases with p ( x ‘ ,  XI, and, in 
particular, is bounded away from zero for p > 0. More 
formally, for each x €9 and po > 0, there exists a con- 
stant a > 0, uniform with respect to x, such that h(x’ ,  x) 
2 a if p 2 po. Thus the minima of h consist of that 
portion of the n-dimensional linear subspace x’ - x = 0 
that lies within the 2n-dimensional domain of integration, 
(x’, x) E 9 x 9. 
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C. Induced Asymptotic Expansions 
We now compute asymptotic expansions for the func- 

tions g and h in (15). Letting y = x + r ,  the integrand of 
(14) is first expanded, via the asymptotic expansions for 
the mixture density (cf. Hypothesis H3), about the point 
x, as 

N 

f (y)  =f(x) + c fk(n,  x ) r k  + ( r  3 01, 
k =  1 

where, r = Irl, and R = r/r E S n - , .  Writing d r  = 

r"-' d r d R ,  we can now express JI( p,  x) as the following 
n-dimensional integral in spherical coordinates: 

Letting 

denote the volume of the n-dimensional 
find that 

$o(x) = v , f ( x ) ,  
and 

coefficient V , f ( x )  of the leading term in (22) is strictly 
positive and bounded away from zero a.e. x €9 as a 
consequence of Hypothesis H2. Note also that, as ex- 
pected, the expansion (22) implies that the infimum of h 
over 9 X 9 is indeed zero. 

We now develop a corresponding asymptotic expansion 
for the function g. It is easy to see by a simple indepen- 
dence argument that 

P[O # O'lX' = x' ,  x = x]  

= F(lIx)P(21x') + B(llx')F(2lx) 

Thus, from the asymptotic expansions in Hypothesis H3, 

P[O # O'IX' = x',  x = x l f ( x ' ) f ( x >  

For p sufficiently small, so that $( p, x) < 1, the denomi- 
nator of g may be expanded via unit sphere, we 

(19) 

k = 1 , - - - ,  N .  (20) 

Note that, as a consequence of the skew symmetry of 
fl(R, x) (Assertion 21, it follows that 

$l(x) = 0. (21) 

A tabulation of the first few functions $,(XI can be found 
in Table I in the Appendix. 

After representing the logarithm by its Taylor series in 
(1 7), we obtain the following asymptotic expansion for 
h(x' ,  x), 

the functions h,(x)  in the expansion being continuous 
and obtained by collecting like powers of p in the Taylor 
series expansion for the logarithm. In particular, Table I1 
in the Appendix shows the form of these coefficients for 
k I 6. Note that h,(x)  = $k(x) if k < n and that the 

1 m 

Using the asymptotic expansion (18) in the geometric 
series above we get another asymptotic expansion in inte- 
ger powers of p, and substituting this in conjunction with 
(24) in (16) results in the asymptotic expansion 

N 

g(x' ,  x) = g k ( a ,  X ) p k  + o( p N )  ( p o), (26) 
k = O  

where, for instance, for k < n the coefficient functions 
g k ( a R , x )  are independent of n; in particular, for all di- 
mensionalities, 

g,(x) = a , ( x > ,  

g,(R, x) = a/((& X I .  

and for k < n,  

The coefficients g,, for k I 6, are listed in Table I11 in 
the Appendix. 

D. Laplace's Method 
Now let us return to a consideration of (15). Recall that 

h(x ' ,  x) attains its minimum value of zero when x'  = x. 
Consequently, the dominant contribution to the integral 
j,,,ge-mh should occur in the immediate vicinity of the 
linear subspace x'  = x. For t > 0, define the family of 
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“cylinder” sets 

C, = {(x’,x) E D82n: In’ - X I  = p I t )  n p 2 .  
This is schematically the cylindrical area along the diago- 
nal in Fig. 1. We can then partition the integral contribu- 
tion to R, into two parts: 

We first show that for any k e d  t > 0, the integral 
contribution from outside C, is subdominant. Recall that 
the integral in (15) represents a probability and is hence 
convergent for every m. Following the argument at the 
conclusion of Section IVB, for any t > 0, there exists a 
fixed a > 0 such that h(x‘ ,  x> 2 a if (x‘, x) €9” \ C, .  
Thus, mh = ( m  - 1)h + h 2 ( m  - l)a + h, in Y2 \ C,.  
Since the functions g and h are non-negative everywhere, 
we have 

- < m e - ( m - l ) a  k2\c.g(x’, x)e-h(x’,x) h‘ d.x 

= O(me-ma)  ( m  + m) 

as the integral on the right is bounded above by R,  I 1. 
Now recall that by Hypothesis H4, there exists a to > 0 

such that one or the other of the class-conditional Censi- 
ties fi  is identically zero at a.e. points in a set qa of 
points in 9 whose distance from the boundary d 9  of 9 
is no more than to. Now choose 0 < f I t0/2, and define 
the set 

sq =9\q = {x €9: Ix - JYI > f ) .  

(See Fig. 2.) We now partition C, into the sets 

Q, = c, n ( Y X ~ ) ,  Q, = C, n ( 9 x 3 ) .  

Clearly, Q, n D, = 0, and Q, U D, = C,. We now further 
partition the dominant integral contribution to R,  ac- 
cording to whether x takes values in Y; or x takes values 
in 3: 

where I ,  and J ,  denote the two integrals, respectively. 
Note that I ,  is the part of the dominant contribution 
which arises from the interior points, while J ,  is the part 
which arises from the bounday points. We evaluate these 
in turn. 

then clearly x 
E 2 by definition of e, = C, n (9 X 3). Furthermore, 
in C, we have I x ’  - X I  I t so that by the triangle inequal- 
ity we have Ix’ - d 9 l  I I x ’  - X I  + Ix - J9l I 2t ( L o  by 
choice of t. Consequently, both x and x’ will lie in S, . It 
follows from Hypothesis H4 that for a.e. (x’, x) €OD,, 
f i ( x ‘ )  = f k ( x )  = 0 for some j, k E {1,2}. Now consider 

Bounakty Contribution: If (x’,x) E 

interior contribution 

I -  st - X 

Fig. 1. A schematic of the cylinder set C,, and the interior and 
boundary contributions to the dominant integral. 

a 
Fig. 2. A schematic of the support set 27, indica&ng its boundary 6’9, 

the interior set g, and the boundary set .r; (hatched). 

representation (16) for g .  It is clear from (23) that 

P[B z e’ix’ = x i ,  x = XI = o (x’  E.F;~, x €eO). 
It follows that g is identically zero over D,, and hence, 

J ,  = 0. 

Interior Contn’butzon: For every E > 0 define the func- 
tions h ,  and h -  on the domain R2“ by 

N 
h - + (x’,  x) 3 p n  h J x ) p k  i- €pN+n,  

k=O 

x ’ - x =  ( p , R ) ,  

where the continuous functions hk(x )  are as defined in 
(22). By uniformity of the asymptotic expansions (22) and 
(26), choose 0 < t I f0/2 small enough so that: 

(a) Ih(x’,x) - pnCr=oh,(x)pkl < ~ p ~ + ~  for a.e. x E 
9 a n d  p < t; 

(b) Ig(x’, x) - C:=,,g,(R, x)pkl  < e p N  for a.e. x €9’ 
and p < f ;  

(c) for a.e. x E 9, the functions h *(XI, x) are bounded 
away from zero and strictly increasing in p for 

The last condition is made possible as h,(x)  = K f ( x >  
is uniformly bounded away from zero on 9 by Hypothesis 
H2, and the other coefficients h,(x),  k 2 1, are bounded. 

IO < p I t). 
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Now define I,' and Z; by 

1,' = m g(x', X)e-mh+(x',X)&'dr, I,, 
and note that 

I,' I I, I zm 

as g 2 0. 

small, define the subset of interior points R, c Q, by 
Let us first estimate Z:. For 6 > 0 chosen suitably 

R ,  = ((x',  x) E Y x ~ :  h + ( x ' ,  x) I 6). 

We then have 

for a choice of a' > 0; the second integration is subdomi- 
nant by an argument similar to the one carried out 
earlier. Now define the function G(s)  by 

G ( s )  = 1 g(x' ,  x) dr' dx. 
( h  +< S ) n  R6 

Now 0 < e p m h - <  1 is bounded in R, as h ,  is bounded 
there, so that gePmh+ is integrable over R,. Invoking 
Lemma 1 and integrating by parts, we now have 

I,' = m e-"'dG(s)  + O(me-m")  

6 

L6 
= m2/0 e-"'G(s) ds + me-"'G(S) + O(me-""') 

= m2L6e-msG(s)  ds + O(me-""') ( m  -+ w), 

(27) 

for a positive constant a" = min(6, a'}. 
We now estimate G(s).  For 0 I s I 6, we first solve 

the equation s = h+(x' (  p, R, x) ,  x) for p = p(s, x). Note 
that a unique solution exists which is continuous in x and 
independent of R as h+ is increasing in p and indepen- 
dent of R. We hence need to solve the equation 

I" N 

s 1 l n  = p c h, (x)pk + € p N  
( k = O  

for p. By condition (c) above, s 1 l n  is an analytic function 
of p (0 5 p I t )  for each x. Therefore, we may expand 
p(s, x) as a Taylor series with remainder, obtaining 

N 

p ( s ,  x) = T,(x)s(k+')/n + € T ; ( X ) S ( N + l ) / n  
k = O  

+ T N +  ](x, € 7  S ) S ( N + 2 ) / n  (28) 

where: each T, (and "E,) depends only on the hi's for 
j I k ;  T, (and TA) is independent of E for k I N ,  and 

829 

T N + ,  is uniformly bounded for x €3, 0 I E I 1, and 
0 I s I 6. The leading coefficients are tabulated in Table 
IV in the Appendix. 

Now recall that by choice of 6 > 0 small enough, within 
R, we can use condition (b) to write 

N 

g(x', x) = g,(R, x ) p k  - p ,  R ,  d p N ,  
k = O  

where I&( p, R, x)l < 1. We can now estimate G(s): 

Because gh(p,R,x) is bounded, the integral over p in 
the second term can be expressed as 

where &(s, R, x) is an appropriately defined function 
that satisfies Ig;(s, R, x)l < 1. Consequently, 

If (28) is inserted into this expression, then, after collect- 
ing terms proportional to like powers of s, we obtain an 
expression of the form 

I N  

( N + n ) / n  + o ( s ( N + n ) / n )  da b. I - E A > ( S ,  R ,  X I S  

Here, the terms A,(R, x) contain the sum of the coeffi- 
cients of all terms proportional to s ( ' + ~ / ~ ) ,  i.e., 

for k I N, and 

The coefficients BF correspond to the coefficients of 51 
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in the' expansion of (E;"= oTr(x),$ 
ated by 

and are hence gener- 

The Coefficients Ak can now be computed used the prior 
estimated coefficients T,. The Appendix contains a tabula- 
tion of A,, for k I 6, in Table V. 

Now note that as a consequence of Hypothesis H4 and 
the choice t I to/2, all coefficients gj(R, x>, j 2 0 in (26) 
are identically zero for all x in e. As these coefficients 
are combined linearly to form the hk ' s ,  this in turn imp@ 
that each hk(R,X) is identically zero for all x in 3. 
Hence, the domain of the x integral can be extended 
from 3 to 9' = 3 U 2. Thus, we obtain, 

Note that 

771 = 0, (30) 

where we have invoked Assertion 2, (19), and (21). 
We can now estimate I,' by substituting the asymptotic 

expansion for G(s)  in (27). Noting that the integral 
jre-mssLds is subdominant for any finite L, we can 
expand the region of integration in (27) to 0 < s < CO with 
an exponentially small correction factor. Applying 
Watson's lemma we finally obtain 

N 

z,' = c k m - k / n  - Ec',m-N/n + o ( m - N / n ) ,  
k = O  

where 

ck = 7),r(2 + k/n), k = 0,1,'*., N .  

Invoking (29) and (30) we obtain co = R, [see (11)l and 
c1 = 0. It is not difficult now to backtrack and write 
explicit expressions for the ck's;  the general form for c2, 
for example is given in (12). The expressions for the ck's 

simplify somewhat under a slightly stronger smoothness 
assumption than Hypothesis H3. This is described in the 

Appendix where tabulations of the first seven coefficients 
c k  are listed in Tables VI-XI under a slightly stronger 
smoothness assumption to keep the expressions from be- 
coming too unwieldy. 

An identical procedure yields 
N 

Z; = c k m P k / "  + Ec&m-N/n + o ( m - N / n ) ,  
k=O 

as h -  differs from h+ only in the sign of E .  Recall that 
I,' I Z, I Z;. Hence 

N N 
I,' - C k m - k / n  I z, - C k m - k / n  

- <I,- - C k m - k / n .  

k=O k=O 

N 

k = O  

Also, collecting all the subdominant terms that we had 
dropped by the wayside gives 

R, = Z, + O(e-"'"") ( m  -+ m) 

for some fixed, positive U"'. Thus, by letting m -+ to, we 
get 

the inequalities holding for every E > 0. Use co = R, and 
c1 = 0, and allow E -+ 0 to complete the proof of Theo- 
rem 1. 

V. DISCUSSION 
In the preceding section, Theorem 1 was proved under 

a restrictive set of hypotheses so that the expansion coef- 
ficients c2 ,  c3,  etc., could be readily obtained. Unfortu- 
nately, in so doing, we have precluded many practical, well 
behaved, distributions; mixtures of normal distributions, 
for instance, violate Hypothesis H2. In this section we 
present evidence that suggests that the asymptotic conver- 
gence of the finite-sample risk, described in the state- 
ments of the theorems, applies to a broader set of 
classification problems. In generalizing the theorem, we 
emphasize that although the risk may be expanded as in 
(21, the expressions for the expansion coefficients (c2 ,  etc.) , 
will be more complex. (However, for some problems, the 
expressions for ck in the Appendix may provide useful 
approximations to the actual coefficients.) 

Of the four restrictions assumed, Hypothesis H4 ap- 
pears to be the most artificial as it was introduced solely 
to avoid analytical complications at the boundary of the 
domain of integration. In the proof, it was only used as a 
justification for neglecting the boundary contribution J,  
to the finite-sample risk. Consequently, it could be re- 
placed by the weaker requirement that one of the two 
class-conditional densities tends to zero sufficiently fast at 
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every boundary point so that J ,  is exponentially subdomi- 
nant with respect to the interior contribution I,. Even 
this weaker condition, however, may be unnecessary as 
the following example illustrates. 

Example: (Triangular distributions). Consider the one-di- 
mensional triangular distribution over the unit interval, 

f , ( x )  = 2(1 - x ) ,  

f 2 ( x )  = 2x. 

These densities clearly violate Hypothesis H4 as both are 
nonzero in every neighborhood of the boundary. If the 
classes occur with equal prior probability, the following 
exact expression can be obtained for the finite sample 
risk:4 

1 3m + 5 
3 

R , = - +  
2(m + l)(m + 2)(m + 3) ' 

If m >> 1, then the finite-sample risk for more general 
prior probabilities (0 < P,, P, < 1, with P, # P,), can be 
approximated as 

R ,  = 

3(1 - 3P,P2) 1 + - + .( f i .  
8( P, Pz )' m2 

These results agree with the mP2  convergence rate pre- 
dicted by Theorem 1 with n = 1. Note, however, that as 
all second derivatives of f, and f2 are identically zero, the 
interior contribution to the risk (cf. expression (12) for 
coefficient c2 1 vanishes. Consequently, it is the boundary 
term alone that yields the order m-* rate of convergence. 

The next example provides another illustration of how 
the form of the asymptotic expansion predicted in Theo- 
rem 1 may provide an accurate approximation to the 
m-sample risk even though Hypothesis H4 is not strictly 
satisfied. 

Example: (Trigonometric distributions). Consider a mul- 
tidimensional two-class problem where the class-condi- 
tional densities are given by 

1 
f , ( x )  = sin2 x,, 

over the feature space [ - T ,  TI"  c R". If P, = P, = 1/2, 
then R, = 1/4, and R ,  = (T - 2 ) / 2 ~  = 0.1817. Clearly, 
this problem satisfies Hypotheses H1 through H3 while 
violating Hypothesis H4. 

In Fig. 3 we present numerical estimates of R, as a 
function of m and n for n = 1 (circular markers), through 
n = 5 (diamond markers). Each marker represents the 

4The expression given here corrects minor errors in Cover and Hart's 
early treatment of the problem [2]. 

'0 1 2 3 4 5 6 
log lo( m 1 

Fig. 3 .  Numerical evidence supporting the nearest neighbor scaling 
hypothesis for two trigonometric distributions. Here the dashed lines 
describe the leading asymptotic behavior predicted by the asymptotic 
expansion in Theorem 1. The convergence thus occurs at rates of order 
, , - 2 / n ,  

fraction of "failures" of a large number (105-108) of 
Bernoulli trials. In each trial a pseudo-random reference 
sample of m labeled patterns is constructed in accord 
with the above probability densities. Then a single input 
vector is generated by the same process and is classified 
according to the reference sample. (In practice, these two 
steps are best carried out in reverse order so that only one 
reference pattern need be stored at a time.) A trial is 
regarded as a failure if the input is assigned to the wrong 
class by the reference sample. For each marker, an error 
bar, representing 95% certainty, is estimated using the De 
Moivre-Laplace limit theorem. 

This data is compared to the asymptotic expansion 
derived in Theorem 1 which we truncate to second order, 

R,  = R, + c2mP2/" .  (31) 

Using the explicit expressions for the coefficients obtained 
under Hypotheses H1 through H4, a broken curve is 
plotted for each dimensionality. The close agreement sug- 
gests that in this case the boundary contribution is very 

Hypotheses Hl-H3 would appear to incorporate needed 
uniformity and smoothness constraints. The following ex- 
amples illustrate, however, that it may be possible to 
weaken the constraints of these hypotheses, or alterna- 
tively, trade one for the other. The next example demon- 
strates that Hypothesis H2 may not be necessary to obtain 
the asymptotic scaling law of Theorem 1 (though with 
somewhat different expressions for the coefficients of the 
expansion). 

Example: (Normal distributions). Consider the classifi- 
cation problem described in R" by the two normal class- 

small, if not exponentially subdominant. 
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Fig. 4. Numerical evidence supporting the nearest neighbor scaling 
hypothesis for two normally distributed classes in R". The data suggests 
that the risk converges at rates of order m - * / " .  

conditional densities, 

and prior probabilities, P, = P, = 1/2. Using (111, the 
risk of the nearest neighbor classifier tends to 

For p = U = 1, a numerical integration yields R, = 
0.22480, which is consistent with the Bayes risk, R, = 

(1/2) erfc (1/ a) = 0.158 65. 
Fig. 4 summarizes the outcomes of numerous simula- 

tions of nearest neighbor classifiers operating on data 
from this family of normal distributions with n = 1 
through n = 5. The broken lines indicate the power law 
(31), where the coefficient c2 was chosen to obtain a 
convincing fit. (For this example, the expression for c2 in 
the remarks following Theorem 1 is inapplicable as the 
hypotheses fail.) Even so, the close agreement again sug- 
gests that an asymptotic expression of the form (12) for 

The last example considers the effect of violating Hy- 
pothesis H3. 

Example: ( Nonoverlapping uniform distributions). This 
case can be illustrated by two nonoverlapping, uniform 
distributions over the n-dimensional unit cube [0, On. 
Explicitly, we assume that the a priori probabilities of the 

R, exists. 

TABLE I 
A TABLE OF THE FIRST FEW FUNCTIONS Jl&) IN THE AsyhwroTIc 

EXPANSION (18) FOR I//( p, X) WHEN THE CLASS-CONDITIONAL 
DENSITIES ARE ASSUMED TO HAVE UNIFORMLY BOUNDED 

PARTIAL DERIVATIVES OF ORDER N -k 1 

log1o(m 1 
Fig. 5. Numerical evidence supporting the nearest neighbor scaling 
hypothesis for two, nonoverlapping, uniformly distributed classes in R". 
The data suggests that the risk converges at rates of order m-"". 

two classes are equal, P, = P; = 1/2, and that 

For n = 1, a direct calculation yields 
1 1 

which corresponds to the case c1 # 0. Because of analyti- 
cal complications at the boundary, it is much more diffi- 
cult to obtain expressions for R, in higher dimensions. 

Fig. 5 indicates the asymptotic trends evidenced by a 
similar set of numerical experiments for the nearest 
neighbor classifier with this distribution. For each dimen- 
sionality, the discontinuity at x ,  = 1/2, rules out the 
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Term 

90 

91 

91 

93 

TABLE I1 
COEFFICIENTS h ,  OF EXPANSION (22) FOR VARIOUS DIMENSIONALITIES. THE FUNCTION Jlk ARE DEFINED 

IN (19) AND (20). AND ARE LISTED IN TABLE I UNDER THE STRONGER SMUIOOTHNESS ASSUMFTION H3’ 

n = 3  n = 4  n = 5  n = 6  n 3 7  

*l *l *1 *l *1 

311; I O 1 0 1  O 1 0 1  

$031 0 ;$; 0 0 

TABLE 111 
COEFFICIENTS g, OF EXPANSION (26) FOR VARIOUS DIMENSIONALITIES 

THE FUNCTIONS (I, ARE DEFINED IN (25) 

n = l  I n = 2  

QO I QO QO QO QO QO QO 

Q l  Ql Q1 Q1 Q1 

a s +  a s +  a s +  Q S  

Ql*O+ I QldO I ao*o I I 

I I I I 
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TABLE IV 
A TABLE OF THE FUNCLIONS T,(x) FOR k I 6 

existence of the uniform asymptotic expansions assumed 
by Hypothesis H3 for each class-conditional density. In 
this case, the rates of convergence tend to be governed by 
a leading term proportional to m-"" unlike the preced- 
ing examples where the convergence was as rapid as 
O(m-2/") .  This example, along with Cover's analysis [3] 
for the one-dimensional case, suggests that some uniform 
smoothness hypothesis is necessary to achieve a rapid rate 
of convergence. 

infinite-sample limit R, only as slowly as the order of 
m-*/". Conversely, this indicates that the sample com- 
plexity demanded by the nearest neighbor algorithm to 
achieve acceptable levels of performance grows exponen- 
tially with the dimension n for a typical classification 
problem. In particular, the sample complexity m needed 
to achieve a finite sample risk which is E close to the 
infinite sample risk is asymptotically m - ( C ~ / E ) " / ~ .  
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also the simulations in Fukunaga [13]) indicate that the 
conditions under which Theorem 1 was proved are not 

We would like to thank Leonid Gurvits for suggesting 
The in the previous section (see Assertion 2, and an anonymous referee for providing the 

reference to the work of Fukunaga and Hummels [71. 

strictly essential. While some form of smoothness and 
uniformity requirements (such as Hypotheses H1-H3) 
would appear to be mandated if reasonable performance 
is to be attained, it may be possible to significantly weaken 
the constraints imposed by Hypothesis H4. The difficulties 
here appear to be purely technical involving boundary 
effects; in particular, even for smooth boundaries, it is 
difficult to determine even roughly the contribution to the 
rate of convergence from integral contributions at the 
boundary where the domain of integration consists of the 
intersection of a ball with the boundary. It is possible, 
however, that this is just a constraint imposed by the 
technique used in the paper. 

In summary, the complete asymptotic series expansions 
for the finite-sample risk developed in the theorem and 
the corollaries allow us to not just investigate the large 
sample behavior of the classifier, but the small sample 
behavior as well. The main results proved in this paper 
also vividly illustrate Bellman's curse of dimensionality: 
the finite-sample nearest neighbor risk R,  approaches its 

APPENDIX: 

TABULATION OF THE COEFFICIENTS 

General expressions for all the coefficients can be obtained as 
indicated in the proof of the theorem. The expressions for the 
coefficients can be substantially simplified, however, when Hy- 
pothesis H3 is replaced by the following, slightly stronger, 
smoothness assumption. 

Hypothesis H3 ': The class-conditional densities f i  possess uni- 
formly bounded partial derivatives up to order N + 1 on their 
probability one support. 

Assertion 1 shows that the above smoothness condition im- 
plies that Hypothesis H3 holds as well. 

We will evaluate relevant coefficients in the proof of the 
theorem under the stronger Hypothesis H3' to keep the expres- 
sions from growing too unwieldy. As a practical matter, the 
stronger assumption may be of most use as well. 

Coeflicients Gk: The functions t,bk satisfy 
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TABLE V 
A TABLE OF THE FUNCT~ONS &(a, x )  FOR k I 6 

and 

where V, is the volume of the unit ball in n-dimensions. For 
k = l;.., N - 1, each f k ( a , x ) ,  can be written as a sum of 
partial derivatives of the mixture density as in (7) and (8). The 
element of measure of S, - is represented by 

da = 4l ,$2 ... 
cos 4 - 2  @I d42 ... d4Jn- I ,  

where, -.n/2 I +i I .n/2 (i = l;.-,n - 21, and 0 I 4,-] I 
2.n. It is readily verified that every integrand with odd parity, i.e., 
those having an odd power of sin 4, for at least one j E {l;.., n 
- I}, evaluates to zero. Consequently, t&(x) = 0 for odd k, 
while for even k the values of +k can be determined through 
direct integration. The results are tabulated in Table I. 

coefficients h,: The coefficients h, in (22)  are obtained by 
substituting from (18) and collecting like powers of p. Table I1 
lists coefficients h, for 0 I k I 6. 

Coefficients gk:  The coefficients g k  in (26) are obtained by 
substituting from (18) and collecting like powers of p. Table 111 
lists coefficients g ,  for 0 5 k I 6. 

Coefficients T,: The coefficients T k ( x ) ,  0 5 k I 6, are listed 
in Table IV. The higher-ordered coefficients, as well as the more 
arduous expressions that follow, were derived with the aid of 
Mathematica [14]. 

Coefficients A,: The coefficients A,(@ x), 0 I k I 6, are 
listed in Table V. Again, we have resorted to Mathematica to 
obtain the higher-order terms. 

TABLJZ VI 
THE INFINITE-SAMPLE RISK OF THE NEAREST 

NEIGHBOR CLASSIFIER 

835 

I 

Coefficients c,: Recall that under Hypotheses Hl-H4, Theo- 
rem 1 gives the asymptotic expansion 

N 

R,  = R, + ckm-,ln + o ( m - N / n )  ( m  -+ a). 
k =  2 

The general form of the coefficients ck involves the asymptotic 
expansion coefficients fi, ,( a, x). The complete representation 
for c2, for instance, is given in (12). Substantial simplifications in 
the expressions result when Hypothesis H3 is replaced by the 
stronger Hypothesis H3', and Tables VI-XI list expressions for 
the coefficients c,, 0 I k I 6, under the stronger hypothesis. In 
particular, note that explicit expressions can now be written for 
the ck's involving only partial derivatives of the class-conditional 
densities. The general forms for these coefficients can be readily 
derived in a similar recursive fashion (albeit with somewhat 
more algebraic detail) as indicated in the proof of the theorem. 

The coefficient co _= R, is given in Table VI. This general 
form is valid under Hypothesis H3 as well, and indeed, under 
more general conditions than those imposed in this paper (see 
Cover and Hart [21). 

The simplified expression for c2 under Hypothesis H3' is 
shown in Table VI1 and is equivalent to the second-order 
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Range 

n z l  

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 3, MAY 1994 

C1 

TABLE VI11 
THE COEFFICIENT cj UNDER HWTKESIS H3' 

TABLE IX 
THE COEFFICIENT c4 UNDER HYPOTHESIS H3' 

TABLE X 
THE COEFFICIENT c5 UNDER HYPOTHESIS H3' 

I n=2 II 0 I 

I n14 II 0 I 
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TABLE XI 
THE COEFFICIENT c6 UNDER HYWTHESIS H3’ 

Range 

n =  1 

n = 2  

n = 3  

n = 4  

n 1 5  

expansion coefficient derived by Fukanaga and Hummels [7] [ B IT-21, pp. 552-557, 1975. 
in-Formula (01. For the general form ofihe coefficient see (12). 

Assertion 2 ensures that c3 vanishes for all but one- 
dimensional feature spaces, in which case c3 = -3c,, as in 
Table VIII. In general, the odd numbered coefficients vanish 
when n becomes suitably large. Expressions for c4, c5, and c6 
are presented in Tables IX-XI. All the expressions are derived 
with Hypothesis H3‘ replacing Hypothesis H3. 
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