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Shift multiplexing with spherical reference waves

George Barbastathis, Michael Levene, and Demetri Psaltis
Shift multiplexing is a holographic storage method particularly suitable for the implementation of
holographic disks. We characterize the performance of shift-multiplexed memories by using a
spherical wave as the reference beam. We derive the shift selectivity, the cross talk, the exposure
schedule, and the storage density of the method. We give experimental results to verify the theoretical
predictions.
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1. Introduction

Shift multiplexing was proposed in Ref. 1 as a
holographic storage method particularly suitable for
holographic three-dimensional 13-D2 disks.2,3 The
design of a shift-multiplexed disk is shown in Fig. 1.
The information to be stored on the disk is imprinted
on a plane-wave signal beam that illuminates a
spatial light modulator 1SLM2. Data can be analog
or digital, depending on the application. The refer-
ence is a spherical wave produced by a lens of high
numerical aperture 1NA2. The data are stored on
the disk as a hologram recorded by the interference
of the signal and the spherical reference. Alterna-
tively, the reference can be a one- or two-dimensional
fan of plane waves of arbitrary relative phases.
The nonplanar phase front of the reference beam

allows one to multiplex and retrieve holograms
selectively simply by translating the disk relative to
the recording head, as shown in Fig. 1. The shift
selectivity, i.e., the translation required for resolving
shift-multiplexed holograms, is typically of the order
of a few micrometers, much less than the transverse
size of the holograms 1the latter is typically a few
millimeters2. In this waymultiple overlapping holo-
grams are superimposed. To reconstruct holograms
that belong to the same track selectively, the disk is
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rotated relative to the stationary head. The head
needs to move only in the radial direction to access
different tracks on the disk. No additional multi-
plexing mechanism is needed. Because both disk
rotation and radial head translation are an integral
part of the optical disk configuration, a shift-
multiplexed disk is a simple implementation.
In this paper we concentrate on the implementa-

tion of shift multiplexing by the use of a spherical
wave reference. We theoretically explain the shift-
selectivity properties of volume holograms recorded
with spherical reference beams and present experi-
mental selectivity curves. We also give experimen-
tal results on cross talk between holograms superim-
posed by the shift-multiplexing method and show
that cross talk behaves approximately the same as in
the case of angle-multiplexed holograms. We ad-
dress the issue of dynamic range for shift-multi-
plexed holograms in photorefractive materials and
give two alternative exposure schedules, sequential
and interleaved recording. We demonstrated the
sequential technique by storing 600 shift-multi-
plexed holograms in LiNbO3.
The storage density of angle- and wavelength-

multiplexed holographic 3-D disks was derived in
Ref. 3. It was shown that uniformity considerations
for the edges of the stored holograms cause the
density to peak at a theoretical maximum of 117.2
bits@µm2 1for typical SLM parameters and optical
apertures2 for a 16.7-mm-thick LiNbO3 disk, with
four symmetric reference angles used for recording.
In Section 5 we present the corresponding derivation
for shift multiplexing. We show that the density of
a shift-multiplexed disk increasesmonotonically with
thickness and eventually saturates.
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2. Volume Holography with Spherical
Reference Beams

The use of spherical reference beams in volume
holography was treated in Refs. 4–7. In Ref. 4 a
spherical reference was used for a holographic corre-
lator, and the shift invariance curves were obtained
theoretically and experimentally. Here we use a
similar approach to derive the shift selectivity of
shift-multiplexed memories.
The geometry for shift multiplexing by the use of

spherical waves is shown in Fig. 2. The hologram is
recorded in the region 0z 0 , L@2 and is assumed to be

Fig. 1. Holographic disk implemented with shift multiplexing.
SLM, spatial light modulator; NA, numerical aperture.

Fig. 2. Geometry for shift multiplexing by the use of a spherical
reference wave.
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infinite in the transverse directions x, y. The spheri-
cal reference wave is produced by a spherical lens of
high NA. The focus is located at z 5 2z0. The
expression for the reference beam in the chosen
system of coordinates and under the paraxial approxi-
mation is

R1x, y, z2 5
1

jl1z 1 z02
exp1 j2p

z 1 z0
l 2

3 exp3 jp x2 1 y2

l1z 1 z024 . 112

We consider a plane-wave component of the signal
beam incident upon the x–z plane, making angle uS
with the z axis, which is expressed as

S1x, z2 5 exp3 j2puS
x

l
1 j2p11 2

uS2

2 2 zl4 , 122

where uS ; sin uS < uS 9 1 1paraxial approximation2.
If we neglect the variation of the modulation depth
throughout the hologram because of the defocusing
of the spherical wave, then the hologram can be
expressed by the term R*1x, y, z2S1x, z2 in the result-
ing interference pattern. We now consider the ex-
pression for the field diffracted from a thin layer of
the hologram located at z by using a displaced
reference beam R1x 2 d, y, z2:

R1x 2 d, y, z2R*1x, y, z2S1x, z2

5 exp32 jp
2dx

l1z 1 z024exp3 jp
d2

l1z 1 z024
3 exp1 j2puS

x

l2exp3 j2p11 2
uS2

2 2 zl4 . 132

The signal beam is reconstructed if d 5 0. For d fi 0,
the first term in Eq. 132 causes the reconstruction to
deviate angularly with respect to the original signal
S1x, z2 by an amount

DuS <
d

1z 1 z02cos uS

. 142

Because this angular deviation has a z dependence,
reconstructions coming from successive thin slices of
the hologram are phase mismatched. The amount
of shift d required for exactly canceling the reconstruc-
tion is calculated in Appendix A 1under the paraxial,
Born, and constant modulation-depth approxima-
tions2, and it is given by

dBragg 5
lz0
LuS

. 152

It is interesting that, in the geometry of Fig. 2, if
the reference were a plane wave incident along the z
axis instead of the spherical wave, then the angular



selectivity would be

Du 5
l

L tan uS
<

l

LuS
. 162

Thus we obtain the useful formula

dBragg 5 z0Du. 172

The finite spot size Dx 5 l@21NA2 of a truncated
spherical wave introduces ambiguity in the location
of the point source with respect to the hologram.
This ambiguity must be added to the shift selectivity,
giving the final expression

d 5 dBragg 1 Dx

5
lz0

L tan uS
1

l

21NA2
. 182

So far we have assumed a holographic medium
with an index of refraction equal to 1. Unless an
index-matching liquid is used, the change in refrac-
tion index n0 at the interface of the holographic
material causes the apparent location of the point
source 1as seen by an observer inside the holographic
medium2 to move away from the hologram. If we let
za denote the distance of the point source from the
center of the holographic material, measured in air,
then the apparent z0 relates to za 1paraxially2 as

z0 2
L

2
5 n01za 2

L

22 . 192

Therefore the modified selectivity equation is

d 5

l03za 2 11 2
1

n02
L

24
L tan uS8

1
l0

21NA2
. 1102

where l0 denotes the wavelength of light in vacuum
and uS8 is the angle of incidence of the signal inside
the material, determined from Snell’s law.
The experimental geometry used for all the shift-

multiplexing experiments described in this paper is
shown in Fig. 3. The experimental parameters
were l0 5 488 nm, L 5 4.5 mm, uS 5 40° 1measured
outside the crystal2, za 5 1 cm 1distance from focus of
the spherical reference to the center of the crystal,
measured in air2, and NA 5 0.6. The recording
material 1Fe-doped LiNbO32 has an index of refrac-
tion of n0 < 2.24. The signal was a chessboard
pattern, recorded as a Fresnel-region hologram.
The size of each square in the chessboard at the SLM
plane was approximately 0.5 mm. For the param-
eters used in the experiment, Eq. 1102 yields d 5 3.58
µm. The experimental selectivity curve is shown in
Fig. 4. The first null occurred at approximately
3.7 6 0.2 µm 1the margin of error is mainly due to
stage inaccuracy and backlash2, deviating by 3.6%
from the theoretical prediction.
3. Cross Talk in Shift Multiplexing

The approximate theory presented in Appendix A
predicts that the diffraction efficiency h of spherical
volume holograms as a function of shift has nulls at
integer multiples of dBragg. This holds for the ideal
situation of a hologram that is infinite in the trans-
verse directions, recorded with a spherical wave of
zero spot size as reference and a plane wave as
signal. We also neglected the variable modulation-
depth effects that were due to the variation in
intensity of the reference and the signal throughout
the volume of the hologram. Finally, the calcula-
tion was performed for a single signal component
incident at uS. In general, the signal occupies a

Fig. 3. Experimental setup for the demonstration of shift multi-
plexing 1not drawn to scale2.

Fig. 4. Experimental selectivity curve 1diffraction efficiency h

versus shift d2. The parameters of the experiment are shown in
Fig. 3.
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finite-size bandwidth in reciprocal space, hence each
component Bragg mismatches at different d.
In this section, we develop a theoretical model for

the cross talk induced by the finite signal bandwidth
in the case of shift multiplexing in the Fourier plane.
In the calculation we drop the dependence of the
selectivity on the NA 1i.e., the Dx correction2. The
assumption of an infinite spherical wave for shift
multiplexing is equivalent to assuming an infinite
plane-wave reference for other methods, as was done
in calculations of cross talk for angle,8 wave-
length,9,10 and phase-code11 multiplexing in the Fou-
rier plane and for image-plane holograms.12 We
show that, under these assumptions, the results for
shift multiplexing are consistent with the angle-
multiplexing analysis. Then we characterize the
cross talk experimentally and compare the results
with the theory.
Consider the Fourier-plane geometry of Fig. 5.

Let fm1j, h2, m 5 1, . . . ,M denote the pattern stored
as the mth page. M is the maximum number of
overlapping pages on any location. The signal corre-
sponding to themth hologram is expressed as

Sm1x, y, z2

5 e
2`

1` e
2`

1`

djdhfm1j, h2

3 exp32 j2p
j

lF
12sin uSz 1 cos uSx2 2 j2p

hy

lF4
3 exp3 j 2p

l 11 2
j2 1 h2

2F2 21cos uSz 1 sin uSx24 .
1112

Fig. 5. Geometry for the theoretical calculation of cross talk in
shift multiplexing by the use of a spherical reference wave.
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To reconstruct hologram m8, the recording area is
illuminated by a spherical beam displaced bym8d:

E i1m82 5
1

jl1z 1 z02
exp1 j2p

z 1 z0
l 2

3 exp3 jp 1x 2 m8d22 1 y2

l1z 1 z02 4 . 1122

We obtain the diffracted field by using the theory
of Appendix A with the paraxial approximation
sin uS ; uS 9 1, cos uS < 1 2 uS2@2 and neglecting
refraction. A lengthy but straightforward calcula-
tion yields for the detector plane the following expres-
sion:

Em81j8, h82 < o
m50

M21

fm3j8 1
1m 2 m82d

z0
F, h84

3 sinc31m 2 m82dL

lz0 1uS 2
j8

F24 . 1132

A straightforward calculation, along the lines of Ref.
8, shows that a similar expression holds approxi-
mately for the cross talk in the geometry of Fig. 5 1in
the paraxial approximation2 if we replace the spheri-
cal reference wave with a plane wave parallel to the z
axis and perform angle multiplexing instead of shift
multiplexing. A significant difference between the
cases of shift and the exact solution for angle multi-
plexing is that, in the former, symmetry makes cross
talk depend on the differencem 2 m8 only.
When hologram m8 is reconstructed, the fact that

the remaining multiplexed holograms were recorded
displaced by a multiple of the shift selectivity d
guarantees only that their central component, i.e.,
the central pixel j8 5 0, will be Bragg mismatched.
All other locations in the multiplexed images still
diffract weakly, because their shift selectivity is
given by Eq. 152 with uS 2 j8@F rather than with uS.
These contributions appear as cross talk around the
noise-free central pixel.
Let us assume that a large number M of Fourier-

plane holograms are shift multiplexed and are sepa-
rated by p-shift Bragg nulls, i.e., the relative transla-
tion between successive recordings is pd, where d is
the shift selectivity. Under the image statistics
assumed in Refs. 8, 10, and 11, the expected value of
the cross-talk noise power is given by the expression

PXN < o
m50

M21

sinc23p1m 2 m8211 2
j8

uSF24 , 1142

where the signal power was taken to be equal to 1.
If

p 0j8 0

uSF
9 1, M = `, 1152

then the summation can be carried out analytically



and yields

PXN <
0j8 0

2puSF
. 1162

Therefore, at pixels lying close to the carrier uS, the
noise increases linearly with distance from the im-
age center and is inversely proportional to the null
order p.
Theoretical plots of exact relation 1142 are given in

Fig. 6. As the pixel value increases, relation 1152 is
violated and the noise pattern becomes asymmetric.
Pixels with large positive values are closer to the z
axis and suffer from higher noise. The same curves
hold approximately for angle multiplexing in the
off-axis geometry if the same parameters 1including
the number of hologramsM2 are used.
To characterize the cross-talk effects for shift-

multiplexed volume holograms recorded with spheri-
cal reference beams, we performed the following
experiment: We stored 20 holograms of rotated
versions of the same chessboard pattern in 21 shift-
multiplexed positions, leaving position 11 blank.
Therefore excess light measured in the location of
hologram 11 is due to cross-talk contributions from
the neighboring holograms. The shift separation
between adjacent holograms was chosen to be equal
to d, 2d, 3d, and 4d 1i.e., p 5 1, 2, 3, 4, respectively2,
where for d we used the experimentally determined
value of 3.7 µm. The holograms were stored in the
Fresnel region. The cross-talk theory developed for
Fourier-plane holograms also applies to Fresnel

Fig. 6. Theoretical plots of expected cross-talk power versus
pixel location for Fourier-plane shift-multiplexed holograms.
The parameters used for the plots were hologram thickness L 5 1
mm, angle of incidence of the signal uS 5 20°, wavelength l 5 488
nm, focal length F 5 5 cm, and pixel size b 5 10 µm.
holograms recorded anywhere between the two lenses
in a 4F imaging system.
Behavior consistent with that predicted in Fig. 6 is

observed in Fig. 7, where the cross section of the
reconstruction of location 11 is plotted 1in the ab-
sence of cross talk, this would contain only scatter
and detector noise contributions2. The asymmetry
predicted in approximation 1132 is evident for storage
in the first null. In the case of using the second
null, the noise power decreases considerably and the
assymetry becomes less pronounced, in agreement
with the theoretical curves of Fig. 6.
The signal-to-noise ratio 1SNR2 results are given in

Fig. 8 for the cases of a single hologram and 21
multiplexed holograms. In the case of a single
hologram, we calculated the SNR by measuring the
spatially averaged diffracted power from the holo-
gram at zero translation and dividing by the dif-
fracted power at shifts equal to d, 2d, 3d, and 4d.
For the multiple holograms, we calculated the SNR
by dividing the diffraction efficiency at location 10

Fig. 7. Cross sections of the diffracted pattern at shift location 11
1originally left blank2. The upper plot is for multiplexing holo-
grams in the first Bragg null and the lower plot for the second
null. The units on both axes are arbitrary, but horizontal and
vertical scales are the same in both plots.
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2407



with the diffraction efficiency at location 11 1empty
slot2 for the four cases of null separation.
In the same plot we also give the theoretical values

of the ratio between the expected total signal power
and the expected total noise power for each case of
null separation. The three curves show the same
qualitative behavior, although there is a noticeable
discrepancy between the theoretical and the experi-
mental values of cross-talk-induced SNR. The satu-
rating behavior of the experimental data indicates
that the discrepancy is mainly due to noise sources
unrelated to cross talk, such as scatter noise and
multiple reflections off the uncoated crystal surfaces.
In addition, small contributions are present from
cross-talk sources, such as finite NA and variable
modulation depth that we neglected in the theory.

4. Exposure Schedule for Shift Multiplexing in
Photorefractive Materials

The diffraction efficiency h of holograms recorded in
diffusion-dominated photorefractive materials is de-
scribed as a function of the recording time t by a
saturating exponential of the form 1see, e.g., Ref. 132

h1t2 5 h031 2 exp12t@tw24
2, 1172

where h0 is the saturation diffraction efficiency and
tw is the recording time constant. On the other
hand, when a hologram of strength h1 is illuminated,
it decays exponentially as

h1t2 5 h1 exp122 t@te2, 1182

where te is the erasure time constant. The param-

Fig. 8. SNR versus null order p 1in multiples of d 5 3.7 µm2 for
two experiments: single hologram and 21 holograms. Shown
also is the theoretical SNR prediction for themaximum numberM
of allowable shift-multiplexed holograms at the respective null
orders.
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eters tw and te depend on the geometry, the total
exposure power, the modulation depth, and the
absorption coefficient. In this paper we do not do a
detailed calculation of the time constants, but we
assume that the exponential models of Eqs. 1172 and
1182 hold, andwe determine the value of te experimen-
tally.
In multiplexing techniques based on recording

over the same spot 1e.g., angle multiplexing2, holo-
grams recorded early are erased by their successors.
The first holograms are erased more, thus they must
be initially stronger; this requirement was used in
Refs. 14–16 to derive hologram recording times as a
function of hologram order. This function is re-
ferred to as exposure schedule. The exposure times
depend on tw, te, and the number of hologramsM.
We now describe an exposure schedule for shift-

multiplexed holograms thatwe call sequential record-
ing. With this method, shift-multiplexed holo-
grams are recorded when the disk is rotated by an
angle fdisk sufficient to produce translation equal to
the shift selectivity d between successive exposures.
Let R be the radius of the track being recorded.
Then fdisk is given by

fdisk 5
d

R
5

lz0
RL tan uS

1
l

2R1NA2
. 1192

Figure 91a2 shows how the sequential exposure
schedule evolves in time and space. M is the num-
ber of shift-multiplexed holograms that overlap
within one spot. It is equal to the hologram aper-
ture along the shift direction divided by d 1see Section
5 for a derivation2. The total number of holograms
fitting in the track is given by

N 5
2pR

d
. 1202

A hologram is erased by its neighbors that start to
its right and overlap vertically in the plot; thus Am is
erased by Am11, . . . , Am1M21 but not by the subse-
quent holograms. This is true for all indices m
running from M 1 1 to N 2 M. Holograms
A1, . . . , AM will be further erased by holograms
AN2M11, . . . , AN when the disk completes one full
revolution, whereas holograms AN2M11, . . . , AN will
be erased less than the other holograms. Neglect-
ing these edge effects, all other holograms are erased
in the same manner; hence their diffraction efficien-
cies are equalized if they are recorded with the same
exposure time t0.
A consequence of the sequential approach is trans-

verse nonuniformity, as shown in Fig. 91b2. Consider
any hologram Am, except for the first M and the last
M. The diffraction efficiency of Am immediately
after recording is given by

h1 5 h031 2 exp12t0@tw24
2. 1212

The next hologram in the sequential schedule is



Am11, and it is recorded after shifting by d. Thus it
will erase Am for a time t0, except for a strip of width
d, which is denoted as strip 1 in Fig. 91b2; this strip
will retain diffraction efficiency h1. In general, af-
ter the end of the recording process, strip l of any
hologram will have reached the diffraction efficiency
of

hl 5 h031 2 exp12t0@tw24
2 exp3221l 2 12t0@te4. 1222

Maximum erasure is suffered by strip M. The
diffraction efficiency hM of this strip is maximized if
we choose

t0 5 tw ln31 1
te

1M 2 12tw4 <
te

M
1232

and is given by

hM 5 h03 te

te 1 1M 2 12tw4
2

31 1
te

1M 2 12tw4
221M212tw@te

< h0

te
2e22

M2tw
2
. 1242

The approximations hold forM: 1. We now define
the average diffraction efficiency of the nonuniform

Fig. 9. 1a2Exposure schedule for sequential recording. Horizon-
tal axis is shift, vertical is recording time. Bars A1, A2, . . . , A2M

denote holograms; the index corresponds to the location on the
disk; the horizontal location of a hologram in the graph denotes its
shift with respect to the origin 1left edge of the first hologram A12,
and the vertical location the beginning of its exposure in the
schedule. The horizontal separation is equal to the shift selectiv-
ity d; the vertical separation is equal to the constant exposure time
t0 1see text2. 1b2 Nonuniform erasure of hologram Am by its
successors Am11, . . . , Am1M21. The diffraction-efficiency curve
follows the profile of Am after the recording of all its shift-multiplexed
neighbors is complete 1see alsoAppendix B andFig. 142.
holograms as

hav 5

e h1x2dx

e dx

, 1252

where the integrals are along the aperture of the
holograms in the shift direction. This results in

hav 5 4
h0

M
exp32t01 1tw 1

M 2 1

te
24

3

sinh2
t0
2tw

sinhM
t0
te

sinh
t0
te

1262

< h0

te
211 2 e222

2M2tw
2

. 1272

Approximation 1272 results from Eq. 1262 if we substi-
tute the optimal value of t0 calculated in Eq. 1232.
Thus, in the sequential schedule, the average diffrac-
tion efficiency follows the 1@M2 rule, but it is actually
weaker than the diffraction efficiency of angle-
multiplexed holograms by a factor of 11 2 e222@2 <
0.432. On the other hand, from Eq. 1262 we observe
that if we let t0 = `, hav behaves like 1@M. This
expresses the fact that if we overexpose the holo-
grams in the sequential method, then only the first
strip of each hologramwill survive and the rest of the
hologram will be erased. This situation is undesir-
able, as it restricts the recording area to a strip of
width d only and degenerates shift multiplexing to
spatial multiplexing, resulting in severe losses in
storage density.
At the leading edge, holograms A1, . . . , AM have

uniform diffraction efficiency equal to hM, because
they receive additional exposure at the end of the
schedule, when the disk is about to complete one
revolution. At the trailing edge, the worst affected
strip of hologram AN2m, m 5 M 2 1, . . . , 1, is l 5
m 1 1 and has a diffraction-efficiency value of
hl < h0te

2e221l212@M@tw
2M2. Hologram AN is uniform,

as it is never erased and has diffraction efficiency h1.
We can cancel the nonuniformity in image-plane

holograms by recording with the inverse intensity
dependence. Alternatively, for digital storage, one
can record uniform holograms and use variable
decision thresholds. Either method will yield good
results if the diffraction efficiency of the most af-
fected areas is kept sufficiently strong compared
with the noise level by the use of the optimal t0 of Eq.
1232. On the other hand, the nonuniformity has
severe effects on Fourier holograms, as it shapes the
hologram spectrum asymmetrically. This nonuni-
form filtering effect causes pixel broadening 1intra-
page noise2; therefore the contrast ratio of the recon-
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2409



struction decreases with respect to the unfiltered
case. For holograms recorded in the Fresnel region,
image- and Fourier-plane effects are combined in the
sense that one observes nonuniformity across the
reconstruction and also a decrease in the contrast
ratio. In Appendix B we characterize the nonuni-
form erasure-induced filtering theoretically.
We used the sequential exposure schedule to re-

cord 600 holograms in the experimental setup shown
in Fig. 3. We set the separation between adjacent
holograms to 7.4 µm, which equals twice the mea-
sured shift selectivity d 5 3.7 µm. The size of the
signal beam projected onto the crystal surface was
approximately 3 mm. Therefore the number of
overlapping holograms in this experiment was M <
400. For the crystal we used and the given geom-
etry, we measured te < 3500 s. For recording we
used t0 5 10 s as the constant exposure time. Each
reconstruction was spatially integrated onto a single
detector in order tomeasure the diffraction efficiency.
The results are plotted in Fig. 10. It is seen that the
first 200 holograms were successfully equalized in
terms of the total diffraction efficiency, as they all
received equal exposure. From then on, the diffrac-
tion efficiency versus the hologram number attains
an upward slope, as expected, because, as the order
of holograms increases, the number of overlapping
holograms decreases.
In Fig. 11 we show a few reconstructions from the

600 holograms. All holograms 1with the exception
of the last few2 exhibit nonuniformity toward the
shift direction. Because the image features were
quite large in this experiment, the pixel-broadening
effect was not observed.
We can eliminate the nonuniformity through the

use of a different exposure schedule, which we call
interleaved. With this scheme, we record one com-
plete track of nonoverlapping 1spatially multiplexed2

Fig. 10. Plot of the measured diffraction efficiency 1after spatial
integration by a single detector2 of 50 out of 600 holograms stored
with the sequential method. For a shift separation of dshift 5 7.4
µm 1second null2 and an aperture size of s < 3 mm, we have M <
400. Therefore only the first 200 holograms received equal exposure.
The exposure time used in this experiment was t0 5 10 s.
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holograms before moving to the next shift-multi-
plexed position. This method is well matched to the
disk configuration, as we can record a new set of
slightly shifted spatially multiplexed holograms dur-
ing each disk rotation. Interleaving works per-
fectly if N 1 1 is an integer multiple ofM; otherwise
the firstM and lastM holograms suffer from overex-
posure and underexposure, respectively, as in the
sequential method. We ignore these edge effects in
the subsequent analysis.
As described, recording consists of M epochs. At

epoch q 1q 5 0, . . . ,M 2 12 we record holograms Aq,
AM1q, . . . , AN2M1q. The recording time for all holo-
grams at epoch q is tq. Because full tracks are
recorded so that they completely overlap 1but still
they are displaced by dwith respect to each other2, all
holograms are erased uniformly; moreover, tracks
recorded later are erased less than their predecessors.
The uniform diffraction efficiency of the holograms
after epoch q is recorded is given by

h1q2 5 h031 2 exp12 tq
tw24

2

exp1 o
q85q11

M21 2tq8

tw 2 . 1282

This same equation holds for methods of complete
overlap, e.g., angle multiplexing.15 Therefore the
exposure schedule is determined identically. The
optimal diffraction efficiency is given by

h < h0

te
2

M2tw
2
. 1292

It is the same for all holograms and equal to the
diffraction efficiency yielded by the exposure sched-
ule for angle-multiplexed holograms. The price to
pay for the equalization provided by the interleaving
method is considerable complication in the recording
process.

5. Surface Storage Density

The surface storage density of a holographic disk is
defined3 as the number of bits of information 1in the
form of binary pixels2 that are stored per unit area.
Data are stored so that every page, which contains
Np 3 Np pixels, 1Np per dimension2 occupies area A

on the disk. In volume holographic memories, the
page density is multiplied by M, the number of
overlapping holograms per location. Therefore the
surface storage density D of any holographic disk is

D 5
MNp

2

A
. 1302

The storage densities for angle- and wavelength-
multiplexed disks were calculated and optimized in
Ref. 3. In this section we do the analogous calcula-
tion for shift-multiplexed disks when a spherical
wave is used as reference.
First we consider the case in which holograms are

stored in the image plane. Specifically, we assume



1a2 1c2

1b2 1d2

Fig. 11. Reconstructions of holograms 1a2 1, 1b2 200, 1c2 400, and 1d2 600 from the experiment of Fig. 10. The shift direction was from left to
right.
that the central pixel of the stored page is imaged at
the center of the holographic medium. We denote
by b the size of the pixels in the image. Then the
area isA 5 1Npb22@cos uS, where uS is the angle of in-
cidence of the central signal component, as in the
sections above. The number of overlapping shift-
multiplexed holograms along a single page is M 5
Npb@2d cos uS, where d is the shift selectivity given
by Eq. 182, and we assume that successive holograms
are stored at the second Bragg null; this was justified
in Section 3. Therefore we obtain, for the density,

D image 5
Np

2bd
5

Np

2bl3 z0
L tan uS

1
1

21NA24
. 1312

For Fourier-plane storage, the size of the first lobe
1which contains all the information, according to the
sampling theorem2 is 2lF@b, where F is the focal
length of the Fourier-transforming lens and b is the
pixel size. The lobe size was derived assuming
intensity detection. The result for the density is

DFourier 5
Np

2b

4lFd
5

Np
2b

4l2F3 z0
L tan uS

1
1

21NA24
. 1322

Equations 1312 and 1322 give the density, provided
that the distance z0 has been already selected prop-
erly such that the reference and the signal com-
pletely overlap inside the volume of the recording
material. In general, the minimum z0 is deter-
mined in terms of the hologram thickness and the
geometry. We show that z0 varies linearly with L,
according to the relation

z01L2 5 A 1 BL. 1332

Increasing the thickness beyond a certain point does
not lead to the expected gain in density, because the
reduction in Bragg selectivity that is due to the
increased interaction length competeswith the simul-
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2411



taneous increase in z0. Below we derive the coeffi-
cients A and B of Eq. 1332 and the maximum achiev-
able density with optimally selected z0 as functions
of thickness L.
We use f for the angular spread of the reference

beam, i.e., NA 5 sin f. We do the calculation
simultaneously for the image and the Fourier planes.
For this reason, we use the symbol s for the page size
in both cases, given respectively by

s 5 5Npb

2l0F@b
,

image plane

Fourier plane
, 1342

where l0 is the wavelength of light in vacuum. The
angular spread of the signal beam outside the holo-
graphic material is

sin x < 5l0@b

Npb@2F
,

image plane

Fourier plane
. 1352

Let n0 denote the refractive index of the holographic
material. The reference spread f8, the angle of
signal incidence uS8, the signal spread x8, and the
page size s8 inside the material are recalculated with
Snell’s law as follows:

sin f 5 n0 sin f8, 1362

sin uS 5 n0 sin uS8, 1372

sin x 5 n0 sin x8, 1382

s cos uS8 5 s8 cos uS. 1392

Because the signal beam is tilted with respect to
the normal to the recording material, it is possible
that the tilted image of the data page does not fit
inside the medium. This will happen if the medium
is very thin 1see details below2 or if the tilt is large

Fig. 12. Geometry for the calculation of storage density in
shift-multiplexing geometry 1spherical reference incident nor-
mally upon the material, signal incident off axis2. The case
s8 sin uS8 , L, f , uS is shown 1see text2.
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enough. Therefore we need to consider two sepa-
rate cases for thick and thin media. We start with
the case of a thick medium so that the condition
s8 sin uS8 , L is satisfied, i.e., the whole focused page
fits inside the hologram, as shown in Fig. 12. The
geometry we chose for this analysis is conservative
in the sense that we restricted the reference aper-
ture according to f , uS. This guarantees that the
signal eventually separates itself from the reference
cone, and thus the design of the imaging system that
delivers the signal to the hologram is simplified.
This restriction could be relaxed and the density
would increase, but the optical design would become
more complicated. We do not consider this optimiza-
tion problem in this paper.
A geometric calculation based on Fig. 12 shows

that the minimum z0 required for the reference and
the signal to overlap is given by Eq. 1332 with
coefficients

A 5
s

2

cos x8 cos uS8

cos1uS8 1 x82tan f8 cos uS

, 1402

B 5
1

2

tan1uS81 x82

tan f8

. 1412

Recall that z0 is the apparent focal distance of the
spherical wave, as seen by an observer inside the
holographic medium. In order to convert z0 to za
1focal distance measured in air2, we apply Eq. 192.
In the case of a thick medium, z0 always increases
with L, and the surface density saturates to

D image
max 5

n0Np sin f8

l0b31 1
tan1uS8 1 x82cos f8

tan uS8
4

1422

for the image plane and to

D Fourier
max 5

n0Np
2b sin f8

2l0
2F31 1

tan1uS8 1 x82cos f8

tan u S8
4

1432

for the Fourier plane.
For the case s8 sin uS8 . L 1thin medium2, the

geometric calculation is more complicated. With
the same restrictions as above, the result is

A 5
s

2

cos x

tan f8 cos1uS 1 x2
, 1442

B 5
1

2 tan f8 3
1

tan uS8
1 2 tan1uS8 1 x82

2
cos uS cos x

sin uS8 cos uS8 cos1uS 1 x24 . 1452

Note that the coefficient B for a thin medium can
become negative, and then the optimal z0 decreases



with L. This is due to bending of the signal rays
induced by refraction.
In a recent experiment,17 surface storage density

in excess of 10 bits@µm2 with a raw bit-error rate of
1024 was demonstrated in a holographic disk configu-
ration with DuPont’s HRF-150-100 photopolymer as
the recording material. The parameters used in
this experiment were l 5 0.532 nm, n0 5 1.525,Np 5
768, b 5 45 µm, and F 5 5.46 cm. Thirty-two
Fresnel-region holograms were superimposed on the
same spot by a combination of angle 1eight locations
separated by four Bragg nulls2 and peristrophic18
1four holograms per angular location2multiplexing.
Shift multiplexing can also be combined with

other techniques, such as peristrophic and fractal,19
in order to increase the storage density at the cost of
complicating page access. Better yet, it is possible
to apply the spherical reference analog to the angle
plus fractal or peristrophic methods, which consists
of shift multiplexing holograms in both the x and y
directions 1see Fig. 22. In the disk configuration,
y-shift multiplexing corresponds to overlapping holo-
gram tracks. The y-shift selectivity for high-band-
width signal beams is given by20

dy 5 z012l

L 2
1@2

1
l

21NA2
. 1462

For the same parameters of the experiment of Ref.
17, y-shift multiplexing increases the density by a
factor of at least 3.
Using the combination of y-shift multiplexing with

x-shift multiplexing at the fourth shift Bragg null
1consistent with Ref. 172, f 5 45°, uS 5 60°, and
assuming Fourier-plane storage, we obtain the theo-
retical density prediction for shift multiplexing given
in Fig. 13. Note that, for thickness L 5 100 µm of
the DuPont photopolymer, x1 y-shift multiplexing is
expected to yield D 5 11.8 bits@µm2, slightly higher
than the 10.7 bits@µm2 of the high-density experi-
ment reported in Ref. 17. Shift density increases
almost linearly with thickness, reaching 163.4
bits@µm2 for L 5 1.2 mm, when it begins to saturate.
Thus shift multiplexing utilizes the area of holo-
graphic 3-D disks more efficiently.

6. Discussion and Conclusions

In this paper we analyzed theoretically and experi-
mentally shift multiplexing by using spherical refer-
ence waves. We addressed the issues of selectivity,
cross talk, exposure schedule, and storage density.
We showed the similarity between the Bragg selectiv-
ity mechanisms of angle and shift multiplexing and
pointed out the differences that permit shift multi-
plexing to achieve higher storage density in a more
compact setup.
Variants of the shift-multiplexing method de-

scribed herein are also possible. For example, one
could relax the constraint of the signal off-axis
geometry and use the signal on axis with a tilted
spherical wave of small NAas reference, even though
in such a system the shift selectivity would be
significantly worse. Shift multplexing can also be
implemented in the reflection and 90° geometries.
In particular, the 90° geometry yields optimal selec-
tivity

d 5
lz0
2L

1
l

21NA2
1472

3in agreement with Eq. 1724. However, for storage in
photorefractives, the transverse nonuniform erasure
effect analyzed for transmission geometry in Appen-
dix B can be shown to broaden the selectivity in that
case. This leads to higher cross talk, as the holo-
gram acquires an intensity profile along the z direc-
tion, and therefore the achievable storage density is
reduced.
In this paper we concentrated on shift multiplex-

ing in the x direction 1parallel to the plane defined by
the direction of the signal beam and the point
source2. The possibility of shift multiplexing in the
y direction20 was mentioned in Section 5. In the
holographic disk architecture, y-shift multiplexing is
achieved by translation of the head with the spheri-
cal reference in the radial direction with respect to
the disk. Then the reconstruction also shifts in the
detector plane, until eventually it misses the detec-
tor or becomes Bragg mismatched. The required
shift distance before either effect occurs is typically a
few hundred micrometers. One can record a new
track, overlapping with the previous one, on the new
location by multiplexing in the x direction. The
gain in density can be of the order of 2 , 10,
depending on the signal bandwidth and the focal
distance of the spherical reference.

Fig. 13. Theoretical shift-multiplexing surface storage density
in the Fourier plane, with parameters l 5 0.532 nm, n0 5 1.525,
Np 5 768, b 5 45 µm, amd F 5 5.46 cm, the same as those of the
experiment reported in Ref. 17, where angle plus peristrophic
multiplexing was used. The reference spread used for the shift-
multiplexing density calculation is f 5 45°, and the angle of
incidence of the signal beam is uS 5 60°.
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2413



Appendix A. Derivation of the Shift Selectivity

In this appendix we derive the diffraction efficiency
of a spherical volume hologram as a function of the
shift d of the reference relative to the hologram.
We consider again the geometry of Fig. 2. Under
the Born approximation, the diffracted field at the
observation point rp is given by the volume inte-
gral,21

Ed1rp2 5 e
V

E i1r2De1r2G1r; rp2d3r, 1A12

where V denotes the volume of the hologram, E i is
the incident field, De1r2 is the phase hologram, and
G1r; rp2 is the scalar Green’s function for free space22:

G1r; rp25
1

jl 0r 2 rp 0
exp1 j2p

0r 2 rp 0

l 2
<

1

jl1zp 2 z2
exp3 j2p

zp 2 z

l

1 jp
1xp 2 x22 1 1 yp 2 y22

l1zp 2 z2 4 , 1A22

We obtain the last relation by expressing a spherical
wave in the paraxial approximation. We assumed
that zp . z for all pairs of observation-integration
points zp, z.
Similarly, the spherical reference wave 1on record-

ing2 is expressed in the paraxial approximation as in
Eq. 112, repeated here for convenience,

R1r2 5
1

jl1z 1 z02
exp1 j2p

z 1 z0
l 2

3 exp3 jp x2 1 y2

l1z 1 z024 , 1A32

and the propagating signal is expressed as

S1r2 5 exp1 j2puS
x

l2exp3 j2p11 2
uS2

2 2 zl4 . 1A42

Then we have

De1r2 5 R*1x, y, z2S1x, z2, 1A52

E i1r2 5 R1x 2 d, y, z2. 1A62

We also assume that the spherical wave and the
recording material are infinite in the transverse 1x, y2
directions and that the thickness of the hologram is
L in the z direction. Substituting into Eq. 1A12, we
obtain the following expression:

Ed1rp2 <
exp1 j2p

zp
l 2

l2z02 e
2`

1`

dx e
2`

1`

dy e
2`

1`

dz
2414 APPLIED OPTICS @ Vol. 35, No. 14 @ 10 May 1996
3 rect1zL2exp32 jp1uS2 zl 2
d2

l1z 1 z0224
3 exp3 j2p

x

l 1uS 2
d

z0 1 z24
3

1

l1zp 2 z2
exp1 j2p

zp 2 z

l 2
3 exp3 jp 1xp 2 x221 1 yp 2 y22

l1zp 2 z2 4 . 1A72

The volume integral is calculated analytically as
follows: The x and the y integrals are readily
obtained with the following lemma from complex
analysis23:

e
2`

1`

exp3 j1aw2 1 2bw24dw

5 1 p0a 02
1@2

exp3 j1sgn1a2 p

4
2
b2

a 24 , 1A82

for a, b real, and a fi 0. Then we expand the
denominators of the form 1z 1 z02m, 1m 5 1, 22 in the
exponents, keeping terms of order 1z@z02 only. The
resulting z integral yields

Ed1rp2

<

exp5 j 2p

l 3uSxp 1 11 2
uS2

2 2zp4 1 j
2p

l

d1xp 2 uSzp2

z0 6
l2z02

3 sinc3dLlz0 1uS 2
xp 2 uSzp

z0 24 . 1A92

The first term in approximation 1A92 is explained as
follows: if d 5 0, the diffracted far field is a plane
wave propagating in the direction uS of the original
signal. For d fi 0, the direction of the reconstruc-
tion deviates by d@z0 1paraxially2 from uS. The direc-
tion-dependent sinc term suppresses the diffracted
power, a result of phase mismatch among wavelets
produced in different positions along the volume
hologram 1Bragg mismatch2. In the far field we can
make the stationary phase assumption 1i.e., assume
that significant diffraction is obtained only at xp <
uSzp2 to obtain, for the diffraction efficiency,

h1d2 ;
0Ed 0

2

0E i 0
2

, sinc21duSLlz0 2 . 1A102

Therefore, under the above assumptions, the Bragg
nulls in diffraction efficiency occur at

d 5 mdBragg ; m
lz0
LuS

, m 5 1, 2, . . . . 1A112



Appendix B. Filtering Effects Induced by Nonuniform
Erasure in the Fresnel and the Fourier Regimes

Shift-multiplexed holograms in photorefractive crys-
tals stored according to the sequential schedule
suffer nonuniform erasure 1see Section 42. We now
characterize this effect for holograms stored in the
Fresnel region and in the Fourier plane as a special
case.
The geometry used for the calculation is shown in

Fig. 14. The hologram is tilted with respect to the
signal beam path by angle uS and is located distance f
from the Fourier-transforming lens 1focal length F2.
For simplicity we ignore the thickness of the record-
ing material and the possible aberrations introduced
by the tilted path. The shift selectivity is d, and the
pixel size is b. We assume that during recording,
the signal is low-pass filtered at the Nyquist cutoff
bandwidth 2lF@b so that the area it takes on the
disk is minimized without any loss in information
content. Because of the shift-multiplexing mecha-
nism, successive slices of the hologram suffer expo-
nential erasure by an amount t0 compared with that
of their neighbors. Thus the diffraction efficiency is
given by the staircaselike function,

h1x9, x2 5 o
l50

m021

exp12 j2p
xx9

lF2exp321l01 l2t0@te4

3 rect3x9 2 1l 2
m0 2 1

2 2bd

bd
4 , 1B12

where the indices l0 andm0 indicate which part of the
staircase corresponds to the point source located at x
and b is a correction factor for the tilt. These
parameters are obtained directly from the geometry
of Fig. 14, and are given by the following expressions:

l01x, f 2 5 0F 2 f 2
lF

b
tan uS0

3 5
Npb

2
2 x

Fd cos uS

, if f , F 2
lF

b
tan uS

Npb

2
1 x

Fd cos uS

, if f . F 2
lF

b
tan uS

, 1B22
b1x2 5 cos uS 1
x

F
sin uS, 1B32

m01x2 5
2lF

bb1x2d
. 1B42

The total number of strips M is needed in order to
determine the optimum recording time according to
the theory of Section 4. M depends on the defocus-
ing distance f and is given by
M1 f 2 5 5
2lF

bd cos uS
11 1 01 2

f

F 0
Npb2

2lF 2 , if 0F 2 f 0 .
lF

b
tan uS

2lF

bd cos uS
11 1

Npb

2F
tan uS2 , if 0F 2 f 0 ,

lF

b
tan uS

. 1B52
The transfer function is then determined as

h1x8, x2 5 sinc1k2ar1k 1 jz; m02

3 exp322p1l0 1
m0 2 1

2 2z4 , 1B62

k 5
1x8 2 x2b1x2d

lF
, 1B72

z 5
t0

2pte

, 1B82

where the array function ar1u; l2 is defined as

ar1u; l2 5
sin1lpu2

l sin1pu2
. 1B92

Note that the filter represented by this transfer
function is shift variant 1unless f 5 F and uS 5 0,
which would yield bad shift selectivity2. In general,
the diffraction efficiency is asymmetric 1except when
f 5 F2, in agreement with experiment 1see Fig. 112.
The weaker edge is toward the shift direction if f , F
and in the opposite direction otherwise. The resolu-
tion is worse than the case of no erasure 1te 5 `2 and
decreases uniformly toward the weaker edges.
Some sample simulated reconstructions are shown

in Fig. 15. The parameters used for this numerical
example were l 5 488 nm, F 5 5 cm, Np 5 10, b 5

100 µm, uS 5 40°, and d 5 7 µm. The original
pattern used for the simulations is shown in Fig.
151a2. In Fig. 151b2 we have plotted the reconstruc-
tion for f 5 4 cm with no absorption 1t0@te 5 02. In
this case simple low-pass filtering takes place, with a
cutoff frequency equal to the Nyquist frequency
2lF@b determined for intensity detection. The con-
trast ratio is µ 5 91.41 in this example. For a
Fourier filter with t0@te 5 0.011 1approximately equal
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2415



Fig. 14. Geometry for the calculation of the distortion occuring
in shift-multiplexed holograms recorded in photorefractive mate-
rials, which is due to partial erasure in the Fourier or the Fresnel
regions. The filter is shift variant if the hologram is not centered
with respect to the Fourier plane 1see also Fig. 92.
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to 1@M, where M 5 92 for this case2, Fig. 151c2, the
contrast ratio drops to µ < 72, 21.2% down with
respect to the simple Nyquist filter. Finally, in Fig.
151d2 the result of a Fresnel filter with f 5 4 cm,M 5
109, and t0@te 5 1@M 5 0.0092 are shown. The
contrast ratio is µ 5 72.15 at the weak edge and µ 5
83.04 at the strong edge. Even though µ improved,
the average diffraction efficiency hav decreased ac-
cording to the theory of Section 4, sinceM increased,
and therefore other noise sources degrade the total
SNR. If, however, we were to keep t0@te 5 0.011 for
the Fresnel filter, then hav would improve, but µ
would drop to 66.61 and 78.8 at the weak and the
strong edges, respectively.
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1a2 1c2
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Fig. 15. Numerical results of the effects of shift-induced nonuniformity on Fourier and Fresnel holograms. The horizontal axis is the
image coordinate parallel to the shift direction, and the vertical axis is diffracted power, both in arbitrary units. 1a2 Original chessboard
pattern; 1b2Nyquist filter 1cutoff at 6lF@b2without absorption 1te 5 `2, located at f 5 F 5 5 cm; 1c2Nyquist filter with t0@te 5 0.011, f 5 F 5

5 cm 1Fourier filter2; and 1d2Nyquist filter with t0@te 5 0.0092, f 5 4 cm 1Fresnel filter2.



Burr, Jean-Jacques Drolet, Fai Mok, and Gan Zhou
for helpful discussions and suggestions, and to Ya-
yun Liu for technical support. Part of this work
was conducted while George Barbastathis was sup-
ported by a Charles Lee Powell Foundation graduate
fellowship. Michael Levene acknowledges the sup-
port of a National Defence Science and Engineering
Graduate fellowship.

References
1. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis,

‘‘Holographic storage using shift multiplexing,’’ Opt. Lett. 20,
782–784 119952.

2. D. Psaltis, ‘‘Parallel optical memories,’’ Byte 17, 179–182
119922.

3. H.-Y. S. Li and D. Psaltis, ‘‘Three-dimensional holographic
disks,’’Appl. Opt. 33, 3764–3774 119942.

4. K. Wagner and D. Psaltis, ‘‘Multilayer optical learning net-
works,’’Appl. Opt. 26, 5061–5076 119872.

5. L. Solymar and D. J. Cooke, Volume Holography and Volume
Gratings 1Academic, NewYork, 19912, pp. 243–253.
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7. H. C. Külich, ‘‘Reconstructing volume holograms without
image field losses,’’Appl. Opt. 30, 2850–2857 119912.

8. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok,
‘‘Cross-talk-limited storage capacity of volume holographic
memory,’’ J. Opt. Soc. Am.A 9, 1978–1983 119922.

9. A. Yariv, ‘‘Interpage and interpixel cross talk in orthogonal
1wavelength-multiplexed2 holograms,’’ Opt. Lett. 18, 652–654
119932.

10. K. Curtis, C. Gu, and D. Psaltis, ‘‘Cross talk in wavelength-
multiplexed holographic memories,’’ Opt. Lett. 18, 1001–1003
119932.
11. K. Curtis and D. Psaltis, ‘‘Cross talk in phase-coded holo-
graphic memories,’’ J. Opt. Soc. Am.A 10, 2547–2550 119932.

12. K. Curtis andD. Psaltis, ‘‘Cross talk for angle- andwavelength-
multiplexed image plane holograms,’’ Opt. Lett. 19, 1774–
1776 119942.

13. P.Yeh, Introduction to Photorefractive Nonlinear Optics 1Wiley,
NewYork, 19932, pp. 105–111.

14. K. Bløtekjaer, ‘‘Limitations on holographic storage capacity of
photochromic and photorefractive media,’’ Appl. Opt. 18,
57–67 119792.

15. D. Psaltis, D. Brady, and K. Wagner, ‘‘Adaptive optical
networks using photorefractive crystals,’’Appl. Opt. 27, 1752–
1759 119882.

16. E. S. Maniloff and K. M. Johnson, ‘‘Maximized photorefrac-
tive data storage,’’ J. Appl. Phys. 70, 4702–4707 119912.

17. A. Pu andD. Psaltis, ‘‘High-density recording in photopolymer-
based holographic three-dimensional disks,’’ Appl. Opt. 35,
2389–2398 119962.

18. K. Curtis, A. Pu, and D. Psaltis, ‘‘Method for holographic
storage using peristrophic multiplexing,’’ Opt. Lett. 19, 993–
994 119942.

19. F. H. Mok, G. W. Burr, and D. Psaltis, ‘‘Angle and space
multiplexed random access memory 1HRAM2,’’ Opt. Mem.
Neural Networks 3, 119–127 119942.

20. A. Pu, G. Barbastathis, M. Levene, and D. Psaltis, ‘‘Shift-
multiplexed holographic 3D disk,’’ in Optical Computing, Vol.
10 of 1995 OSA Technical Digest Series 1Optical Society of
America, Washington, D.C., 19952, pp. 219–221.

21. J. D. Jackson, Classical Electrodynamics, 2nd ed. 1Wiley, New
York, 19752, pp. 418–421.

22. J. W. Goodman, Introduction to Fourier Optics 1McGraw-Hill,
NewYork, 19682, pp. 33–39.

23. G. B. Whitham, Linear and Nonlinear Waves 1Wiley-Intersci-
ence, NewYork, 19732, pp. 371–373.
10 May 1996 @ Vol. 35, No. 14 @ APPLIED OPTICS 2417


