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We derive the response of a volume grating to arbitrary small deformations, using a perturbative approach.
This result is of interest for two applications: (a) when a deformation is undesirable and one seeks to minimize
the diffracted field’s sensitivity to it and (b) when the deformation itself is the quantity of interest and the
diffracted field is used as a probe into the deformed volume where the hologram was originally recorded. We
show that our result is consistent with previous derivations motivated by the phenomenon of shrinkage in
photopolymer holographic materials. We also present the analysis of the grating’s response to deformation due
to a point indenter and present experimental results consistent with theory. © 2005 Optical Society of
America
OCIS codes: 090.7330, 120.3940.
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. INTRODUCTION
eformation of volume holograms, such as shrinkage dur-

ng processing,1,2 or elastic deformation due to the action
f force can cause deviation in the angle or wavelength for
he Bragg matching condition3,4 and aberrations in the
econstructed image.5 This problem, usually associated
ith the investigation of holographic materials, has re-

eived much attention since holography was invented.6,7

t is a significant source of concern in application areas
uch as holographic memories,8,9 information
rocessing,10 interconnects,11 and imaging applications.12

or example, researchers have investigated polymer ma-
erials with minimal shrinkage13–16 and methods to com-
ensate the deviation due to shrinkage.17,18 Based on
hrinkage only, the models used in the literature are rela-
ively simple, treating linear deformation only. In this pa-
er, we present a generalized theory that can deal with
rbitrary deformations.
Deformation can be thought of as a two-sided problem:

ne side is how to avoid deformation, the other is how to
easure it. Deformation measurement has been inten-

ively investigated during the past 30 years,19–23 but it
1084-7529/05/122880-10/$15.00 © 2
as been exclusively limited to two-dimensional (2D)
easurements of surface deformation. The universal

rinciple applied to this problem consists of first produc-
ng an interferogram, i.e., modulating a signature of the
urface before deformation as a phase modulation on an
ptical carrier. When the interferogram is mixed with the
ignature of the deformed surface, the beat term corre-
ponds to the difference, i.e., the deformation. The mixing
an be performed optically or digitally. Optical mixing is
sually referred to as “holographic interferometry”19,20 if
he beating is with an interferogram recorded on photo-
raphic film and as moiré interferometry22,23 if the beat-
ng is between two sets of intensity fringes recorded on a
igital camera. Digital mixing is called “speckle
nterferometry,”21 where the speckle is interpreted as a
andom phase mask; then the beating is the cross-
orrelation function of the mask before and after deforma-
ion. Digital holography24,25 can also be thought of in
imilar terms, especially in the context of holographic
article image velocimetry,26,27 where instead of deforma-
ion one measures displacement of particles in a thin
heet of moving fluid.
005 Optical Society of America
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Three-dimensional (3D) deformation measurement is
ore challenging because the mixing and beating must

ccur throughout an entire volume as the optical fields
ropagate through. This eliminates both film and digital
ameras as possible media for recording the interfero-
rams. In this paper, we propose instead the use of Bragg
iffraction for 3D deformation measurement. The mixing
tep is the recording of a volume hologram in a transpar-
nt 3D medium before it is deformed. The hologram is
hen reconstructed in the presence of an unknown 3D de-
ormation, and the diffracted intensity is captured on a
igital camera. Examples are shrinkage, shear, compres-
ion, indentation, crack propagation, etc. Assuming that
he deformation is not severe enough to destroy the opti-
al quality of the medium, the diffracted field is, in effect,
he 3D beat between the deformed and undeformed ver-
ions.

Since the diffracted intensity is measured on a digital
amera, which is a 2D medium, the beating signature is
aptured as a projection rather than a direct image. This
mplies that, in general, more than one measurement is
equired to capture the complete 3D deformation field.
evertheless, our proposed technique is the first mea-

urement method, to our knowledge, that is explicitly de-
igned to handle 3D deformations in optically transparent
edia.
In this paper, we deal exclusively with the “forward”

roblem of establishing the beat field when the volume
ologram and the 3D deformation are both known. Sur-
risingly, there have been no efforts to that end in the lit-
rature to date, except for the special case of linear
hrinkage. Here we provide general expressions that are
pplicable to arbitrary deformations under a set of mildly
estrictive assumptions, such as preservation of the aver-
ge index of refraction and validity of the first-order Born
pproximation. The derivation is carried out in Section 2
or small deformations for which a perturbative approach
s adequate, and in a more general (but also more alge-
raically complex) form in Appendixes A and B. In Section
, we confirm that the general theory matches with the
ell-known predictions and observations of shrinkage
ffects from the literature. In Section 4, we carry out
he modeling of the diffracted field and report experi-
ental results in the case of a deformation produced by

n indenter tip applied against the surface of a semi-
nfinite slab. The experiments match very well with the
heory.

The solution to the forward problem, which we are pre-
enting here, is always the first step before the “inverse”
roblem, i.e., the measurement of arbitrary deformations
rom a set of diffracted intensity measurements in our
ase, can be attacked. The inverse problem usually poses
dditional challenges involving the efficacy of the mea-
urement and the well-posedness of the solution. This will
ery clearly be the case in our approach, since the mea-
urement is that of a projection, as we already noted.
ortunately, in many cases of interest, including the in-
entation problem, existing analytical or numerical mod-
ls of 3D deformation can be used to extract deformation
arameters even from a single measurement. In
hese cases, the formulation presented in this paper is
dequate.
. PERTURBATION THEORY ON THE
EFORMATION OF VOLUME HOLOGRAMS
onsider a volume hologram with dielectric modulation
��x ,y ,z� that changes to ����x� ,y� ,z�� after deformation,
s shown in Fig. 1. Our goal is to derive an expression for
he diffracted field when the deformed hologram is probed
y an arbitrary light field. With the assumption that the
ielectric constant of each point inside the hologram does
ot change when that point moves due to the deforma-
ion, we can express ����x� ,y� ,z�� as

����x�,y�,z�� = ��„fx�x�,y�,z��,fy�x�,y�,z��,fz�x�,y�,z��…,

�1�

here f�r��= x̂fx�x� ,y� ,z��+ ŷfy�x� ,y� ,z��+ ẑfz�x� ,y� ,z�� is
he former position of the point at r�= x̂x�+ ŷy�+ ẑz�, and
t can be obtained from the strain or displacement func-
ions. This assumption is valid when the deformation is
ot large enough to affect the material properties of the
ologram. We refer to these weak deformations as “con-
ormal.” The conformality condition is satisfied for most
ases. An expression for the diffracted field for general
onconformal deformations is given in Appendix A.
Returning to the case of conformal deformation, we

rite Eq. (1) in vector form as

����r�� = ��„f�r��…. �2�

hen the displacement is analytic, we can approximate
q. (2) by Nth-order Taylor expansion as

��„f�r��… � ���r�� + �
j=1

N ��f�r�� − r�� · ��j

j!
���r��. �3�

Without loss of generality, we can restrict ���r�� to a set
f planar, parallel grating fringes recorded by two inter-
ecting plane waves: reference beam Ef�r�=exp�ikf ·r� and
ignal beam ES�r�=exp�ikS·r�. This is because any holo-
ram can be regarded as a linear superposition of infinite
lane-wave holograms.28 In most cases, the superposition
s straightforward and numerically stable. We prefer the
evelopment of the perturbation theory using the plane-
ave holograms because it leads to simpler, more intui-

ive expressions. The perturbation theory for non-plane-
ave holograms is discussed in Appendix B. For a plane-
ave hologram, the undeformed dielectric modulation can
e written in analytic form as

Fig. 1. Deformation of holograms.
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���r�� = �1 exp�iKg · r��, �4�

here �1 is the amplitude of the spatial modulation ex-
ressing the hologram strength and Kg=ks−kf is the
ave vector of the grating. Its jth-order derivative can be
btained as

�j���r�� = �iKg�j���r��, �5�

� → iKg. �6�

ubstituting expression (6) into relation (3), we obtain

��„f�r��… � ���r�� + �
j=1

N ��f�r�� · iKg�j

j!
���r��, �7�

here �f�r��=f�r��−r� is the displacement due to the de-
ormation. The displacement can be expressed as

�f�r�� = 	�fx�x�,y�,z��

�fy�x�,y�,z��

�fz�x�,y�,z��

 = �a11 a12 a13

a21 a22 a23

a31 a32 a33
�	x�

y�

z�

 = A · r�,

�8�

here, in general, akl is a function of �x� ,y� ,z�� for all k,
=1,2,3. The matrix A is referred to as the “strain ma-
rix” or “deformation matrix.” In special cases, e.g., uni-
orm shrinkage of a volume hologram, A is constant and
ery simple expressions for the diffracted field can be de-
ived. Our analysis remains valid for constant as well as
onconstant deformation matrices. Using Eq. (8), we can
rite relation (7) as

��„f�r��… � ���r�� + �
j=1

N �Kg · A · ir��j

j!
���r��. �9�

sing Eq. (4), we can see that the dielectric modulation is
function not only of r� but also of Kg. Therefore we can

wap derivatives and write the conjugate of Eq. (5) and
xpression (6) as

�Kg

j ���r�� = �ir��j���r��, �10�

ir� → �Kg
. �11�

y substituting expression (11) into relation (9), we can
btain the deformed dielectric modulation as

��„f�r��… � ���r�� + �
j=1

N �Kg · A · �Kg
�j

j!
���r��. �12�

With the knowledge of the deformed dielectric modula-
ion, we can calculate the diffracted field change in the
ourier geometry, as shown in Fig. 2. Before deformation,
hen an arbitrary probe beam Ep�r� is used to read out

he volume hologram, the diffracted field incident on the
etector is29
Ed�r�� =


 Ep�r����r�V�r�exp�− i
2�

�

xx� + yy�

F
�

�exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z�d3r, �13�

here the index function V�r� is defined as

V�r� = �1 inside volume hologram

0 outside volume hologram� , �14�

is the focal length of the Fourier lens between the holo-
ram and the detector, and r�= x̂x�+ ŷy� is the coordinate
n the camera plane. In fact, Eq. (13) is the 3D Fourier
ransform of Ep�r����r�V�r� computed at spatial fre-
uency coordinates fx=x� / ��F� , fy=y� / ��F� , fz= �1/���1
�x�2+y�2� / �2F2��.
After deformation the diffracted field changes to

Ẽd�r�� =


 Ep�r������r��Ṽ�r��exp�− i
2�

�

x�x� + y�y�

F
�

� exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z��d3r�. �15�

ince the hologram shape should remain approximately
onstant, except under very severe deformation, and in
ny case changes in index function affect only the bound-
ry of the volume integral, we use the approximation

˜ �r���V�r�. Thus by substituting Eq. (2) and relation (12)
nto Eq. (15), we can obtain

Ẽd�r�� � Ed�r�� +


 Ep�r���
j=1

N �Kg · A · �Kg
�j

j!
���r��

� V�r��exp�− i
2�

�

x�x� + y�y�

F
�

�exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z��d3r�. �16�

nside the integral, Kg and �Kg
do not depend on r�.

herefore, if the displacement can be linearized (A is a
onstant matrix), we can take �Kg ·A ·�Kg

�j / �j!� out of the
ntegral and obtain the final result in a very simple form
s

ig. 2. Fourier geometry with plane-wave reference and plane-
ave signal.
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Ẽd�r�� � Ed�r�� + �
j=1

N �Kg · A · �Kg
�j

j!
Ed�r��. �17�

n particular, for the first-order approximation in the Tay-
or series,

Ẽd�r�� � Ed�r�� + Kg · A · �Kg
Ed�r��, �18�

hich is very similar to the standard form of the pertur-
ation theory on electromagnetism.30

With relation (16) or (17), we can already perform the
alculation of diffracted field change due to deformation.
efore doing so, it is worthwhile to look at these equa-

ions qualitatively in some detail. The first interesting re-
ult is that Kg ·A ·�Kg

has null space when AT·Kg is per-
endicular to �Kg

or AT·Kg is equal to zero, meaning that
here exist holograms that have zero response for a given
eformation. For example, if there is a hologram with its
rating fringes along the z direction (the wave vector of
he grating Kg is in the x–y plane), the deformation along
he z direction will have no effect on it. This is intuitively
bvious, and it is useful if we desire to minimize the effect
f an anticipated deformation (e.g., shrinkage) on the ho-
ogram. Second, if our goal is to measure a certain defor-

ation, then we can find some optimal holograms that
ave maximum sensitivity to that deformation. The con-
ition is

�AT · Kg� � �Kg
. �19�

ondition (19) also has an intuitive interpretation with
he help of a K-sphere, as shown in Fig. 3. Usually when
he probe beam is Bragg matched before deformation, i.e.,
p�r�=exp�ikf ·r�, the strongest dependence of Ed on Kg
ccurs when a change in Kg leads to Bragg mismatch fast-
st. The mismatch �Kg is fastest when the tip of the grat-
ng vector after deformation moves as fast as possible
way from the K-sphere, which is along the direction con-
ecting the center of the K-sphere to the tip of the grating
ector on the K-sphere. This is actually the same as the
irection of the signal beam kS. The locus of the maxi-
um Bragg mismatch as a function of different deforma-

ions � is calculated in Appendix C, where it is shown that
he maximum Bragg mismatch direction angle �� is

Fig. 3. K-sphere explanation of condition (19).
sin �� =
k sin �S

k − �
, �20�

here k=2� /� is the wave number and �S is the direction
ngle of the signal beam. The sketch of the locus of the
aximum Bragg mismatch is shown in Fig. 4.
From another point of view, �Kg

Ed�r�� means the gra-
ient of Ed�r�� on Kg. If the plane-wave hologram with
rating vector Kg is probed by Ep�r�=exp�ikp ·r�, then,
ithout deformation, the diffracted field just after the ho-

ogram before the Fourier lens is29

Ed�r�� = sinc� L

2�
�Kgz + kpz

− �k2 − �Kgx + kpx�2 − �Kgy + kpy�2��
�exp�i��Kgx + kpx�x� + �Kgy + kpy�y�

+ �k2 − �Kgx + kpx�2 − �Kgy + kpy�2z���, �21�

hich is a plane wave with amplitude modulated by
ragg mismatch. Here, we assumed that the dimensions
f the hologram are infinite in the x and y directions, and
he thickness of the hologram is L. We can calculate the
iffracted field gradient as

�Kg
Ed�r�� � �Kgx + kpx�x̂ + �Kgy + kpy�ŷ

+ �k2 − �Kgx + kpx�2 − �Kgy + kpy�2ẑ, �22�

hich is also along the direction connecting the center of
he K-sphere to the tip of the grating vector, consistent
ith our earlier K-sphere analysis. According to condition

19), the deformed grating vector AT·Kg must point in
his direction to achieve maximum change. Or if we want
o measure a certain deformation A, the hologram whose
rating vector Kg satisfies condition (19) will have maxi-
um sensitivity to this deformation A.

Fig. 4. Locus of maximum Bragg mismatch.



3
D
R
t
s
d
o

a
d
a
S

a
f
n

w
m

I
p
d
(
f

w
f
f
s
r
g
i

4
D
F
h
r
v
t
t

g
t

t
e
g

w
r
t
i
�
p
N
s

F
e

2884 J. Opt. Soc. Am. A/Vol. 22, No. 12 /December 2005 Tian et al.
. APPLICATION TO LINEAR
EFORMATION
elations (17) and (18) can be applied to linear deforma-

ion directly, e.g., the shrinkage of holograms or compres-
ion by uniform pressure on the surface of holograms. The
iffracted field after deformation can be calculated with-
ut a complicated and time-consuming integration.

The shrinkage of holograms has been observed to cause
ngular deviation and/or wavelength shift for maximum
iffraction-efficiency reconstruction3,4,17 and to cause
berrations.5 With the perturbation theory discussed in
ection 2, it can be investigated very conveniently.
Here, it is assumed that the shrinkage occurs only

long the direction of the normal to the hologram’s sur-
ace. A hologram of original thickness L shrinks to thick-
ess L� such that

L� = �1 − s�L, �23�

here s is the coefficient of shrinkage. Thus, the displace-
ent matrix is

A = �0 0 0

0 0 0

0 0 s
� . �24�

f the plane-wave hologram with grating vector Kg is
robed by Ep�r�=exp�ikp ·r�, then, without shrinkage, the
iffracted field just after the hologram is given by Eq.
21). By substituting Eqs. (21) and (24) into perturbation
ormula (17), we can simplify the result after shrinkage to

Ẽd�r�� � Ed�r�� + �
j=1

N �Kgzs
�

�Kgz
�j

j!
Ed�r��

= sinc� L

2�
��1 + s�Kgz + kgz

− �k2 − �Kgx + kpx�2 − �Kgy + kpy�2��
�exp�i��Kgx + kpx�x� + �Kgy + kpy�y�

+ �k2 − �Kgx + kpx�2 − �Kgy + kpy�2z���, �25�

hich means that the shrinkage along the z direction af-
ects only the efficiency and not the direction of the dif-
racted plane wave. This is consistent with the discus-
ions in Refs. 3 and 17. Beyond this simple calculation,
elation (17) can be used to predict the response of holo-
rams deformed under any kind of affine transformations,
ncluding rotations, anisotropic shrinkage, etc.

. APPLICATION TO NONLINEAR
EFORMATION
or holograms that undergo nonlinear deformation, we
ave to use the full 3D integral or Fourier transform in
elation (16) to predict the diffracted field. To verify the
alidity of the perturbation theory on nonlinear deforma-
ion, we simulated the change in the diffracted field due
o a point load exerted normally on the surface of a holo-
ram. We also carried out an experiment and compared
he results with the simulation.

When a concentrated point force P is acting normally to
he surface of an elastic solid, as shown in Fig. 5(a), the
lastic displacements at any point in the half-space are
iven by 31

ux =
P

4�G
�xz

	3 − �1 − 2
�
x

	�	 + z�� ,

uy =
P

4�G
�yz

	3 − �1 − 2
�
y

	�	 + z�� ,

uz =
P

4�G
� z2

	3 +
2�1 − 
�

	
� , �26�

here G and 
 are the shear modulus and Poisson ratio,
espectively, and 	=�x2+y2+z2 is the distance of the point
o the origin (loading position). The resulting deformation
s shown in Fig. 5(b). The singularity at 	=0 is due to the
-function nature of the point load. We can obtain the dis-
lacement matrix for each point in the deformed solid.
ote that the displacement matrix elements are now po-

ition dependent, unlike the example in Section 3.

ig. 5. Illumination of the deformation when a point load is ex-
rted on the half-space.
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We constructed an experimental setup to verify the va-
idity of the approach presented above. The holographic

aterial was provided by Ondax, Inc. It had thickness L
2 mm and measured shear modulus G=44 GPa, with
oisson ratio 
=0.22. The hologram was of the transmis-
ion type with reference and signal beam angles �f=
7.5° and �S=20°, respectively, at a wavelength of
88 nm. The geometry of the experiment is shown in Fig.
with F=400 mm. The hologram was illuminated at the
ragg matching angle. A PULNiX TM-7EX CCD with
68�494 pixels (pixel size 8.4 �m�9.8 �m) was used to
bserve the diffracted intensity. The hologram was de-
ormed by using a diamond indenter tip applied normally
gainst the back surface of the hologram. The deforma-
ion due to an indenter tip is in good agreement with the
oint load described by Eqs. (26), except near the singu-
arity point 	=0. Our experimental approach did not re-
uire force measurement; we estimated the force by using
he displacement reading in the indenter carrier. During
he experiment, we used the same probe beam, which is
ragg matched before deformation, to illuminate the ho-

ogram.

ig. 6. Experiment geometry when a point load is exerted on a
ransmission hologram.

ig. 7. Simulated and experimental results when a point load is
xerted on a transmission hologram. Parameters are the wave-
ength �=488 nm, the angle of reference beam �f=−7.5°, the
ngle of signal beam �S=20°, the thickness of the hologram L
2 mm, the estimated force P=700 N, and the focal length of the
ourier lens F=400 mm. The intensities before and after defor-
ation were each normalized by their own maximum. The maxi-
um intensity after deformation is 19.65% of the maximum in-

ensity before deformation.
First, we simulated the expected change in diffracted
eld according to relation (16) and Eqs. (26). The results
re shown in Fig. 7. An interesting observation is that the
iffracted spot splits into twin peaks due to the point-load
eformation. This can be explained intuitively based on
he deformed fringe patterns of Fig. 8 and the K-sphere of
ig. 9 as follows. From Fig. 8, we see that the deformed
rating is composed of two quasi-periodic fringe patterns
ymmetric with respect to the original grating fringes.
he fringes are also curved, which is an indication of spa-

ial chirp. If for the moment we neglect the spatial chirp,
e obtain two gratings that are tilted with respect to the
riginal grating, and also have smaller period because of
he pressure applied by the indenter. Accordingly, we rep-
esent the twin gratings with wave vectors Kg� and Kg�
hat are tilted and elongated with respect to the original
ave vector Kg. Since we are reading out the hologram
ith the original reference kf, the twin peaks are ex-
ected to be Bragg mismatched. However, for small defor-
ation, i.e., small deviations of the twin grating vector

ips Kg� and Kg� from the K-sphere, we can still obtain dif-
raction from the partially mismatched gratings. The di-
ections of the twin diffracted beams are denoted as kd�

ig. 8. Fringe patterns of a transmission hologram due to point
oad; the parameters are the same as those for Fig. 7.

Fig. 9. K-sphere explanation for the twin peaks.
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nd kd� in Fig. 9; they give rise to our observed twin peak
n the CCD camera after Fourier transformation by the
ens. Because the Bragg mismatch amounts �Kg� and �Kg�
or the twin gratings are in general different, the twin dif-
racted beams have different efficiencies. The elevated
idelobes observed in Fig. 7 are due to the spatial chirp,
hich was neglected from the approximate explanation
ased on Fig. 9.
We performed our experiments by using an indenter tip
oved by a micrometer to exert the point load on the ho-

ogram. The load position was exactly at the center of the
perture (the illumination area on the hologram). The ex-
erimental result obtained on the CCD camera is shown
s the dotted–dashed curve in Fig. 7 and seen to be in
greement with the simulation. At the same time, we also
bserved some minor apodization effects mixed in with
ur experimental result: The sidelobes were suppressed,
nd the main lobes were a little wider. Because the
podization effect of volume holograms has been ac-
ounted for inherently in the perturbation theory, the ad-
itional apodization could be due to nonuniformity of ho-
ograms and probe beams.

We also performed simulations and experiments on a
eflection-type hologram. The experimental geometry is
hown in Fig. 10. The holographic material was also from
ndax, Inc., with the same shear modulus and Poisson

atio as those for the transmission hologram. The thick-
ess of the reflection-type hologram was L=1.5 mm. The
ngles of reference beam and signal beam were �f=172°
nd �S=8°, respectively, at a wavelength of 632 nm. The
ocal length of the Fourier lens was F=400 mm, and the
ologram was also illuminated at the Bragg matching
ngle. The simulated and experimental results are shown
n Fig. 11 and match very well. In this case, the diffracted
eld presents an almost symmetric pattern due to the
oint-load deformation. This can also be explained intu-
tively by the deformed fringe patterns of Fig. 12 and the
-sphere of Fig. 13 as follows. In this case, the original
rating vector Kg is split into three gratings Kg1, Kg�, and
g� after deformation. Kg1 remains parallel to Kg but is

onger because of the applied pressure. The two others, Kg�
nd Kg�, are tilted and elongated as in the transmission
ase and have almost the same Bragg mismatch amounts
Kg� and �Kg�. The result is a triplet peak, with a main

obe corresponding to the partially mismatched K and

ig. 10. Experiment geometry when a point load is exerted on a
eflection hologram.
g1
wo sidelobes corresponding to the partially mismatched
g� and Kg�. The sidelobes are weaker than the main lobe,
hile the amount of Bragg mismatch for Kg� and Kg� is

arger than it is for Kg1. In Fig. 11, we can also observe
inor apodization effects mixed in with the experiment

esult, which is due to the same reasons as those in the
ransmission geometry.

It needs to be mentioned here that the repeatability of
his experiment is not so good because of the difficulty in
chieving the exact deformation of ideal point loading.
irst, we need to adjust the point load exactly at the cen-

er of the aperture. Second, the force must be normally ex-
rted on the surface of the hologram. Third, we need
nough stiffness of the whole supporting and holding sys-
ems. The deformation is very sensitive to these factors.
o to get the deformation as close to the ideal as possible,
he adjustment in the experiments must be very precise.

ig. 11. Simulated and experimental results when a point load
s exerted on a reflection hologram. Parameters are the wave-
ength �=632 nm, the angle of reference beam �f=172°, the angle
f signal beam �S=8°, the thickness of the hologram L=1.5 mm,
he estimated force P=19 N, and the focal length of the Fourier
ens F=400 mm. The intensities before and after deformation
ere each normalized by their own maximum. The maximum in-

ensity after deformation is 34.55% of the maximum intensity be-
ore deformation.

ig. 12. Fringe patterns of a reflection hologram due to point
oad; the parameters are the same as those for Fig. 11.
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. CONCLUSIONS
e have derived a general solution to the problem of dif-

raction from a volume hologram that has been arbitrarily
eformed compared with its recorded shape. We have
hown that in many cases of interest, including shrinkage
nd indentation due to application of a point tip, a pertur-
ation approach can predict accurately the diffracted field
nd can be used to establish deformation parameters by
atching the experimental measurements with analyti-

al or numerical models. Our approach is unique in that it
rojects the deformation from the entire 3D volume onto
he measurement, and thus it has potential for measuring
ven more arbitrary deformations for which analytical or
umerical predictions do not exist.
Our analysis in this paper is cast as a “forward prob-

em,” where the deformation is given and we seek the dif-
racted field. The future work will be the “inverse prob-
em,” which is to determine the deformation itself based
n a set of observations of the field diffracted from a
nown (predeformation) volume hologram. Our ab initio
odel and perturbation theory make it possible to calcu-

ate the complicated patterns analytically or numerically
or which the inverse problem will have high utility.

PPENDIX A: PERTURBATION THEORY
ONSIDERING DIELECTRIC CONSTANT
HANGE DURING DEFORMATION
he conformality assumption that the dielectric constant
oes not change during deformation is valid when the de-
ormation is not large enough to change the material
roperties of holograms. Although in some conditions the
ielectric constant may change, we still can include this
ffect in our theory by modifying Eq. (2) as

����r�� = a�r����„f�r��…, �A1�

here a�r�� is the amplitude change of dielectric modula-
ion. Following the same derivation steps, we can easily
nd the diffracted field, considering the dielectric con-
tant change during deformation as

Fig. 13. K-sphere expl
Ẽd�r�� � Êd�r��

+


 Ep�r��a�r���
j=1

N �Kg · A · �Kg
�j

j!
���r��

� V�r��exp�− i
2�

�

x�x� + y�y�

F
�

�exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z��d3r�, �A2�

here

Êd�r�� =


 Ep�r��a�r�����r��V�r��

�exp�− i
2�

�

x�x� + y�y�

F
�

�exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z��d3r�, �A3�

f the displacement is linear, then

Ẽd�r�� � Êd�r�� + �
j=1

N �Kg · A · �Kg
�j

j!
Êd�r��. �A4�

PPENDIX B: GENERALIZED
ERTURBATION THEORY FOR ARBITRARY
OLOGRAMS
e can generalize relations (16) and (17) for arbitrary ho-

ograms that can be written as a linear superposition of
any plane-wave holograms:

���r� = �
m,n,l

�mnl exp�i2��mx

Lx
+

ny

Ly
+

lz

Lz
��

= �
m,n,l

�mnl exp�iKg
�mnl� · r�, �B1�

here Lx, Ly, and Lz are the dimensions of the hologram
n x, y, and z directions, respectively, �mnl is the constant
xpressing the hologram strength of each component, and

for the “triplet peak.”
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g
�mnl� is the wave vector of the grating of each component.
herefore, along the same derivation path as that in Sec-
ion 2, we can obtain the deformed dielectric modulation
s

��„f�r��… � ���r�� + �
m,n,l

�
j=1

N �Kg
�mnl� · A · �Kg

�mnl��j

j!
��mnl�r��,

�B2�

here

��mnl�r�� = �mnl exp�iKg
�mnl� · r��. �B3�
he diffracted field after deformation will render the form Fig. 14. Calculation of the locus of maximum Bragg mismatch.
Ẽd�r�� � Ed�r�� + �
m,n,l
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F
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n the case of linear displacement, relation (B4) can be
urther simplified to

Ẽd�r�� � Ed�r�� + �
m,n,l

�
j=1

N �Kg
�mnl� · A · �Kg

�mnl��j

j!
Ed

�mnl��r��,

�B5�

here

Ed
�mnl��r�� =


 Ep�r����mnl�r��V�r��

�exp�− i
2�

�

x�x� + y�y�

F
�

�exp�− i
2�

�
�1 −

x�2 + y�2

2F2 �z��d3r�, �B6�

Ed�r�� = �
m,n,l

Ed
�mnl��r��. �B7�

elations (B4) and (B5) are the counterparts of relations
16) and (17), respectively.

PPENDIX C: LOCUS OF MAXIMUM
RAGG MISMATCH

n this appendix we calculate the locus of maximum
ragg mismatch as a function of the deformation amount
. As shown in Fig. 14, we want to find the point on the
ircle with center at O� and radius � that has the maxi-
um horizontal distance to the circle of the K-sphere. The
orizontal distance represents the amount of Bragg mis-
atch �Kg. We can express the point on the circle of the
-sphere as

z2 + x2 = k2, �C1�

here k=2� /�, and the point on the circle O� as

�z − k cos �S�2 + �x − k sin �S�2 = �2. �C2�

he amount of Bragg mismatch is the horizontal distance
etween two points that have the same x coordinate and
re on these two circles. This distance can be calculated
s a function of x:

�Kg�x� = k cos �S + ��2 − �x − k sin �S�2 − �k2 − x2.

�C3�

o get the maximum, we calculate the first-order deriva-
ive of Eq. (C3) and set it equal to zero:

��Kg�x�

�x
= −

x − k sin �S

��2 − �x − k sin �S�2
+

x

�k2 − x2
= 0. �C4�

olving Eq. (C4), we obtain the x coordinate of the point,
hich has the maximum amount of Bragg mismatch, as

xmax =
k2 sin �S

k � �
, �C5�

here 
 means that there are two points that have the
aximum amount of Bragg mismatch. One is in the inte-

ior of the K-sphere, the other is outside. Thus the maxi-
um Bragg mismatch direction angle can be obtained as
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sin �� =
xmax − k sin �S

�
=

±k sin �S

k � �
. �C6�

fter knowing the maximum Bragg mismatch direction
ngle to different deformation amounts �, we can sketch
he locus of maximum Bragg mismatch as Fig. 4. When �
pproaches zero, the maximum Bragg mismatch angle
an be obtained as

lim
�→0

sin �� = ± sin �S. �C7�

his means that the fastest Bragg mismatch is obtained
long the direction of the signal beam, which is consistent
ith the discussion in Section 2.
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