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We derive the response of a volume grating to arbitrary small deformations, using a perturbative approach.
This result is of interest for two applications: (a) when a deformation is undesirable and one seeks to minimize
the diffracted field’s sensitivity to it and (b) when the deformation itself is the quantity of interest and the
diffracted field is used as a probe into the deformed volume where the hologram was originally recorded. We
show that our result is consistent with previous derivations motivated by the phenomenon of shrinkage in
photopolymer holographic materials. We also present the analysis of the grating’s response to deformation due
to a point indenter and present experimental results consistent with theory. © 2005 Optical Society of

America
OCIS codes: 090.7330, 120.3940.

1. INTRODUCTION

Deformation of volume holograms, such as shrinkage dur-
ing processing,>? or elastic deformation due to the action
of force can cause deviation in the angle or wavelength for
the Bragg matching condition®* and aberrations in the
reconstructed image.® This problem, usually associated
with the investigation of holographic materials, has re-
ceived much attention since holography was invented.®’
It is a significant source of concern in application areas
such as holographic memories,>® information
processing,lo in‘cerconnec‘cs,11 and imaging applica‘cions.12
For example, researchers have investigated polymer ma-
terials with minimal shrinkage'®'® and methods to com-
pensate the deviation due to shrinkage.!”'® Based on
shrinkage only, the models used in the literature are rela-
tively simple, treating linear deformation only. In this pa-
per, we present a generalized theory that can deal with
arbitrary deformations.

Deformation can be thought of as a two-sided problem:
One side is how to avoid deformation, the other is how to
measure it. Deformation measurement has been inten-
sively investigated during the past 30 yeatl“s,lg_23 but it
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has been exclusively limited to two-dimensional (2D)
measurements of surface deformation. The universal
principle applied to this problem consists of first produc-
ing an interferogram, i.e., modulating a signature of the
surface before deformation as a phase modulation on an
optical carrier. When the interferogram is mixed with the
signature of the deformed surface, the beat term corre-
sponds to the difference, i.e., the deformation. The mixing
can be performed optically or digitally. Optical mixing is
usually referred to as “holographic interferometry”'®?° if
the beating is with an interferogram recorded on photo-
graphic film and as moiré interferometryzz’23 if the beat-
ing is between two sets of intensity fringes recorded on a
digital camera. Digital mixing is called “speckle
interferometry,”®! where the speckle is interpreted as a
random phase mask; then the beating is the cross-
correlation function of the mask before and after deforma-
tion. Digital holographyz“’25 can also be thought of in
similar terms, especially in the context of holographic
particle image velocimetry,ze’27 where instead of deforma-
tion one measures displacement of particles in a thin
sheet of moving fluid.
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Three-dimensional (3D) deformation measurement is
more challenging because the mixing and beating must
occur throughout an entire volume as the optical fields
propagate through. This eliminates both film and digital
cameras as possible media for recording the interfero-
grams. In this paper, we propose instead the use of Bragg
diffraction for 3D deformation measurement. The mixing
step is the recording of a volume hologram in a transpar-
ent 3D medium before it is deformed. The hologram is
then reconstructed in the presence of an unknown 3D de-
formation, and the diffracted intensity is captured on a
digital camera. Examples are shrinkage, shear, compres-
sion, indentation, crack propagation, etc. Assuming that
the deformation is not severe enough to destroy the opti-
cal quality of the medium, the diffracted field is, in effect,
the 3D beat between the deformed and undeformed ver-
sions.

Since the diffracted intensity is measured on a digital
camera, which is a 2D medium, the beating signature is
captured as a projection rather than a direct image. This
implies that, in general, more than one measurement is
required to capture the complete 3D deformation field.
Nevertheless, our proposed technique is the first mea-
surement method, to our knowledge, that is explicitly de-
signed to handle 3D deformations in optically transparent
media.

In this paper, we deal exclusively with the “forward”
problem of establishing the beat field when the volume
hologram and the 3D deformation are both known. Sur-
prisingly, there have been no efforts to that end in the lit-
erature to date, except for the special case of linear
shrinkage. Here we provide general expressions that are
applicable to arbitrary deformations under a set of mildly
restrictive assumptions, such as preservation of the aver-
age index of refraction and validity of the first-order Born
approximation. The derivation is carried out in Section 2
for small deformations for which a perturbative approach
is adequate, and in a more general (but also more alge-
braically complex) form in Appendixes A and B. In Section
3, we confirm that the general theory matches with the
well-known predictions and observations of shrinkage
effects from the literature. In Section 4, we carry out
the modeling of the diffracted field and report experi-
mental results in the case of a deformation produced by
an indenter tip applied against the surface of a semi-
infinite slab. The experiments match very well with the
theory.

The solution to the forward problem, which we are pre-
senting here, is always the first step before the “inverse”
problem, i.e., the measurement of arbitrary deformations
from a set of diffracted intensity measurements in our
case, can be attacked. The inverse problem usually poses
additional challenges involving the efficacy of the mea-
surement and the well-posedness of the solution. This will
very clearly be the case in our approach, since the mea-
surement is that of a projection, as we already noted.
Fortunately, in many cases of interest, including the in-
dentation problem, existing analytical or numerical mod-
els of 3D deformation can be used to extract deformation
parameters even from a single measurement. In
these cases, the formulation presented in this paper is
adequate.
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2. PERTURBATION THEORY ON THE
DEFORMATION OF VOLUME HOLOGRAMS

Consider a volume hologram with dielectric modulation
A€e(x,y,z) that changes to A€’(x’,y’,z’) after deformation,
as shown in Fig. 1. Our goal is to derive an expression for
the diffracted field when the deformed hologram is probed
by an arbitrary light field. With the assumption that the
dielectric constant of each point inside the hologram does
not change when that point moves due to the deforma-
tion, we can express A€’ (x',y’,z') as

AE,(x,’y,’Z,) = Ae(f‘x(x,h),,72’),f;'(x,7y’72,)’f2(x,7y’72’))7
(1)

where f(r')=%f,(x',y',2")+¥f,(x",y",2")+2f,(x",y",2") is
the former position of the point at ¥’ =%x'+yy’+2z’, and
it can be obtained from the strain or displacement func-
tions. This assumption is valid when the deformation is
not large enough to affect the material properties of the
hologram. We refer to these weak deformations as “con-
formal.” The conformality condition is satisfied for most
cases. An expression for the diffracted field for general
nonconformal deformations is given in Appendix A.

Returning to the case of conformal deformation, we
write Eq. (1) in vector form as

A€'(r') = Ae(f(r')). (2)

When the displacement is analytic, we can approximate
Eq. (2) by Nth-order Taylor expansion as

YAt -r']- VY
Ae(f(r)) ~ Ae(r') + > ————

J=1

K Ae(r’). (3)

Without loss of generality, we can restrict Ae(r’) to a set
of planar, parallel grating fringes recorded by two inter-
secting plane waves: reference beam E{r)=exp(ik; r) and
signal beam Eg(r)=exp(ikg-r). This is because any holo-
gram can be regarded as a linear superposition of infinite
plane-wave holograms.?® In most cases, the superposition
is straightforward and numerically stable. We prefer the
development of the perturbation theory using the plane-
wave holograms because it leads to simpler, more intui-
tive expressions. The perturbation theory for non-plane-
wave holograms is discussed in Appendix B. For a plane-
wave hologram, the undeformed dielectric modulation can
be written in analytic form as

(3.2) (x'\y:z')

Fig. 1. Deformation of holograms.
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Ae(r') = € exp(iK, - 1'), (4)
where €; is the amplitude of the spatial modulation ex-
pressing the hologram strength and K,=k,-k; is the
wave vector of the grating. Its jth-order derivative can be

obtained as

VAer') = (iKg)/Ae(r’), (5)

vV —iK,. (6)
Substituting expression (6) into relation (3), we obtain

Af K
Ae(f(r')) = Ae(r') + M Ae(r’),  (7)

J=1 .]'

where Af(r’')=f(r’')-r’ is the displacement due to the de-
formation. The displacement can be expressed as

Afy(x'y',2") ay ap ag|[x’
Af(r')=| Afy(x",y",2") | =| a2 ag axs||y' |=A-r/,
Af(x",y",2") az; agy asgz|\2z’'

(8)

where, in general, ay; is a function of (x’,y’,z’) for all &,
[=1,2,3. The matrix A is referred to as the “strain ma-
trix” or “deformation matrix.” In special cases, e.g., uni-
form shrinkage of a volume hologram, A is constant and
very simple expressions for the diffracted field can be de-
rived. Our analysis remains valid for constant as well as
nonconstant deformation matrices. Using Eq. (8), we can
write relation (7) as

N (K, -A-ir'y
Ae(f(r) =~ Ae(r’) + >, Ky -ir'y

J=1

Ae(r’). 9)

Using Eq. (4), we can see that the dielectric modulation is
a function not only of r’ but also of K,. Therefore we can
swap derivatives and write the conjugate of Eq. (5) and
expression (6) as

V{(gAe(r’) = (ir'VAe(x'), (10)
ir' — Vi . (11)

By substituting expression (11) into relation (9), we can
obtain the deformed dielectric modulation as

N (KA Vi Y
Ae(f(r')) =~ Ae(r’) + D ,—'gAe(r'). (12)
J=1 J:

With the knowledge of the deformed dielectric modula-
tion, we can calculate the diffracted field change in the
Fourier geometry, as shown in Fig. 2. Before deformation,
when an arbitrary probe beam E(r) is used to read out
the volume hologram, the diffracted field incident on the
detector is*®
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Probe beam X

Fourier Lens

/ Reference beam Volume F
Signal beam Hologram

Fig. 2. Fourier geometry with plane-wave reference and plane-
wave signal.

2 xx” +yy'
E x") = JIJE (r)Ae(r) V(r)exp(—z— 7 )

27T xr/2+y772 s
Xexp —lT 1—F z |d°r, (13)

where the index function V(r) is defined as

1 inside volume hologram
V(r) = » (14)

0 outside volume hologram

F is the focal length of the Fourier lens between the holo-
gram and the detector, and r"=%x"+yy” is the coordinate
on the camera plane. In fact, Eq. (13) is the 3D Fourier
transform of E,(r)Ae(r)V(r) computed at spatial fre-
quency coordinates f,=x"/(\F),f,=y"/(\F),f,=(1/N)[1
_ (x”2 +y”2)/(2F2)].

After deformation the diffracted field changes to

2 [
Eqy(r") fff E,(r")A€ (r/)V(r')exp<-z—mx;yy>

277_( x//2 +y//2 d3
X e —i—\|1-———|2' |d°r'. 15
Xp| — i or? )? (15)

Since the hologram shape should remain approximately
constant, except under very severe deformation, and in
any case changes in index function affect only the bound-
ary of the volume integral, we use the approximation
V(r')=V(r). Thus by substituting Eq. (2) and relation (12)
into Eq. (15), we can obtain

N (Ky-A-Vg )
Ed(r”)~Ed(r”)+Jff — A

J!
27x'x" +y'y"
X V(' )exp| - i————
()p< N 7 )
277_ x!72+yn2 / .
X exp —LT 1_F z' [d°r’. (16)

Inside the integral, K, and VK do not depend on r’.
Therefore, if the dlsplacement can be linearized (4 is a
constant matrix), we can take (K;-A-Vg Y/(j!) out of the
integral and obtain the final result in a very simple form
as
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N (KA Vg y
Ex") =~ E (") + >, F Eqx).  (17)
J=1 :

In particular, for the first-order approximation in the Tay-
lor series,

Eq(r') = Eq(r") + K4 -A - Vg Ea(r"), (18)

which is very similar to the standard form of the pertur-
bation theory on electromagnetism.30

With relation (16) or (17), we can already perform the
calculation of diffracted field change due to deformation.
Before doing so, it is worthwhile to look at these equa-
tions qualitatively in some detail. The first interesting re-
sult is that K,-A-Vg has null space when AT- K, is per-
pendicular to VK or K is equal to zero, meaning that
there exist holograms that have zero response for a given
deformation. For example, if there is a hologram with its
grating fringes along the z direction (the wave vector of
the grating K, is in the x—y plane), the deformation along
the z direction will have no effect on it. This is intuitively
obvious, and it is useful if we desire to minimize the effect
of an anticipated deformation (e.g., shrinkage) on the ho-
logram. Second, if our goal is to measure a certain defor-
mation, then we can find some optimal holograms that
have maximum sensitivity to that deformation. The con-
dition is

(AT-Ky) | Vi . (19)

Condition (19) also has an intuitive interpretation with
the help of a K-sphere, as shown in Fig. 3. Usually when
the probe beam is Bragg matched before deformation, i.e.,
E,(r)=exp(ik¢ 1), the strongest dependence of E4 on K,
occurs when a change in K, leads to Bragg mismatch fast-
est. The mismatch AK, is fastest when the tip of the grat-
ing vector after deformation moves as fast as possible
away from the K-sphere, which is along the direction con-
necting the center of the K-sphere to the tip of the grating
vector on the K-sphere. This is actually the same as the
direction of the signal beam kg. The locus of the maxi-
mum Bragg mismatch as a function of different deforma-
tions J§is calculated in Appendix C, where it is shown that
the maximum Bragg mismatch direction angle 65 is

Fig. 3. K-sphere explanation of condition (19).
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where £=27/\ is the wave number and g is the direction
angle of the signal beam. The sketch of the locus of the
maximum Bragg mismatch is shown in Fig. 4.

From another point of view, Vg Ed(r”) means the gra-
dient of E4(r") on K,. If the plane-Wave hologram with
grating vector K, is probed by E,(r)=exp(iky 1), then,
without deformation, the diffracted field just after the ho-
logram before the Fourier lens is®

L
E4(r") = sinc ;T[ng +ky,

- \“”kZ - (Kgx + kpx)2 - (Kgy + kpy)2]

X explil (Kg, + kp)x" + (Kgy + ey )y

+ \"/kz - (Kgx + kpx)2 - (Kgy + kpy)zz"]}} (21)

which is a plane wave with amplitude modulated by
Bragg mismatch. Here, we assumed that the dimensions
of the hologram are infinite in the x and y directions, and
the thickness of the hologram is L. We can calculate the
diffracted field gradient as

VKgEd(r”) % (Kgy + kp)% + (Kgy + kpy))y

+ k2 - (K, + kpx)2 - (Kgy + kpy)zé, (22)
which is also along the direction connecting the center of
the K-sphere to the tip of the grating vector, consistent
with our earlier K-sphere analysis. According to condition
(19), the deformed grating vector AT-Kg must point in
this direction to achieve maximum change. Or if we want
to measure a certain deformation A, the hologram whose
grating vector K, satisfies condition (19) will have maxi-
mum sensitivity to this deformation A.
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3. APPLICATION TO LINEAR
DEFORMATION

Relations (17) and (18) can be applied to linear deforma-
tion directly, e.g., the shrinkage of holograms or compres-
sion by uniform pressure on the surface of holograms. The
diffracted field after deformation can be calculated with-
out a complicated and time-consuming integration.

The shrinkage of holograms has been observed to cause
angular deviation and/or wavelength shift for maximum
diffraction-efficiency reconstruction®*'” and to cause
aberrations.® With the perturbation theory discussed in
Section 2, it can be investigated very conveniently.

Here, it is assumed that the shrinkage occurs only
along the direction of the normal to the hologram’s sur-
face. A hologram of original thickness L shrinks to thick-
ness L' such that

L'=(1-s)L, (23)

where s is the coefficient of shrinkage. Thus, the displace-
ment matrix is

000
A=]0 0 Of. (24)

00 s
If the plane-wave hologram with grating vector K, is
probed by E(r)=exp(ik,-r), then, without shrinkage, the
diffracted field just after the hologram is given by Eq.

(21). By substituting Egs. (21) and (24) into perturbation
formula (17), we can simplify the result after shrinkage to

9 )f
K
N gst

Ed(r//) ~ Ed(r// + E - " F ( //)
J=1

L
= smc{ ;T[(l +8)K,, + kg,

- \"’kz - (Kgx + kpx)2 - (Kgy + kpy)z]}

X explil (Kgy + kpy)x" + (Kgy + kpy)y”
+ VR = (

Kgx + kpx)2 - (Kgy + kpy)zzn]}’ (25)

which means that the shrinkage along the z direction af-
fects only the efficiency and not the direction of the dif-
fracted plane wave. This is consistent with the discus-
sions in Refs. 3 and 17. Beyond this simple calculation,
relation (17) can be used to predict the response of holo-
grams deformed under any kind of affine transformations,
including rotations, anisotropic shrinkage, etc.

4. APPLICATION TO NONLINEAR
DEFORMATION

For holograms that undergo nonlinear deformation, we
have to use the full 3D integral or Fourier transform in
relation (16) to predict the diffracted field. To verify the
validity of the perturbation theory on nonlinear deforma-
tion, we simulated the change in the diffracted field due
to a point load exerted normally on the surface of a holo-
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gram. We also carried out an experiment and compared
the results with the simulation.

When a concentrated point force P is acting normally to
the surface of an elastic solid, as shown in Fig. 5(a), the
elastic displacements at any point in the half-space are
given by 3l

P [xz x }
Uy= (1-2v) ,
4G plp+2)

P | yz y
uy=—[—3—(1—2v) }
47G| p plp+2z)

P [22 2(1 - V)}
u,= -+ , (26)
p

447G p

where G and v are the shear modulus and Poisson ratio,
respectively, and p=\x2+y2+2z2 is the distance of the point
to the origin (loading position). The resulting deformation
is shown in Fig. 5(b). The singularity at p=0 is due to the
S-function nature of the point load. We can obtain the dis-
placement matrix for each point in the deformed solid.
Note that the displacement matrix elements are now po-
sition dependent, unlike the example in Section 3.

P
uX
o] E i * x
______ -V-{_uz
p
V4
(a)

(b)

Fig. 5. Illumination of the deformation when a point load is ex-
erted on the half-space.
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Fig. 6. Experiment geometry when a point load is exerted on a
transmission hologram.
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Fig. 7. Simulated and experimental results when a point load is
exerted on a transmission hologram. Parameters are the wave-
length A=488 nm, the angle of reference beam 6;=-7.5°, the
angle of signal beam 65=20°, the thickness of the hologram L
=2 mm, the estimated force P=700 N, and the focal length of the
Fourier lens =400 mm. The intensities before and after defor-
mation were each normalized by their own maximum. The maxi-
mum intensity after deformation is 19.65% of the maximum in-
tensity before deformation.

We constructed an experimental setup to verify the va-
lidity of the approach presented above. The holographic
material was provided by Ondax, Inc. It had thickness L
=2 mm and measured shear modulus G=44 GPa, with
Poisson ratio »=0.22. The hologram was of the transmis-
sion type with reference and signal beam angles 6=
-7.5° and 6g5=20°, respectively, at a wavelength of
488 nm. The geometry of the experiment is shown in Fig.
6 with F'=400 mm. The hologram was illuminated at the
Bragg matching angle. A PULNiX TM-7EX CCD with
768 X 494 pixels (pixel size 8.4 um X 9.8 um) was used to
observe the diffracted intensity. The hologram was de-
formed by using a diamond indenter tip applied normally
against the back surface of the hologram. The deforma-
tion due to an indenter tip is in good agreement with the
point load described by Egs. (26), except near the singu-
larity point p=0. Our experimental approach did not re-
quire force measurement; we estimated the force by using
the displacement reading in the indenter carrier. During
the experiment, we used the same probe beam, which is
Bragg matched before deformation, to illuminate the ho-
logram.

Vol. 22, No. 12/December 2005/J. Opt. Soc. Am. A 2885

First, we simulated the expected change in diffracted
field according to relation (16) and Eqgs. (26). The results
are shown in Fig. 7. An interesting observation is that the
diffracted spot splits into twin peaks due to the point-load
deformation. This can be explained intuitively based on
the deformed fringe patterns of Fig. 8 and the K-sphere of
Fig. 9 as follows. From Fig. 8, we see that the deformed
grating is composed of two quasi-periodic fringe patterns
symmetric with respect to the original grating fringes.
The fringes are also curved, which is an indication of spa-
tial chirp. If for the moment we neglect the spatial chirp,
we obtain two gratings that are tilted with respect to the
original grating, and also have smaller period because of
the pressure applied by the indenter. Accordingly, we rep-
resent the twin gratings with wave vectors K; and Kj
that are tilted and elongated with respect to the original
wave vector K,. Since we are reading out the hologram
with the original reference k¢ the twin peaks are ex-
pected to be Bragg mismatched. However, for small defor-
mation, i.e., small deviations of the twin grating vector
tips K, and Kj from the K-sphere, we can still obtain dif-
fraction from the partially mismatched gratings. The di-
rections of the twin diffracted beams are denoted as kj

~ undeformed
——— deformed

Fig. 8. Fringe patterns of a transmission hologram due to point
load; the parameters are the same as those for Fig. 7.

Fig. 9. K-sphere explanation for the twin peaks.
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Fig. 10. Experiment geometry when a point load is exerted on a
reflection hologram.

and kj in Fig. 9; they give rise to our observed twin peak
on the CCD camera after Fourier transformation by the
lens. Because the Bragg mismatch amounts AK, and AK|
for the twin gratings are in general different, the twin dif-
fracted beams have different efficiencies. The elevated
sidelobes observed in Fig. 7 are due to the spatial chirp,
which was neglected from the approximate explanation
based on Fig. 9.

We performed our experiments by using an indenter tip
moved by a micrometer to exert the point load on the ho-
logram. The load position was exactly at the center of the
aperture (the illumination area on the hologram). The ex-
perimental result obtained on the CCD camera is shown
as the dotted—dashed curve in Fig. 7 and seen to be in
agreement with the simulation. At the same time, we also
observed some minor apodization effects mixed in with
our experimental result: The sidelobes were suppressed,
and the main lobes were a little wider. Because the
apodization effect of volume holograms has been ac-
counted for inherently in the perturbation theory, the ad-
ditional apodization could be due to nonuniformity of ho-
lograms and probe beams.

We also performed simulations and experiments on a
reflection-type hologram. The experimental geometry is
shown in Fig. 10. The holographic material was also from
Ondax, Inc., with the same shear modulus and Poisson
ratio as those for the transmission hologram. The thick-
ness of the reflection-type hologram was L=1.5 mm. The
angles of reference beam and signal beam were 6;=172°
and 65=8°, respectively, at a wavelength of 632 nm. The
focal length of the Fourier lens was F=400 mm, and the
hologram was also illuminated at the Bragg matching
angle. The simulated and experimental results are shown
in Fig. 11 and match very well. In this case, the diffracted
field presents an almost symmetric pattern due to the
point-load deformation. This can also be explained intu-
itively by the deformed fringe patterns of Fig. 12 and the
K-sphere of Fig. 13 as follows. In this case, the original
grating vector K, is split into three gratings Ky, Ké, and
Kg after deformation. K,; remains parallel to K, but is
longer because of the applied pressure. The two others, K{",
and K!, are tilted and elongated as in the transmission
case and have almost the same Bragg mismatch amounts
AK, and AKj. The result is a triplet peak, with a main
lobe corresponding to the partially mismatched K, and
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two sidelobes corresponding to the partially mismatched
K;, and K. The sidelobes are weaker than the main lobe,
while the amount of Bragg mismatch for K and Kg is

larger than it is for Kg;. In Fig. 11, we can glso observe
minor apodization effects mixed in with the experiment
result, which is due to the same reasons as those in the
transmission geometry.

It needs to be mentioned here that the repeatability of
this experiment is not so good because of the difficulty in
achieving the exact deformation of ideal point loading.
First, we need to adjust the point load exactly at the cen-
ter of the aperture. Second, the force must be normally ex-
erted on the surface of the hologram. Third, we need
enough stiffness of the whole supporting and holding sys-
tems. The deformation is very sensitive to these factors.
So to get the deformation as close to the ideal as possible,
the adjustment in the experiments must be very precise.

1 T T T T I

— simulation (deformed)
0.9 - - simulation (undeformed) [}
== gxperiment

0.8

0.7r

0.6

0.5[

0.4

Normalized Intensity

0.3f

0.2

0.1

N2 N -
—8‘8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
x" (mm)

Fig. 11. Simulated and experimental results when a point load
is exerted on a reflection hologram. Parameters are the wave-
length A=632 nm, the angle of reference beam 6;=172°, the angle
of signal beam 65=8°, the thickness of the hologram L=1.5 mm,
the estimated force P=19 N, and the focal length of the Fourier
lens F=400 mm. The intensities before and after deformation
were each normalized by their own maximum. The maximum in-
tensity after deformation is 34.55% of the maximum intensity be-
fore deformation.

~ undeformed
— deformed

Fig. 12. Fringe patterns of a reflection hologram due to point
load; the parameters are the same as those for Fig. 11.
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Fig. 13. K-sphere explanation for the “triplet peak.”

5. CONCLUSIONS

We have derived a general solution to the problem of dif-
fraction from a volume hologram that has been arbitrarily
deformed compared with its recorded shape. We have
shown that in many cases of interest, including shrinkage
and indentation due to application of a point tip, a pertur-
bation approach can predict accurately the diffracted field
and can be used to establish deformation parameters by
matching the experimental measurements with analyti-
cal or numerical models. Our approach is unique in that it
projects the deformation from the entire 3D volume onto
the measurement, and thus it has potential for measuring
even more arbitrary deformations for which analytical or
numerical predictions do not exist.

Our analysis in this paper is cast as a “forward prob-
lem,” where the deformation is given and we seek the dif-
fracted field. The future work will be the “inverse prob-
lem,” which is to determine the deformation itself based
on a set of observations of the field diffracted from a
known (predeformation) volume hologram. Our abd initio
model and perturbation theory make it possible to calcu-
late the complicated patterns analytically or numerically
for which the inverse problem will have high utility.

APPENDIX A: PERTURBATION THEORY
CONSIDERING DIELECTRIC CONSTANT
CHANGE DURING DEFORMATION

The conformality assumption that the dielectric constant
does not change during deformation is valid when the de-
formation is not large enough to change the material
properties of holograms. Although in some conditions the
dielectric constant may change, we still can include this
effect in our theory by modifying Eq. (2) as

A€'(r') =a(r’)Ae(f(r’)), (A1)

where a(r’) is the amplitude change of dielectric modula-
tion. Following the same derivation steps, we can easily
find the diffracted field, considering the dielectric con-
stant change during deformation as

Eq(r") = Eq(x")

N (KA Vg )
+fJpr(r’)a(r’)2 j—'Ae(r’)
; !

-1

V 277x’x”+y,y”
X V(r')exp| —i—————
(r')exp| i N 7
277_ x772+y172 d3 A
X -i—(1- "ld°r’, 2
exp| -1 N oF? z (A2)
where
Ed(r")=fjJEP(P')G(I")AG(I")V(I")
( 27Txrxu+yryu)
Xexp| —i———
N F
.277_ x/!2+yn2 s
Xexp —LT 1- oF? z' [d°r’, (A3)

If the displacement is linear, then

N (KA Vg )

Eqy(x") = Ey(x") + T R 4y

J=1

APPENDIX B: GENERALIZED
PERTURBATION THEORY FOR ARBITRARY
HOLOGRAMS

We can generalize relations (16) and (17) for arbitrary ho-
lograms that can be written as a linear superposition of
many plane-wave holograms:

mx ny lz
Ae(r) = E emnlexp|:i27'r<—+—+—):|

m,n,l Lx Ly Lz
= 2 € exp[iK" -1, (B1)
m,n,l

where L,, L,, and L, are the dimensions of the hologram
in x, y, and z directions, respectively, €,,,; is the constant
expressing the hologram strength of each component, and
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K" is the wave vector of the grating of each component.

Tﬁerefore, along the same derivation path as that in Sec-
tion 2, we can obtain the deformed dielectric modulation
as

N [K(gmnl) CA- Vngmnl)]f

Ae(f(r') = Ae(x') + 2 > - Aepn(r'),
m,n,l j=1 J:
(B2)
where
A€yn(r') = €y exp(KT™ - 17). (B3)

The diffracted field after deformation will render the form

F

In the case of linear displacement, relation (B4) can be
further simplified to

N [K(gmnl) CA- VK(mnl)}i
= g
Eqx") =Eqe") + X, 2,

m,n,l j=1 J!

Eémnl)(rn) ,

(B5)

where

Egmnl)(ru) — f f pr(r,)AEmnl(r,)V(r,)

I

2ax'x" +y'y"
X exp —iT—

F
271_( x//2 +y//2 d3 s
xexp| —i—|1-—=— |z’ |a®", (B6
Xp| — i o )? (B6)
Ed(r")= E Egmnl)(ru). (B7)
m,n,l

Relations (B4) and (B5) are the counterparts of relations
(16) and (17), respectively.

APPENDIX C: LOCUS OF MAXIMUM
BRAGG MISMATCH

In this appendix we calculate the locus of maximum
Bragg mismatch as a function of the deformation amount
5. As shown in Fig. 14, we want to find the point on the
circle with center at Os and radius & that has the maxi-
mum horizontal distance to the circle of the K-sphere. The
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Fig. 14. Calculation of the locus of maximum Bragg mismatch.

N [K(gmnl) CA - VK(gmnl)]j

Eq(x")=E ")+ X, f f J E, (x>,
m,n,l j=1

27Tx/xll+ylyﬁ
Xexp —iT— exp

j' Afmnl(r/)V(r,)

Q7r x/r2+y//2
—iT 1-———|z" |d®'. (B4)

2F?

horizontal distance represents the amount of Bragg mis-
match AK,. We can express the point on the circle of the
K-sphere as

22 +x2=k2, (C1)
where k=27/\, and the point on the circle O; as
(z -k cos 65)% + (x — k sin Og)? = &% (C2)

The amount of Bragg mismatch is the horizontal distance
between two points that have the same x coordinate and
are on these two circles. This distance can be calculated
as a function of x:

AK(x) =k cos 65+ \ & — (x — k sin 65)% — k2 - x2.
(C3)
To get the maximum, we calculate the first-order deriva-

tive of Eq. (C3) and set it equal to zero:
x —k sin fg

JAK(x) x
== + =0. (C4)
ox V& - (x -k sin 6g)2 k2% -2

Solving Eq. (C4), we obtain the x coordinate of the point,
which has the maximum amount of Bragg mismatch, as
k2 sin 6y

Xmax = , C5

max= T, (C5)
where *+ means that there are two points that have the
maximum amount of Bragg mismatch. One is in the inte-
rior of the K-sphere, the other is outside. Thus the maxi-
mum Bragg mismatch direction angle can be obtained as
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Xmax— Rk sin 6y +k sin Oy

5 )

(C6)

sin 5=

After knowing the maximum Bragg mismatch direction
angle to different deformation amounts &, we can sketch
the locus of maximum Bragg mismatch as Fig. 4. When &
approaches zero, the maximum Bragg mismatch angle
can be obtained as

lim sin f5= + sin 6s. (C7)
5—0

This means that the fastest Bragg mismatch is obtained
along the direction of the signal beam, which is consistent
with the discussion in Section 2.
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