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Abstract

This text describes the first application of a novel path flow and origin/destination
(OD) matrix estimator for iterated dynamic traffic assignment (DTA) microsimu-
lations. The presented approach, which operates on a trip-based demand represen-
tation, is derived from an agent-based DTA calibration methodology that relies on
an activity-based demand model. The objective of this work is to demonstrate the
transferability of the agent-based approach to the more widely used OD matrix-
based demand representation.

The calibration (i) operates at the same disaggregate levelas the microsimulation
and (ii) has drastic computational advantages over usual ODmatrix estimators in
that the demand adjustments are conducted within the iterative loop of the DTA
microsimulation, which results in a running time of the calibration that is in the
same order of magnitude as a plain simulation. We describe anapplication of
this methodology to the trip-based DRACULA microsimulation and present an
illustrative example that clarifies its capabilities.

1 Introduction

This text introduces a novel path flow and origin/destination (OD) matrix estimator
for iterated dynamic traffic assignment (DTA) microsimulations. The first part
of this introduction describes the basic concepts of these simulations and reviews
some of the existing implementations. The second part revisits existing OD matrix
and path flow estimators. Based on this review, the new approach is then motivated.

Iterated DTA microsimulations are characterized by the following features: They
are microscopic in that both travelers and vehicles are modeled at the disaggre-
gate level. They are iterative in that the simulation runs typically according to
the logic outlined in Algorithm 1, where a demand simulator and a supply sim-
ulator are alternately executed until a state of mutual consistency is reached. Fi-
nally, they are usually stochastic in that at least the simulated travel behavior is
non-deterministic, whereas the traffic flow model may eitherbe deterministic or
stochastic. The foundations of the iterated simulation approach have been laid by
Cascetta (1989); Cascetta and Cantarella (1991), and theirapplication to increas-
ingly complex model systems is still the topic of ongoing research (Nagel et al.;
1998; Nagel and Flötteröd; 2009).

Algorithm 1 leaves open which behavioral dimensions are represented by the de-
mand simulation (e.g., route choice, departure time choice, destination choice,
mode choice, ...), and, indeed, the iterative approach can in principle cope with
any of these dimensions (Nagel and Flötteröd; 2009). However, only few exist-
ing DTA microsimulations go beyond route choice adjustments; amongst them
are DynaMIT (Ben-Akiva et al.; 1998; DynaMIT; accessed 2009), METROPOLIS
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Algorithm 1 Iterated DTA microsimulation

1. Initialization. Give every traveler an initial perception of the conditions in
the network.

2. Iterations. Repeat the following until stationary conditions are reached.

(a) Demand simulation. Travelers select new mobility plansbased on what
they have observed during previous iterations.

(b) Supply simulation. The mobility plans of all travelers are simultane-
ously executed on the network.

(De Palma and Marchal; 2002), and DRACULA (Liu; 2005; DRACULA; accessed
2010), which also adjust departure time choice for independent trips, and MATSim
(Nagel et al.; accessed 2010; Nagel and Flötteröd; 2009; Raney and Nagel; 2006),
which in its current implementation adjusts route, departure time, and mode choice
for complete trip chains and is continuously being extendedtowards further de-
mand dimensions (Horni et al.; 2008). Far more common are iterated microsimu-
lations that constrain themselves to the equilibration of route choice (and a strictly
trip-based demand representation). Amongst those are AIMSUN (TSS Transport
Simulation Systems; 2006, accessed 2010), DYNAMEQ (INRO; accessed 2010),
and PARAMICS (Quadstone Paramics Ltd.; accessed 2010).

The usual representation of a trip-based demand is a (possibly time-dependent) OD
matrix that describes the number of trips from every origin zone to every destina-
tion zone in a traffic network. The estimation of OD matrices from traffic counts
has a long history. Early works consider a static setting where an OD matrix is
estimated given a linear assignment mapping of demand on link flows. Mathemat-
ical techniques deployed for this purpose comprise entropymaximization and in-
formation minimization (van Zuylen and Willumsen; 1980), Bayesian estimation
(Maher; 1983), generalized least squares (Bell; 1991; Bierlaire and Toint; 1995;
Cascetta; 1984), and maximum likelihood estimation (Spiess; 1987). Congestion
effects, which lead to nonlinear assignment mappings, are typically dealt with in a
bilevel-setting that iterates between the nonlinear assignment and a linearized esti-
mation problem (Maher et al.; 2001; Yang; 1995; Yang et al.; 1992). The solution
to this problem can also be phrased as a fixed point of the combined assignment
and OD matrix estimation mapping (Bierlaire and Crittin; 2006; Cascetta and Pos-
terino; 2001). Cascetta et al. (1993) demonstrate how to carry over the estimation
of static OD matrices to dynamic settings (e.g., Ashok; 1996; Bierlaire; 2002; Sher-
ali and Park; 2001; Zhou; 2004).

All of the above-mentioned demand estimators adjust OD matrices subject to a
given route choice model that is embedded in the traffic assignment procedure.
Since route choice modeling is an intricate task (Frejinger; 2008), modeling er-
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rors are likely to introduce biases in the estimated OD matrices. This problem
can be avoided through the use of path flow estimators (PFEs).The first PFE was
introduced by Bell (1995); Bell et al. (1997). It estimates static path flows from
link volume measurements based on a multinomial logit stochastic user equilib-
rium (SUE) modeling assumption. It is a one-step observer inthat it accounts for
congestion effects without resorting to a bilevel-approach. Further enhancements
comprise multiple user classes and a simple analytical queuing model to represent
traffic flow dynamics (Bell et al.; 1996). A user equilibrium PFE was proposed by
Sherali et al. (2003, 1994); further developments along these lines were conducted
by Nie and Lee (2002); Nie et al. (2005). Summing up the path flows between
an OD pair yields its OD flow, which means that PFEs also serve as OD matrix
estimators.

This text describes the first application of a novel path flow and origin/destination
(OD) matrix estimator for iterated dynamic traffic assignment (DTA) microsimula-
tions. The presented approach, which operates on a trip-based demand representa-
tion, is derived from an agent-based DTA calibration methodology that relies on an
activity-based demand model (Flötteröd et al.; 2010). The objective of this work is
to demonstrate the transferability of the agent-based approach to the more widely
used OD matrix-based demand representation. The new approach goes beyond
existing methods in that it

• estimates the trip-making of individually simulated travelers without any ag-
gregation;

• is compatible with almost arbitrary demand and supply simulators;

• has a computational complexity that is in the order of a plainsimulation.

The remainder of this article is organized as follows. Section 2 introduces the
two software systems deployed in this study: the DRACULA microsimulation and
the Cadyts calibration tool, which implements the proposedmethodology. A case
study that clarifies the workings of the new approach is givenand discussed in
Section 3. Finally, the article is concluded in Section 4, and ongoing and future
research work is described.

2 Framework and system components

The work presented in this article involves two software systems: the DRACULA
microsimulation and the Cadyts calibration tool. This section describes these sys-
tems and their interactions. DRACULA is outlined in Subsection 2.1, and Cadyts
is introduced in Subsection 2.2. The interaction of both systems is described in
Subsection 2.3.
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2.1 DRACULA – a microscopic simulation DTA model

DRACULA (“Dynamic route assignment combining user learning and microsim-
ulation”) is a simulation tool to investigate the dynamics of demand and supply
interactions in road networks. The emphasis is on the integrated microsimulation
of individual trip-makers’ decisions, travel experiences, and learning. DRACULA
complies with the simulation structure given in Algorithm 1.

The system explicitly models individuals’ day-to-day route and departure time
choices, and how their past experience and knowledge of the network influence
their future choices. Coupled with that is a detailed within-day traffic microsim-
ulation based on car-following and lane-changing rules. The system evolves con-
tinuously from one day to the next until a pre-defined number of days or a broadly
balanced state between the demand and supply is reached. Simulation results can
be obtained throughout the evolution and on not just the means but also variances
and probability distributions both within-day and betweendays. The full details
of the DRACULA suite of models and their applications have been reported else-
where (e.g., Hollander and Liu; 2008; Liu et al.; 2006; Liu and Tate; 2004; Panis
et al.; 2006) and will therefore not be detailed herein.

For the purposes of this article, DRACULA’s sophisticated supply simulator is cou-
pled with a simple, externally implemented multinomial logit (MNL) route choice
model (Ben-Akiva and Lerman; 1985), and departure time choice is neglected (in
that fixed departure times are assumed). The limitations of MNL route choice mod-
els, in particular with respect to route overlap, are well understood and can to some
extent be corrected for without abstaining from the MNL’s convenient functional
form (Ben-Akiva and Bierlaire; 2003; Cascetta et al.; 1996). However, the syn-
thetic study presented in this article is sufficiently served by a plain MNL model.

Formally, denote a single trip-maker byn and its choice set of available routes by
Cn. The probabilityPn(i) thatn chooses routei ∈ Cn follows a multinomial logit
model

Pn(i) =
exp[µVn(i)]

∑
j∈Cn

exp[µVn(j)]
(1)

whereVn(i) is the systematic utility of alternativei as perceived byn, andµ is
a scale parameter. In all experiments,Vn(i) is set to the negative travel time one
would have experienced on the considered route in the previous iteration. That
is, the more complex learning mechanisms provided by DRACULA (allowing for
long-term driver memories with different weights on different days) are not ex-
ploited in this study. Further investigations with more complex modeling assump-
tions are left as a topic for future research.

Variability in the total demand levels is enabled by giving every replanning trip-
maker an additional empty route that represents the alternative of not making a
trip. Assuming a total number ofN trip makers for a given OD pair and assuming
that on average a fraction off ∈ (0, 1) trip makers actually travels per day gives the
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no-travel route a choice probability of1 − f and requires to scale down the choice
probabilities of all other routes byf. This turns the daily demand for the given
OD pair into a binomial random variable with meanfN and varianceNf(1 − f).
Although the stay-at-home alternative has (again for simplicity) a fixed probability
to be chosen, it can be formally accounted for within (1) by assigning it the utility
value

Vn(stay-at-home) =
1

µ
ln

(

1 − f

f

)

+
1

µ
ln





∑

j∈Cn

eµVj



 (2)

where the logsum term is computed only over the true route choice alternatives.
Whenever the following text speaks of route choice according to (1), this therefore
comprises the additional no-trip alternative.

2.2 Cadyts – Calibration of dynamic traffic simulations

Cadyts (“Calibration of dynamic traffic simulations” (Flötteröd; 2009, accessed
2010)) is a continuously developed software toolbox that allows to estimate ac-
tivity based travel demand models from traffic counts and vehicle re-identification
data. Cadyts has been originally developed for the calibration of agent-based DTA
simulations, which do not use OD matrices. In this subsection, a more specific per-
spective is adopted on a trip-based demand representation with route choice and
dropping a trip being the only choice dimensions.

For the sake of clarity, a somewhat simplified calibration setting is described in
the following, which results in a particularly interpretable formulation of the esti-
mation: (i) the network is assumed to be uncongested, (ii) the demand simulator
is assumed to deploy an MNL route choice model, (iii) the traffic count sensors
are assumed to have univariate normal error distributions,and (iv) the objective is
to estimate the output (choice distribution) of the demand model, not its parame-
ters. A more general formulation of the calibration, which,however, is not tailored
towards a trip-based simulation, can be found in Flötteröd et al. (2010).

Denote byyak the traffic count obtained on linka in time intervalk, byσ2
ak the re-

spective sensor’s error variance, and byA the set of all sensor-equipped links. The
simulated counterpart of a measurementyak is denoted byqak. The basic calibra-
tion approach can be phrased in a Bayesian framework, where,essentially, the prior
route choice distributionPn(i) of (1) is combined with the measurements’ likeli-
hood function into a posterior route choice distributionPn(i|{yak}a∈A,k) given the
sensor data. Under the above assumptions, the following approximation of the
posterior distribution can be obtained:

Pn(i|{yak}a∈A,k) =
exp

[

µVn(i) +
∑

a∈A,k

ak∼i

yak−qak

σ2
ak

]

∑
j∈Cn

exp

[

µVn(j) +
∑

a∈A,k
ak∼j

yak−qak

σ2
ak

] (3)
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whereak ∼ i indicates that the network travel times are such that following route
i implies entering linka in time intervalk (i.e., crossing the respective sensor).
Equation (3) is obtained from a consistent mathematical derivation (Flötteröd et al.;
2010), but it also has a clear intuitive meaning.

The prior route choice probabilities are changed only through additive modifica-
tions of the utilities. That is, the only affected elements of the behavioral model
are the alternative-specific constants (ASCs). This is plausible: the objective in the
given setting is to adjust the choices and not the choice model coefficients, and an
ASC captures all effects on a choice that are not reflected by the attributes of the
alternatives or the decision maker (Ben-Akiva and Lerman; 1985).

Regarding the nature of the ASC modifications, consider a single addendyak−qak

σ2
ak

in the utility correction. If more vehicles are counted in reality than are simulated
(yak > qak), the addend is positive and the utility of routes that crossthe sensor
on link a in time intervalk is increased. Hence, simulated drivers are encouraged
to select routes that contribute to the simulated count, which results in a lower
deviation between reality and simulation. Vice versa, if the simulation generates a
flow that is higher than the real count (yak < qak), the utility correction is negative
and the simulated drivers are kept away from taking routes that contribute toqak.
The scaling of the utility corrections by1/σ2

ak ensures that more reliable sensors
take greater effect than unreliable ones. In summary, the calibration works like a
controller that steers the simulated drivers towards a reasonable fulfillment of the
sensor data.

Cadyts can cope with more general settings than what is presented here. For ex-
ample, the experiments described in Section 3 rely on some additional features of
the calibration that enable its application in congested conditions (Flötteröd and
Bierlaire; 2009).

2.3 Integration of DRACULA and Cadyts

This section describes how DRACULA and Cadyts are linked together. The next
section then deploys the technology described here for a series of experiments.

The communication between DRACULA and Cadyts is based on exchanging data
through files. The flow chart of Figure 1 outlines the interactions between the
two systems. The program logic is implemented in a Python script that calls both
DRACULA, the route replanning module, and Cadyts in the necessary order.

After an initialization of both systems, DRACULA is executed once with an ar-
bitrarily selected route for each traveler. Hereafter, theiterations start. Given the
most recent travel times, the route choice model is evaluated for every single trav-
eler, and the resulting prior route choice probabilities are stored (recall that this
includes the option of not making a trip). This corresponds to an evaluation of (1).
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DRACULA
initialization
(read network, ODs, ...)

Cadyts
initialization
(read measurements, ...)

DRACULA
initial network loading

Route choice model
route replanning

Cadyts
route choice adjustment

DRACULA
network loading

travel times

route choice probs.

selected routes

travel times

simulated flows

simulated flows

Figure 1: Interactions between DRACULA and Cadyts
The program flow is along the solid arrows. Dashed arrows represent additional
data flows.
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Cadyts then internally adjusts the route choice probabilities according to (3), sam-
ples one route per trip-maker from the resulting posterior distribution, and saves
this route as the chosen alternative. DRACULA then loads allchosen routes on the
network. The resulting travel times are fed back to the routechoice model, and the
iterations start anew.

Cadyts operates at the fully disaggregate level in that it deals with individual trav-
elers (trip makers) without associated OD pairs. The demandrepresentation in
DRACULA is based on OD matrices (possibly separated by time slice and/or user
class). In order to interact these two approaches, DRACULA samples a population
of trip-makers from the OD matrices in its initialization step. Every trip-maker
in this population is then maintained as a uniquely identified entity throughout all
following process steps, and its association to one particular OD pair is also stored.
This allows to re-aggregate estimated path flows and OD matrices from the indi-
vidually adjusted route choice behavior.

3 Experiments

We investigate the interactions of the Cadyts calibration with the DRACULA sim-
ulation in a synthetic scenario. The purpose of these experiments is to clarify the
functioning and the capabilities of the approach. Experiments with real networks
are the subject of future research. The computational feasibility of the calibration
methodology for large-scale scenarios is demonstrated in Flötteröd et al. (2009),
where, however, a multi-agent simulation instead of a trip-based transport simula-
tion is estimated.

The experiments are run in the network shown in Figure 2. Demand enters the
network at the leftmost node, turns either left or goes straight at the diverge, and
leaves the network at the rightmost node. A traffic light is located in the center
of the straight route, serving as a bottleneck that generates congestion-dependent
travel times. The link capacities and geometrical layouts are chosen such that the
traffic light constitutes the only bottleneck in the system,and that free-flow travel
is possible everywhere else. The two routes differ by 28 seconds under free-flow
conditions (taking into account an average delay due to the signal) and by 1 km
in length. One may think of a straight route going through a city-center and of a
longer by-pass route.

In this experiment, a population of 3000 drivers is considered. The stay-at-home
probability 1 − f is set to 1/3 in (2), which means that on average 2000 travelers
decide to make a trip, with a standard deviation of approximately 26 travelers. The
scale parameterµ of the utility function (negative travel time) in the logit choice
model (1) is set to 0.01. Considering both routes and the stay-at-home option, the
choice set is hence three-dimensional. The length of the analysis period is one
hour, an the demand is distributed uniformly over this time interval.
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←
dem

and
entry

←
bottleneck

←
flow

sensor

←
dem

and
exit

Figure 2: Test network

All calibration experiments follow the logic outlined in Figure 1. Plain simulations
are conducted by taking Cadyts out of the loop, which is the same as running the
calibration with an empty measurement file, i.e., withA = {} in (3). All simula-
tions and calibrations are run for 100 iterations, which appears sufficient to reach
stationary conditions by visual inspection of the respective trajectories (see below).

3.1 Plain simulation

A plain simulation in this setting results in the demand levels and simulated traffic
counts indicated in the first wide column (“simulation”) of Table 1. Every field of
this table displays two values: a mean value and a standard deviation (in brackets).
All statistics are obtained from the last 50 iterations of the respective runs.

The first simulation column displays the network entry flows.Their mean val-
ues are consistent with the demand profile. Their standard deviations are higher
than the 26 veh/h one would expect from the binomial demand distribution, which
is most likely a result of the link inflows being also randomlyaffected by traffic
flow dynamics. No vehicles enter the system after one hour, which means that no
demand is held back at the network entry because of congestion effects.

The second simulation column displays the simulated flows atthe measurement
location. Roughly half of the total network entries take thestraight route (and
hence pass the sensor location). Because it takes some time to reach the sensor
link from the network entry, vehicles enter the sensor link even after one hour.
This effect is compounded by the traffic light right upstreamof the sensor link,
which generates an additional delay for vehicles that take the straight route.

Figures 3 and 4 show the evolution of the network and sensor link inflows per
15-min time interval over the iterations of the simulation.Since the initial route
assignment is a 50/50 split, the system stabilizes almost immediately around a sta-
tionary distribution. The ongoing variability in the curves is due to (i) demand level
fluctuations, (ii) route choice variations, and (iii) stochastic traffic flow dynamics.
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Table 1: Results

simulation calibration 1 (σ = 25 veh/h) calibration 2 (σ = 10 veh/h)
inflow of inflow of measured inflow of inflow of measured inflow of inflow of
entry link sensor link flow entry link sensor link flow entry link sensor link

interval 1 1960.16 880.87 – 1938.51 880.39 – 1934.28 880.0
0:00 – 0:15 (47.21) (39.53) (44.99) (39.5) (44.74) (39.88)
interval 2 2072.79 1069.96 700 1942.35 779.53 700 1920.16 716.55

0:15 – 0:30 (53.26) (53.21) (25) (52.8) (57.67) (10) (51.47) (66.68)
interval 3 1960.0 1046.82 1300 2067.61 1231.69 1300 2102.04 1287.77

0:30 – 0:45 (53.63) (52.61) (25) (55.35) (71.91) (10) (52.48) (89.32)
interval 4 1946.12 1024.31 – 1946.12 1028.71 – 1946.12 1032.63

0:45 – 1:00 (51.41) (49.26) (51.41) (48.03) (51.41) (51.21)
interval 5 0.0 129.73 – 0.0 129.65 – 0.0 129.02

1:00 – 1:15 (0.0) (20.63) (0.0) (19.39) (0.0) (19.31)

time intervals are written as “hours:minutes”; all other values are vehicles per hour (veh/h)
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Figure 3: Network entries [veh/h] over iterations of plain simulation

Figure 4: Sensor link inflows [veh/h] over iterations of plain simulation
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3.2 Calibration

The same one-hour peak period as before is considered, whereboth the (presum-
ably real) sensor data and the demand are represented by piecewise constant values
in four 15 min time intervals. We investigate the exploitation of this sensor data to
the adjustment of both the route choice and the total demand levels across all time
slices. (Note that the estimation takes place jointly for all time slices.)

The second and third main column of Table 1 show the results oftwo calibration
experiments. In both experiments, the same measurement data is used: a measured
flow that is roughly 300 veh/h lower than the plain simulationin the second time
interval, and a measured flow that is roughly 300 veh/h higherthan the plain sim-
ulation result in the third time interval. Through this, we investigate the ability of
the calibration to both increase and decrease demand and path flow levels. No mea-
surements are assumed to be available in the first and fourth time interval in order
to underline that the method functions with arbitrarily fewmeasurements. The two
experiments differ in the standard deviation of the hypothetical sensor data, which
is 25 veh/h in the first calibration experiment (second main column) and 10 veh/h
in the second one (third main column).

In a nutshell, the calibration yields the effect one would expect from the sensor
data: it modifies both the demand levels and the route choice in a way that improves
the measurement reproduction, with the fit improving as the variance of the sensor
data is reduced. This is plausible in that the calibration isdesigned to generate a
statistically consistent combination of the prior information contained in the model
system and the additional information contained in the sensor data.

Supplementary to Table 1, Figures 5 and 6 give the evolution of the calibrated
network entry and sensor link entry flows over the iterations. Based on these figures
and Table 1, three further observations can be made.

First, the adjustment of the demand levels is not as prominent as that of the route
flows. This is due to the behavioral distribution generated by the simulation sys-
tem (without any measurements): Figures 3 and 4 as well as thestatistics in Table
1 reveal that the relative variability in the route flows is higher than the variabil-
ity in the demand levels. Arguing in Bayesian terms (from which the calibration
is indeed derived), this leaves greater freedom for adjustments of the prior route
choice distribution than for adjustments of the prior demand level distribution, and
hence the route flows are affected more strongly than the total demand levels by
the sensor data.

Second, the variability in the sensor link entry flows increases as the fit to the
measurements is increased. This is so because the measurements are selected to
represent out-of-equilibrium conditions (they differ substantially from the flows
resulting from a plain simulation): as the system is moved out of equilibrium, its
sensitivity to the bottleneck-induced delay on the straight route increases, hence the
reaction of the route choice model becomes stronger, and variability increases. This
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Figure 5: Network entries [veh/h] over iterations of calibration experiment 2
(σ=10 veh/h)

Figure 6: Sensor link inflows [veh/h] over iterations of of calibration experiment 2
(σ=10 veh/h)
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means that, although the calibration only compares mean simulated and measured
flows, it implicitly also adjusts the system variability in aplausible way.

Third, the calibrated simulation attains quite rapidly a stationary state. Noting that
the behavioral adjustment process implemented by the calibration is embedded
within the iterative loop of the simulation, this indicatesa vast computational ad-
vantage over usual approaches where the iterative simulation is embedded within
an outer adjustment loop of the OD matrix. In the presented approach, no outer
loop is present, and the complexity of a calibration is in theorder of a plain simu-
lation. (The path flow estimator by Bell also is a one-step estimator, but it is yet to
be transferred to a microsimulation setting.)

4 Summary and outlook

This text describes the first application of a novel OD matrixand path flow estima-
tor for iterated DTA microsimulations. The presented approach is derived from an
agent-based DTA calibration methodology that relies on an activity-based demand
model. This work explains how to apply the calibration in thetrip-based domain
and presents illustrative examples that clarify its capabilities.

Summarizing, the following findings can be extracted from these experiments:

• the calibration interacts meaningfully with the simulation in that it improves
the measurement fit in the proper direction;

• the calibration accounts for the uncertainty assigned to the sensor data;

• the calibration accounts for the uncertainty in the prior system states (de-
mand levels, route choice) in that it adjusts such aspects more strongly that
are represented a priori through a wider distribution in theuncalibrated sim-
ulation;

• although the calibration directly evaluates only the mean deviation between
simulated and measured flows, the resulting shift of the system’s working
point can come along with a behaviorally and physically meaningful change
in the variability of the system’s states;

• the computational complexity of the calibration is in the order of a plain
simulation.

Our ongoing work focuses on the testing of the methodology for larger DRAC-
ULA networks that are based on real scenarios. Future work will comprise various
extensions of the Cadyts methodology, including the incorporation of richer sensor
data (vehicle re-identifications, smartphone data) and thejoint calibration of fur-
ther demand and supply parameters along with the demand estimation presented in
this article.
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