
5th International Scientific Conference „Theoretical and Practical Issues in Transport“ 

 Pardubice, February 11th -12th, 2010 

 

UTILIZING HISTORICAL AND CURRENT TRAVEL TIMES 

BASED ON FLOATING CAR DATA FOR MANAGEMENT 

OF AN EXPRESS TRUCK FLEET 
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Wagner1 

Summary: During the last nine years, a couple of prototype ITS applications 
based on Floating Car Data (FCD) of taxi fleets have been developed at German 
Aerospace Center (DLR). A core application is a route guidance and monitoring 
system based on current and historical road segment travel times. Recently, it has 
been extended for use in the German funded project SmartTruck, run by a 
consortium consisting of the logistics key player DHL, DLR and the German 
Research Center for Artificial Intelligence (DFKI). An important aim of the project 
was the use of historical and current traffic information for energy-efficient, 
optimized offline planning and dynamic re-planning of the tours of DHL express 
trucks in Berlin, Germany. 

This paper discusses the architecture of the SmartTruck system and the 
methodology used to generate historic and current road segment travel times from 
positional data. 

Key words: Floating Car Data (FCD), Global Positioning System (GPS), traffic 
monitoring, map-matching, traffic guidance, traffic planning. 

1 Introduction 

In logistics, a great challenge arises from the need for harmonized strategies to 
achieve two major objectives: on the one hand, customers expect forwarding 
companies to accomplish their service at a high level of flexibility and adherence 
to delivery dates. On the other hand, there is the need to optimize the vehicle 
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routes for a high utilization and a resource-saving and energy-efficient execution 
of the transports. 

Previous transportation planning systems worked with daily lists of pick-up 
and delivery orders and a management by ad-hoc plans and static planning 
schemes. This approach is based on the assumption of optimal traffic conditions 
and does not take jams or construction sites into account. There is no reaction to 
congestion or accidents and a re-planning process (if any) is only started in case of 
a dynamical change of the current pick-up orders or the arrival of new orders. 

In this paper, the basic architecture and important parts of the methodology of 
a novel transportation planning system are described. It has been successfully 
deployed during a pilot project called SmartTruck, which was accomplished by a 
consortium consisting of the logistics key player DHL [4,5], the German 
Aerospace Center (DLR) [8] and the German Research Center for Artificial 
Intelligence (DFKI) [9]. Besides the classical input such as pick-up and delivery 
orders and given transportation restrictions, the system also collects vehicle data. 
This includes the GPS positions of the trucks and its current load, determined by 
the use of Radio Frequency Identification (RFID) antennas, an RFID reader inside 
the vehicle, and RFID parcel labels. It also gathers real-time traffic data by use of 
Floating Car Data (FCD). The FCD are obtained from taxi fleets operating in 
Berlin, Germany, and from the trucks themselves. Current and historical road 
segment travel times are determined by a system that has been developed at DLR 
[8] and has been enhanced and extended for use within the project. The delivery of 
FCD to the SmartTruck system has been deployed by DLR as a webservice 
interface. The travel times enable the system to detect congestion and to react to 
the changed traffic situation by calculating optimized, resource-saving alternative 
routes. The resulting re-planning process aims at increasing the vehicle load and at 
avoiding empty trips, thus decreasing the environmental impact.  

This paper presents the methodology used to generate the respective current 
traffic situation as well as the historical travel times for every road segment. This 
task first includes the matching of the raw positional data onto the road segments 
of a given digital road map (known as “map-matching”). Therefore a stream of 
input trajectories (i.e., sequences of GPS positions) is entered into a map-matching 
algorithm. The GPS positions are affected by errors and noise (caused, e.g., by 
clouding or multi path signals), known as the measurement error. For each 
position in a trajectory, map matching needs to decide to whom of several eligible 
candidate segments the current position should be projected onto. It also needs to 
handle the sampling error: depending on the signal frequency, the vehicle may 
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also pass one or more intermediate segments between every two such reported 
positions. The lower the frequency, the more passed segments may exist between 
any such two points, and map-matching needs to determine these segments. 

This paper describes the map-matching algorithm used within the project 
SmartTruck, which is based on routing by an integration of several multi-source 
variants of Dijkstra’s algorithm [6]. A mechanism is described which allows to 
always select the most appropriate variant in terms of required solution quality and 
efficiency of the calculation. Next, the paper gives the details of the methodology 
used to compute historical travel times for every road segment. Instead of a simple 
calculation of average travel times for every such segment, a more sophisticated 
method is used. It takes into account the general tendency that a particular road 
segment has shown in the past.  

The structure of the paper is as follows: after Section 1, this introduction, an 
overview and a brief description of the components of the SmartTruck system is 
given in Section 2. Section 3 describes the details of the map-matching and routing 
algorithm. Section 4 introduces the method used to compute historical travel times 
for every road segment. Section 5 briefly describes how to generate the respective 
current traffic situation. Finally, in Section 6, the work is concluded with the 
results obtained.  

2 System Architecture 

The starting point of the transportation planning process is the download of the 
pick-up and delivery data for the current day. The next steps are conducted by 
software components provided by DHL’s technology partner infoware [12]: this 
includes the geo-coding of delivery addresses, the transferal of the geo-positions to 
the routing server, and the calculation of the transit times between approximately 
3000 addresses in Berlin. This is accomplished by use of different travel time 
matrices for the respective times of the day (thereby distinguishing the rush-hour 
traffic from that during off-peak times). The travel times are historical travel times 
computed and periodically updated for every road segment at DLR. The approach 
that has been chosen for their calculation is described in detail in Section 4. 

The transit times are then passed over to the Pick-up and Delivery route 
planning server which is provided by DHL’s technology partner Quintiq [15]. 
They serve as the basis for the sophisticated optimization process, assigning the 
addresses to the vehicles in optimized stop sequences.  
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In contrast to previous planning approaches, the system is capable of 
considering the current traffic situation. Dynamical re-planning adapts the initial 
schedule to avoid routes affected by congestion and identified construction sites. 
The re-planning process is initiated in response to a significant change in the 
traffic condition: DLR continuously obtains position reports from around 500 taxis 
in Berlin and computes current travel times for every road segment. They are 
reported to the traffic server. Whenever a significant discrepancy to the respective 
historical travel times (which have been transmitted to the server by DLR before) 
is detected, the traffic server reports this to the route planning server. If 
appropriate, the route planning server decides to initiate the recalculation of the 
transit time matrices. In this case the recalculation is based on the current travel 
times that just have been reported, i.e. they override the historical travel times. Fig. 
1 depicts an overview of the architecture of the SmartTruck system with the 
outlined Dynamic Routing and Dispatch Application (DRADA) as its core.  

 

 

Fig. 1: architecture of the SmartTruck system 
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The trucks are equipped with on-board units with an integrated navigation 

system. Once the optimized routes for the day have been transferred by the route 
planning server over wireless links, it gives directions to the drivers. By this, the 
times for familiarization of drivers on routes that are new to them can be reduced 
dramatically. Each parcel has an RFID label. After each pick-up and delivery stop, 
the information about the current truck load is updated via RFID antennas and an 
RFID reader inside the truck. Additionally, each driver is equipped with a mobile 
device with an integrated scanner. Via the on-board unit and wireless links, the 
updated load status is reported back to the planning server. The on-board 
computers are supplied by Motorola [13]. 

Besides the outlined system structure, there are also application servers that 
implement additional services like e.g. an online address correction and a service 
that sends SMS messages for pick-up to customers. They are coordinated via an 
intelligent process management server which is is provided by DFKI. 

3 Map-Matching and Routing 

The map-matching problem is that of relating vehicle tracking data (i.e., 
trajectories) to the road network. It has to deal with the sampling error as well as 
with the measurement error (see Section 1). To tackle the problem of the sampling 
error, i.e. of unknown intermediate segments passed during the vehicle’s transit 
between two position reports, the approach followed here uses a routing algorithm. 
By this it also ensures that the computed vehicle path is consistent with topological 
and other constraints due to the particular connection of road segments. For 
example, the path cannot jump from a highway to a local road unless a suitable 
connection between the two, such as an exit ramp, exists and, for this reason, a 
respective routing can be found. 

The approach followed here combines an incremental with a global strategy. 
First, an incremental position-by-position, edge-by-edge strategy is applied 
forwards: a trajectory is represented by an (ordered) sequence of transits between a 
pair of positions subsequently reported (i.e., the “from-position” and the “to-
position”). Perpendiculars are dropped to all candidate segments that are within a 
certain distance (the “matching radius”) to the first position of a given pair of 
position reports. Each candidate segment is split into two auxiliary segments at the 
foot of perpendicular, where an auxiliary vertex is established. Each auxiliary 
vertex serves as starting and end point of the augmented auxiliary segments, 
respectively, and is an eligible starting point of a routing for the transit between the 
given two reported positions (i.e., a “from-node”). Next, the same is done for the 
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second reported position. The resulting auxiliary vertices are the eligible end 
points for the desired routing (i.e., the “to-nodes”).  

Then, for the two sets of eligible starting and end points, multi-source 
variants of Dijkstra’s algorithm [6] are used to determine a set of candidate 
routings for the given transit. This problem reduces to SPSP (single-pair shortest 
path) which is solved by solutions to the classical SSSP (single-source shortest-
path) problem. Thus, a fast method for SSSP is invoked subsequently on the 
consecutive transits: the to-position of the previous transit becomes the from-
position of the next transit, the to-nodes become the next from-nodes. The best 
paths to them are preserved. Their path costs are passed over to the next routing as 
starting costs for the new from-nodes. By this it is guaranteed that the routing 
process remains aiming at finding a minimum cost path for the whole trajectory. 

Second, a backwards global strategy follows that combines the routings for 
the subsequent transits to a globally optimal routing for the whole trajectory. 
Instead of a fixed-depth look-ahead or a limited back-tracking to evaluate the 
quality of different paths (e.g. see [3]), the method minimizes over all possible 
paths in the road network that are matching a given trajectory. By construction, it 
suffices to simply backward-chain the minimum cost paths, starting at the best 
end-node of the last routing, iterating the backward chaining until it ends at one of 
the eligible start nodes of the first transit of the trajectory.  

To address the problem of measurement errors, various quality and error 
measures can be incorporated into the cost function (e.g., the weak Fréchet 
distance, e.g. [1]). To account for the sampling error, the cost function also targets 
at shortest/fastest paths between the reported positions. The routing algorithm also 
makes use of historic travel speeds as obtained by off-line map-matching of 
historic trajectory data (for the details, see Section 4). For on-line map-matching, 
the trajectory develops in real time and is not available at once. Therefore, a small 
number k  of recently received position reports and the corresponding 
unconfirmed matches are maintained in a buffer. They can be used to decide 
whether an earlier match should be altered, based on the newly arrived track 
points. In this, matched trajectory data can be passed on to other parts of the FCD 
processing long before the trajectory is available completely, thus reducing the 
experienced delay to k reporting intervals only.  

Of note is that all data are filtered for bad GPS signals and implausible values 
in the data sources and the calculated results. This includes the exclusion of non-
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representative data. These occur when taxis are allowed to use special bus lanes or 
the taxis are picking up / dropping off a passenger (see also [16]). 

A component of the map-matcher dispatches the routing request for a transit 
to one of several available Dijkstra-variants. The dispatcher’s choice is based on 
the air distance between the from-position and the to-position. The average air 
distance again depends on the frequency of position reports. The frequencies can 
differ significantly: e.g. for the express trucks in Berlin and the taxi fleets in 
Hamburg the system gets a position report every 30 seconds, whereas there is only 
one report every two minutes for some of  the taxi fleets in Berlin.  

The dispatcher speeds up the routing process at zero or a very small loss in 
quality: for Hamburg, Germany, the method with the largest average loss, a novel 

integration of weighted A* of Pohl [14] into the algorithm A  of Ghallab and 

Allard [10], has an average loss in quality of less than four ‰. The available 
variants differ in the base algorithm (plain Dijkstra-algorithm [6], A* [11], 

weighted A* or the novel modified A ) or in the implementation of the priority 

queue of open nodes which is based on linked lists or on a Fibonacci-heap [7]. 

Run Times of Dijkstra-Variants
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Fig. 2: run times of several Dijkstra-variants for longer distances 
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Figure 2 shows the average run time1 of the respective Dijkstra-variations 
when applied to randomly generated origin-destination pairs in Hamburg. The 
pairs have been binned with respect to their air distance, one bin for every 500 
meters, and such that 10.000 pairs resided in every bin from 0 to 20 km.  

When looking at the longer distances, the implementations using a Fibonacci-
heap outperform the list-based ones, and A* outperforms plain Dijkstra. Weighted 
A* (applying a weight of 2.11   ) performs very fast, despite its list-based 

implementation of the priority queue used here, and list-based A , while faster 

than list-based Dijkstra, is not outperforming the other variations. Summarized, the 
results for the longer distances are not surprising. 

Run Times of Dijkstra-Variants
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Fig. 3: run times of several Dijkstra-variants for smaller distances 

The benefit from the list-based methods and A  becomes apparent when 

looking to the shorter distances. As Figure 3 shows for distances from 0 to 2 km, 
the list-based methods are significantly faster since the Fibonacci-heap has a high 
                                                           

1 The experiments were conducted on a machine with an Intel® Core™2 Duo CPU running at 

2.4 GHz 
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overhead cost. Modified A  performs as good as weighted A*. A  performs 

depth-oriented search as long as it can be guaranteed that the resulting solution 
cost will not deviate more than by a factor of 1  from the minimum solution 
cost (  was set to 0.2 in the exeriments). This strategy turned out to be most 
effective when working with short distances. The trends observed in this 
experiment with purely synthetic origin-destination pairs can also be observed in 
reality: as a result of the different signal frequencies, map-matching by A* using a 
Fibonacci-heap as priority queue (using Pohl’s weighted variant, whenever the 
small loss in quality is negligible) dominates in Berlin, whereas in Hamburg the 

modified A  method even outperforms weighted A* and yields the smallest run 

times. In Berlin, the outlined dispatching strategy reduces run time of routing by 
approximately 30%. 

4 Obtaining Historic Travel Times from Floating Car Data 

In Section 3, the approach chosen to match the GPS position reports to the digital 
road map has been described. Thereby, sampling errors are encountered: the 
vehicle may pass one or more intermediate segments between every pair of 
reported GPS positions. As a consequence, instead of knowing the travel time for a 
particular segment, usually only the transit time between two reported positions 
(measured as the lag between the time stamps of subsequent position reports) is 
known. However, this often is the accumulated travel time for a whole sequence of 
segments passed by the observed vehicle (the lower the signal frequency, the 
larger the length of this sequence will tend to grow). Instead of simply passing on 
the total travel time of such a sequence to its segments (e.g., with respect to their 
respective segment lengths), an iterative, self-adapting approach is used that takes 
into account the general tendency that a particular road segment has shown in the 
past. 

Let us assume for a moment, that historical travel speeds/times are already 
known for every road segment. Since the travel time for a passed road segment, 

segmentt , is not given, it must be estimated. A first idea would be to pass on 

transitt to the segments passed by the vehicle during a transit with respect to the 

individual segment length, i.e. 
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Here, the average transit speed transittransittransit / tlv  . However, the fact 

that road segments do not only differ with respect to their length but also with 
respect to their shape, number and width of lanes and parameters of road geometry 
and construction, is not taken into consideration by Eq. (1).  All these factors have 
an effect on the historical travel time profile of a particular road segment. 

Therefore, a different formula is used. Let segmentv


 denote the historical segment 

travel speed and let segmentt


 denote the historical segment travel time. Then 
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where we define segmentw  as 
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The weight segmentw  expresses the ratio of the currently observed travel time 

and the travel time that would be expected by the observations of the past. Since 

the weight segmentw  depends on segmentt  (or, alternatively, on segmentv ), i.e., on 

exactly the unknown quantity that is subject to estimation, the weight segmentw  

must be estimated. For this purpose, the idea of the weight as ratio of current and 
expected travel time is transferred to the set of segments passed by the vehicle 
during a transit:  
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Next, transitw  is used as an estimator for segmentw . This simplification is 

justified as long as a vehicle driving e.g. twice as fast as would be expected from 
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history, does this more or less constantly during the whole transit. The final 
estimation used for the segment travel time then is 

transit
segment

segment
segment
ˆ w

v

l
t 










   

(5)

The historical segment travel speeds are computed for every hour of the week 
(i.e., 168247   speed values are computed for every road segment). To 
accomplish this, GPS trajectories collected during a longer period (e.g. several 
months) are map-matched (see Section 3). Statistics are computed based upon the 
estimated segment travel times, each computed with respect to the transit between 
a pair of consecutive position reports. The following definitions are needed for a 
formula describing the computation of these statistics: let ),transits( ji  denote 

the set of transits that pass road segment j within week hour i  )1681(  i . 

Let )(t tj  be the travel time for road segment j , estimated as described in Eq. (1) 

to Eq. (5) with respect to transit t . Further, let )(l tj  denote the length of the 

section travelled on segment j  during transit t . Finally, ),(v ji


 denotes the 

historical travel speed on segment j  within week hour i )1681(  i . Then 

),(v ji


 is computed as  
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(6)

This strategy is based on the assumption that historical travel speeds/times are 
already given for every road segment. Requiring them in advance is essentially a 
“hen and egg” problem. As a remedy, the static average speed attribute provided 
for every segment in digital road maps is used in a first iteration. As soon as a first 
set of travel times is computed with Eq. (1) to (5), the statistics expressed in Eq. 
(6) can be based on them to compute the first “real” set of historical travel speeds. 
The iteration then restarts to improve the current set of historical values and it is 
terminated as soon as the relative changes in the historical speed values stay below 
a pre-defined threshold. In practice, this iteration converged to historical speed 
values that were amenable to a successful validation [2] after only two rounds.  
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5 Generating a Current Traffic Situation based on Floating Car 
Data 

Section 4 already gave the methodology of calculating estimated travel times for 
every road segment. The availability of historic travel speeds for every edge based 
on e.g. the trajectory data of the last few months facilitates the calculation of 
realistic current travel times. Of course, current travel speeds can be obtained by 

segmentsegmentsegment / tlv  . 

There is a second aspect where historic travel speeds are important for the 
calculation of current travel times or speeds: when determining the current travel 
speeds with FCD, this is done on the basis of the position reports which come in 
asynchronously. Thus a mechanism must be in place which modifies the previous 
speed value in response to a new speed value based on the arriving position 
reports. The methodology for this mechanism includes aging of the speed values 
determined in the recent past: until newly arriving position reports help to 
„refresh“ the older information about the traffic state on a given road segment, an 
aging formula will continuously modify the previously determined speed value 
such that it approaches its historic speed value as time passes by. This is 
particularly important on side roads where the number of taxi or truck vehicles 
travelling often is much lower than on arterial roads. Consequently, speed values 
must be subject to aging for a longer period in time. 

After measurement activities with test drivers in Hamburg, Germany, the 
measured travel speeds have been compared to the current travel speeds obtained 
by the FCD system. As a result, the current travel speeds generated by the FCD 
system could be successfully validated [2].  

6 Conclusion 

We gave the architecture and the basic methodology of a novel transportation 
planning system for a fleet of express trucks. It has been successfully deployed in 
Berlin, Germany. The system gathers real-time traffic data by use of Floating Car 
Data (FCD), as obtained from the express trucks and from taxi fleets. The derived 
current and historical road segment travel times enable the system to detect 
congestion and to react to the changed traffic situation by calculating optimized, 
resource-saving alternative routes. 
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