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Recording of gratings by interference of two pump pulses and diffraction of a third probe pulse is
useful for investigating ultrafast material phenomena. We demonstrate, in theory and experiment,
that the temporal resolution in such configurations does not degrade appreciably even for large
angular separation between the pump pulses. Transient Kerr gratings are generated inside calcium
fluoride sCaF2d crystals by two interfering femtosecondspumpd pulses at 388 nm and read out by
a Bragg-matched probe pulse at 776 nm. The solution to the relevant coupled-mode equations is
well corroborated by the experimental results, yielding a value of the Kerr coefficient of<4.4
310−7 cm2/GW for CaF2. © 2005 American Institute of Physics. fDOI: 10.1063/1.1927277g

I. INTRODUCTION

Femtosecond pump-probe techniques have become a
very powerful tool for investigating various ultrafast phe-
nomena in materials due to the superior temporal resolution.
They proved fruitful in many research areas, e.g., character-
ization of carrier dynamics in semiconductors,1,2 parametric
up-conversion processes,3 femtosecond spectroscopy,4 and
nondestructive examination of materials,5 just to name a few.

In a three-pulse pump-probe experiment, two intense,
identical pump pulses overlap temporally and spatially in a
nonlinear medium to induce, by interference, periodically
modulated material responses within the region of intersec-
tion. A probe pulse then experiences the ensuing optical per-
turbations and gets diffracted if the Bragg condition is satis-
fied. The diffracted probe pulse is picked up by a detector;
the detected signal is measured as a function of the time
delay between the pump and probe pulses and gives infor-
mation about the involved ultrafast mechanisms of interest.
Such dynamic gratings have already been the subject of sev-
eral books.6,7

In this article, the coupled-mode equations are solved for
an undepleted, Bragg-matched probe pulse in the case of a
Kerr nonlinearity, which can be regarded as instantaneous
compared with the pulse durations<200 fsd.8 The pump-
and-probe trace thus obtained sets a limit on the achievable
temporal resolution and the theoretical investigation pre-
sented in this article reveals that the temporal resolution of
this pump-and-probe technique remains almost undegraded
even when the angular separation between pulses is in-
creased. This is an advantage over conventional single-
pump–single-probe experiments,9 where optimal resolution
is only obtained when the pulses propagate collinearly and
deviation from collinearity causes the resolution to deterio-
rate as a result of the transverse dimensions of the pulses.7,10

Experiments are conducted in calcium fluoridesCaF2d
samples to verify our theoretical prediction. Another advan-
tage of this configuration is that the separation of the dif-
fracted probe pulse and the pump pulses increases the signal-
to-noise ratio of the measurements.

II. THEORY

Consider the configuration depicted in Fig. 1: the spatial
and temporal overlaps of two pump pulses 1 and 2 result in
interference and thus the modulation of light intensity, which
modifies the refractive index of the material through the op-
tical Kerr effect

nsId = n0 + n2I , s1d

wheren0 is the usual, weak-field refractive index of the me-
dium, n2 is the Kerr coefficient, andI is the optical intensity.
The probe pulse 3 is diffracted from the resulting index grat-
ing, giving rise to the diffracted pulse 4. The quantities
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FIG. 1. Configuration of a femtosecond three-pulse pump-probe experiment
in the transmission geometry; 1 and 2 are the pumpsrecordingd pulses, while
3 and 4 are the probe and diffracted pulses. Thez andj axes are parallel and
perpendicular to the direction of propagation of the diffracted probe pulse.
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Eisr ,td, r =sx,y,zd, vi, and ki represent the electric field,
spatial coordinates, carrier frequency, and wave vector of
pulsei. Hereui is the angle betweenz axis andki. We know
v1=v2;vp and v3=v4;vr, where subscriptsp and r de-
note pump and probe.

Let si =ssinui ,0 ,cosuid be a unit vector along the direc-
tion of the wave vectorki andki = ukiu=vin0/c. We have

Eisr ,td = 1
2Aisr ,tdejsvit−kisi·r d + c.c.,

where Aisr ,td is the slowly varying field amplitude of
Eisr ,td. For convenience, the quantityEisr ,td has been nor-
malized such thatuAisr ,tdu2= I isr ,td, the optical intensity.

The Kerr coefficientn2 is closely related to the third-
order nonlinear susceptibility of the material;8 the polariza-
tion of the diffracted pulse is determined by the polarizations
of pulses 1, 2, and 3 as well as by the tensorial properties of
the medium. In the following subsection we resort to the
scalar electromagnetic theory for its simplicity to deal with
the case when all four pulses are polarized alongy direction.
It is straightforward to extend this approach to a full tensorial
notation. We will write down the equations describing the
coupling between the probe and diffracted pulses owing to
the concurrent pump pulses. Solutions under the assumption
of undepleted probe pulse for the Bragg-matched case will
be derived.

A. Coupled-mode equations for the probe and
diffracted pulses

We start from the following wave equation for the light
field Ersr ,td=E3sr ,td+E4sr ,td:

¹2Ersr ,td −
nr

2sIpd
c2

]2

]t2
Ersr ,td = 0, s2d

which applies when the variationDn0 of n0svd is small
within the spectral widthDv of the probe pulse and the
effect of dispersion broadening is negligible for the sample
thicknessd satisfyingd!c/ sDn0Dvd. This inequality holds
for most reasonably thin samples; for example, it is satisfied
in a 1-mm-thick calcium fluoride crystals1 mm!700 mmd
for a Gaussian pulse at 776 nm whose temporal full width at
half maximumsFWHMd is 0.22 ps.

The refractive indexnrsIpd in Eq. s2d is specified by Eq.
s1d. In our formalism, the nonlinear contributionn2Ip comes
from the perturbation caused by pump pulses and couples the
probe pulse to the diffracted pulse when the Bragg condition

k1 − k2 = k3 − k4

is satisfied. The Kerr effect transcribes the intensity pattern
established by the two intense, interfering pump pulses into
an instantaneous, transient index modulation

n2Ip = n2suA1u2 + uA2u2 + A1
*A2e

jK ·r + A1A2
*e−jK ·rd. s3d

The spatially oscillating part on the right-hand side of Eq.
s3d, which can be cast asDnsr ,tdcossK ·r d, is responsible for
the coupling between thesmuch weakerd pulses 3 and 4.
HereK =k1−k2 is the grating vector.

In general, a set of four equations is required to describe
the coupling effects between the four field amplitudes in Fig.

1, just as in the optical four-wave mixingsFWMd configura-
tion. In this case, however, the pump amplitudesA1 andA2

are barely affected by the probe amplitudesA3 and A4 be-
cause the pump pulses are much more intense. Moreover, it
is justifiable to neglect the coupling effects betweenA1 and
A2 due to a weak coupling strength. As a result, we can
discard the differential equations associated withA1 and A2

and incorporate their effects into the termDnsr ,td.
We can write down the following coupled-mode equa-

tions for pulses 3 and 4 when the Bragg condition is satis-
fied, whereyr is the group velocity of the probe pulse:

Fss3 · ¹ d +
1

yr

]

]t
GA3 = − j

pDn

lr
A4, s4ad

Fss4 · ¹ d +
1

yr

]

]t
GA4 = − j

pDn

lr
A3. s4bd

In arriving at the equations Eqs.s4ad and s4bd above,
several approximations have been adopted:

sad Only the third-order material nonlinearity comes into
play. The second-order nonlinearity term is discarded
for irrelevance; higher-order terms are also ignored be-
cause the third-order term dominates in magnitude.

sbd We ignore the terms associated withsDnd2 and keep
those involvingnDn because typically and in our ex-
perimentsDn/n&10−4.

scd We ignore the second-order terms]2Ai/]t2 compared
with vrs]Ai /]td since the spectral bandwidthDvi of Ai

is much smaller than its carrier frequencyvr.
sdd The longitudinal second-order derivativessi ·¹ d2Ai is

ignored compared withkrssi ·¹ dAi because the spatial
bandwidthDki of Ai is much smaller than its carrierkr.
This is the slowly varying amplitude approximation.
The transverse second-order derivatives are also ig-
nored, thanks to the next two conditions.

sed Diffraction broadening is negligible because the Ray-
leigh range of the pulse is much longer than the sample
thickness.

sfd The self-focusing effects experienced by the intense
pump pulses can be ignored when the self-focusing dis-
tance is much larger than the sample thickness.8

The main difference between the coupled-mode equa-
tions Eqs.s4ad ands4bd for pulses and those for continuous-
wave scwd light fields is the presence of the time derivative
to account for the short pulse temporal duration. Further-
more, the amplitudeAi is a function of bothx andz since the
pulses have finite spatial extent.11

B. Calculation of the diffraction efficiency

We can obtain the amplitude of the diffracted pulseA4

using only Eq.s4bd if we make the assumption that the probe
pulse is undepleted by the transient grating; this is equivalent
to the first Born approximation.12 To facilitate the solution,
we convert to a retarded time frame by performing the fol-
lowing change of variables:

z = zcosu4 + x sinu4,
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j = x cosu4 − zsinu4,

t = t −
z

yr
cosu4 −

x

yr
sinu4,

where t is the retarded time andz /j is the longitudinal/
transverse spatial coordinate of the diffracted pulse, as
shown in Fig. 1. Letr 8=sj ,y,zd; straightforward substitution
leads us from Eq.s4bd to a much more simplified differential
equation

]A4sr 8,td
]z

= − j
pDnsr 8,td

lr
A3sr 8,td. s5d

The boundary conditionA4sz=−d/2d=0 translates intoA4sz
=−d/2 secu4+j tanu4d=0 and leads to the solution atz
=d/2

A4sj,y,z= d/2,td =
− jp

lr
E

−d/2 secu4+j tan u4

d/2 secu4+j tan u4

DnA3dz. s6d

The diffraction efficiencyh is defined as the energy ratio
between the diffracted pulse and the transmitted pulse.

h =

E
−`

` E
−`

` E
−`

` UA4Sz =
d

2
secu4 + j tanu4DU2

djdydt

E
−`

` E
−`

` E
−`

` UA3Sz=
d

2
DU2

dxdydt

.

s7d

The amplitudes of the pump and probe pulsessi
=1,2,3d can be represented asAisr 8 ,td=ÎI i0e

fisr8,td, where
I i0 is the peak intensity of theith pulse. Let pump and probe
pulses possess temporally and spatially Gaussian profiles and
be incident simultaneously onto the sample. The exponent
fi, which describes the free propagation of pulses 1, 2, and
3, obeys the following relation:

fisr 8,td = − 4 ln 23St +
z

yr
−

z cosai + j sinai

yi
D2

ti
2

+
sj cosai − z sinaid2 + y2

Di
2 4 , s8d

whereyi sy1=y2;yp,y3=y4;yrd is the group velocity,ti and
Di st1=t2;tp,t3;tr ,D1=D2;Dp,D3;Drd are the tempo-
ral and spatial FWHM of the pulse amplitudes, andai is
given byai =ui −u4.

Now we solve for the case when the incident probe pulse
is delayed byDt with respect to the pump pulses. The dif-
fracted pulse amplitudeA4sz=d/2d becomes

− jp

lr
E

−d/2 secu4+j tan u4

d/2 secu4+j tan u4

2n2

3ÎI10I20I30e
ff1sr8,td+f2sr8,td+f3sr8,t−Dtdgdz, s9d

where we have usedDnsr 8 ,td=2n2
ÎI10I20e

f1+f2. Carrying
out the integral and placing the result in Eq.s7d, we end up

with an analytical expression of the diffraction efficiency,
whose form lends itself to numerical evaluation.

To gain some insight into how the parametersui andDt
affect the diffraction efficiency, we adopt the paraxial ap-
proximation: sinui <ui and cosui <1. By settingtp=tr and
yp=yr, we obtain after some straightforward algebraic ma-
nipulations:

hsDtd < hpeakexpF− 8 ln 2S Dt

dtr
D2G . s10d

The peak value of the diffraction efficiencyhpeak and the
dimensionless broadening factord are given by

hpeak= S2pd

lr
D2 n2

2I10I20

Î3 + 14qs1 + 2Dr
2/Dp

2d
,

and

d =Î3 + 14q

2 + 4q
, s11d

where we have usedD=DpDr /ÎDp
2+2Dr

2, u1=−u2=up, and
q=sDup/tryrd2.

The functionhsDtd gives us a measure of the temporal
resolution of the three-pulse pump-probe through the broad-
ening factordsupd, which is the ratio between the FWHM of
hsDtd and that of our probe pulse intensity profile. Although
dsupd is a monotonically increasing function ofup, it has a
rather narrow range: 1.22ød,1.87 according to Eq.s11d. It
is explicit that the temporal resolution is not severely af-
fected by the angle of intersection.

The assumption of negligible difference between the
pump and probe velocities, being applicable to some materi-
als sfor instance, CaF2d, cannot be justified in the general
case. The velocity difference can result in an additional
broadening ofhsDtd.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Our experimental setup is illustrated in Fig. 2. An axially
symmetric pulse atlr =776 nm is obtained from a Ti:sap-
phire amplified laser system CPA-2010, Clark-MXR, Inc.
The temporal and spatial FWHM of the pulse intensity are
measured to be 0.22 ps and 3.5 mm, respectively. Four per-
cent of the pulse energy is tapped and serves as the probe
pulse displaced by a variable delay stage. The rest of the
pulse is passed through a 1-mm-thick BBOsb−BaB2O4d

FIG. 2. Schematic illustration of the three-pulse pump-probe setup.sBC:
Berek compensator, serving as half-wave plate for the probe pulse; BS:
beam splitter; D: photodetector; DS: probe delay stage; L: lens; M: mirror;
P: polarizerd
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crystal to generate a pulse atlp=388 nm, which is split into
two identical pump pulses. These pump pulses are then fo-
cused down to one-fifth of their original diameter inside the
1-mm-thick calcium fluoride sample for a more pronounced
nonlinear response. The angle between the pump pulses 2up

is the value inside the sample. The peak intensity of each of
the pump pulses inside the sample is about 180 GW/cm2.
The diffracted pulse is detected by a photodiode, in front of
which a polarizer is used to extract the desired polarization.
The optimal overlap of the pulses is then obtained by maxi-
mizing the detected diffracted pulse energy.

Calcium fluorideschemical formula: CaF2d is an ionic
crystal with a face-centered-cubic structurespoint-group
symmetrym3md. It has a very wide band gap of about 12 eV
sRef. 13d and a Kerr coefficientn2 of 3310−7 cm2/GW
around 580 nm.8,14 Since the photon energy carried by our
pump pulsess3.2 eVd is far lower than the band gap, the
bound electrons are responsible almost exclusively for the
observed nonlinear effect. In our experiment, the third-order,
nonresonant nonlinearitysor Kerr nonlinearityd is the domi-
nant effect.

The measured diffraction efficiency forup=2.77° as a
function of the probe delay,hsDtd, is shown by the symbols
in Fig. 3 for two different probe polarizations: parallelsthehi

traced or perpendicularsthe h' traced to the polarization of
the pump pulses. The dashed and dash-dot lines are the the-
oretical predictions from Eqs.s7d and s9d; the appropriate
group velocities used in numerical evaluations are calculated
with the help of the data compiled in Ref. 15. The peak
diffraction efficiency of each experimental trace is interpo-
lated by a quadratic fit to the three highest values ofhsDtd.
For the purpose of comparison, the scaled profiles of the
incident probe intensity are also shown as solid lines. Nu-
merical simulation shows that the tracehsDtd is symmetric
and its maximum always occurs atDt=0 when the intensity
peaks of all three pulses coincide at the center of the CaF2

sample which is also the origin of our coordinate system. We
can see that the experimental results agree well with the
theory. Moreover, the deduced value of the nonlinear refrac-
tive index n2 is <4.4310−7 cm2/GW, a reasonable value
compared with that from the literature.8

According to the isotropic, anharmonic model of nonlin-
ear electronic response away from material resonance, the
peak diffraction efficiency of thehi trace is expected to be
nine times as large as that of theh' trace.8 In our experi-
ment, this factor turns out to be 8.2±0.4; the discrepancy can
explained by experimental uncertainties and the deviation
from Kleinman’s symmetry.14

The broadening factor as a function of the half-angle
between the pump pulsesdsupd is plotted in Fig. 4: the
dashed curve is computed numerically according to the
theory and the dotted curve is plotted using Eq.s11d under
the assumption of the paraxial approximation. Experiments
are carried out for three different values ofup, namely, 2.77°,
5.55°, and 8.35°. We see that the experimental results closely
track the theoretical trend anddsupd almost remains constant
for the experiments, as opposed to the case of the conven-
tional two-beam pump-and-probe setup,7,10 whose broaden-
ing factor is defined based on the cross-correlation trace of
the pump and probe intensities. We reproduce the two-beam
broadening factorsin this case,up is the half-angle between
the pump and probed as the dash-dot curve in Fig. 4 for the
same parameters as used in our experiment.

The key to this almost undegraded temporal resolution in
the three-pulse pump-probe setup lies in the concept of
“composite pump,” which can be explained with the help of
Fig. 5. For simplicity, we consider the case when the pump
pulses have a rectangular spatial intensity distribution with
transverse and longitudinal dimensionsDp and Wp=yptp

sWp<46 mm in CaF2 if tp=220 fsd. The overlap of the
pump pulses is shown in the upper part of the figure as a
diamond-shaped region traced out by dotted lines. As the
pump pulses travel and intersect, this region of overlap, the
composite pump, propagates along thez axis with a velocity

FIG. 3. sColor onlined. Diffraction efficiencyh vs probe delayDt for two
different probe polarizationssparallel and perpendicular to the polarization
of pump pulses,hi and h'd. The dashed and dash-dot lines are obtained
from the theory. The solid lines are scaled probe pulse intensity profiles.up,
half-angle between pump pulses.L, grating period.

FIG. 4. sColor onlined. Broadening factord vs up, the half-angle between
the pump pulses. The dashed curve is calculated numerically according to
the theory; the dotted curve is plotted under paraxial approximation, using
Eq. s11d. The dash-dot curve, drawn here for comparison, is the temporal
resolution for the single-pump–single-probe configuration.
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yc=yp/cosup and has an effective transverse width ofDc

=Wp/sinup sshown in the lower part of the figured; this ef-
fective width becomes smaller whenup gets bigger. As evi-
dent from the expression,Dc is independent of the spatial
dimensionDp of the pump pulses and solely determined by
the pulse temporal durationtp and the angle of intersection.
If we increase the angle 2up between the pump pulses, the
incident angleu3 of the probe pulse must also get bigger in
order to satisfy the Bragg condition.

Now we can consider the influence of the composite
pump on the probe pulse just as in a two-beam case. Two-
beam cross-correlation simulation suggests a broader tempo-
ral response for the increased angular intersection; on the
other hand, it produces a narrower temporal response owing
to a shrinkingDc. The reduction in the transverse width of
the composite pump constantly counteracts the effect of an
augmented probe incident angle and leaves the temporal
resolution in this configuration almost unchanged.

IV. CONCLUSION

With the assumption of an undepleted incident probe
pulse, we solved the coupled-mode equations in the case of

instantaneous material response for a three-pulse pump-
probe configuration where two pump pulses write a grating
which is probed by the diffraction of a third, Bragg-matched
pulse. The solution is well corroborated by the experiments
conducted in calcium fluoride crystals. The most important
implication of the experimental data obtained for different
intersection angles and grating periods is that the temporal
resolution in such setups is not reduced much by the noncol-
linearity. This result will be useful for probing grating-
period-dependent mechanisms, such as diffusion, in materi-
als.
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