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Abstract: We demonstrate a simple approach for inline holographic 

coherent anti-Stokes Raman scattering (CARS) microscopy, in which a 

layer of uniform nonlinear medium is placed in front of a specimen to be 

imaged. The reference wave created by four-wave mixing in the nonlinear 

medium can interfere with the CARS signal generated in the specimen to 

result in an inline hologram. We experimentally and theoretically 

investigate the inline CARS holography and show that it has chemical 

selectivity and can allow for three-dimensional imaging. 
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1. Introduction 

Over the past several decades, holography has found a myriad of applications in a variety of 

areas [1, 2]. Despite its unique ability to record the phase and the amplitude of a wave, the 

contrast mechanism of an optical holographic image is based on differences in refractive 

index and absorption and as a result it usually does not have chemical selectivity. Holography 

has also been applied to fluorescence [3, 4] and second harmonic [5, 6] microscopy which 

utilize fluorophores or second harmonic nanocrystal markers to provide the contrast. Unlike 

these imaging modalities, coherent anti-Stokes Raman scattering (CARS) microscopy has 

been extensively investigated in recent times due to its capability to perform label-free 

imaging as well as the significantly improved sensitivity of CARS compared to spontaneous 

Raman scattering [7–11]. We have recently demonstrated a holographic CARS imaging 

technique which combines the unique ability of both holography and CARS and can perform 

three-dimensional chemical selective imaging [12]. Briefly, a CARS signal field is first 

generated in a sample by a pump beam and a Stokes beam. The CARS signal then interferes 

with a reference wave generated by an optical parametric oscillator to form a CARS 

hologram. By capturing both the amplitude and the phase of a CARS field holographically, it 

is shown that three-dimensional imaging can be achieved by digital propagation of the 

recorded field. Here we report an inline CARS holography method. Specifically, a thin layer 

of uniform third order nonlinear medium is first placed in front of a specimen to be imaged. 

When the sample is illuminated with a pump (also used as a probe) beam and a tunable 

Stokes beam, a reference wave is generated in the nonlinear medium through four wave 

mixing. The reference and the CARS signal resonantly generated in the specimen by the same 

pump and Stokes beams can interfere and result in an inline hologram. Main advantages of 

the proposed technique include that it requires no separate reference beam and that the signal 

and the reference waves naturally overlap both spatially and temporally. In addition, it is also 

relatively less susceptible to system instability. 

2. Experimental results 

The schematic diagram of our experimental setup is shown in Fig. 1. The output at 

fundamental frequency (λ=1064 nm) from a Q-switched pulsed laser (Continuum Surelite III, 

repetition rate: 10 Hz, pulse duration ~5 ns, injection seeded) is used as a pump beam for 

generating CARS signal. The frequency-doubled output from the laser is used to pump a type 

II optical parametric oscillator (OPO) (Photop Technologies, OPO BBO-2B) to produce a 

tunable Stokes beam. The two beams are then weakly focused by two lenses with focus 

lengths of 750 mm and 150 mm respectively and spatially overlapped on a sample. A tunable 

delay line in the pump beam path can be adjusted to optimize the temporal overlapping. The 

sample consists of two parts which are sandwiched between three glass slides as illustrated in 

the inset of Fig. 1. The first part is a thin layer of uniform nonlinear medium, which is used to 

produce a reference wave through four wave mixing for recording a CARS hologram. In our 

experiments, index oil (about 10 µm thick) was used. The second part, which is placed behind 

the nonlinear medium, is the actual specimen to be holographically imaged. The CARS signal 

generated from the specimen of interest interferes with the reference wave generated in the 

nonlinear medium. The resulted interference pattern (or inline hologram) is magnified by an 

imaging system consisting of a long-working-distance objective lens (numerical aperture: 

0.42, focal length: 10 mm) and a lens (focal length: 500 mm), and captured by a CCD camera 

(Apogee 32ME). The undepleted pump and Stokes beams are blocked with a small piece of 

Teflon. A band-pass filter (Chroma D800/30) is used to further filter out any remaining pump 

and Stokes beams. 
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Fig. 1. Schematic diagram of the in-line holographic CARS imaging setup. L1: lens, focal 

length 750 mm, L2: lens, focal length 150 mm, L3: long working distance objective lens, focal 

length 10 mm, L4: lens, focal length 500 mm. As shown in the inset, sample includes a layer of 

nonlinear medium (index oil) to generate a reference wave and a specimen to be imaged. 

We first prepared a specimen consisting of a Poly(methyl methacrylate) (PMMA, Bangs 

Lab., nominal diameter: 10 µm) and a polystyrene (Duke Scientific, nominal diameter: 10 

µm) microspheres immobilized on a cover glass (VWR No.1 cover glass) by UV curable 

optical adhesive (Norland Optical Adhesive 60). As aforementioned the whole sample was 

sandwiched between three pieces of cover glasses. Index oil was sealed between the first two 

cover glasses while the third glass was the one with immobilized microspheres which were 

immersed in water. Silicone lubricant was used to seal the edges of the glasses to avoid 

leakage. An optical microscope image of the two microspheres is shown in Fig. 2(a). Then we 

used our system to record inline holograms of the specimen. The energies of the pump pulse 

and Stokes pulse were about 8 mJ and 4 mJ, corresponding to peak intensities of 

approximately 5 GW/cm
2
 and 16 GW/cm

2
 respectively. The exposure time was 1.5 seconds 

corresponding to about 15 shots of pulsed exposure. The Stokes beam was first tuned to 

resonantly excite the vibrational mode of PMMA at 2959 cm
−1

. A hologram recorded at 

PMMA resonance is shown in Fig. 2(b). The specimen was defocused during the recording. 

The hologram was then digitally back-propagated and the reconstruction is shown in  

Fig. 2(c). We can clearly see that the PMMA sphere is much brighter than the polystyrene 

sphere. However, the off-resonant polystyrene sphere is also observable and shows 

focusing/defocusing effect as well during digital back-propagation. This might originate from 

two reasons: first, the non-resonant four waving mixing background generated by the off-

resonance sphere can interfere with the reference wave to record a weak four wave mixing 

hologram; second, the scattering of the reference wave by the polystyrene microsphere can 

also result in a Gabor hologram. In order to record a high quality CARS hologram, one will 

need to suppress the contributions due to both non-resonant four wave mixing background 

and scattering of the reference wave. We next tuned the wavelength of the Stokes beam to 

resonantly excite the vibrational mode of polystyrene at 3060 cm
−1

. The same exposure time 

and excitation pulse energies were used in the experiment. A hologram obtained at 

polystyrene resonance is shown in Fig. 2(d). Similarly, the digital back-propagation result as 

given in Fig. 2(e) reveals that the polystyrene microsphere is much brighter than the PMMA 
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sphere in this case. These results show that inline holograms with good chemical selectivity 

can be obtained by our system. It should be noted that nonresonant four wave mixing 

background can also be generated from surrounding medium (e.g., water, in our case) as well 

as glass cover slides and could be exploited as a reference wave for recording inline 

holograms. However, we found that under our experimental conditions such nonresonant 

background was not strong enough for recording holograms of good quality. Figure 2(f) 

shows a hologram recorded without the use of a nonlinear layer. As can be seen, the fringes 

are hardly visible. 

 

Fig. 2. Chemical selective in-line holographic CARS imaging. (a) an optical microscope image 

of a PMMA and a polystyrene (PS) spheres; (b) a hologram recorded at PMMA resonance; (c) 

reconstruction by digital back-propagation showing a resonant PMMA microsphere; (d) 

hologram recorded at polystyrene (PS) resonance; (e) reconstruction by digital back-

propagation showing a resonant PS microsphere; (f) a hologram recorded without the use of a 

nonlinear layer. 

We also experimentally investigated inline holographic imaging of multiple PMMA 

microspheres suspended in water. During the experiment, the Stokes wavelength was tuned to 

match PMMA resonance at 2959 cm
−1

. The energies of pump and Stokes pulses were about 

10 mJ and 5 mJ, corresponding to peak intensities of approximately 6 GW/cm
2
 and 20 

GW/cm
2
 respectively. The exposure time was set to 90 ms to ensure single shot exposure. 

The microspheres were essentially still during the recording as the pulse width of the laser is 

only about 5 ns. Figure 3(a) shows a recorded hologram, which can be reconstructed by 

digital propagation. However, it is well known that the reconstructed fields by 

backpropagation of an inline hologram contain undesirable autocorrelation and twin-image 

terms. A three-dimensional tomographic reconstruction of an object density may be obtained 

by using multiple diffracted projections [13]. In general, the twin and the autocorrelation 

terms may be removed by using optical techniques such as off-axis holography or phase-

shifting methods. Brady et. al. have recently demonstrated that a three-dimensional 

tomographic reconstruction may be estimated from a single inline hologram [14] for signals 

that are sparse in some basis. The technique is called compressive holography, which 

integrates the concept of compressive sensing [15] and diffraction tomography into digital 

holography. In addition, for inline holograms, compressive holography can numerically 

separate the autocorrelation and the twin-image terms from the object signal [14]. 

Considering these advantages, we have explored the compressive holography technique for 

reconstructing a CARS hologram. As described in [14], we solved a constrained optimization 
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problem in which the sparsity prior is enforced by minimizing the 1ℓ -norm of the object 

estimate. Namely, we solved an optimization problem defined as 

 
2

1

1ˆ arg min 2Re( ) ,
2f

f g Hf fτ= − +  

where 

 , ,1
.x y

x y

f f=∑∑∑ z

z

 

The matrix H represents the Fresnel propagation operator, f and g denote vectors representing 

the 3D object density and the 2D measured field, respectively, and τ denotes a regularization 

parameter which was determined by trial and error. The operator Re extracts the real part of 

its arguments. To solve the optimization problem, we adapted two-step iterative 

shrinkage/thresholding algorithm [16]. Figure 3 compares a compressive holography 

reconstruction to the backpropagation reconstruction created from the recorded CARS in-line 

hologram, shown in Fig. 3(a). Figures 3(b)-(d) show the axial slices of a backpropagation 

reconstruction, while Fig. 3(e)-(g) present the axial slices of the associated compressive 

holography reconstruction. The axial distances are −33 (3 (b) and (e)), −61 (3 (c) and (f)), and 

−82 µm (3 (d) and (g)), respectively. Clearly, the compressive holography reconstruction 

suffers much less from the autocorrelation and the twin-image artifacts compared to the 

backpropagation reconstructions. It should be noted that the bright spots shown in the 

reconstructions are much smaller than the nominal diameter of the microspheres (10 µm) 

indicating that the CARS field is focused by the microspheres. To obtain CARS images of 

microspheres, one can continue the digital propagation of the CARS field until reaching the 

exit plane of the microspheres [12]. We would like to point out that in general a sample would 

not always focus the generated CARS field and therefore the compressive holography 

reconstruction can usually find an estimate closer to the source density of the sample than the 

diffracted field. 

 

Fig. 3. In-line holographic CARS imaging of multiple PMMA microspheres suspended in 

water. (a) recorded inline hologram; (b)-(d) digital back-propagation results at different planes; 

(e)-(g) compressive holographic reconstruction; from (b) to (d) and (e) to (g), z= −33 µm, −61 

µm, −82 µm, respectively. 
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3. Theoretical analysis 

To gain additional insight, we investigate theoretically the recording of inline CARS 

holograms. Under scalar and undepleted pump and Stokes approximation, the anti-Stokes, the 

pump, and the Stokes fields satisfy the following wave equations respectively [17]. 

 
2 2

2 2

42 2 (3) 2 *
[ ( , , , ) ]as as

as as p sc c
n x y E E E

ω πω
ω χ∇ + = −z  (1) 

 
2

2

2 2
[ ( , , , ) ] 0

p

p pc
n x y E

ω
ω∇ + =z  (2) 

 
2

2

2 2
[ ( , , , ) ] 0s

s sc
n x y E

ω
ω∇ + =z  (3) 

where 
as

ω ,
p

ω ,
s

ω are the angular frequencies of the anti-Stokes, pump, and Stokes beams, c 

is the speed of light in vacuum, n is the refractive index of the specimen, (3)χ  is the relevant 

third order nonlinear susceptibility, and 
as

E ,
p

E and
s

E are the anti-Stokes, pump and Stokes 

fields in the specimen. Assuming small variation of the refractive index, we can rewrite Eq. 

(1) as: 

 
2 2 2

2 2 2

42 2 (3) 2 *
( ) 2as as as

as p s asc c c
n E E E n nE

ω πω ω
χ∇ + = − − ∆  (4) 

where n  is the average refractive index and n n n∆ = −  is the index variation. The second 

term on the right hand side of Eq. (4) represents the scattering effect due to a non-uniform 

linear refractive index distribution. If the specimen is linear, i.e., (3) 0χ = , Eq. (4) describes 

the scattering of the reference wave and can be rewritten by using Born’s approximation [18]: 

 
2 2

2 2

2 2
( ) 2as as

sc rc c
n E n nE

ω ω
∇ + = − ∆  (5) 

where 
r

E  denotes the reference wave created by four wave mixing in the nonlinear medium 

placed in front of the specimen, and 
sc

E  is the scattered field. This equation can be solved by 

using the Green’s function. The total field is then given by 
r sc

E E+ . As a result, a Gabor 

hologram can be recorded by capturing the total intensity 
2

r sc
E E+ . In general, Eq. (4) 

needs to be solved numerically and the solution consists of both the contribution due to 

scattering of the reference wave and the anti-Stokes signal generated in the specimen. The 

recorded intensity distribution is therefore given by 
2

s

r sc asI E E E∝ + +  where s

as
E  is the 

anti-Stokes field of interest generated by the specimen. To obtain a genuine CARS hologram, 

one needs to suppress the contribution due to the scattered field (i.e., 
s

sc asE E<< ) since it 

lacks chemical selectivity. Therefore, weak scatterers and/or a relatively weak reference wave 

are needed. To better understand the inline CARS holographic recording process, we consider 

a sample consisting of a 10-µm-thick nonlinear medium with nonlinear susceptibility (3)

NM
χ , a 

160-µm-thick spacer, and a specimen consisting of two 10-µm-diameter microspheres A and 

B immersed in water (A: lower-left, B: upper-right, c.f. Fig. 4) with identical refractive index 

of 1.5 and separated by about 14 µm. Further, we assume that microsphere A is on resonance 

and the ratio of the corresponding third order nonlinear susceptibilities is given by 
(3) (3) (3): :
NM A B

χ χ χ  = 1.2:1+j:1. As aforementioned under our experimental conditions the 

nonresonant background generated from surrounding medium and glass cover slides are quite 

weak for recording holograms. For simplicity both the spacer and water are assumed to be 

linear (i.e. (3) 0χ = ) in our model. We applied the beam propagation method [19, 20] to 
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solving Eq. (1)-(3). The initial pump and Stokes fields were assumed as Gaussian beams. The 

calculated inline hologram is shown in Fig. 4(a) in which we also added random noise that 

was comparable to the CCD noise in our experimental measurement. Figure 4(c) shows the 

reconstruction by digital back-propagation of the theoretical inline hologram. The simulation 

results qualitatively agree with the experimental results shown in Fig. 2. Our simulation also 

shows that the generated CARS field is focused by the microsphere, which therefore results in 

a bright spot much smaller than the size of the sphere itself in the reconstructions shown in 

Figs. 2-4. We also investigated the recording of Gabor hologram by setting (3) (3) 0
A B

χ χ= = . In 

this case, only the scattering of the reference wave is considered. Figure 4(b) shows the 

calculated Gabor hologram while the reconstruction is shown in (d). Clearly, it lacks chemical 

selectivity as both microspheres have the same brightness. Note that microsphere B appears 

darker in Fig. 4(c) than in (d), suggesting a destructive interference between the scattered 

field and the four wave mixing field. 

 

Fig. 4. Theoretical simulations. (a) calculated inline CARS hologram when sphere A is on 

resonance; (b) calculated Gabor hologram when only scattering effect is considered; (c) digital 

reconstruction of the inline CARS hologram shown in (a); (d) digital reconstruction of the 

Gabor hologram shown in (b); 

4. Discussion 

In summary, we have demonstrated and investigated a simple method for inline CARS 

holography. It is shown that the recorded inline CARS hologram has good chemical 

selectivity and that three-dimensional imaging can be achieved by digitally propagating the 

hologram. We also applied the compressive holography technique to reconstruct the recorded 

inline hologram, which can significantly suppress the twin image background. However, we 

should note that the existence of a scattered reference field leads to a superposition of inline 

CARS hologram with Gabor hologram, and therefore reduces the chemical selectivity. The 

scattered field could interfere destructively or constructively with the CARS signal generated 

in the specimen to result in non-uniform image intensity. In addition, the scattered field could 

also interfere constructively with nonresonant four wave mixing background by lucky phase 

matching while interfering destructively with resonant CARS signals generated at certain 

locations, which can potentially result in enhanced background and difficulty in interpreting 

the results. These limitations can be overcome by generating the reference wave off axis to 

avoid its propagation through the specimen and hence the recording of a Gabor hologram. 

Nevertheless, the technique described here is simple to implement and is relatively robust 

against system instability due to the fact that both the reference and signal are generated by 

the same pump and Stokes beams and co-propagate in the same media. It can be a useful 

technique for relatively thin samples (compared to the coherence length of CARS processes) 

or when combined with other techniques which can suppress the nonresonant background. 
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