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Abstract
Various real-time optimization techniques proceed by controlling the gradient to zero.
These methods primarily differ in the way the gradient is estimated. This paper compares
various gradient estimation methods. It is argued that methods with model-based gradient
estimation converge faster but can be inaccurate in the presence of plant-model mismatch.
In contrast, model-free methods are accurate but typically take longer to converge.
Keywords: Real-time optimization, Extremum-seeking control, Neighboring extremals,
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1. Introduction
Process optimization based on rst-principles models is challenging due to the complex-
ity of the underlying physico-chemical processes. Hence, simpler models are typically
formulated and used for optimization by updating their parameters on-line using mea-
surements. Alternatively, measurements can also be used to update the inputs without the
intermediary of a physical model.
Any measurement-based optimization approach will (i) select the active constraints and
keep them active, and (ii) push the reduced gradients to zero. To do so, one needs to
measure or estimate the constraints, the gradients of the constraints, and the gradient of
the cost function. Constraints are often straightforward to measure. In contrast, gradients
must be estimated since they cannot be measured directly.
This paper explores various ways of estimating gradients in real time for optimizing the
steady-state performance of dynamic processes. In particular, gradient estimation tech-
niques are classi ed as either model-based or model-free, and each class is analyzed in
terms of accuracy and convergence time.

2. Real-time Optimization using Gradient Control
2.1. Problem formulation
In this paper, the unconstrained optimization of a process at steady state is considered,
which can be formulated as follows:

min
u

J = φ(x,u,θ ) s.t. x = F(x,u,θ ) ≡ 0, (1)

where J is the cost to be minimized, x ∈ ℜn the states (considered at equilibrium), u ∈
ℜm the inputs, and θ ∈ ℜq the uncertain parameters. In addition, it is assumed that
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y = h(x,u,θ ), where y ∈ ℜp are the measurements. F , h, and φ are smooth functions
that describe the system dynamics, the outputs, and the cost function, respectively. It is
assumed that the state variables can be expressed as functions of u and θ by using (1) and
thus can be eliminated to give the following optimization problem:

min
u

J = Φ(u,θ ) y = H(u,θ ), (2)

where Φ and H are corresponding lumped functions. Let θ0 be the nominal parameter
values, u0 the nominal optimal inputs and y0 the nominal optimal outputs.
The necessary conditions of optimality indicate that the derivative g = ∂J

∂u = 0. All the
real-time optimization methods presented in this work will adapt the input to force the
gradient to zero. They only differ in the way the gradient is computed. With k being the
adaptation gain in [h−1] and P an approximation of the Hessian, the general adaptation
law is uopt = −k P−1 g.

2.2. Model-free gradient estimation techniques
In all the model-free techniques, it is assumed that the cost is directly measured, i.e.
y = J. Also, since no structural information regarding F is available, the gradient can
only be obtained by presenting the system with different input values and calculating the
gradient from the corresponding output values. The presentation is for the single-input
case, but it can be easily extended to the multi-input scenario.
Finite-difference gradient estimation (FD) - Kreysig (1988): Two different input values
are given over a period of time T , which allows the system to each time reach steady state.
The gradient is computed using the nite difference, with i the iteration number:

u(t) =
{

uopt(i) 2iT ≤ t < (2i+ 1)T
uopt(i)+ Δ (2i+ 1)T ≤ t < (2i+ 2)T , g =

J((2i+ 2)T)− J((2i+ 1)T)
Δ

. (3)

Gradient estimation by excitation/correlation (EC) - Ariyur and Krstic (2003): A
sinusoidal excitation is added and the gradient estimated by correlation:

u(t) = uopt(t)+ Δsin(ωt),
dJ̄
dt

= α(J − J̄),
dg
dt

= β
(

2(J− J̄)sin(ωt)
Δ

−g
)

, (4)

where α and β represent lter coef cients. The rst lter eliminates the bias and the
second determines the gradient. The frequency of excitation is so chosen that the period
of oscillation is slower than the system settling time.
Gradient estimation from multiple units (MU) - Srinivasan (2007): The availability
of multiple process units is assumed, and the inputs to the units differ by an offset. The
gradient is estimated using nite difference between units (labeled ’a’ and ’b’ here):

ua(t) = uopt(t)+
Δ
2

, ub(t) = uopt(t)−
Δ
2
, g(t) =

Ja(t)− Jb(t)
Δ

. (5)

2.3 Model-based gradient estimation techniques
In model-based techniques, it is assumed that a structurally correct process model is avail-
able. However, the parameters θ are either unknown or uncertain. Furthermore, it will be
assumed that there are more measurements than the number of uncertain parameters, i.e.

608 Bala Srinivasan et al.



p ≥ q. Since the measured information is suf cient to estimate the unknown parameters,
there will be no external excitation, and u(t) = uopt(t).
Parameter estimation - gradient calculation (PE) - Adetola and Guay (2007): This
is the classical two-step method, whereby the parameters are estimated and the updated
model used for calculating the gradient. Numerical optimization is replaced by controlling
the gradient to zero. With θ̂ the parameter estimate and kθ the gain used in parameter
estimation, one has:

θ̂ = kθ

(
∂H
∂θ

)+

(y−H(u, θ̂)), θ̂(0) = θ0, g =
∂Φ
∂u

(θ̂ ). (6)

Neighboring extremals (NE) - Gros et al. (2009): The parametric variation δθ = θ −θ0
is calculated from the variations δu = u−u0 and δy = y− y0, respectively:

δy =
∂H
∂θ

δθ +
∂H
∂u

δu → δθ =
(

∂H
∂θ

)+

(δy−
∂H
∂u

δu). (7)

Then, from variational calculations, the gradient is given by:

g =
∂ 2Φ
∂u2 δu +

∂ 2Φ
∂u∂θ

δθ =
∂ 2Φ

∂u∂θ

(
∂H
∂θ

)+

δy +

(
∂ 2Φ
∂u2 −

∂ 2Φ
∂u∂θ

(
∂H
∂θ

)+ ∂H
∂u

)
δu. (8)

Self-optimizing control (SOC) - Alstad and Skogestad (2007): This method calculates
the sensitivity of the optimal outputs and inputs with respect to parametric variations.
From the variational form of the necessary conditions (8), the sensitivity matrix becomes:

S =

[
∂yopt

∂θ
∂uopt

∂θ

]
=

⎡⎢⎣ ∂H
∂θ − ∂H

∂u

(
∂ 2Φ
∂u2

)−1 ∂ 2Φ
∂u∂θ

−
(

∂ 2Φ
∂u2

)−1 ∂ 2Φ
∂u∂θ

⎤⎥⎦ , g = N
[

δy
δu

]
, P = N

[
∂yopt

∂u
Im

]
, (9)

where the m× (p + m) matrix N lies in the null space of ST and Im is the m×m iden-
tity matrix. The m controlled variables are selected as c = N [δy, δu]T , which indeed
represents the gradient.

3. Comparison of Gradient Estimation Techniques
The goal of this section is to compare the various gradient estimation techniques in terms
of their basic requirements as well as accuracy and convergence characteristics.
Measurements: Model-free methods require only the cost to be measured, whereas
model-based methods rely on output measurements. Note that the model relates the mea-
sured outputs y to the cost J, thereby making cost measurement unnecessary.
Model: Among the various model-based techniques, only PE uses the model on-line,
while the other two use the model off-line to design the controller.
Excitation: In model-based techniques, since information regarding uncertainty can be
obtained from the outputs, no temporal excitation is necessary. In contrast, in model-free
techniques with only cost measurement, one needs to excite the system to estimate the
gradient. Temporal excitation is provided in the FD and EC methods, while the use of
multiple units provides the needed excitation in the MU method.
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Accuracy: Model-based techniques work well when the model is structurally correct and
the disturbances can be represented by parametric variations. When there is plant-model
mismatch or when there are other variations that are not accounted for, the convergence
will not be to the desired optimum. Since NE and SOC are based on linearization, they
tend to give good results only for small parametric variations.
Convergence time: Model-based techniques have a clear edge when it comes to con-
vergence time. Except for the MU adaptation, model-free methods are slow since the
excitation has to respect a certain time-scale separation and be slower than the system
settling time. MU adaptation is faster since the excitation is not temporal. Among the
model-based techniques, PE is slower due to the dynamics of the parameter adaptation.
In NE and SOC, the gradient information is readily available, which makes them fast.

4. Illustrative Example
Steady-state optimization of an isothermal CSTR is investigated, with the reactions A +
B →C, 2B → D. The manipulated variables are the feed rates of A and B. The following
cost function is considered:

max
uA,uB

J =
c2

C (uA + uB)2

uAcAin
−w(u2

A + u2
B). (10)

The rst term of J corresponds to the product of the amount of C produced cC (uA + uB)
and the yield factor cC(uA+uB)

uAcAin
, while the second term penalizes the control effort with

w = 0.004. The model equations result from standard mass balances and read:

cA = −k1 cA cB +
uA
V

cAin −
uA + uB

V
cA = 0, cC = k1 cA cB −

uA + uB
V

cC = 0, (11)

cB = −k1 cA cB −2 k2 c2
B +

uB
V

cBin −
uA + uB

V
cB = 0, cD = k2 c2

B −
uA + uB

V
cD = 0. (12)

where cX denote the concentration of species X , V = 500 L the reactor volume, cAin =
2 mol/L and cBin = 1.5 mol/L the inlet concentrations and k1 = 0.75 L/(mol h) and k2 =
1.5 L/(mol h) the rate constants of the two chemical reactions. The parameters that are
subject to change are θ = [k1 k2]T , with the plant values being k1 plant = 1.4 L/(mol h) and
k2 plant = 0.4 L/(mol h). In addition, an unmodeled disturbance, cAin,plant = 2.5 mol/L is
considered to study the effect of plant-model mismatch.
The values of the adaptation gain k are given in Table 1. All methods use the Hessian
evaluated at the nominal optimum for the matrix P, except for the SOC method that uses
(9). All model-free methods use Δ = 0.4Lh−1. The EC method uses ω1 = 2π/150,
ω2 = 2π/200, α = β1 = β2 = 1/200 h−1. The parameter estimation uses kθ = 1 h−1.
Table 1 also summarizes the results obtained with the different approaches, in terms of ac-
curacy (optimality loss) and convergence time, with and without plant-model mismatch.
The normalized cost is computed by dividing the actual plants cost J(t) by the correspond-
ing steady-state optimal cost J∗. Thus, the optimality loss is given upon convergence by
η = 1− J(Tconv)

J∗ , where Tconv is the convergence time. In addition, Figure 1 depicts the
evolution of the normalized cost for the six methods for the case of plant-model mis-
match. The model-based methods are clearly less accurate. However, these methods do
quite well in the case of a perfect model, for which case the optimality loss is practically
zero with the PE scheme, while small errors persist with NE and SOC due to the effect of
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linearization. In terms of convergence time, PE is slightly inferior due to the time taken
for parameter estimation. Model-free methods are able to reject the effect of both para-
metric uncertainty and plant-model mismatch at the price of a larger convergence time
(thousands of hours for FD and EC and about 150 hours for MU).

No model mismatch Model mismatch
cAin,plant = 2 mol

l cAin,plant = 2.5 mol
l

Strategy k [h−1] Tconv [h] η [%] Tconv [h] η [%]
No adapt - - 19.06 - 26.35

FD 0.003 1200 0.22 1200 0.07
EC 0.001 3000 0.44 4000 0.33
MU 0.02 150 0.03 150 0.05
PE 0.1 75 0.001 75 6.82
NE 1 45 0.50 50 4.89

SOC 1 45 0.84 60 17.39
Table 1. Convergence time and optimal loss of model-free (FD, EC and MU) and model-
based methods (PE, NE and SOC) for the cases without and with plant-model mismatch.
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Figure 1. Normalized cost for the case of plant-model mismatch (model-free methods FD,
EC and MU converge to the optimal cost, whereas model-based methods do not).
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