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Abstract. We study global behavior of radial solutions for the nonlinear wave
equation with the focusing energy critical nonlinearity in three and five space
dimensions. Assuming that the solution has energy at most slightly more than
the ground states and gets away from them in the energy space, we can classify
its behavior into four cases, according to whether it blows up in finite time or
scatters to zero, in forward or backward time direction. We prove that initial
data for each case constitute a non-empty open set in the energy space.

This is an extension of the recent results [15, 16] by the latter two authors on
the subcritical nonlinear Klein-Gordon and Schrödinger equations, except for the
part of the center manifolds. The key step is to prove the “one-pass” theorem,
which states that the transition from the scattering region to the blow-up region
can take place at most once along each trajectory. The main new ingredients
are the control of the scaling parameter and the blow-up characterization by
Duyckaerts, Kenig and Merle [3, 4].

Contents

1. Introduction

We consider the H1-critical, focusing nonlinear wave equation

ü−∆u = |u|2∗−2u, u(t, x) : R1+d → R, 2∗ =
2d

d− 2
(d = 3 or 5), (1.1)

in the radial context, where 2∗ denotes the H1 Sobolev critical exponent. We remark
that the dimensional restriction is needed only for using the blow-up characteriza-
tion by Duyckaerts-Kenig-Merle [4].

We take the radial energy space as the phase space for the above equation, which
can be normalized to L2 by putting

~u := (|∇|u, u̇) ∈ L2
radial(Rd)2 =: H, (1.2)

at each time t ∈ R, where |∇| =
√
−∆ is an isometry from Ḣ1

radial(Rd) onto
L2

radial(Rd). Thus, to any scalar space-time function u(t, x), we will associate the
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vector function ~u(t, x) by the above relation. Conversely, for any time independent
~ϕ = (ϕ1, ϕ2) ∈ H, we introduce the following notation

ϕ := |∇|−1ϕ1, ϕ̇ := ϕ2. (1.3)

The conserved energy of (1.1) is denoted by

E(~u) :=

∫
Rd

[ |u̇|2 + |∇u|2

2
− |u|2∗

2∗

]
dx. (1.4)

It is well-known that this problem admits the static Aubin solutions of the form

Wλ = TλW, W (x) =

[
1 +

|x|2

d(d− 2)

]1− d
2

, (1.5)

where Tλ denotes the Ḣ1 preserving dilation

Tλϕ = λd/2−1ϕ(λx). (1.6)

These are positive radial solutions of the static equation

−∆W − |W |2∗−2W = 0, (1.7)

which are unique, up to dilation and translation symmetries, amongst the non-
negative, non-zero (not necessarily radial) C2 solutions, see [2]. They also minimize
the static energy

J(ϕ) :=

∫
Rd

[1

2
|∇ϕ|2 − 1

2∗
|ϕ|2∗

]
dx, (1.8)

among all non-trivial static solutions. The work of Kenig, Merle [9, 10] and Duy-
ckaerts, Merle [5, 6] allows for a characterization of the global-in-time behavior of
solutions with E(~u) ≤ J(W ).

In this paper we study the behavior of solutions with

E(~u) < J(W ) + ε2
0, (1.9)

for some small ε0 > 0. Solutions of subcritical focusing NLKG and NLS equations
with radial data in R3 of energy slightly above that of the ground state were studied
by the latter two authors in [15, 16]. Our goal in this paper is to extend those results
to the critical case. The key feature of (1.1) by contrast to NLKG is the scaling
invariance of (1.1) manifested by

u(t, x) 7→ λ
d
2
−1u(λt, λx) = Tλu(λt) (1.10)

which leaves the energy unchanged. In particular, the analogue of the “one pass
theorem” proved in [15] needs to be modified, specifically by replacing the discrete
set of attractors {Q,−Q} there by the one–parameter family of the ground states

S := {Wλ}λ>0. (1.11)

Note that in the subcritical NLS case [16], the scaling parameter λ (in frequency) is
essentially fixed or at least bounded from above and below by the L2 conservation
law, but in the critical case there is no factor which a priori prevents the scale from
going to 0 or +∞.
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Introduce the “virial functional”

K(ϕ) :=

∫
Rd

[|∇ϕ|2 − |ϕ|2∗ ] dx (1.12)

and note that K(W ) = 0. The following positivity is crucial for the variational
structure around W

H(ϕ) := ‖∇ϕ‖2
2/d = J(ϕ)−K(ϕ)/2∗. (1.13)

Note that the derivative of J(ϕ) with respect to any scaling ϕ(x) 7→ λaϕ(λbx)
except for Tλ gives a non-zero constant multiple of K(ϕ). This is a special feature
of the scaling critical case, which allows us to work with a single K, whereas in the
subcritical case [15] we needed two different functionals and their equivalence.

The main result of this paper is summarized as follows.

Theorem 1.1. There exist a small ε∗ > 0, a neighborhood B of ~S within O(ε∗)
distance in H, and a continuous functional

S : {~ϕ ∈ H \ B | E(~ϕ) < J(W ) + ε2
∗} → {±1}, (1.14)

such that the following properties hold: For any solution u with E(~u) < J(W ) + ε2
∗

on the maximal existence interval I(u), let

I0(u) := {t ∈ I(u) | ~u(t) ∈ B},
I±(u) := {t ∈ I(u) | ~u(t) 6∈ B, S(~u(t)) = ±1}.

(1.15)

Then I0(u) is an interval, I+(u) consists of at most two infinite intervals, and I−(u)
consists of at most two finite intervals. u(t) scatters to 0 as t → ±∞ if and only if
±t ∈ I+(u) for large t > 0. Moreover, there is a uniform bound M < ∞ such that

‖u‖Lq
t,x(I+(u)×Rd) ≤ M, q :=

2(d + 1)

d− 2
. (1.16)

For each σ1, σ2 ∈ {±}, let Aσ1,σ2 be the collection of initial data ~u(0) ∈ H such that
E(~u) < J(W ) + ε2

∗, and for some T− < 0 < T+,

(−∞, T−) ∩ I(u) ⊂ Iσ1(u), (T+,∞) ∩ I(u) ⊂ Iσ2(u). (1.17)

Then each of the four sets A±,± is open and non-empty, exhibiting all possible
combinations of scattering to zero/finite time blowup as t → ±∞, respectively.

The neighborhood B as well as the sign functional S will be defined explicitly,
cf. Corollary 4.2. In short, every solution u with energy E(~u) < J(W ) + ε2

∗ can
change the sign S(~u(t)) at most once, by entering the neighborhood B, and u
scatters/blows-up if it keeps S = +1 / −1. This is the same description as in
the subcritical case [15] concerning the dynamics away from the ground states S.
Indeed, the part about the sign change seems fairly general, which we called “one-
pass” theorem, relying only on the energy and virial type arguments. It will be
proved separately as the first step in Theorem 4.1.

However, we do not know at this time how to deal with solutions u which stay
in B. Note that the solutions constructed in [12] in the three-dimensional case
belong to this tube. Moreover, Duyckaerts, Kenig, Merle [3] showed that all type-II
blowup (i.e., blowup with bounded energy norm) under the constraint (1.9) is of
the form of those solutions found in [12]. But the tube around S might also contain
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solutions which do not blow up but rather scatter to S. This would correspond to
the center-stable manifolds in [15, 16]. However, in contrast to [15, 16] we do not
address the issue of existence of a center-stable manifold associated with (1.1), nor
do we give a complete description of all possible dynamics for solutions as in (1.9).
Recall that [11] establishes the existence of such a manifold for the radial three-
dimensional critical wave equation, but not in the energy class. It appears to be a
delicate question in any dimension to decide whether or not a center-stable manifold
associated with the ground states exists in the case of energy critical equations.

The key idea behind the proof is similar to the one in [15], which relies on an
interplay between the hyperbolic dynamics of the linearized operator around W
with the variational structure of J and K away from S.

Dynamically speaking, the linearization around W is delicate, as one needs to take
a time-dependent scaling parameter λ(t) into account. This is a major difference
from [15]. To address it, we use the observation that the evolution of λ(t) is much
slower than that of the exponentially unstable mode. Indeed, the evolution of
λ(t) is governed by the threshold eigenvalue (which lies at zero energy) of the
linearized operator and is therefore by nature algebraically unstable rather than
exponentially unstable. This will allow us to freeze the dilation parameter in those
time intervals during which the trajectories are dominated by the hyperbolic (and
unstable) dynamics.

The other major difference, which could be more serious, is the possibility of
concentration blow-up in the region K ≥ 0 and away from S, where the solutions
are bounded and so automatically global in the subcritical case. This problem
arises after applying the one-pass theorem. Fortunately, we will see that the blow-
up analysis by Duyckaerts, Merle, Kenig [3, 4] precludes it, so that we can proceed
essentially in the same way as in the subcritical case.

2. Energy distance functional

In this section we define the nonlinear distance functional to the ground state
family S, by using the linearized operator, but still keeping the nonlinear structure,
so that it will best reflect the hyperbolic nature around S. The main difference
from the subcritical radial NLKG [15] is that we need a good choice of the scaling
parameter.

Let ρ > 0 be the unique L2-normalized ground-state for the linearized operator

L := −∆− (2∗ − 1)W 2∗−2, Lρ = −k2ρ, ‖ρ‖2 = 1. (2.1)

Then ρλ := Tλρ is a ground state of the rescaled operator

Lλ := −∆− (2∗ − 1)W 2∗−2
λ , Lλρλ = −k2λ2ρλ, ‖ρλ‖2 = 1/λ. (2.2)

Expand u around Wλ by

u = Wλ + vλ = Wλ + µλ(u)ρλ + γλ, γλ ⊥ ρλ, (2.3)

where µλ is given by

µλ(ϕ) := 〈ϕ−Wλ|λ2ρλ〉 = 〈ϕ−Wλ|T ∗1/λρ〉. (2.4)
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Since ρ ∈ S ⊂ Ḣ−1, we obtain by rescaling

|µλ(u)| . ‖∇vλ‖L2 . (2.5)

Note that γλ may contain the root mode in the direction

∂λWλ = ΛWλ, Λ := r∂r + d/2− 1. (2.6)

However, this will not cause any problems in our analysis of the hyperbolic dynam-
ics. The energy is expanded as

E(~u)− J(W ) =
1

2
[‖u̇‖2

2 + 〈Lλvλ|vλ〉]− Cλ(v)

=
1

2
[‖u̇‖2

2 − k2µλ(ϕ)2 + 〈Lλγλ|γλ〉]− Cλ(vλ),

(2.7)

where Cλ denotes the superquadratic part of the energy, i.e.,

Cλ(v) :=

∫
Rd

[ |v + Wλ|2
∗ − |Wλ|2

∗

2∗
−W 2∗−1

λ v − 2∗ − 1

2
W 2∗−2

λ |v|2
]
dx

= O(‖v‖3
Ḣ1).

(2.8)

In the same way as in [15], we introduce an energy functional

Eλ(~u) := E(~u)− J(W ) + k2µλ(u)2

=
1

2
[‖u̇‖2

2 + k2µλ(ϕ)2 + 〈Lλγλ|γλ〉]− Cλ(vλ).
(2.9)

Now we choose λ = λ(u) for u close to S by the orthogonality condition

〈u|Λ∗ρλ〉 = 〈vλ|Λ∗ρλ〉 = 0, (2.10)

using the fact that

〈Wλ|Λ∗ρλ〉 = 〈ΛWλ|ρλ〉 = 0, (2.11)

which follows from LλΛWλ = 0 and Lλρλ = −k2λ2ρλ, and ρ ∈ S. Such λ(u) is
uniquely determined at least in the region

‖∇vλ‖2 ∼ distḢ1(u,S) � 1, (2.12)

by the implicit function theorem, since

∂λ=1〈W |Λ∗ρλ〉 = 〈ΛW |Λ∗ρ〉 = 〈ΛW | − k−2(Λ(2∗ − 2)W 2∗−2)ρ〉
= −k−2(2∗ − 1)(2∗ − 2)〈W 2∗−3(ΛW )2|ρ〉 < 0.

(2.13)

In order to bound the remainder by the energy, we use the following result.

Lemma 2.1. For any γ ∈ Ḣ1
rad such that γ ⊥ ρ, we have 〈Lγ|γ〉 ≥ 0 and

‖∇γ‖2
2 ∼ 〈γ|Λ∗ρ〉

2 + 〈Lγ|γ〉. (2.14)

Proof. Let z = |∇|γ ∈ L2, then the bilinear form is rewritten

〈Lγ|γ〉 = 〈(1− A)z|z〉, A := |∇|−1W 2∗−2|∇|−1. (2.15)
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A is a positive, compact and self-adjoint operator on L2. Hence spec(1 − A) is
bounded, discrete, with the only accumulation point being 1. Since

z ⊥ |∇|−1ρ ⊥ |∇|ΛW ∈ (1− A)−1(0), (2.16)

we can decompose

z = c|∇|ΛW + z+, z+ ⊥ {|∇|−1ρ, |∇|ΛW}, (2.17)

then

〈Lγ|γ〉 = 〈(1− A)z+|z+〉. (2.18)

First we prove

L2
radial 3 z ⊥ {|∇|−1ρ, |∇|ΛW} =⇒ 〈(1− A)z|z〉 ∼ ‖z‖2

2, (2.19)

noting that

L2 3 z ⊥ |∇|−1ρ =⇒ 〈(1− A)z|z〉 ≥ 0. (2.20)

Suppose (2.19) fails. Then there exists a sequence zn ∈ L2
radial such that ‖zn‖2 = 1,

zn → z∞ weakly and 〈(1− A)zn|zn〉 → 0 as n → ∞. Since Azn → Az∞ strongly,
we have

〈(1− A)z∞|z∞〉 ≤ 0, z∞ ⊥ |∇|−1ρ, |∇|ΛW. (2.21)

Then (2.20) implies that 〈(1− A)z∞|z∞〉 = 0, and zn → z∞ strongly. So there is a
Lagrange multiplier c ∈ R such that

(1− A)z∞ = c|∇|−1ρ. (2.22)

On the other hand, Lρ = −k2ρ gives (1− A)|∇|ρ = −k2|∇|−1ρ, whence

c = 〈(1− A)z∞||∇|ρ〉 = 〈z∞|(1− A)|∇|ρ〉 = 0, (2.23)

and thus

(1− A)z∞ = 0. (2.24)

This implies that for some b ∈ R,

z∞ = b|∇|ΛW. (2.25)

Since z∞ ⊥ |∇|ΛW , we conclude that z∞ = 0, which contradicts the strong conver-
gence and ‖zn‖ = 1. Thus (2.19) is proved.

It remains to bound c. Since

〈γ|Λ∗ρ〉 = c〈ΛW |Λ∗ρ〉+ 〈z+||∇|−1Λ∗ρ〉, (2.26)

〈ΛW |Λ∗ρ〉 < 0 by (2.13) and |∇|−1Λ∗ρ ∈ L2, we infer that

|c| . |〈γ|Λ∗ρ〉|+ ‖z+‖2, (2.27)

which together with (2.19) implies the desired estimate. �



GLOBAL DYNAMICS FOR THE CRITICAL WAVE EQUATION 7

Thus we deduce that, if u is close enough to S and λ = λ(u) then

Eλ(u)(~u) ∼ ‖u̇‖2
2 + |µλ(u)|2 + ‖∇γλ‖2

2 + O(‖∇vλ‖3
2)

∼ ‖u̇‖2
2 + ‖∇vλ‖2

2 ∼ ‖~u− (|∇|Wλ(u), 0)‖2
2.

(2.28)

For brevity, we write

µS(u) := µλ(u)(u), ES(~u) := Eλ(u)(~u), (2.29)

when u is close to S.
Now we can define our distance function dS(~ϕ). Let χ(r) ∈ C∞

0 (R) be a symmet-
ric decreasing function such that

χ(r) =

{
1 (|r| ≤ 1)

0 (|r| ≥ 2).
(2.30)

Let d0 denote the linear distance from S

d0(~ϕ) := inf
ν>0

‖~ϕ− ~Wν‖2, (2.31)

and then define

dS(~ϕ) :=χ(d0(~ϕ)/δE)ES(~ϕ)1/2 + χ(d0(−~ϕ)/δE)ES(−~ϕ)1/2

+ [1− χ(d0(~ϕ)/δE)− χ(d0(−~ϕ)/δE)]CE min
±

d0(±~ϕ),
(2.32)

for some fixed 0 < δE � min(1, ‖∇W‖2) and CE � 1 + ‖∇W‖2, such that for

d0(~ϕ) < 2δE, ~ϕ is close to either ~S = {(|∇|Wλ, 0)}λ>0 or − ~S, and

dS(ϕ)2 = ES(±~ϕ) = E(~ϕ)− J(W ) + k2µS(±ϕ)2. (2.33)

Since λ(ϕ), µS and ES have been defined only near S, it is harmless and convenient
to extend them evenly around −S:

ES(~ϕ) := ES(−~ϕ), µS(ϕ) := µS(−ϕ), λ(ϕ) := λ(−ϕ). (2.34)

Thus dS : H → [0,∞) is continuous and even, satisfying

dS(~ϕ) ∼ min
±

d0(~ϕ) = distL2(~ϕ, ~S ∪ − ~S). (2.35)

The following lemma shows the basic property of the distance: once we are slightly
away from S, then the unstable mode µS(u) becomes the dominant part of the
distance. Our analysis in this paper is mostly in this region.

Lemma 2.2. For any ~ϕ ∈ H satisfying

E(~ϕ)− J(W ) ≤ dS(~ϕ)2/2, dS(~ϕ) ≤ δE, (2.36)

one has |µS(ϕ)| ∼ dS(~ϕ) = ES(ϕ)1/2.

Proof. By definition of dS , we have

dS(~ϕ)2 = ES(~ϕ) = E(~ϕ)− J(W ) + k2|µS(ϕ)|2, (2.37)

and so dS(~ϕ)2 − k2|µS(ϕ)|2 < dS(~ϕ)2/2, which implies |µS(ϕ)| & dS(~ϕ), while the
other direction of the inequality is always true by (2.28). �
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3. Variational structure

In this section, we prove the following crucial variational type lemma, which
is used to control the dynamics away from the ground states in the proof of the
“one pass theorem”. Here the argument is static in the phase space H. Due to
the underlying scaling invariance, we need to use the concentration compactness
approach.

Lemma 3.1. There is a continuous increasing function εV : (0,∞) → (0, 1) such
that if ~ϕ ∈ H, E(~ϕ) ≤ J(W ) + εV (δ)2 and dS(~ϕ) ≥ δ for some δ > 0, then we have
either

K(ϕ) ≥ min{κ(δ), c‖∇ϕ‖2
L2} (3.1)

or else

K(ϕ) ≤ −κ(δ) (3.2)

for suitable κ(δ) > 0 and an absolute constant c > 0.

Proof. We may assume εV (δ) � δ � δE. If ‖ϕ̇‖2 � δ, then we have δ < dS(~ϕ) ∼
distḢ1(ϕ,S∪−S). Otherwise, J(u) < J(W )−O(δ2) and so distḢ1(ϕ,S∪−S) & δ2.
The conclusion is clear for ‖∇ϕ‖2 � 1 by Sobolev. Hence, if the conclusion fails
for some δ > 0, then there exists a sequence ϕn ∈ Ḣ1

radial such that ‖∇ϕn‖2 & 1 and

J(ϕn) < J(W ) + 1/n, |K(ϕn)| < 1/n, distḢ1(ϕn,S) & δ2. (3.3)

The first two conditions together with K(W ) = 0 imply that

lim sup
n→∞

H(ϕn) ≤ H(W ), (3.4)

and so ϕn is bounded in Ḣ1 ⊂ L2∗ ∩ rL2 by the Sobolev and Hardy inequalities.
We deal with possible concentration by the dyadic decomposition in x ∈ Rd:

D<
j := {|x| < 2j}, Dj := {2j < |x| < 2j+1}, D>

j := {2j+1 < |x|}. (3.5)

First we show that for any ε > 0, there is ν > 0 such that for any h ∈ Z and n,

‖ϕn/r‖L2(D<
h ) > ε, ‖ϕn/r‖L2(D>

h ) > ε =⇒ ‖ϕn/r‖L2(Dh) > ν. (3.6)

If this fails for some ε > 0, then along a subsequence there exist hn such that

‖ϕn/r‖L2(D<
hn

) > ε, ‖ϕn/r‖L2(D>
hn

) > ε, ‖ϕn/r‖L2(Dhn ) → 0. (3.7)

Let ϕ0
n := χ(2−hn|x|)ϕn and ϕ1

n := ϕn − ϕ0
n, with χ given in (2.30). Then we have

‖ϕn/r‖L2(D<
hn

) . ‖∇ϕ0
n‖2, ‖ϕn/r‖L2(D>

hn
) . ‖∇ϕ1

n‖2,

‖∇ϕn‖2
2 = ‖∇ϕ0

n‖2
2 + ‖∇ϕ1

n‖2
2 + O(‖∇ϕn‖2‖ϕn/r‖L2(Dhn )),

‖ϕn‖2∗

2∗ = ‖ϕ0
n‖2∗

2∗ + ‖ϕ1
n‖2∗

2∗ + O(‖∇ϕn‖2∗−2
2 ‖ϕn/r‖2

L2(Dhn )),

(3.8)

where for the last error estimate, we used the radial Sobolev inequality

‖rd/2−1ϕ‖∞ . ‖∇ϕ‖2 (ϕ ∈ Ḣ1
radial). (3.9)



GLOBAL DYNAMICS FOR THE CRITICAL WAVE EQUATION 9

Then for large n and j = 0, 1, we have H(ϕj
n) < H(W ) − O(ε2), and so, by the

optimality of W for the Sobolev inequality,

K(ϕj
n) & ε2‖∇ϕj

n‖2
2 & ε4. (3.10)

which contradicts

o(1) = K(ϕn) = K(ϕ0
n) + K(ϕ1

n) + o(1) (n →∞). (3.11)

Thus we obtain (3.6). Its right-hand side can hold only for a limited number
N(ν) = O(ν−2) of h ∈ Z for each n, since∑

h∈Z

‖ϕn/r‖2
L2(Dh) . ‖∇ϕn‖2

2 . 1. (3.12)

Hence we can rescale ϕn 7→ λ
d/2−1
n ϕn(λnx) so that for any ε > 0 there are j < k ∈ Z

such that for all n

‖ϕn/r‖L2(r<2j∪r>2k) < ε, (3.13)

which controls the L2∗ norm on the same region, via the radial Sobolev estimate
as above. Since ϕn converges strongly in L2∗(2j < r < 2k) by the radial Sobolev,
we conclude that the rescaled ϕn converges to some ϕ∞ in L2∗(Rd). Since all the
functional properties are preserved by the rescaling, we deduce

‖∇ϕ∞‖2 ≤ ‖∇W‖2, K(ϕ∞) ≤ 0. (3.14)

The uniqueness of W as the Sobolev maximizer implies that ϕ∞ ∈ S, and then the
norm convergence implies the strong convergence in Ḣ1. However, this implies that
distḢ1(ϕ∞,S) & δ2, a final contradiction. �

In order to analyze the behavior of d2
S(u) ∼ ES(u) and thereby also K(u) close

to the ground states, we will crucially employ the following ejection lemma.

Lemma 3.2. There exists δH ∈ (0, δE) with the following properties: Let u be a
solution on an open interval I such that for some t0 ∈ I

δ0 := dS(~u(t0)) ≤ δH , E(~u)− J(W ) ≤ δ2
0/2, (3.15)

and

∂tdS(~u(t0)) ≥ 0. (3.16)

Then for t > t0 in I and as long as dS(~u(t)) ≤ δH , dS(~u(t)) is increasing,

dS(~u(t)) ∼ −sµS(u(t)) ∼ ek(t−t0)λ(u(t0))δ0,

sK(u(t)) & (ek(t−t0)λ(u(t0)) − C∗〈(t− t0)λ(u(t0))〉)δ0

|λ(u(t))− λ(u(t0))| . (ek(t−t0)λ(u(t0)) − 1)δ0λ(u(t0)),

(3.17)

for some absolute constant C∗ > 0 and s = ±1 is fixed on the time interval.

Proof. We will show that the hyperbolic mode µS grows exponentially, dominating
the other modes. The main difficulty we encounter by comparison to [15] is that we
need to pay attention to the evolution of the root mode, or equivalently the scaling
parameter λ(u(t)), which cannot be controlled by the energy or other conserved
quantities. What saves us is that the evolution of λ(u(t)) is slow enough that it can
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be ignored compared with the exponential growth. Without loss of generality we
rescale to achieve

λ(u(t0)) = 1, (3.18)

and we work first with this fixed scale. We may also assume that u is close to S at
t = t0, decomposing it by

u = W + v1 = W + µ1(u)ρ + γ1. (3.19)

We prove exponential upper bounds by a bootstrap argument.
Bootstrap assumption: We assume, for some large constant M � 1, and for

t ∈ I such that M2δ0e
k(t−t0) � 1,

|~µ1(u(t))| ≤ Mδ0e
k(t−t0),

‖~γ1(t)‖2 ≤ Mδ0〈t− t0〉+ M3δ2
0e

2k(t−t0),
(3.20)

which implies ‖~v1(t)‖2 . Mδ0e
k(t−t0). We will show that better bounds hold under

the above assumption. Then by the time continuity, we obtain the above bound on
any such time interval. We emphasize that in this argument we do not employ any
dispersive estimates.

In the following, we abbreviate µ1(t) = µ1(u(t)). Then v1 = u−W solves

v̈1 + Lv1 = N(v1) := |W + v1|2
∗−2(W + v1)−W 2∗−1 − (2∗ − 1)W 2∗−2v1

= O(W 2∗−3v2
1 + |v1|2

∗−1),
(3.21)

and so, the eigenmode solves

(∂2
t − k2)µ1 = 〈N(v1)|ρ〉. (3.22)

This leads to the integral equation

µ1(t) = µ+(t) + µ−(t) +

∫ t

t0

sinh(k(t− s))

k
〈N(v1)(s)|ρ〉 ds, (3.23)

where µ±(t) denote the solutions of the linearized equation

µ±(t) := e±k(t−t0) 1

2

[
1± 1

k
∂t

]
µ1(t0). (3.24)

Our assumptions at time t = t0 imply that |µ±(t0)| . δ0 � 1. Furthermore, we
estimate via the bootstrap assumptions∣∣∣∫ t

t0

e±k(t−s)〈N(v1)(s)|ρ〉 ds
∣∣∣ .

∫ t

t0

ek(t−s)‖N(v1(s))‖L2d/(d+2) ds

.
∫ t

t0

ek(t−s)‖v1(s)‖2
Ḣ1ds . M2δ2

0e
2k(t−t0).

(3.25)

It is immediate from this that

|~µ1(t)| . δ0e
k(t−t0) + M2δ2

0e
2k(t−t0) � Mδ0e

k(t−t0), (3.26)

since the right-hand side is small. To bound the remainder γ1, we use the energy
identity. Multiplying the equation of µ1 with its time derivative yields

∂t[µ̇
2
1/2− k2µ2

1 − C1(µ1ρ)] = 〈N(v1)−N(µ1ρ)|µ̇1ρ〉. (3.27)
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Subtracting it from the energy of v1

E(~u)− J(W ) =
µ̇2

1 − k2µ1 + ‖γ̇1‖2
2 + 〈Lγ1|γ1〉

2
− C1(v1), (3.28)

we obtain

∂t[‖γ̇1‖2
2/2 + 〈Lγ1|γ1〉/2− C1(v1) + C1(µ1ρ)] = 〈N(µ1ρ)−N(v1)|µ̇1ρ〉. (3.29)

The nonlinear terms are estimated by Hölder and Sobolev (using that v1 is small)

|C1(v1)− C1(µ1ρ)| . ‖∇γ1‖2‖∇v1‖2
2,

|〈N(v1)−N(µ1ρ)|µ̇1ρ〉| . ‖∇γ1‖2‖∇v1‖2|µ̇1|.
(3.30)

Hence by time integration using the bootstrap bounds, one concludes that

‖γ̇1‖2
2 + 〈Lγ1|γ1〉 . δ2

0 + (Mδ0〈t− t0〉+ M3δ2
0e

2k(t−t0))M2δ0e
2k(t−t0). (3.31)

The orthogonality (2.10) at t = t0 implies that

〈γ1|Λ∗ρ〉 =

∫ t

t0

〈γ̇1|Λ∗ρ〉dt. (3.32)

Hence we can estimate ‖∇γ1‖2 by using Lemma 2.1 and (3.31). Thus we obtain

‖γ̇1‖2 . δ0 + M3/2δ
3/2
0 〈t− t0〉1/2ek(t−t0) + M5/2δ2

0e
2k(t−t0),

‖∇γ1‖2 . δ0〈t− t0〉+ M3/2δ
3/2
0 〈t− t0〉1/2ek(t−t0) + M5/2δ2

0e
2k(t−t0),

(3.33)

which is better by O(M−1/2) � 1 than the bootstrap assumption. This completes
the bootstrap argument, whence the proof of (3.20). Henceforth, we shall regard
M as being an absolute constant and ignore it.

Next we utilize the monotonicity assumption (3.16) on ES(~u) in order to obtain
a lower bound on µ1 in the same form. The technical difficulty we face here is that
ES(~u) is defined with respect to the time-dependent scale λ(u(t)), while the above
estimates are at the fixed scale 1 = λ(u(t0)). The idea is that ES(u) should differ
from E1(u) only by O((t− t0)

2) with a small multiple. To see this, we compare the
two decompositions

u(t) = W + v1(t) = W + µ1(u(t))ρ + γ1(t)

= Wλ + vλ(t) = Wλ + µλ(u(t))ρλ + γλ(t),
(3.34)

where λ = λ(u(t)) is chosen according to (2.10). Then we have

E1(u)− ES(u) = k2[µ1(u)2 − µλ(u)2], (3.35)

as long as u remains close to S. The right-hand side is estimated by

µ1(u)− µλ(u) = 〈v1|ρ〉 − 〈vλ|T ∗1/λρ〉
= 〈v1 − vλ|ρ〉+ 〈vλ|(1− T ∗1/λ)ρ〉 = O((λ− 1)2),

(3.36)

where we used that

v1 − vλ = Wλ −W = (λ− 1)ΛW + O((λ− 1)2)

(1− T ∗1/λ)ρλ = (λ− 1)Λ∗ρλ + O((λ− 1)2),
(3.37)
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ΛW ⊥ ρ and vλ ⊥ Λ∗ρλ. On the other hand, using the upper bound (3.20), we have

|〈Λ∗ρ|v1(t)〉| = |〈Λ∗ρ|v1(t)− v1(t0)〉| = |〈Λ∗ρ,

∫ t

t0

v̇1(s) ds〉|

. (ek(t−t0) − 1)δ0 � 1,

(3.38)

hence the implicit function theorem implies that

|λ(u(t))− 1| . (ek(t−t0) − 1)δ0, (3.39)

and so,

|E1(u)− ES(u)| . (ek(t−t0) − 1)2δ3
0. (3.40)

This implies in particular that

∂tE1(~u(t0)) = ∂tES(~u(t0)) ≥ 0, (3.41)

where the last inequality follows from the “exiting assumption” (3.16). From the
energy conservation and the equation (3.22) of µ1, we have

∂tE1(~u(t)) = ∂tk
2µ2

1 = 2k2µ1µ̇1, (3.42)

hence ∂tE1(~u(t0)) ≥ 0 implies µ+(t0) ∼ µ1(u(t0)) ∼ δ0, and so via (3.23), finally

|µ1(u(t))| ∼ ek(t−t0)δ0. (3.43)

By continuity, there is s = ±1 constant such that sµ1(u(t)) < 0. Expanding K
around W , and plugging the above estimates into this expansion yields

sK(u) = −s(2∗ − 2)〈W 2∗−1|v〉+ O(‖∇v‖2
2)

& µ1(u(t))−O(‖~γ1(t)‖2) & (ek(t−t0) − C∗〈t− t0〉)δ0.
(3.44)

To finish the proof of the lemma, it only remains to establish the monotonicity of
dS . At the fixed scale 1, it is immediate from the equation that

∂2
t E1(~u(t)) = 2k2(µ̇2

1 + µ1µ̈1) ≥ 2k2µ1(k
2µ1 + 〈N(v)|ρ〉) & e2k(t−t0)δ2

0. (3.45)

Combining this with (3.40), we infer that

ES(~u(t)) ≥ ES(~u(t0))(1 + c(t− t0)
2), (3.46)

with some constant c > 0. If ES(~u(t)) becomes decreasing, or more precisely,
∂tES(~u(t1)) = 0 at some t1 > t0 before reaching δ2

H , then we can apply the above
argument backward in time from t1 to concludes that ES(~u(t0)) > ES(~u(t1)). How-
ever, this contradicts the above estimate. Hence dS(~u(t)) is increasing, all the way
until it reaches δH . �
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4. The one-pass theorem

The key step in the proof of Theorem 1.1 consists of the following assertion.

Theorem 4.1. There exist 0 < ε∗ � δ∗ � δH with the following properties: Let
~u ∈ C(I;H) be a solution of (1.1) on an open interval I, satisfying for some
ε ∈ (0, ε∗], δ ∈ (

√
2ε, δ∗] and T1 < T2 ∈ I

E(~u) ≤ J(W ) + ε2, dS(~u(T1)) < δ = dS(~u(T2)). (4.1)

Then dS(~u(t)) > δ for all t > T2 in I.

Proof. By increasing T1 and decreasing T2 if necessary, we may assume in addition
that

√
2ε < dS(~u(T1)) and dS(~u(t)) is nondecreasing on [T1, T2]. Then Lemma 3.2

applies for all t ∈ [T1, T2] and so dS(~u(t)) is increasing for t > T1 until it reaches δH .
Arguing by contradiction, we assume that for some t > T2 we have dS(~u(t)) ≤ δ.
Such a t can occur only away from T2 (this will be made more precise shortly),
and after dS(~u(t)) has increased to size δH � δ. Moreover, by applying Lemma 3.2
backward in time, we can find T3 > T2 such that dS(~u(t)) decreases from δH down
to δ as t ↗ T3, and so that dS(~u(t)) > δ for T2 < t < T3. We may further assume

λ(u(T2)) = 1 ≤ λ(u(T3)), (4.2)

by rescaling and reversing time, if necessary.
The theorem is now proved by deducing a contradiction from a localized virial

identity, as in [15]. Our argument differs from that in [15] in the following two
points:

(1) The estimates in the hyperbolic regime incorporate the scaling changes.
(2) The degeneration ‖∇u(t)‖2 � 1 is treated by the equipartition of energy.

(1) already appeared in (3.17), which is essential in the critical case. (2) seems to
be a more general argument than that used in [15]. The latter relies on the time
oscillation at zero frequency as well as the subcriticality of the equation, neither of
which is available for the critical wave equation.

Following [15], introduce a space-time cutoff function

w(t, x) =χ
( |x|

t− T2 + τ2

)
χ
( |x|

T3 − t + τ3

)
, (4.3)

where χ is the same cut-off function as in (2.32), and define1

τ2 = τ3 = δ−1. (4.4)

Then from the equation of u we obtain the localized virial identity

d

dt
V (t) = 2K(u(t)) + O(Eext(t)), V (t) := 〈wut|(x · ∇+∇ · x)u〉, (4.5)

where the exterior free energy is denoted by

Eext(t) :=
1

2

∫
|x|≥R(t)

[|∇u|2 + u2
t ] dx, R(t) := max(t− T2 + τ2, T3 − t + τ3), (4.6)

1We are going to recycle this argument with τ2 6= τ3.
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so that supp ∂t,xw ⊂ {|x| ≥ R(t)}. By the finite speed of propagation, we have

sup
T2<t<T3

Eext(t) . max
j=2,3

Eext(Tj) . δ, (4.7)

where the last estimate follows from dS(~u(Tj)) = δ, λ(Tj) ≥ 1, τ = δ−1, and

‖∇Wλ‖L2(|x|>R) . (R/λ)1−d/2, 1− d/2 ≤ −1/2. (4.8)

The left-hand inequality in (4.7) is proved as follows. For each Tj, we can find a
free solution u0

j so that ∂t,xu
0
j(Tj, x) = ∂t,xu(Tj, x) on |x| > R(Tj) = τ , and

‖~u0
j‖2

2 . Eext(Tj) � 1, (4.9)

by a suitable extension to |x| < τ . Since δ � 1, the small data wellposedness theory
implies that there exists2 a global solution uj of (1.1) with the same initial data as
u0

j at t = Tj, which moreover satisfies

‖~uj‖L∞t L2
x

. ‖~u0
j‖L∞t L2

x
. Eext(Tj)

1/2 � 1. (4.10)

The propagation property of the linear wave together with the uniqueness for the
nonlinear equation implies that u0

2 = u for |x| > R(t) and T2 < t < (T2 + T3)/2,
and u0

3 = u for |x| > R(t) and (T2 + T3)/2 < t < T3. Thus we obtain (4.7), and so

V̇ (t) = −2K(u(t)) + O(δ). (4.11)

On the other hand, the decay property of Wλ together with dS(~u(Tj)) = δ and
our choice of cut-off τ = δ−1 implies that

|V (T2)|+ |V (T3)| . δ(1 + τ 2−d/2) + δ2τ . δ1/2, (4.12)

hence we have ∣∣∣∣∫ T3

T2

[2K(u(t))−O(δ)] dt

∣∣∣∣ . δ1/2, (4.13)

which we are going to lead to a contradiction.
Now we choose two parameters 0 < δM � δH and 0 < ν � 1, and set

0 < δ1/2
∗ � min(δM , κ(δM), ν2), 0 < ε∗ � min(δ∗, εV (δM)), (4.14)

where κ(·) and εV (·) are as in Lemma 3.1.
First we consider the hyperbolic region in [T2, T3]. Let m be the collection of

local minimal points of dS(~u(t)) in [T2, T3], with the respective local minima less
than δM . Since δ � δM , we have T2, T3 ∈ m. For each t∗ ∈ m, applying Lemma 3.2
forward and/or backward in time, we obtain a subinterval Î(t∗) 3 t∗ of [T2, T3] such

that for t ∈ Î(t∗)

dS(~u(t)) ∼ ek|t−t∗|λ(u(t∗))dS(~u(t∗)), (4.15)

and on the boundary ∂Î(t∗), either dS(~u(t)) = δH , t = T2 or t = T3. In the latter
cases, dS(~u(t)) = δH at the other endpoint. Hence we have

|Î(t∗)| & λ(u(t∗))
−1 log(δH/δM(~u(t∗)) ≥ λ(u(t∗))

−1 log(δH/δM), (4.16)

2Here we do not need the global Strichartz estimate or the scattering property, but the global
existence follows from the local wellposedness combined with conservation of the small energy
E(~uj) ∼ ‖~uj‖22 as well as K(uj) ≥ 0.
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and those intervals are mutually disjoint. Let3

IH :=
⋃

t∗∈m

Î(t∗) ⊂ [T2, T3], IV := [T2, T3] \ IH . (4.17)

Then by the definition of m, we have dS(~u(t)) ≥ δM on IV , and so Lemma 3.1
implies

sK(u(t)) ≥ min(κ(δM), c‖∇u(t)‖2
2), (4.18)

with s = ±1 constant on each connected component of IV . Moreover, (3.17) implies

that K(u(t)) has the same sign at the two endpoints for each internal Î(t∗). Since
K(u(t)) cannot change its sign while t ∈ IV , we deduce that s in (4.18) for t ∈ IV

and s in (3.17) for t ∈ IH are the same constant sign on the whole [T2, T3].
Using the estimate on K in (3.17), we obtain for each t∗ ∈ m,

s

∫
Î(t∗)

[2K(u(t))−O(δ)] dt

&
∫

Î(t∗)

(ek|t−t∗|λ(u(t∗)) − 2C∗〈(t− t∗)λ(u(t∗))〉)dS(u(t∗)) dt &
δH

λ(u(t∗))
,

(4.19)

where the O(δ) error was absorbed by the linearly growing factor. Moreover,
the latter is absorbed by the exponentially growing factor after integration, since
dS(~u(t∗)) ≤ δM � δH . Combining this and (4.16), we infer that

−s

∫
Î(t∗)

[2K(u(t))−O(δ)]dt &
δH

log(δH/δM)
|Î(t∗)| & δM |Î(t∗)|. (4.20)

Further, since T2 ∈ m where λ(u(T2)) = 1, one has

|Î(T2)| & log(δH/δM) � 1. (4.21)

On IV , we use the variational bound (4.18). If s = −1, the bound is uniform and

−K(u(t)) ≥ κ(δM) � δ∗ > δ. (4.22)

Hence

s

∫
IV

[2K(u(t))−O(δ)]dt & κ(δM)|IV |. (4.23)

Combining it with the above estimate on IH , we obtain

−s

∫ T3

T2

[2K(u(t))−O(δ)] dt & δM � δ1/2
∗ > δ1/2, (4.24)

which contradicts (4.13), concluding the proof in the case s = −1.
If s = +1, then the lower bound degenerates as ‖∇u(t)‖2 → 0. This scenario

can occur along some trajectory, since our equation is of the second order in time.
We are going to show that it does not essentially affect the time integral by using
energy equipartition. Decompose IV into

I0 := {t ∈ IV | dS(~u(t)) < ν}, I1 := IV \ I0. (4.25)

3We chose the decomposition into IH and IV to maximize the use of the hyperbolic dynamics.
One can also use the variational estimate in the overlapping region.
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The above argument implies that on I1 we have

K(u(t)) ≥ min(κ(δM), ν2) � δ∗ > δ, (4.26)

and so ∫
I1

[2K(u(t))−O(δ)] dt & min(κ(δM), ν2)|I1|, (4.27)

whereas on I0 we have K(u(t)) ∼ ‖∇u(t)‖2
2 and so∫

I0

[2K(u(t))−O(δ)] dt &
∫

I0

‖∇u(t)‖2
2 dt−O(δ)|I0|. (4.28)

In order to control this, we consider the energy equipartition with the same space-
time cut-off as above for the virial identity: from the equation for u,

∂t〈wut|u〉 = ‖u̇(t)‖2
2 −K(u(t)) + O(Eext(t))

= ‖u̇(t)‖2
2 −K(u(t)) + O(δ).

(4.29)

Then in the same way as for (4.13), we obtain∣∣∣∣∫ T3

T2

[‖u̇(t)‖2
2 −K(u(t)) + O(δ)] dt

∣∣∣∣ . δ1/2. (4.30)

On the other hand, (4.20), (4.27) and (4.28) together with (4.13) imply

min(δM , κ(δM), ν2)

∫ T3

T2

‖∇u(t)‖2
2dt−O(δ)|I0| . δ1/2, (4.31)

where we used the fact that ~u(t) is uniformly bounded in the case s = +1; this is
obvious in the hyperbolic region dS(~u(t)) < δH , while in the exterior it follows from
that K(u(t)) ≥ 0, since

E(~u)−K(u(t))/2∗ = ‖∇u(t)‖2
2/d + ‖u̇(t)‖2

2/2. (4.32)

Using (4.31) and (4.30) as well as (4.14), we deduce∫ T3

T2

[‖u̇(t)‖2
2 + ‖∇u(t)‖2

2]dt � 1 + δ1/2|T3 − T2|, (4.33)

which contradicts the energy conservation∫ T3

T2

E(~u)dt = |T3 − T2|E(~u) > |T3 − T2|J(W )/2, (4.34)

since |T3 − T2| > |IH |+ |I0| � 1. This concludes the proof in the case s = +1. �

The above result can be restated in terms of the sign functional as in the sub-
critical case [15]. Let

H∗ = {~ϕ ∈ H | E(~ϕ) ≤ J(W ) + ε2
∗},

HX = {~ϕ ∈ H∗ | E(~ϕ) < J(W ) + d2
S(~ϕ)/2}.

(4.35)

It is easy to see that H∗ \ HX is a small neighborhood of ~S ∪ − ~S.

Corollary 4.2. There exists a continuous function S : HX → {±1} with the
following properties.
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(1) Every solution u in H∗ can change S(~u(t)) at most once. Moreover, it can
enter or exit the region dS(~u) < δ∗ at most once.

(2) The region S = +1 is bounded in H, while the region S = −1 is unbounded.
(3) If ~ϕ ∈ HX and E(~ϕ) ≤ J(W )+ ε2

V (dS(~ϕ)), then S(~ϕ) = signK(ϕ), with the
convention sign0 = +1.

(4) If ~ϕ ∈ HX and dS(~ϕ) ≤ δM , then S(~ϕ) = −signµS(ϕ).

Note that H∗ \HX is included in dS < δ∗, and that (3)–(4) completely determine
S(~ϕ), since we have chosen ε∗ < εV (δM). Moreover, S(~ϕ) depends only on ϕ.

Proof. Since (3) and (4) are overdetermining S, we need the consistency of the
conditions. However, this is provided by the ejection lemma 3.2, starting from any
solution in the overlapping region, where dS < δM � δH . The second estimate in
(3.17) implies that the two definitions coincide at least at the endpoint of the ejection
dS(~u(t)) = δH . Since both signs are invariant along the continuous trajectory ~u,
they must be the same all the way from the starting point. Thus S is well defined,
and then (1) is the conclusion of the one-pass theorem 4.1. The boundedness in
(2) has been shown between (4.31) and (4.32), while it is obvious that the S = −1
region is unbounded, since it contains all ~ϕ with negative energy. �

It remains to determine the fate of the solutions in H∗ with dS ≥ δ∗. We will do
this in the following two sections for S = ±1 , respectively.

5. Blow-up after ejection

Proposition 5.1. No solution can stay strongly continuous in H∗ with S = −1
and dS ≥ δ∗ for all t > 0.

Proof. Suppose towards a contradiction that there is a solution u on 0 < t < ∞
in H∗ with S(~u(t)) = −1 and dS(~u(t)) ≥ δ∗. Here we use the identity for |u|2,
localized in the same way as for the virial identity.

We may assume E(~u) > J(W ), since otherwise the conclusion follows from [10,
3, 4]. We choose a time-dependent cut-off function and the localized L2 norm

w(t, x) = χ(|x|/(t + τ)), y(t) = 〈wu|u〉, (5.1)

for a fixed large τ > 0 to be determined later. Using that ẇ ≥ 0, we have

ẏ = 〈ẇu + 2wu̇|u〉 ≥ 2〈wu̇|u〉, (5.2)

and using the equation and Hardy’s inequality,

ÿ = 〈2w|u̇2 − |∇u|2 + |u|2∗〉+ 〈ẅu|u〉+ 〈4ẇu|u̇〉+ 2〈u∇w|∇u〉
= 2(‖u̇‖2

2 −K(u)) + O(Eext(t)),
(5.3)

where

Eext(t) :=

∫
|x|>t+τ

[|u̇|2 + |∇u|2] dx . Eext(0) � ε∗, (5.4)

by the same argument as for (4.7), provided that we choose τ sufficiently large.
In order to control the right-hand side of (5.3), we follow the argument in the

previous section, below (4.13). Note that in the S = −1 case, the contradiction
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assumption at t = T3 was used only for the upper bound on |V (T3) − V (T2)|, and
so the rest of the argument is still valid.

Let I = (T2,∞) = IH ∪ IV and IH =
⋃

t∗∈m Î(t∗) as before, see (4.17). We

have −K(u(t)) � δ∗ � ε∗ on the variational region IV , while
∫

Î(t∗)
−K(u(t))dt �

ε∗|Î(t∗)| on each hyperbolic interval Î(t∗). Hence ẏ(t) → ∞ and y(t) ↗ ∞ as
t →∞. Moreover, we can rewrite

‖u̇‖2
2 −K(u) = (1 + 2∗/2)‖u̇‖2

2 + (2∗ − 2)‖∇u‖2
2 − 2∗E(~u). (5.5)

In the variational region IV , using that K(u(t)) < 0 we have

E(~u) < J(W ) + ε2
∗ =

2∗ − 2

2∗
‖∇W‖2

2 + ε2
∗ <

2∗ − 2

2∗
‖∇u‖2

2 + ε2
∗, (5.6)

which implies

‖u̇‖2
2 −K(u) > (1 + 2∗/2)‖u̇‖2

2 − 2∗ε2
∗. (5.7)

Interpolating it with the other lower bound ‖u̇‖2
2 + δ∗ and using δ∗ � ε2

∗, we get

ÿ > 4(1 + c)‖u̇‖2
2 + ε2

∗ (t ∈ IV ), (5.8)

for some constant c > 0 (say 1/d). In the other region IH , the last inequality of
(5.6) may fail, but the smallness |K(u(t))| . δH � 1 allows us to replace it by

Lemma 5.2. For any nonzero ϕ ∈ Ḣ1, we have

‖∇W‖2
2 ≤ ‖∇ϕ‖2

2 + (d/2− 1)K(ϕ) + O(K(ϕ)2/‖∇ϕ‖2
2). (5.9)

Proof. Since ϕ 6= 0, there is a unique λ > 0 such that K(λϕ) = 0, that is

λ2∗−2 = ‖∇ϕ‖2
2/‖ϕ‖2∗

2∗ . (5.10)

Since W is the Sobolev optimizer with K(W ) = 0, we have

‖∇W‖2
2 ≤ ‖∇λϕ‖2

2. (5.11)

Inserting (5.10), we obtain the desired conclusion after Taylor expansion. �

Since ‖∇u‖2
2 ∼ ‖∇W‖2

2 in the hyperbolic region IH , we thus replace (5.6) with

E(~u) <
2∗ − 2

2∗
‖∇u‖2

2 +
d− 2

d
K(u) + O(K(u)2 + ε2

∗), (5.12)

and so from (5.5) we obtain

ÿ > 4(1 + c)‖u̇‖2
2 − 2K(u)−O(K(u)2 + ε2

∗) (t ∈ IH). (5.13)

The leading term is bounded from below via Cauchy-Schwarz:

4(1 + c)‖u̇‖2
2 ≥ (1 + c)

|ẏ|2

y
. (5.14)

Hence

ÿ ≥ (1 + c)(ẏ)2/y +

{
ε2
∗ (t ∈ IV )

−2K(u)−O(K(u)2 + ε2
∗) (t ∈ IH).

(5.15)
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Hence y is convex on IV , while on each interval Î(t∗) in IH , we have in the same
way as for (4.20), ∫

Î(t∗)

[−2K(u)−O(K(u)2 + ε2
∗)]dt & δM |Î(t∗)|, (5.16)

since |K(u)| . δH � 1. Moreover, if dS(~u(t)) = δH at both ends of Î(t∗) (which is

the case except for the first interval), then the above integral on Î(t∗) ∩ (−∞, T )
is positive for any T ; indeed, the main contribution comes from the region where
dS(~u(t)) ∼ δH , and it is much bigger than the negative contribution. Therefore
ẏ →∞ as t →∞. In particular, ẏ > 0 and y ↗∞ for large t � 1. Since

∂ty
−c = −cy−1−cẏ, ∂2

t y
−c = −cy−1−c[ÿ − (1 + c)(ẏ)2/y], (5.17)

and y−1−c is decreasing for large t, the same logic as above implies that ∂ty
−c does

not become bigger in each Î(t∗) than its value at the left end of the interval. Hence
∂ty

−c < −a for some a > 0 uniformly for large t, which leads to a blow-up by
contradiction. �

6. Scattering after ejection

In the other region S = +1, we already know that all solutions are uniformly
bounded in H, but that is not sufficient for the global existence of strongly continu-
ous solutions in the critical case. Now we resort to the recent result by Duyckaerts-
Kenig-Merle [3, 4] to preclude concentration (type II) blow-up. This is the only
place where we have to restrict the dimensions4 to 3 or 5

Proposition 6.1. No solution blows up in HX with S = +1.

Proof. First, the ejection lemma 3.2 precludes blow-up in the hyperbolic region,
since the scaling parameter is a priori bounded during the ejection process, which
is valid when reversing the time direction. Hence a blow-up may happen only when
dS(~u(t)) > δH , where K(u(t)) ≥ 0 and so (4.32) implies

‖u̇(t)‖2
2/2 + ‖∇u(t)‖2

2/d < J(W ) + ε2
∗ = ‖∇W‖2

2/d + ε2
∗. (6.1)

This allows us to employ the main result in [3, 4], after reducing ε∗ if necessary.
Suppose u is a solution on [0, T+) in HX with S = +1 and dS(~u(t)) > δH with the
blow-up time T+ < ∞. According to their result, we can then write for t sufficiently
near T+

~u(t) = ~Wλ(t) + ~ϕ + o(1) in H, (6.2)

for some 0 < λ(t) → 0 and some fixed ~ϕ ∈ H. It is then easily checked that as
t → T+ − 0 we have

K(u(t)) = K(Wλ(t)) + K(ϕ) + o(1) = K(ϕ) + o(1), (6.3)

from which we infer in particular that K(ϕ) ≥ 0. Similarly, we obtain

J(W ) + ε2
∗ > E(~u) = J(W ) + E(~ϕ), (6.4)

4Strictly speaking, the long-time perturbation argument should be also modified for d > 6 in
the scattering proof of Proposition 6.2, but it is a minor issue. See [14, 8] for the solution.
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which implies via (4.32) and K(ϕ) ≥ 0,

‖ϕ̇‖2
2/2 + ‖∇ϕ‖2

2/d < ε2
∗. (6.5)

This however contradicts dS(~u(t)) > δH � ε∗ near T+. �

Next we employ the Kenig-Merle scheme from [9, 10] to improve the above result.
The one-pass theorem will be incorporated in the same way as in the subcritical
case [15]. Extinction of the critical element requires a little extra work due to the
possibility of concentration, which will be however reduced to the above proposition.

Proposition 6.2. Every solution staying in HX with S = +1 and dS ≥ δ∗ for
t > 0 scatters to 0 as t → +∞ with uniformly bounded Strichartz norms on [0,∞).

The restriction dS ≥ δ∗ is essential for the uniform Strichartz bound, since the
latter does not hold for all scattering solutions, even for E(~u) < J(W ).

Proof. We argue by contradiction. Let un be solutions on [0,∞) in HX satisfying

E(~un) → E∗ ≤ J(W ) + ε2
∗, ‖un‖Lq

t,x(0,∞) →∞,

dS(~un(t)) ≥ δ∗, S(~un(t)) = +1, (t > 0)
(6.6)

where we choose q = 2(d + 1)/(d− 2) so that Lq
t,x is an admissible Strichartz norm

for the wave equation on Rd. Henceforth, X(I) denotes the restriction to I ×Rd of
the Banach function space X on R×Rd. It is well-known that Lq

t,x and the energy

norm are sufficient to control all the other Strichartz norms, such as Lp
t Ḃ

1/2
p,2 with

p = 2(d + 1)/(d − 1), as well as the nonlinear term in some dual admissible norm

such as in Lp′

t Ḃ
1/2
p′,2 (see, for example, [7]).

We may assume that E∗ is the minimum for the above property. Following the
Kenig-Merle argument, the proof consists of two parts: construction and exclusion
of a critical element.

Part I: Construction of a critical element.
Assuming the existence of (6.6), we are going to show that there is a critical

element u∗, that is a solution on [0,∞) in HX satisfying

E(~u∗) = E∗, ‖u∗‖Lq
t,x(0,∞) = ∞, dS(~u∗(t)) ≥ δ∗, S(~u∗(t)) = +1, (6.7)

and that its trajectory is precompact modulo dilations in H.
If dS(~un(0)) < δH , then by the ejection lemma 3.2, we have dS(~un(t)) ≥ δH

at some later t > 0. Since the Strichartz norm on the ejection time interval is
uniformly bounded, we may translate each un so that

dS(~un(0)) ≥ δH , (6.8)

without losing (6.6). The translation time is bounded by λ(un(0)): the scaling at
t = 0, which remains the same order after the translation.

Since we chose ε∗ � εV (δH), Lemma 3.1 implies

K(un(0)) ≥ min(κ(δH), c‖∇un(0)‖2
2). (6.9)
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Now apply5 the Bahouri-Gerard decomposition from [1], see also Lemma 4.3 in [10],
to {~un(0)}n≥1. Let U(t) denotes the free wave propagator. We conclude that there
exist λj

n > 0, tjn ∈ R, ~ϕj ∈ H and free waves wJ
n such that for any J ≥ 1

U(t)~un(0) =
J∑

j=1

~V j
n (t) + ~wJ

n(t), ~V j
n (t) := U(t + tjn)T j

n ~ϕj, (6.10)

where T j
n is the operator defined by T j

nf := (λj
n)d/2f(λj

nx), such that

| log(λj
n/λ

k
n)|+ |tjn − tkn|/λj

n →∞ (6.11)

for each j 6= k,

lim
n→∞

[
‖~un(0)‖2

2 −
J∑

j=1

‖~V j
n (0)‖2

2 − ‖~wJ
n(0)‖2

2

]
= 0,

lim
n→∞

[
E(~un(0))−

J∑
j=1

E(~V j
n (0))− E(~wJ

n(0))
]

= 0

(6.12)

for each J , and

lim
J→∞

lim sup
n→∞

‖wJ
n‖L∞t L2∗

x (R)∩Lq
t,x(R) = 0. (6.13)

The last property applies to any other non-sharp Strichartz norm by interpolation,
since those free waves are all uniformly bounded.

First we check that all components retain K ≥ 0 at t = 0. Using (4.32), we get

E(~un)− 1

2∗
K(un(0)) ≥ 1

d
‖~un(0)‖2

2 =
J∑

j=1

1

d
‖~V j

n (0)‖2
2 +

1

d
‖~wJ

n(0)‖2
2 + o(1). (6.14)

Hence if ‖∇un(0)‖2
2 . ε2

∗, then ‖∇V j
n (0)‖2

2 . ε2
∗ � 1, and so K(V j

n (0)) ≥ 0.
Otherwise, the lower bound in (6.9) is much bigger than ε2

∗, so for large n, we get
from the above inequality

H(V j
n (0)) < J(W ), (6.15)

which implies K(V j
n (0)) ≥ 0, by the variational property of W . The same argument

implies K(wJ
n(0)) ≥ 0 as well. Thus, each component has non-negative energy E.

We may assume that j = 1 gives the maximum among E(~V j
n (0)), and so

E(~V j
n (0)) <

2

3
J(W ), (j > 1). (6.16)

Now let U j be the nonlinear profile associated with V j
n , that is the nonlinear

solution satisfying as n →∞,

‖~U j(sj
n)− U(sj

n)~ϕj‖2 → 0, sj
n := λj

nt
j
n, (6.17)

defined uniquely around t = sj
∞ := limn→∞ sj

n, such that

‖~U j
n(0)− ~V j

n (0)‖2 → 0 ~U j
n(t) := (T j

n
~U j)(λj

n(t + tjn)). (6.18)

5In what follows, we will pass to subsequences without any further mention. Also note that
Merle, Vega independently obtained a decomposition of this type for NLS, [13].
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By the scaling invariance of the equation, each U j
n is also a solution, defined locally

around t = 0. Hence the above property of ~V j
n (0) is transferred to U j

n:

K(U j
n(0)) ≥ 0, 0 ≤ E(~U j

n) = E(~U j) ∼ ‖~U j
n(0)‖2

2,

J∑
j=1

E(U j) . J(W ), sup
j>1

E(~U j) ≤ 2

3
J(W ),

(6.19)

and so, by [10], each U j for j > 1 exists globally and scatters with

J∑
j=2

‖U j‖2
Lq

t,x(R) . 1. (6.20)

Note that only a bounded number of profiles can escape from the small energy
scattering theory, where all Strichartz norms are bounded by the energy norm.

Now assume the same for U1 and thus for all j ≥ 1, which is the case if E(U1) <
J(W ). Then from the long-time perturbation theory, cf. Theorem 2.20 in [10], one
obtains the nonlinear profile decomposition for the solutions un(t), provided J is
large and fixed, and n ≥ n0(J) is sufficiently large:

un =
J∑

j=1

U j
n + wJ

n + RJ
n, lim

J→∞
lim sup

n→∞
‖~RJ

n‖(L∞t H∩Lq
t,x)(R) = 0, (6.21)

which implies un is bounded in Lq
t,x, contradicting (6.6). Thus we have obtained

‖U1‖Lq
t,x(R) = ∞, J(W ) ≤ E(U1) ≤ E∗,

J∑
j=2

E(U j) + ‖~wJ
n‖2

2 . ε2
∗. (6.22)

We now distinguish three cases (a)–(c) by means of s1
∞ = limn→∞ λ1

nt
1
n:

(a) s1
∞ = ∞. Then by definition (6.17), U1 is a local solution around t = ∞ with

finite Strichartz norms, and

‖U1
n‖Lq

t,x(0,∞) = ‖U1‖Lq
t,x(s1

n,∞) → 0. (6.23)

Hence we can use the long-time perturbation argument on (0,∞), which gives a
contradiction via (6.21) as above.

(b) s1,∞ = −∞. In this case U1 scatters at t = −∞ by definition. Let I = (−∞, T+)
be the maximal interval of existence of U1.

If dS(U
1(t)) > δ∗/2 for all t < T+, then U1 remains in HX with S = +1 from

t = −∞. Hence T+ = ∞ by Proposition 6.1, and ‖U1‖Lq
t,x(0,∞) = ∞. Moreover, the

one-pass theorem 4.1 together with the ejection lemma 3.2 implies that dS(U
1(t)) ≥

δ∗ for large t. Hence U1 is a critical element after some time translation.
Otherwise, dS(U

1(t∗)) = δ∗/2 at some minimal t∗ < T+, until which U1 remains
in HX with S = +1, and ‖U1‖Lq

tx
(−∞,t∗) < ∞. Hence one can apply the nonlinear

profile decomposition on the interval λ1
n(t + t1n) ≤ t∗, which yields in particular

dS(~un((t∗ − s1
n)/λ1

n)) ≤ dS(~U1(t∗)) + O(ε∗) + o(1) ≤ 2

3
δ∗ + o(1), (6.24)
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as n →∞, provided J is large enough. However, since t∗−s1
n →∞, this contradicts

our assumption inft≥0 dS(~un(t)) ≥ δ∗. To obtain the O(ε0)-term in (6.24), one uses
the bound, valid for J large and all n ≥ n0,

sup
λ1

n(t+tn)≤t∗

‖~RJ
n(t)‖2 . ε∗ (6.25)

which follows from the main estimate of Theorem 2.20 in [10].

(c) s1
∞ ∈ R. Let (T−, T+) 3 s1

∞ be the maximal interval of existence for U1. We
know that K(U1(s1

∞)) ≥ 0. Moreover, by the same perturbative arguments as
above, the nonlinear profile decomposition (6.21) holds on (T−, T+)/λ1

n − t1n. Thus,
as in the case (b), we deduce from inft≥0 dS(~un(t)) ≥ δ∗ that

inf
s1
∞≤t<T+

dS(~U
1(t)) ≥ δ∗/2. (6.26)

Then the same argument as in (b) implies that T+ = ∞ and U1 is a critical element
after time translation, provided that ‖U1‖Lq

t,x(s1
∞,∞) = ∞. Otherwise U1 scatters

and the nonlinear profile decomposition holds on [0,∞), contradicting (6.6).

Thus we arrive at the conclusion that s1
∞ < ∞ and U1 is a critical element after

time translation. This implies E(U1) = E∗ by the minimality, which extinguishes
the other profiles U j (j > 1) as well as the remainder wJ

n as n → ∞, through the
nonlinear energy decomposition.

Having a critical element u∗, we apply the above argument to the sequence

un(t) = u∗(t− tn), tn →∞. (6.27)

The vanishing of all but one profile implies that for some continuous λ(t) > 0

{λ(t)−d/2~u∗(t, x/λ(t))}t≥0 ⊂ H (6.28)

is precompact, concluding the first part of the proof.

Part II: Exclusion of a critical element.
Let u∗ be a critical element (6.7), hence

~w∗(t) := %(t)d/2~u∗(t, %(t)x), %(t) := 1/λ(t) (6.29)

for t ≥ 0 is precompact in H. We proceed in three steps.

Step 1: lim supt→∞ %(t)/t < ∞. To see this, note that by finite propagation speed,
we have

lim
R→∞

sup
t≥0

‖~u∗(t)‖L2(|x|>t+R) = 0, (6.30)

whence we have

lim
R→∞

sup
t≥0

‖~w∗(t)‖L2(|x|>(t+R)/%(t)) = 0. (6.31)

If for some sequence of times {sn}n≥1 we had %(sn)/sn → 0, then by pre-compactness
of {~w∗(t)}t≥0, we get ‖~w∗(sn)‖L2 → 0, whence also ‖~u∗(sn)‖L2 → 0, which would
force E∗ = 0, a contradiction.
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Step 2: lim inft→∞ %(t)/t > 0. This follows from the localized virial identity (4.5)
as in the proof of Theorem 4.1. By the precompactness, there is R > 0, depending
on u∗, such that for all t ≥ 0∫

|x|>R%(t)

|u̇∗|2 + |∇u∗|2dx < δ. (6.32)

Suppose for contradiction that lim inft→∞ %(t)/t = 0. Choose T3 � T2 � 1 and
τ2, τ3 > 0 such that

%(Tj) � δTj/R, τj = R%(Tj). (6.33)

Then we have

|〈wut|x · ∇u +∇ · xu〉|+ |〈wut|u〉| . R%(Tj) � δ∗Tj (t = Tj, j = 2, 3),

sup
T2<t<T3

Eext(t) . max
t=T2,T3

Eext(t) < δ, (6.34)

where w and Eext are as in (4.3) and (4.6). Then we have in place of (4.30)–(4.31),∫ T3

T2

[‖u̇‖2
2 −K(u(t)) + O(δ∗)]dt � δ∗T3,∫ T3

T2

[δ1/2
∗ ‖∇u(t)‖2

2 −O(δ∗)]dt � δ∗T3,

(6.35)

which leads to

|T3 − T2|J(W ) ≤
∫ T3

T2

E(u)dt � δ1/2
∗ T3, (6.36)

a contradiction. Here again we assumed E(u) ≥ J(W ) since in the other case one
can easily get a simpler bound, as was done in [9].

Step 3: Construction of a blow up solution via re-scaling u∗. Pick a sequence
sn →∞ with limn→∞ %(sn)/sn = c ∈ (0,∞), as well as ~w∗(sn) → ∃~ϕ in L2. Define
a sequence of solutions

un(t, x) := sd/2−1
n u∗(snt, snx) (6.37)

whence we have ~un(1) → c−d/2~ϕ(x/c) in L2.
The above two steps imply that ~un is precompact in C([τ, 1]; L2) for any 0 < τ <

1, and so, after passing to a subsequence, it converges to some ~u∞ in C((0, 1]; L2).
By the local wellposedness theory, it has finite Strichartz norms locally in time, and
so u∞ is the unique strong solution on (0, 1] with the initial condition ~u∞(1) = ~ϕ.
Clearly we also have dS(~u∞(t)) ≥ δ∗ and S(~u∞(t)) = +1 for 0 < t ≤ 1.

We now show that u∞ is a solution blowing up at t = 0, which contradicts
Proposition 6.1. The fact that u∞ blows up at t = 0 follows from

Claim: u∞(t, x) = 0 on |x| > t. To see this, pick 0 < ε � 1 arbitrary, let
m large enough such that ‖~w∗(sm) − ~ϕ‖L2 � ε and further pick R > 0 such that
‖~ϕ‖L2(|x|>R) � ε. Then for n > m, we have

‖~un(sm/sn)‖L2(|x|>R%(sm)/sn) = ‖w∗(sm)‖L2(|x|>R) � ε. (6.38)

From this and the finite propagation speed, we deduce that for sm/sn ≤ t ≤ 1

‖~un(t)‖L2(|x|>R%(sm)/sn+t−sm/sn) � ε. (6.39)
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Letting n →∞, we infer that for 0 < t ≤ 1

‖~un(t))‖L2(|x|>t) � ε. (6.40)

Since ε > 0 is arbitrary, this implies that u∞ is supported on |x| ≤ t, as claimed.
This completes the proof of Proposition 6.2. �

In order to complete the proof of Theorem 1.1, we now exhibit open data sets at
time t = 0 such that we have blow up/scattering at t = ±∞, four possibilities in
all. For this, we use the representation

u = W + v1 = W + µ1(u)ρ + γ1, (6.41)

used in the proof of Lemma 3.2, see (3.19). We pick data of the form

u(0) = W + aρ + f, u̇(0) = bρ + g, (6.42)

for some a, b ∈ R, f ∈ Ḣ1 and g ∈ L2 radial, with the conditions

‖∇f‖2 + ‖g‖2 � |a|+ |b| � δ∗. (6.43)

It then follows from the same argument as below (3.23) that we have

µ1(t) = ektµ+ + e−ktµ− + O(e2k|t|(a2 + b2)),

‖~γ1(t)‖2 . 〈t〉(|a|+ |b|) + e2k|t|(a2 + b2),
(6.44)

as long as ek|t|(|a|+ |b|) . δH , where δH is as in Lemma 3.2, and further

µ+ :=
1

2

(
a +

1

k
b

)
, µ− :=

1

2

(
a− 1

k
b

)
. (6.45)

Using the expansion of K in (3.44) as well, it is now easy to see that under the
conditions (6.43) we obtain 4 disjoint open sets, depending on the signs of a and
b, such that K(u) ≶ 0 at the ejection times, i.e. the endpoints of the time interval
around 0 where dS(~u) ≤ δH . This completes the proof of Theorem 1.1. �
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