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CONCENTRATION COMPACTNESS FOR CRITICAL WAVE MAPS

JOACHIM KRIEGER, WILHELM SCHLAG

ABSTRACT. By means of the concentrated compactness method of Bahouri-Gerard [1] and Kenig-Merle [13],
we prove global existence and regularity for wave maps with smooth data and large energy from R2+1 —
H2. The argument yields an a priori bound of the Coulomb gauged derivative components of our wave
map relative to a suitable norm || - ||s (which holds the solution) in terms of the energy alone. As a
by-product of our argument, we obtain a phase-space decomposition of the gauged derivative components
analogous to the one of Bahouri-Gerard.
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1. INTRODUCTION AND OVERVIEW

1.1. The main result and its history. Formally speaking, wave maps are the analogue of harmonic
maps where the Minkowski metric is imposed on the independent variables. More precisely, for a smooth
u: R — M with (M, g) Riemannian, define the Lagrangian

L(u) = / (|8tu|§ - |Vu|£27) dtdx
Rn+1

Then the critical points are defined as £'(u) = 0 which means that Ou L T,, M in case M is imbedded in
some Euclidean space. This is called the extrinsic formulation, which can also be written as

Ou + A(u)(0pu,0%u) =0

where A(u) is the second fundamental form. In view of this, it is clear that « o ¢ is a wave map for any
geodesic v in M and any free scalar wave ¢. Moreover, any harmonic map is a stationary wave map. The
intrinsic formulation is D*0,u = 0, where

DaX? = 8, X7 + 17, ouX'9,u”

is the covariant derivative induced by u on the pull-back bundle of 7'M under u (with the summation

convention in force). Thus, in local coordinates u = (u?,...,u?) one has

(1.1) Du! + 17, o udyu’ 9°uk =0
The central problem for wave maps is to answer the following question:

For which M does the Cauchy problem for the wave map u : R — M with smooth data (u,1)|i—g =
(ug,uy) have global smooth solutions?

In view of finite propagation speed, one may assume that the data (ug,u;) are trivial outside of some
compact set (i.e., up is constant outside of some compact set, whereas u; vanishes outside of that set).
Let us briefly describe what is known about this problem.

First, recall that the wave map equation is invariant under the scaling u +— u(A-) which is critical
relative to H? (R™), whereas the conserved energy

£(u) % ZO/R Oau(t, )| dz
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is critical relative to H'(R™). In the supercritical case n > 3 it was observed by Shatah [39] that there
are self-similar blowup solutions of finite energy. In the critical case n = 2, it is known that there can be
no self-similar blowup, see [40]. Moreover, Struwe [48] observed that in the equivariant setting, blowup
in this dimension has to result from a strictly slower than self-similar rescaling of a harmonic sphere of
finite energy. His arguments were based on the very detailed well-posedness of equivariant wave maps
by Christodoulou, Tavildar-Zadeh [4], [5], and Shatah, Tahvildar-Zadeh [42], [43] in the energy class for
equivariant wave maps into manifolds that are invariant under the action of SO(2,R). Finally, Rodnianski,
Sterbenz [36], as well as the authors together with Daniel Tataru [25] exhibited finite energy wave maps
from R?*! — S? that blow up in finite time by suitable rescaling of harmonic maps.

Let us now briefly recall some well-posedness results. The nonlinearity in (1.1) displays a nullform
structure, which was the essential feature in the subcritical theory of Klainerman-Machedon [17]-[15], and
Klainerman-Selberg [19], [20]. These authors proved strong local well-posedness for data in H*(R™) when
s > 4. The important critical theory s = § was begun by Tataru [62], [61]. These seminal papers proved
global well-posedness for smooth data satisfying a smallness condition in Bfl(R”) X BQ% L 1(]R”). In a
breakthrough work, Tao [57], [56] was able to prove well-posedness for data with small H3 x H% norm
and the sphere as target. For this purpose, he introduced the important microlocal gauge in order to
remove some “bad” interaction terms from the nonlinearity. Later results by Klainerman, Rodnianski [18],
Nahmod, Stephanov, Uhlenbeck [34], Tataru [59], [58], and Krieger [22], [23], [24] considered other cases
of targets by using similar methods as in Tao’s work.

Recently, Sterbenz and Tataru [45], [46] have given the following very satisfactory answer® to the above
question: If the energy of the initial data is smaller than the energy of any montrivial harmonic map
R™ — M, then one has global existence and regularity.

Notice in particular that if there are no harmonic maps other than constants, then one has global existence
for all energies. A particular case of this are the hyperbolic spaces H" for which Tao [55]-[51] has achieved
the same result (with some a priori global norm control).

The purpose of this paper is to apply the method of concentration compactness as in Bahouri, Gerard [1]
and Kenig, Merle [13], [14] to the large data wave map problem with the hyperbolic plane H? as target.
We emphasize that this gives more than global existence and regularity as already in the semilinear case
considered by the aforementioned authors. The fact that in the critical case the large data problem should
be decided by the geometry of the target is a conjecture going back to Sergiu Klainerman.

Let us now describe our result in more detail. Let H? be the upper half-plane model of the hyperbolic
plane equipped with the metric ds? = w. Let u : R?> — H? be a smooth map. Expanding the
derivatives {Oqu}ta=0,1,2 (With Jy := 0;) in the orthonormal frame {ei,es} = {yOx,y0y} gives rise to
smooth coordinate functions ¢}, 2. In what follows, ||d,ullx will mean (25:1 |¢7]1%)? for any norm
|l - ||x on scalar functions. For example, the energy of u is

2
E(u):=)[|0.ull3
a=0

Next, suppose 7 : H> — M is a covering map with M some hyperbolic Riemann surface with the metric
that renders 7 a local isometry. In other words, M = H?/T" for some discrete subgroup I' C PSL(2,R)
which operates totally discontinuously on H2. Now suppose u : R — M is a smooth map which is constant
outside of some compact set, say. It lifts to a smooth map @ : R? — H? uniquely, up to composition with
an element of I'. We now define |0 u||x := ||0,0||x. In particular, the energy E(u) := E(u). Note that
due to the fact that I' is a group of isometries of H?, these definitions are unambiguous. Our main result
is as follows.

Theorem 1.1. There exists a function K : (0,00) — (0,00) with the following property: Let M be a
hyperbolic Riemann surface. Suppose (ug,uy) : R2 — M x TM are smooth and ug = const, u; = 0
outside of some compact set. Then the wave map evolution u of these data as a map R'™2 — M exists

1The conclusions of our work were reached before the appearance of [45], [51]



4 JOACHIM KRIEGER, WILHELM SCHLAG

1_2

globally as a smooth function and, moreover, for any % + i < % with2 < g<oo,y=1-— i

2
(1.2) Y I(=2)"20aullLp g < Cg K(E)

Moreover, in the case when M — RY is a compact Riemann surface, one has scattering:

max, 0au(t) — 0aS(t)(f, )2 =0 as t— +oo

a=
where S(t)(f,g) = cos(t + g and suitable (f,g 7! % ; . Alternatively, 1 18
here S(t)(f, g V) f “Illtv‘fD d ble (f,g) € (H' x L®)(R%;RY). Al ly, if M
non-compact, then lifting u to a map R*2? — H? with derivative components ¢J, as defined above, one has

mas[[64(6) ~ 9SO,z =0 as ¢ oo

where (f7,¢7) € (H' x L?)(R%;R).

We emphasize that (1.2) can be strengthened considerably in terms of the type of norm applied to the
Coulomb gauged derivative components of the wave map:

(1.3) > Il < CK(E)

The meaning 1, as well as of the S norm will be explained below. We now turn to describing this result
and our methods in more detail. For more background on wave maps see [12], [59], and [40].

1.2. Wave maps to H2. The manifold H? is the upper half-plane equipped with the metric ds® = %.

Expanding the derivatives {Oyu}a=0.1,2 (with 9 := 9;) of a smooth map u : R'*2 — H? in the orthonormal
frame {e1,es} = {y0O«, yOy} yields

Oa = (04%,0,y) = E:WeJ

whence
(14) y = 621:1>2 Ailaj‘lb?’ X = Z Aflaj( ;y)
j=1,2

provided we assume the normalization lim|g| o |Iny| = lim|;| o [x| = 0. Energy conservation takes the
form

(1.5) / ZZMV (t,x) |2dx—/ ZZ\W (0,2)* dx
a=0j=1 a=0j=1

where = (71, 22) and 9y = §;. If u(t, z) is a smooth wave map, then the functions {¢%} for 0 < o < 2
and j = 1, 2 satisfy the div—curl system

(1.6) Dpoh, — Dadly = G605 — Oh0%
(1.7) 062 — 0ad = 0

(1.8) Oad'™ = —dp ™"
(1.9) Dad® = 90!

for all o, 8 =0,1,2. As usual, repeated indices are being summed over, and lowering or raising is done via
the Minkowski metric. Clearly, (1.6) and (1.7) are integrability conditions which are an expression of the
curvature of H2. On the other hand, (1.8) and (1.9) are the actual wave map system. Since the choice of
frame was arbitrary, one still has gauge freedom for the system (1.6)—(1.9). We shall exclusively rely on
the Coulomb gauge which is given in terms of complex notation by the functions

(1.10) Yo = VL + g2 = (¢ + ig2)e AT Eima 09)
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If (b} are Schwartz functions , then 23:1 0; (bjl has mean zero whence

2 2
(111) (A7 00 = 5 | loglz =1 Y0030 dc A
j=1 j=1

is well-defined and moreover decays like |z| = (but in general no faster). The gauged components {14 }a—0.1,2
satisfy the new div—curl system

(1.12) Dathp — Optba = i0p A D 0(0a? — ¥200}) — i AT, (Y302 — YR}
j=1,2
2
(1.13) O =i ATES "0 (d — Yie))
j=1

In particular, one obtains the following system of wave equations for the ,:

O = i0° [a A Y 0;(0he? —w30h)] — i0° [p A0, (Whe? — ¥20))]

j=1,2

+i0u[WPATH D 0 (T — i)

j=1,2

(1.14)

Throughout this paper we shall only consider admissible wave maps u. These are characterized as smooth
wave maps u : I x R? — H? on some time interval I so that the derivative components ¢/, are Schwartz
functions on fixed time slices.

By the method of Hodge decompositions from? [22]-[24] one exhibits the null-structure present in (1.12)-
(1.14). Hodge decomposition here refers to writing

2
(1.15) Yp=—Rg Y Rite + xp
k=1

where R := 93|V|~! are the usual Riesz transform. Inserting the hyperbolic terms Rg 22:1 Ry into
the right-hand sides of (1.12)—(1.14) leads to trilinear nonlinearities with a null structure. As is well-
known, such null structures are amenable to better estimates since they annihilate “self-interactions”, or
more precisely, interactions of waves which propagate along the same characteristics, cf. [17]-[16], as well
as [19], [20], [10]. Furthermore, inserting at least one “elliptic term” xg from (1.15) leads to a higher
order nonlinearity, in fact quintic or higher which are easier to estimate (essentially by means of Strichartz
norms). To see this, note that

2
Z anj =0
j=1

djxp — Opx; = 0j1p — s,

whence
2
(1.16) Xo =1 Y AT YgAT O (WYE — Vi) — ¥ AT Ok (BEYUF — Vi3)]
7,k=1

Since we are only going to obtain a priori bounds on ¢, it will suffice to assume throughout that the ¢,
are Schwartz functions, whence the same holds for v,. In what follows, we shall never actually solve the
system (1.12)—(1.14). To go further, the wave-equation (1.14) by itself is meaningless without assuming
the o to satisfy the compatibility relations (1.12) and (1.13). In fact, it is not even clear that (1.12)
and (1.13) will hold for all ¢t € (—T,T) if they hold at time ¢ = 0 and (1.14) holds for all t € (-=T,T).
Nonetheless, assuming that the 1, are defined in terms of the derivative components ¢, of a ’sufficiently
nice’ wave map, it is clear that all three of (1.12) - (1.14) will be satisfied. This being said, we will only
use the system (1.14) to derive a priori estimates for 1., which will then be shown to lead to suitable

2In these papers this decomposition is also referred to as “dynamic decomposition”.
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bounds on the components ¢/, of derivatives of a wave map u. This is done by means of Tao’s device of
frequency envelope, see [57] or [22]. This refers to a sequence {c }rez of positive reals such that

(117) Ck 27‘7|k*£| S cr S Ch 20|k*€|

where o > 0 is a small number. The most relevant example is given by

1
otk 3
e = (3027 P 0)]3)
LET
which controls the initial data. While it is of course clear that (1.6)—(1.9) imply the system (1.12)—
(1.14), the reverse implication is not such a simple matter since it involves solving an elliptic system
with large solutions. On the other hand, transferring estimates on the ¢, in H $(R?) spaces to similar
bounds on the derivative components ¢/, does not require this full implication. Indeed, assume the bound
%1l oo (=11 ); 151 2y < 00 for some small §; > 0 (we will obtain such bounds via frequency envelopes
with 0 < 01 < o). For any fixed time t € (=T, T1) one now has with Py being the usual Littlewood-Paley
projections to frequency 2*,

. 2 —19 41
|Pedallrss = || Pele’ Zi=1 2" 25%54po] || s
< || Pe[Pep—ro(e Z=1 2 %) Py 10 o101l | s
2 —15 41
+ | Pe[Pre—10,0410) (¢’ Li=1 8709 Py 1s¥al |l o

L2 —15 41
+ Y PP’ 2= 2 %%0) Py o1y tal | o
k>(+10

(ei ZgzlA“am;)

S 1Pre-10,0+10%all g5 + ([ Ple—10,6410) | o2 | P<+15%a | oo

L2 —1g5 41
+ > P == 2 %% s, | Pryoaytallo
k>0+10

Next, one has the bounds
A —1 2 1 —
[Voe'® Zim %%y S 165z, IP<esistally 207 Wallus

where the first one is admissible due to energy conservation for the derived wave map, see (1.5). In
conclusion,

1Pedall s S IPesoyballas + 207 ] o2 19
Summing over ¢ > 0 yields

(1.18) 101l 3o ((~ 0,1 )s 1152 (R2)) < 20

By the subcritical existence theory of Klainerman and Machedon, see [17]-[15] as well as [19], [20], the
solution can now be extended smoothly beyond this time interval. More precisely, the device of frequency
envelopes allows one to place the Schwartz data in H*(R?) for all s > 0 initially, and as it turns out, also
for all times provided s > 0 is sufficiently small. The latter claim is of course the entire objective of this
paper. We should also remark that we bring (1.14) into play only because it fits into the framework of the
spaces from [57] and [61]. This will allow us to obtain the crucial energy estimate for solutions of (1.14),
whereas it is not clear how to do this directly for the system (1.12), (1.13). As already noted in [22], the
price one pays for passing to (1.14) lies with the initial conditions, or more precisely, the time derivative
Ot1ho, (0, -). While 1,,(0, -) only involves one derivative of the wave map u, this time derivative involves two.
This will force us to essentially “randomize” the initial time.

1.3. The small data theory. In this section we give a very brief introduction to the spaces which are
needed to control the ¢ system (1.12), (1.13), and (1.14). A systematic development will be carried out
in Section 2 below, largely following [56] (we do need to go beyond both [56] and [22] in some instances
such as by adding the sharp Strichartz spaces with the Klainerman-Tataru gain for small scales, and by
eventually modifying || - ||sg to the stronger || - || s which allows for a high-high gain in the S x S — L7,
estimate). First note that it is not possible to bound the trilinear nonlinearities in this system in Strichartz
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spaces due to slow dispersion in dimension two. Moreover, it is not possible to adapt the X **-space of the
subcritical theory to the scaling invariant case as this runs into logarithmic divergences. For this reason,
Tataru [61] devised a class of spaces which resolve these logarithmic divergences. His idea was to allow
characteristic frames of reference. More precisely, fix w € S and define

0F = (1,2w)/V2, to:=(t,x)-0F, x4 :=(t,x)—t,0F

which are the coordinates defined by a generator on the light-cone. Now suppose that 1; are free waves
such that 1 is Fourier supported on 1 < |¢] < 2, and both v, and 13 are Fourier supported on |¢| ~ 2F
where k is large and negative. Finally, we also assume that the three waves are in “generic position”, i.e.,
that their Fourier supports make an angle of about size one. Clearly, 27 %1913 is then a representative
model for the nonlinearities arising in (1.14). With

nltyr) = [ el p(e) dg
R?
we perform the plane-wave decomposition ¢3(t, z) = [ bu(V/2t,) dw where

ouls) = [ )

By inspection,

k
(1.19) J 160z 1, o 5 24 el

Hence,

2% [ 6 ntalliy oz, dw S 27 [ ol oy doloniallig, os,

S sllzee e 11 llnse 2 [[2lLee 2

which is an example® of a trilinear estimate which will be studied systematically in Section 5. Here we
used both (1.19) and the standard bilinear L?, bilinear L?-bound for waves with angular separation:

k
[V1¢2llrz r2 = [¥1vellrzre S 22 W2l 2 lvrllLec:
This suggests introducing an atomic space with atoms 1),, of Fourier support || ~ 1 and satisfying

[Yollry r2 <1

as part of the space N[0] which holds the nonlinearity (the zero here refers to the Littlewood-Paley
projection Py. Below, we refer to this space as NF). In addition, the space defined by (1.19) is also an
atomic space and should be incorporated in the space S[k] holding the solution at frequency 2% (we refer
to this below as the PW space). By duality to L L2 in N[0], we then expect to see Li°L2 as part
of S[0]. The simple observation here (originating in [61]) is that one can indeed bound the energy along a
characteristic frame (¢, z,,) of a free wave as long as its Fourier support makes a positive angle with the
direction w. Indeed, recall the local energy conservation identity die — div(9;¥)V) = 0 for a free wave
where

e = (0wl + VU P)

is the energy density, over a region of the form {-T <t < T} N{t, > a}. From the divergence theorem
one obtains that

/ X r<r<nlwt VO dL? S [0)2 < 2
to=a

where £? is the planar Lebesgue measure on {t,, = a}. Sending 7' — oo and letting p denote the distance
between w and the direction of the Fourier support of |;—g, one concludes that

IVllLee 2 S P_1||¢HL§°L§

tw Ty

3Note that one does not obtain a gain in this case. This fact will be of utmost importance in this paper, forcing us to use
a “twisted” wave equation resulting from these high-low-low interactions in the linearized trilinear expressions.
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Hence, we should include a piece

sup d(w, ®) |19l Lz
w2k

in the norm S[0] holding Pyv provided 4 is a wave packet oriented along the cone of dimensions 1 x 2% x 22%,
projecting onto an angular sector in the ¢-plane associated with the cap x C S', where  is of size 2 (this
is called NF* below).

Recall that we have made a genericity assumption which guaranteed that the Fourier supports were well
separated in the angle. In order to relax this condition, it is essential to invoke the usual device of nullforms
which cancel out parallel interactions. One of the discoveries of [22] is a genuinely trilinear nullform
expansion, see (5.46) and (5.47), which exploit the relative position of all three waves simultaneously. It
seems impossible to reduce the trilinear nonlinearities of (1.14) exclusively to the easier bilinear ones.

It is shown in [61] (and then also in [56] which develops much of the functional framework that we use,
as well as [22]) that in low dimensions (especially n = 2 but these spaces are also needed for n = 3), these
nullframe spaces are strong enough — in conjunction with more traditional scaling invariant X spaces
— to bound the trilinear nonlinearities, as well as weak enough to allow for an energy estimate to hold.
This then leads modulo passing to an appropriate gauge to the small energy theory.

The norm || - ||s in (1.3) is of the form |[|¢||s := (ZkeZ ||Pk'w||2s[k]>§ where S[k] is built from LL2,

critical X*°, L}L2° Strichartz norms, as well as the null-frame spaces which we just described.

1.4. The Bahouri-Gerard concentrated compactness method. We now come to the core of the
argument, namely the Bahouri-Gerard type decomposition and the associated perturbative argument.

In [11] P. Gérard considered defocusing semilinear wave equations in R3*! of the form Ou + f(u) = 0
with data given by a sequence (¢,,, 1, ) of energy data going weakly to zero. Denote the resulting solutions
to the nonlinear problem by wu,,, and the free waves with the same data by v,,. Gérard proved that provided
f(u) is suberitical relative to energy then

||Un*’l}n||Loo(];g)*>0 as n — o0

where £ is the energy space. In contrast, for this to hold for the energy critical problem he found via the
concentrated compactness method of P. L. Lions that it is necessary and sufficient that ||vy, || e (7,26 (®3)) —
0. In other words, the critical problem experiences a loss of compactness.

The origin of this loss of compactness, as well as the meaning of the L% condition were later made
completely explicit by Bahouri-Gerard [1]. Their result reads as follows: Let {(¢n,%¥n)}o2, C H' x
L?(R3) be a bounded sequence, and define v, to be a free wave with these initial data. Then there exists
a subsequence {v} of {vn}, a finite energy free wave v, as well as free waves V) and (e9),20)) €

(R"‘7R3)Z+ for every 7 > 1 with the property that for all £ > 1,

1 tftglj) xfx%j)

v )+ wP (¢, @)
) ( RO )

4
(1.20) ol (t ) = v(t, x) + Z

where
lim sup ||w§f)|\L§(R’L;0(R3)) -0 as £ — oo
n—oo
and for any j # k,
e e |2 — a2l 4 ) — )
- 4+ — + - — 00 asn — oo
EOE ED

Furthermore, the free energy Eq satisfies the following orthogonality property:
¢
Eo(v)) = Eo(v) + ZEO(V(j)) + Eo(w®) + 0(1) as n — oo

j=1

Note that this result characterized the loss of compactness in terms of the appearance of concentration
profiles V). Moreover, [1] contains an analogue of this result for so-called Shatah-Struwe solutions of the
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semi-linear problem Du + |u|[*u = 0 which then leads to another proof of the main result in [11]. One of
the main applications of their work was to show the existence of a function A : [0,00) — [0,00) so that
every Shatah-Struwe solution satisfies the bound

(1.21) llwll s ;10 may) < A(E(u))

where E(u) is the energy associated with the semi-linear equation. This is proved by contradiction; indeed,
assuming (1.21) fails, one then obtains sequences of bounded energy solutions with uncontrollable Strichartz
norm which is then shown to contradict the fact the nonlinear solutions themselves converge weakly to
another solution. The decomposition (1.20) compensates for the aforementioned loss of compactness by
reducing it precisely to the effect of the symmetries, i.e., dilation and scaling. This is completely analogous
to the elliptic (in fact, variational) origins of the method of concentrated compactness, see Lions [27] and
Struwe [47]. See [1] for more details and other applications.

The importance of [1] in the context of wave maps is made clear by the argument of Kenig, Merle [13],
[14]. This method, which will be described in more detail later in this section, represents a general
method for attacking global well-posedness problems for energy critical equations such as the wave-map
problem. Returning to the Bahouri-Gerard decomposition, we note that any attempt at implementing this
technique for wave maps encounters numerous serious difficulties. These are of course all rooted in the
difficult nonlinear nature of the system (1.6)—(1.9). Perhaps the most salient feature of our decomposition,
performed in detail in section 9.2, as compared to [1] is that the free wave equation no longer captures the
correct asymptotic behavior for large times; rather, the atomic components V) are defined as solutions
of a covariant (or “twisted”) wave equation of the form

(1.22) 0+ 2iA4,0°

where the magnetic potential A, arises from linearizing the wave map equation in the Coulomb gauge.
More precisely, the magnetic term here captures the high-low-low interactions in the trilinear nonlinearities
of the wave map system where there is no a priori smallness gain. We shall then obtain the concentration
profiles via an inductive procedure over increasing frequency scales; in particular, in (1.22) the Coulomb
potential A, is defined in terms of lower-frequency approximations which are already controlled, see the
next subsection for more details.

In keeping with the Kenig-Merle method, the Bahouri-Gerard decomposition is used to show the following:
assume that a uniform bound of the form

[¥lls < C(E)

for some function C(E) fails for some finite energy levels E. In particular, the set

A= {E€R;| sw [[Y]ls=oc}#0

<
1y LZ=

where we loosely denote the energy by [|¢||: = (Zi:o ||wa||%;)%, and we can then define a number,
denoted throughout the rest of the paper by E..;; or also E¢, as follows:

(1.23) Eerit = juf E

Then there must exist a weak wave map Ueritical : (—Z0,71) — S to a compact Riemann surface uni-
formized by H?, which enjoys certain compactness properties. In the final part of the argument we then
need to rule out the existence of such an object, arriving at an eventual contradiction at the end of the
paper.

Starting this grand contradiction argument here, we now assume as above that A # §); this implies that
there is a sequence of Schwartz class (on fixed time slices) wave maps u™ : (=73, 77) x R? — H? with the
properties that

d ||¢n||Lg — Eerit
o limy o0 [[¢"|[s((~Tp Tp)xR2) = 00
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Thus all these wave maps have ¢ = 0 in their domain of definition. We shall call such a sequence of wave
maps essentially singular. Roughly speaking, we shall proceed along the following steps. First, recall
that the Bahouri-Gerard theorem is a genuine phase-space result in the sense that it identifies the main
asymptotic carriers of energy which are not pure radiation, which would then sit in w%). This refers to the
free waves V) above, which are “localized” in frequency (namely at scale (553 ))*1) as well as in physical
spaces (namely around the space-time points (tgf ), 2y ))) The procedure of filtering out the scales e is
due to Metivier-Schochet, see [31].

(1) Bahouri-Gerard I: filtering out frequency blocks.

If we apply the frequency localization procedure of Metivier-Schochet to the derivative com-

ponents ¢ = (6"“’;", 6;31',”') of an essentially singular sequence at time ¢ = 0, we run into the

problem that the resulting frequency components are not necessarily related to an actual map from
R? — H2. We introduce a procedure to obtain a frequency decomposition which is “geometric”,
i.e., the frequency localized pieces are themselves derivative components of maps from R? — H?2.
More specifically, in section 9.2, we start with decompositions
A
gn = ¢ut+uwpt, a=0,1,2

a=1
where the éga are 'frequency atoms’ obtained from the first stage of the standard Bahouri-Gerard
process, see [1]. Here it may be assumed that the frequency scales in the cases & = 0,1,2 are
identical. Since the (520’ do not necessarily form the derivative components of admissible maps into
H?, one replaces them by components ¢"® which are derivative components of admissible maps,
subject to the same frequency scales.

(2) Refining the considerations on frequency localization; frequency localized approximative maps. In
order to deal with the non-atomic (in the frequency sense) derivative components, which may still
have large energy, we need to be able to truncate the derivative components arbitrarily in frequency
while still retaining the geometric interpretation. Here we shall use arguments just as in the first
step to allow us to “build up” the components 1} from low frequency ones. In the end, we of course
need to show that for some subsequence of the ¢, the frequency support is essentially atomic.
If this were to fail, we deduce an a priori bound on |9y [|s((—1p 7r)xR2). Specifically, we show in
section 9.3 that judicious choice of an interval J, depending on the position of the Fourier support
of the frequency atoms ¢2* allows us to truncate the components ¢ to P;¢ while retaining their’
geometric significance’, i. e. the components Pyph®, oo = 0,1,2 are also derivative components of
a map up to arbitrarily small errors.

(3) Assuming the presence of a lowest energy non-atomic type component, establish an a priori es-
timate for its nonlinear evolution. More precisely, in section 9.4, we replace ¢ by compo-

(0)
nents @ZAO , which arise by truncating the frequency support of ¢7 to sufficiently low fre-

quencies such that all frequency atoms with energy above a certain threshold are eliminated.

In order to obtain a priori bounds on the evolution of the associated Coulomb components

(0)
A(O) A(O) . -1 nAg . . A(O)
Upo = 0 e Xk=12 8T OnPy , we use the previous step to approximate the ®5 ° by

(0)
frequency truncated Pj, <I>ZA° for judiciously chosen increasing intervals J;, whose number only

depends on the energy FE..;. A finite induction procedure then leads to a priori bounds on the
(0)
\IIZAO , provided n is chosen large enough (only depending on E.,;; ). Here we already encounter the

difficulty that the low frequency components appear to interact strongly with the high-frequency
components in the nonlinearity, a stark contrast to the defocussing nonlinear critical wave equa-
tion. In particular, in order to 'bootstrap’ the bounds on the differences of the Coulomb potentials

(0)

associated with the Py, @ZAO , we have to invoke energy estimates for covariant wave equations of
the form Ou + 2i0YuA, = 0.

(4) Bahouri-Gerard II, applied to the first atomic frequency component. In section 9.6, assuming that

(0)
we have constructed the first “low frequency approximation” @ZA" in the previous step, we need
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to filter out the concentration profiles (analogous to the V@) at the beginning of this subsection)
corresponding to the frequency atoms above the minimum energy threshold and at lowest possible
frequency. This is where we have to deviate from Bahouri-Gerard: instead of the free wave
operator, we need to use the covariant wave operator O 4» = O+ 2iA7 0" to model the asymptotics
as t — +oo, where A7 is the Coulomb potential associated with the low frequency approximation

@ZAE’O). Thus we obtain the concentration profiles as weak limits of the data under the covariant
wave evolution. Again a lot of effort needs to be expended on showing that the components we
obtain are actually the Coulomb derivative components of Schwartz maps from R? — H?, up to
arbitrarily small errors in energy. Once we have this, we can then use the result from the stability
section in order to construct the time evolution of these pieces and obtain their a priori dispersive
behavior.

(5) Bahouri-Gerard II; completion. Here we repeat Steps 3 and 4 for the ensuing frequency pieces, to
complete the estimate for the ¢)). The conclusion is that upon choosing n large enough, we arrive
at a contradiction, unless there is precisely one frequency component and precisely one atomic
physical component forming that frequency component. These are the data that then gives rise to
the weak wave map with the desired compactness properties.

1.5. The Kenig-Merle agument. In [14], [13], Kenig and Merle developed an approach to the global
wellposendess for defocusing energy critical semilinear Schrédinger and wave equations; moreover, their
argument yields a blowup/global existence dichotomy in the focusing case as well, provided the energy of
the wave lies beneath a certain threshold. See [6] for an application of these ideas to wave maps.

Let us give a brief overview of their argument. Consider

Ou+u®=0

in R'*3 with data in H! x L2. It is standard that this equation is well-posed for small data provided we
place the solution in the energy space intersected with suitable Strichartz spaces. Moreover, if I is the
maximal interval of existence, then necessarily ||ul|ps(r,zs(rs)) = 0o and the energy E(u) is conserved.

Now suppose F.;+ is the maximal energy with the property that all solutions in the above sense with
E(u) < Ecrit exist globally and satisfy [ul|ps;zs®s)) < oo. Then by means of the Bahouri-Gerard
decomposition, as well as the perturbation theory for this equation one concludes that a critical solution
ue exists on some interval I* and that ||uc|| L3(1+;L8 (R3)) = 00. Moreover, by similar arguments one obtains
the crucial property that the set

K = {(A2(0)un(t)(x — y(1)), 1), A2 (1)du( M) (x — y()),1)) : t e I}

is precompact in H' x L2(R3) for a suitable path A(t),y(t). To see this, one applies the Bahouri-Gerard
decomposition to a sequence w,, of solutions with energy F(u,) — E¢+ from above. The logic here is
that due to the minimality assumption on E..;x only a single limiting profile can arise in (1.20) up to
errors that go to zero in energy as n — oo. Indeed, if this were not the case then due to fact that the
profiles diverge from each other in physical space as n — oo one can then apply the perturbation theory
to conclude that each of the individual nonlinear evolutions of the limiting profiles (which exist due to the
fact that their energies are strictly below E..;; ) can be superimposed to form a global nonlinear evolution,
contradicting the choice of the sequence u,,. The fact that £ = 1 allows one to rescale and re-translate the
unique limiting profile to a fixed position in phase space (meaning spatial position and spatial frequency)
which then gives the desired nonlinear evolution uc. The compactness follows by the same logic: assuming
that it does not hold, one then obtains a sequence uc(-,t,) evaluated at times t,, € I* converging to an
endpoint of I* such that for n # n’, the rescaled and translated versions of uc(-,t,) and ue (-, t,/) remain
at a minimal positive distance from each other in the energy norm. Again one applies Bahouri-Gerard and
finds that £ = 1 by the choice of E..;; and perturbation theory. This gives the desired contradiction. The
compactness property is of course crucial; indeed, for illustrative purposes suppose that u¢ is of the form

uc(t,z) = MO 2UA) (@ — (t)))
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where A\(t) — oo as t — 1, say. Then uc blows up at time ¢ = 1 (in the sense that the energy concentrates
at the tip of a cone) and

AE) " Fuc(At) "z + a(t) = U(z)
is compact for 0 <t < 1. Returning to the Kenig-Merle argument, the logic is now to show that uc acts
in some sense like a blow-up solution, at least if I* is finite in one direction.

The second half of the Kenig-Merle approach then consists of a rigidity argument which shows that a
uc with the stated properties cannot exist. This is done mainly by means of the conservation laws, such
as the Morawetz and energy identities. More precisely, the case where I* is finite at one end is reduced
to the self-similar blowup scenario. This, however, is excluded by reducing to the stationary case and an
elliptic analysis which proves that the solution would have to vanish. If I* is infinite, one basically faces
the possibility of stationary solutions which are again shown not to exist.

For the case of wave maps, we follow the same strategy. More precisely, our adaptation of the Bahouri-
Gerard decomposition to wave maps into H? leads to a critical wave map with the desired compactness
properties. In the course of our proof, it will be convenient to project the wave map onto a compact
Riemann surface S (so that we can avail ourselves of the extrinsic formulation of the wave map equation).
However, it will be important to work simultaneously with this object as well as the lifted one which takes
its values in H? (since it is for the latter that we have a meaningful well-posedness theory for maps with
energy data).

The difference from [13] lies mainly with the rigidity part. In fact, in our context the conservation laws
are by themselves not sufficient to yield a contradiction. This is natural, since the geometry of the target
will need to play a crucial role. As indicated above, the two scenarios that are lead to a contradiction are
the self-similar blowup supported inside of a light-cone and the stationary weak wave map, which is of
course a weakly harmonic map (which cannot exist since the target S is compact with negative curvature).
The former is handled as follows: in self-similar coordinates, one obtains a harmonic map defined on the
disk with the hyperbolic metric and with finite energy (the stationarity is derived as in [13]). Moreover,
there is the added twist that one controls the behavior of this map at the boundary in the trace sense (in
fact, one shows that this trace is constant). Therefore, one can apply the boundary regularity version of
Helein’s theorem which was obtained by Qing [35]. Lemaire’s theorem [26] then yields the constancy of
the harmonic map, whence the contradiction (for a version of this argument under the a priori assumption
of regularity all the way to the boundary see Shatah-Struwe [40]).

1.6. An overview of the paper. The paper is essentially divided into two parts: the modified Bahouri-
Gerard method is carried out in its entirety starting with Section 2, and ending with Section 9. Indeed,
all that precedes Section 9 leads to this section, which is the core of this paper. The Kenig-Merle
method adapted to Wave Maps is then performed in the much shorter section 10. We commence by
describing in detail the contents of Section 2 to Section 9.

1.6.1. Preparations for the Bahouri-Gerard process. As explained above, we describe admissible wave maps
w: R?T! — H? mostly in terms of the associated Coulomb derivative components 1,. Our goals then are
to

e (1): Develop a suitable functional framework, in particular a space-time norm |||/ g(g2+1y, together
with time-localized versions [|1)||s((rxrz2) for closed time intervals I, which have the property that

lim sup [[9[| g(rxr2) < 00
Ici

for some open interval I implies that the underlying wave map u can be extended smoothly and
admissibly beyond any endpoint of I, provided such exists.
e (2): Establish an a priori bound of the form

1Vl srxrey < C(E)

for some function C' : Ry — Ry of the energy E. This latter step will be accomplished by the
Bahouri Gerard procedure, arguing by contradiction.
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We first describe (1) above in more detail: in Section 2, we introduce the norms || - |lsp, || - [|n7x]s
k € Z, which are used to control the frequency localized components of ¢ and the nonlinear source terms,
respectively. The norm || - ||s is then obtained by square summation over all frequency blocks. The basic
paradigm for establishing estimates on v then is to formulate a wave equation

Dz/} = F
or more accurately typically in frequency localized form
OPyy = PyF,

and to establish bounds for ||PyF'||yjo; which may then be fed into an energy inequality, see Section 2.3,
which establishes the link between the S and N-spaces. In order to be able to estimate the nonlinear
source terms F', we need to manipulate the right-hand side of (1.14), making extensive use of (1.15). The
precise description of the actual nonlinear source terms that we will use for F' is actually rather involved,
and given in Section 3. In order to estimate the collection of trilinear as well as higher order terms, we
carefully develop the necessary estimates in Sections 4, 5, as well as 6. We note that the estimates in [22],
while similar, are not quite strong enough for our purposes, since we need to gain in the largest frequency
in case of high-high cascades. This requires us to subtly modify the spaces by comparison to loc. cit.
Moreover, the fact that we manage here to build in sharp Strichartz estimates allows us to replace several
arguments in [22] by more natural ones, and we opted to make our present account as self-contained as
possible.

With the null-form estimates from Sections 4, 5, 6 in hand, we establish the role of || - || as a “regularity
controlling” device in the sense of (1) above in Section 7, see Proposition 7.2. The proof of this reveals
a somewhat unfortunate feature of our present setup, namely the fact that working at the level of the
differentiated wave map system produces sometimes too many time derivatives, which forces us to use
somewhat delicate “randomization” of times arguments. In particular, in the proof of all a priori estimates,
we need to distinguish between a “small time” case (typically called Case 1) and a “long time” Case 2, by
reference to a fixed frequency scale. In the short time case, one works exclusively in terms of the div-curl
system, while in the long-time case, the wave equations start to be essential.

Section 7 furthermore explains the well-posedness theory at the level of the v, see the most crucial
Proposition 7.11. We do not prove this proposition in Section 7, as it follows as a byproduct of the core
perturbative Proposition 9.12 in Section 9. Proposition 7.11 and the technically difficult but fundamental
Lemma 7.10 allow us to define the “Coulomb wave maps propagation” for a tuple v,, o = 0,1,2 which
are only L? functions at time ¢t = 0, provided the latter are the L?-limits of the Coulomb components
of admissible maps. Indeed, this concept of propagation is independent of the approximating sequence
chosen and satisfies the necessary continuity properties.

We also formulate the concept of a “wave map at infinity” at the level of the Coulomb components,
see Proposition 7.15 and the following Corollary 7.16. Again the proofs of these results will follow as a
byproduct of the fundamental Proposition 9.12 and Proposition 9.30 in the core Section 9.

In Section 8, we develop some auxiliary technical tools from harmonic analysis which will allow us to
implement the first stage of the Bahouri Gerard process, namely crystallizing frequency atoms from an
“essentially singular” sequence of admissible wave maps. These tools are derived from the imbedding
le,oo(]R2) — BMO as well as weighted (relative to A,) Coifman-Meyer commutator bounds.

As mentioned before, Section 9 is the core of the present paper. In Section 9.2, starting with an
essentially singular sequence u™ of admissible wave maps with deteriorating bounds, i.e., |[¢7|s — oo
as n — oo but with the crucial criticality condition lim, . E(u™) = E¢.;+, we show that the derivative
components ¢~ may be decomposed as a sum

A
on =Y one +uph
a=1
where the ¢2* are derivative components of admissible wave maps which have frequency supports “drifting
apart” as n — oo, while the error w4 satisfies

limsup w2 g0 <0
n—oo 2,00
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provided A > Ag(d) is large enough.

In Section 9.3, we then select a number of “principal” frequency atoms ¢™* a = 1,2,..., Ay, as well as a
(potentially very large) collection of “small atoms” ¢"*, a = Ag + 1,..., A. We order these atoms by the
frequency scale around which they are supported starting with those of the lowest frequency. The idea now
is as follows: under the assumption that there are at least two frequency atoms, or else in case of only one
frequency atom that it has energy < FE.,;+, we want to obtain a contradiction to the essential criticality
of the underlying sequence u”. To achieve this, we define in Section 9.3 sequence of approximating wave
maps, which are essentially obtained by carefully truncating the initial data sequence ¢™® in frequency
space.

In Section 9.4, we establish an a priori bound for the lowest frequency approximating map which comprises
all the minimum frequency small atoms as well as the component of the small Besov error of smallest
frequency, see Proposition 9.9. The proof of this follows again by truncating the data suitably in frequency
space, and applying an inductive procedure to a sequence of approximating wave maps. This hinges
crucially on the core perturbative result Proposition 9.12, which plays a fundamental role in the paper.
The main technical difficulty encountered in the proof of the latter comes from the issue of divisibility:
let us be given a schematically written expression

0eA,

which is linear in the perturbation (so that we cannot perform a bootstrap argument based solely on the
smallness on e itself), while A, denotes some null-form depending on a priori controlled components .
“Divisibility” means the property that upon suitably truncating time into finitely many intervals I; whose
number only depends on ||¢||s, one may bound the expression by

10" €A |In (1, xr2) < [l€lls

In other words, by shrinking the time interval, we ensure that we can iterate the term away. While this
would be straightforward provided we had an estimate for || A, ||z - (which is possible in space dimensions
n > 4), in our setting, the spaces are much too weak and complicated. Our way out of this impasse is to
build those terms for which we have no obvious divisibility into the linear operator, and thereby form a
new operator
Oge:= 0Oe+ 2:0"eA,

with a magnetic potential term. Fortunately, it turns out that if A, is supported at much lower frequencies
than e (which is precisely the case where divisibility fails), one can establish an approximate energy
conservation result, which in particular gives a priori control over a certain constituent of || - ||s. With this
in hand, one can complete the bootstrap argument, and obtain full control over |€||s.

Having established control over the lowest-frequency “essentially non-atomic” approximating wave map in
Section 9.4, we face the task of “adding the first large atomic component”, ¢™!. It is here that we have to
depart crucially from the original method of Bahouri-Gerard: instead of studying the free wave evolution
of the data, we extract concentration cores by applying the “twisted” covariant evolution associated with

DAn’U, = 0’

which is essentially defined as above. The key property that makes everything work is an almost exact
energy conservation property associated with its wave flow. This is a rather delicate point, and uses the
Hamiltonian structure of the covariant wave flow. It then requires a fair amount of work to show that the
profile decomposition at time ¢t = 0 in terms of covariant free waves is “geometric”, in the sense that the
concentration profiles can indeed by approximated by the Coulomb components of admissible maps, up to
a constant phase shift, see Proposition 9.24.

Finally, in Proposition 9.30 we show that we may evolve the data including the first large frequency atom,
provided all concentration cores have energy strictly less than Fe,;s .

As most of the work has been done at this point, adding on the remaining frequency atoms in Section 9.9
does not provide any new difficulties, and can be done by the methods of the preceding sections.

In conjunction with the results of Section 7, we can then infer that given an essentially singular sequence of
wave maps u”, we may select a subsequence of them whose Coulomb components 17, up to re-scalings and
translations, converge to a limiting object W3 (¢, x), which is well-defined on some interval I x R? where
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I is either a finite time interval or (semi)-infinite, and the limit of the Coulomb components of admissible
maps there. Moreover, most crucially for the sequel, U2 (¢, x) satisfies a remarkable compactness property,
see Proposition 9.36. This sets the stage for the method of Kenig-Merle, which we adopt to the context of
wave maps in section 10.

2. THE SPACES S[k] AND NJ[k]

Sections 2-5 develop the functional framework needed to prove the energy and dispersive estimates
required by the wave map system (1.12)—(1.14). The Banach spaces which appear in this context were
introduced by Tataru [61], but were specified in this form by Tao [56], and developed further by Krieger [22].
We will largely follow the latter reference although there is much overlap with [56]. We emphasize that
this section is self-contained. The spatial dimension is two throughout.

2.1. Preliminaries. As usual, P, denotes a Littlewood-Paley projection* to frequencies of size 2¥. More
precisely, let mg be a nonnegative smooth, even, bump function supported in |£| < 4 and set m(§) :=
mo(§) — mo(2£). Then

> m(2F) =1 V¢eR*\ {0}

keZ

and ﬁ;:f(ﬁ) = m(275€) f(€).

In the sequel, we shall call a function f adapted to k, provided its Fourier transform is supported at
frequency ~ 2F.

The operator Q; projects to modulation 27, i.e.,

Qib(E,7) == m(27 (7] — |€)b(r, £)

with ° referring to the space-time Fourier transform. Similarly,

QFo(e,7) 1= m (277 (7] = [€))) Xro01 (7 )

Then the relevant X; ¢ spaces here are defined as

1
l6lx 0 = 2sk(22JPQ||Pij¢||szg )

If Pig = ¢, then [|gl| oz S 0]l o34 as well as [|g]]ze, S 19l

In what follows, Cy is a collectlon of caps k C S! of size C~12¢ and finite overlap (uniformly bounded in ¢

and with C some large absolute constant). There is an associated smooth partition of unity > o, ax(w) =
1for allw € S*, as well as projections Py f(£) = a, (@ F(€) where € := |— By construction, Py, := Pyo Py

€
is a projection to the “rectangle”

(2.1) Ry = {|¢| ~ 28, €€k}

in Fourier space. For space-time functions F' we shall follow the convention that

PoF = [an(©)Xir>0 F(& )] + [as(=) X (r<o (€ T)]Y
We will also encounter other rectangles R which are obtained by dividing R}, , in the radial direction into
27™ many subrectangles of comparable size where m < 0 is some integer parameter (it will suffice for us
to consider £ < m < 0 where x € Cp). The collection of these rectangles will be denoted by Ry x,m, and we
introduce projections Pg so that ) ReRy . .. PR = Pi. Figure 1 exhibits such a collection of rectangles.

The sector ABCD is of length 2 and width 2%, whereas the shorter segments AP;, P; P, etc. are of
length 2%+,

4Strictly speaking, these are not true projections since Pl? # Py, but we shall nevertheless follow the customary abuse of
language of referring to them as projections. The same applies to smooth localizers to other regions in Fourier space.
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FI1GURE 1. Rectangles

We shall frequently use Bernstein’s inequality: if supp((ﬁ) C Q, where Q C R? is measurable, then

lolly < |Q|%7%||¢||p for any choice of 1 < p < ¢ < oo. We shall also require the following variant of
Bernstein’s L2 — L* bound, which is obtained by combining the standard form of this bound with the
L} (RY2)-Strichartz estimate for the wave equation. This type of estimate appears in [57], but the
following formulation is from [22], which involves one further localization on the Fourier side. We present
the proof for the sake of completeness.

Lemma 2.1. Let Dy be a cover of {|¢| ~ 2F} by disks of radius 2¥+¢. Then for all j <k,

1
2 L 3k _j—k
(2.2) (> IPQol )" S 252% 25 0l 2n

CG’Dk)g
for any ¢ which is adapted to k.

Proof. We follow the argument in [56], but use the small-scale Strichartz estimate of Klainerman-Tataru
at a crucial place, see Lemma 2.17 below. First, set 7 = 0, whence k& > 1. Construct a Schwartz function
a(t) whose Fourier transform is supported in |7| < 1, and which satisfies

1 :Za3(t—s)

SEZL
for all t € R. Then

1PQotbllr2ree < 1Y a’(t — 8) PeQot || 210

SO et = 9)PeQotllFz ) S O llalt — 8) PeQotr |17 4)?

Now one notes that the function a(t — s) P.Qo1 satisfies almost the same assumptions about modulation
(~ 1) and frequency localization as P.Qot. Therefore, we can apply the improved Strichartz estimate of
Klainerman-Tataru [21] to estimate

3k L
laft = $)PQu¥llzsze S 2¥ 24P oy
k
Thus

3k

3k L
[PeQo¥|p2ree <2422 (Z la(t — s)QoPcwlli

1
O,%,oo)z
SEZ k

3k

36 L
S 2922 PeQotllpa L2
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The lemma follows via Plancherel’s theorem. |

The previous proof was based on the following small-scale version of the usual L L3°-Strichartz estimate.
It was obtained by Klainerman and Tataru [21].

Lemma 2.2. With Dy as above, one has

1
. 2 £ 3k
(23) (X IR ) " S 282% ) fe

CE'Dk,g

for any k-adapted f. In particular,
1
2 L

(2.4) (> 1Posss)” S 25091l s 44

X
CGD;CJ

T leo

for any Schwartz function ¢ which is adapted to k.

2.2. The null-frame spaces. In contrast to sub-critical H $(R?) data with s > 1, it is well-known that
Xsb spaces do not suffice in the critical case s = 1. Following the aforementioned references, we now
develop Tataru’s null-frame spaces which will provide sufficient control over the nonlinear interactions in
the wave-map system. For fixed® w € S' define

(2.5) 0F = (1,4w)/V2, t,:=(t,x)-00, x,:=(t,x)—t,00
which are the coordinates defined by a generator on the light-cone. Recall that a plane wave traveling in
direction —w € S™! is a function of the form h(z - w + t) (and h sufficiently smooth). We write a free

wave ¢ as a superposition of such plane waves: with x C S* and Py ,, the projection to [£] ~ 2% and ge K
as defined above,

Pk’ﬁ(;s(t7 x) = / ei(tlﬁl-l-w‘f)pkﬁf(g) d¢
[1€]~2¥]

= / /[ : e"(m““)f(rw) rdrdw
Kk J[r~2F

(2.6) = /¢k7w(t+x~w) dw,
where

Vi w(8) ::/[ - e f(rw)r dr

The argument of vy, in (2.6) is v/21,,, whence

(2.7) J

1k
|12, Lo dw S[R[222(| Py s fll2

tw Ty

We now define the following pair of norms®
(2.8) IGINFafs) = wigndist(M/‘f)_1||G||ngng
(2.9) lollpwals) = J,Iéﬂ 16llL2 Lo

which are well-defined for general Schwartz functions. The notation here derives from null-frame and
plane wave, respectively. The quantities defined in (2.8) and (2.9) are not norms — in fact, not even
pseudo-norms — because they violate the triangle inequality due to the infimum. This indicates that we
should be using (2.8) and (2.9) to define atomic Banach spaces (which is why we appended “A” in the
norms above). First, recall from (2.6) that

thlﬂ(ﬁ(t»w) :/T/Jk,w(ﬂtw)dw

5Henceforth, w will always be a unit vector in the plane.
6The dist (w, x) ™! factor in the NFA[s]-norm arises because of a geometric property of the cone, see the proof of Lemma 2.4.
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Then (2.7) suggests that we define

1P wtllowter = [ Wl o do = [ Tonallpwags do
In other words, PW[k] is the completion of the space of all functions ¢ which can be written in the form

(2.10) = Ny, D INl<oo, [¥jllpwap <1
J

J
where A\; € C and 1; are Schwartz functions, say. The norm of any such ¢ in PW[x] is then simply the
infimum of ) ; |\;j| over all representations as in (2.10). By Hoélder’s inequality we now obtain the simple
but crucial estimate
|OF ||npaps < dist(x, H/)_l||¢||PWA[:@’]||FHL5L§

provided ¢ is a PWA[k]-atom. This suggests that we also define NF[x] as the atomic space obtained
from NFA[x] as usual: the atoms of NF[k] are functions ¢ for which there exists w ¢ 2k such that
lloll rirz < dist(w, k). The previous estimate then implies the bound

(2.11) [ F N < dist(r, &) [ dllpwpe |1 Fll 222
The dual space NF[s]* is characterized by the norm

[¢llnrppe)- = sup dist(w, &)@l Lge 2 < o0
w K

We now turn to defining the spaces which hold the wave maps.

Definition 2.3. Let ¢ be a Schwarz function with supp(¢) C {&€ € R? : |¢| ~ 28}, Henceforth, we shall
call such a ¢ adapted to k. Define

_1._k
(2.12) 19llsik,m) = @l Leerz + [K]7227 2 [|@llpwin) + |BllNE=(x)
(2.13) [18llsik) = l@llzerz + 1Q<rr28ll o300 + 1Q2kBll ¢ 3eiicr2

1
(2.14) +supsup 2492 % (3 QP )

JEZ £<0 ceDr . L
1

2.15 +sup su su ( PrQZ 2 H>2
( ) ipegji)oo ZSmI;O Z Z | Rngze ¢H5[k, ]

KECy ReRk,in,m

Here P, and Pgr are as above, and € > 0 is a small number (e = 1—10 is sufficient).

The factors |«|~227% in (2.12) are from (2.7). By inspection, the norm of S[k, «] is translation invariant,

and

(2.16) I fDllsirn) < [1fllse 1Dl sprw)
One has the following scaling property:
(2.17) 19llsik) = Al sppam;,  A=2", meZ

It will be technically convenient to allow noninteger k in Definition 2.3. The only change required for this
purpose is to allow j,¢,m € R in (2.14) and (2.15). In that case one has

(2.18) 19llsi) = M@ sprtrog, ) YA >0

Later we will need to address the question whether ||Py¢| s[4 is continuous in i near h = 0 for a fixed
Schwartz function ¢. Henceforth, we shall use the operator I := 3, , PrQ<x and I°:=1—1 (we will also
use Q<p+c instead of Q<y). Moreover, we refer to functions which belong to the range of I as “hyperbolic”
and to those in the range of I¢ as “elliptic”. Since

||Q2kpk¢||xlf:,%,1 S ||sz-Pk¢||X;%+s,1_5,2

one concludes that the energy norm L{°L2 in (2.13) as well as the Strichartz norm of (2.14) are controlled
by the final norm of (2.13) for the case of elliptic functions (for the Strichartz norm use Lemma 2.2).
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We first verify that temporally truncated free waves lie in these spaces (with an imbedding constant that
does not depend on the length of the truncation interval).

Lemma 2.4. Let k C S' be arbitrary. Then

(2.19) 1@l sik,) S 1Pk, ®ll 40,30

as well as

(2.20) 1PrQ<k®llsin) S [1PeQ@<k®ll 40,41
In particular, if f is adapted to k, then

(2.21) Ix(t/T)e™Y =2 fllsw < ClI 22

with a constant that depends on the Schwartz function x but not on T > 27F.

Proof. We assume that ¢ is an X%zl atom with Py.¢ = ¢. Then from Plancherel’s theorem and
Minkowski’s and Hélder’s inequalities,

. J
9llzoore S ||¢||L§L1 S 22 ||¢||LfL§

; 1,7 ; 1
P E T PP ) E Y

2%
(2.22) lollpse 2 S ——F7—

to Lz, ~ dist(/i,w) H(bHngLiw

In the final estimate (2.22) we used that <t({,,T,) ~ <(w,w’)? where £, is the line oriented along the
generator parallel to (1,w) and T, is the tangent plane to the cone which touches the cone along the
generator {,.. To establish (2.20) we begin with

s (Y ||PRQ§2£¢H;§%J)§suqsn.

XO,%,I
£<-100 KECy RER}Q,:&MA 0

which is obvious from orthogonality of the Py 1. In view of (2.19), this bound yields the square function
in (2.15). The energy is controlled via the imbedding ||¢|perz < ||| whereas the Strichartz
component of S[k| is controlled by Lemma 2.2.

Finally, the statement concerning the free wave reduces to the case k = 0 for which we need to verify
the bound

. 1
XO,§,1)

S 2 TR(T | + [elym27 |7 (€D FE)l 2 2+

JEZL
1
I i 2 3
+ (SNl £ [elm(@ D F©I2as2) <15l
JEL
which are both clear provided T' > 1 due to the rapid decay of x. O

Naturally, S[k] contains more general functions than just free waves. One way of obtaining such functions
is to take ¢ = O'F, in other words from the Duhamel formula. We will study this in much greater
generality in the context of the energy estimate below, but for now we take F' to be a Schwartz function.

Remark 2.5. The bounded function ¢ defined via its Fourier transform
3(7,€) = xa(E)x2(1¢] = 7D (1&] = 7))~

belongs to S[0] but is not a truncated free wave. Here x1 is a smooth cut-off to || ~ 1, and x2(u) is a
smooth cut-off to |u| < 1/10. We leave it to the reader to construct other functions which lie in S[0] and
which are not (truncated) free waves.

The following basic estimates will be used repeatedly:
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e if ¢ is adapted to k, then
(2.23) 1Qs9ll2222 S min(2-0=NGE=), 1)2- gy
(2.24) 1Q 8l ez~ < 2¢2"T O min(2-URGE=9) 1)27% 6] 51y
This follows from the X*"% components of the S[k]-norms, as well as the improved Bernstein’s

inequality of Lemma 2.1.
e The duality between NF|[x] and NF*[] implies

(2.25) (¢, F) S [10ll s, | 'l

In what follows, © := sign(r)g, and for any w € S*, II, denotes the orthogonal projection onto
NP(w) := 6 (the null-plane of w).
Lemma 2.6. The projection 11, satisfies the following properties:

e Let F C Cy be a collection of disjoint caps. Suppose that w € St satisfies dist(w, ) € [a,2a] for
any k € F where o > 2¢ is arbitrary but fized. Define”

(2.26) Teo={(7) : €]~ 1, © €, [I§] = |7]| S 02}
Then {I1,(Tx.o) }rer C NP(w) have finite overlap, i.e.,
> X7 <C

KEF

where C' is some absolute constant.
o Let

S = {(i|§|,§) L EER? Ec im}

be a sector on the light-cone where k C S is any cap. Furthermore, let w & 2K and S = I, (S).
Then on S the Jacobian % satisfies

(2.27) ] ~ d(w, k)2

‘ﬁ
3
The same holds on 11, (S,) where
Soi={(xlel +0,6) : €€ R g~ 1, Ee Hn)

provided a is fixed with |a| < |k|d(w, K).
Proof. Denote

Sp i ={s(L,w) +p(l,-u) : v €k, 1 <s<2, |p| <h}
where h will be determined. Then

{TL(Se)ther = {80+ pi : W' €k, 1 <s<2, |p| <h}
where

7= t(w,w) = (1,u) - AN1l,w), @:=(1,-w)—pl,w)
with A = 2(1+w-w'), p = 3(1 —w-w’). Recall that dist(w, x) ~ dist(w, k') =: o where x € F is arbitrary.
Moreover, diam(x) ~ 2° =: 3. One checks that

5 = V2= 2) ~ Vi ~

Furthermore, 87 := (0,w'") — Fw- w'*(1,w) denotes the derivative 8y where we have written o’ = ¢’
Then |07] ~ 1 and

0’

1
FAOT = (1,0 —w+ ) A (0,') = Jw- ' (1,) A (Lw)

"An important detail here is that these dimensions deviate from the usual wave-packets of dimension 1 x 2¢ x 22¢.
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FIGURE 2. The projected sectors

satisfies | A 7] ~ 2. In conjunction with |#] ~ « this implies that |< (¥, d7)| ~ «. Since
|7(w, w’) — T(w,w"”)| 2 W —w' Vo, " er

it follows that

(2.28) dist(o(w,w’), o(w,w")) 2 a|w’ — "

where
o(w,w) = {st(w,w) : 1<s<2}

Therefore, one needs to take h = «f to insure the property of finite overlap of the projections. This
is optimal, since one can check that ' and @ always satisfy |cos(<(¥,w)| < i. In Figure 2 the left-
hand side depicts four sectors as they would appear on the light-cone, whereas the right-hand side is the
projected configuration in NP(w) with A" := II,(A) etc. Note that the segments A’B’ as well as A'P’,
P'Q’, Q'R', R'B’ have lengths comparable to the corresponding ones on the left, i.e., AB etc., whereas
the lengths of A’D’, B'C" are those of AD and BC contracted by the factor . Finally, we have shown
that <(A’B’C’) ~ « (and similarly for the angles at the points P’, @', R’) so that the height of the
parallelogram A’P’X’D’ is proportional to « times the length of A’P’, see (2.28).

The second statement of the lemma follows from the consideration of the preceding paragraph. ([

As a consequence of Lemma 2.6, we now show that the square-function in (2.15) can always be refined
in terms of the angle.

Lemma 2.7. Let F C Cy be a collection of disjoint caps and let &' € Cyr be a cap with |Jzx C K. Suppose
further that for every k € F there is a Schwartz function ¢, adapted to k € Z and which is supported on

T = {0 :=sign(r)¢ € s, [|¢] — || S 27}

IS bl < € (3 16e )

KEF KEF

with some k € Z. Then

with some absolute constant C'.

Proof. First, one may take k = 0 and 7 > 0 (the latter by conjugation symmetry). The L® L?-component
of (2.12) satisfies the required property due to orthogonality, whereas the PW/[x]-component is reduced
to Cauchy-Schwarz (via the |x|~2-factor). For the final NF*[x] (i.., L°L2 )-component one exploits
orthogonality relative to x,, via the preceding lemma. Here w € S*\ (2+’) is arbitrary but fixed. ]
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Later we will prove bi- and trilinear estimates involving S and N space. The following bilinear bounds
will be a basic ingredient in that context.

Lemma 2.8. One has the estimates
/|22
~ dist(k, k')
|k|22%
2.30 _
(2:30) e

For the final two bounds we require that 2k N2k’ = ().

(2.29) |PF InFle) S olsm wn | Fll 22

9l sk, m 191 518717

Proof. The second one follows from the definition of the spaces, whereas (2.30) follows from (2.29) and
the duality bound (2.25). O

Note that both of these estimates have a dispersive character, as they involve space-time integrals. By
applying ideas from the energy estimate, we will improve on (2.30) in the high-high case, see Lemma 4.5.
Next, we define the spaces which will hold the nonlinearities. These spaces differ from those used for
example in [22] as far as the ’elliptic norm’ || - || . ,5 4e._1_.» is concerned. Here the extra ¢ ensures that

we get exponential gains in the maximal frequenc1es for certain high-high-low interactions.

Definition 2.9. NJ[k| is generated by the following four types of atoms: with F being k-admissible, either
o [|[Fllpipe <2F
o F is supported on ||¢] — |7]| ~ 27 < 2% and ||FH -1 10 <1
o '=Q>pF, ||F| . _;+€ cien <1 where e >0 is as in the S[k] spaces

e [ is the sum of wave packets F,;: there exists { < —100 such that F' =3 . F, with all supp(f?;)

supported on either T > 0 or 7 < 0, with F, supported on €] ~ 28 |1€] — |7|] < O12k+2e,
O :=sign(7)¢ € k and to that the bound

1
2
(D IPleg)* < 2"

holds.

We refer to these types as energy, e 0.4 and wave-packet atoms, respectively.

In what follows, we refer to functions ¢ adapted to some k € Z as “elliptic” iff P,Q>r¢ = ¢, whereas
those satisfying P,Q<r¢ = ¢ as “hyperbolic”. This terminology has to do with the behavior of the wave
operator O in these respective regimes. We now record a fundamental duality property of N[k].

Lemma 2.10. For any ¢ € S[k| and F € N[k] with F = P,Q<iF

(231) 16, P 5 2" 101l sy | F v
(2:32) 10 g S Wl S Doy

Proof. The duality relation (2.31) is proved by taking F' to be an atom; for the wave-packet atom use (2.25).
By definition of N[k], one has ||F| ) < HFHX,L,%,I. For the left-hand bound in (2.32) use (2.19)
k

and (2.31). ' O

As an application of the geometric considerations of Lemma 2.6 we now show that refining a wave-packet
atom yields another wave-packet atom.

Lemma 2.11. Let F =) F,; be a wave-packet atom as in Definition 2.9. Then

KECy

1
2
(2.33) ?113 €s<u£0 (Z Z Z ||PRPK:'Q<f+€’+kFHH]%IF[R’]) <C2k
'< '<is Kk k'€Cp RERy . ;
I{,Cli B
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with some absolute constant C.

Proof. By scaling invariance, we can set k = 0. Moreover, fix ¢ < £ and ¢ < j < 0. Choose v’ = w(x') €
S1\ (2x') for each k’ which attain the respective NF[x’] norm. Then one has

Z Z Z ||PRPN’Q<€+Z’FHH2NF[H/]

K K,IGCZI REROYN/J
k' Ck

SN Y A ) EIPRPe Qv el s

K w'€Cy RERg o/

k' Ck
12

(2.34) <Y i d(w,lﬁ)_QH( S |PePeQerio el )‘ 1

weST\(2k) p RER T Ltw

K IQIECZ/ € 0,r",j
K CK

2.35 < inf  d(w, k) 2||F.|?
( ) Nzweé{l\(%) (w, k)"~ HLtlegw

K

To pass to (2.34) we used the inclusion ¢(L; ) D Li (£*), whereas orthogonality implies (2.35). Indeed,
first note that

U Supp([PRPN’Q<Z+€’FH)(tw7 )]A) C Il (Supp(}-[PRPR’Q<Z+€’Fﬁ]))
twER

where the Fourier transform on the left-hand side is in z,, and on the right-hand side in (¢, z.,). Second,
the sets on the right-hand side enjoy a finite overlap property by Lemma 2.6. |

In what follows, we will often need to split a wave ¢ into ¢* + ¢~ where

¢+ = (X[TZO](i('vT))V7 ¢7 = (X[7'<0]¢;(.’T))v

The question arises whether the spaces S[k] and N[k] are preserved under these operations.

Lemma 2.12. For any Schwartz function ¢ which is adapted to k,
6= s < Clldll s IF% | 5 < CIIF |y

with some absolute constant C.

Proof. We set k = 0 and assume that ¢ is adapted to k = 0. Let xo be a bump function on the line with
Xo(T) =1on7>—-C"1and xo(7r) =0 if 7 < —2C~! where C > 1 is some large constant. Then

O (7.€) = xo(r = [EDXr200(7. &) + (1 = X0) (7 = [€DX(r2019(7 €)
Denote the two functions on the right-hand side by ¢(+1) and ¢(+:2)| respectively. Then
(2.36) Y =g p
where g is a measure of bounded mass. Therefore,
16 P50 < Cllllspoy
Next,
1 < Cllellspo

1
5o

162 150 < Cllo™H2]|
XU

where we used the Plancherel theorem in the final step.
For N[k] it will suffice to check the case of L} L2-atoms. For these, we write

rt = p+1) + F(+2)

as above. The first term here is fine from (2.36), whereas the second is placed in L?L2 and bounded by
means of (2.32). O

Another piece of terminology used by Tao is the following:
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Definition 2.13. We shall say that a family {ma}e is disposable, if Tof = (maf)Y = f % o where jiq
are measures with uniformly bounded mass:

sup [|pa < € < o0
[e3

with some universal constant C.

Clearly, disposable multipliers give rise to bounded operators on any translation invariant Banach space.
Thus, if X is a Banach space of functions on R**! with the property that for all f € X one has

IFC=wlx =Iflx VyeR"!

then sup, |Tafllx < C||fllx. The following observation will be a useful device for removing frequency
cut-offs.

Lemma 2.14. The families
{kaf‘é}k,n’ {Pij}jZk7 {PkQ<j }jzk’ {Pin:k—C}k

are disposable. In the first family k is any cap, whereas in the last family C > 0 has to be chosen such that
the support of the multiplier associated with PyQ<p_c does not intersect 7 = 0. In addition,

{Pe.xQ<hyoe}
is disposable where k € 7. and  is any cap with diam (k) ~ 2° with £ < —100 arbitrary.

Proof. Without loss of generality one may take kK = 0. Then these statements reduce to simple exercises
in harmonic analysis. O

The following fact will serve as a substitute for the previous problem in a non-disposable context.
Lemma 2.15. Q;, Q; are bounded on LPL? for every 1 < p < oo with a constant independent of j € Z.

Proof. The inverse Fourier transform of ), with respect to time alone is
/eit7m0(2_j(7' - |§|))ﬁ(7, &)dr
=2 /m\o(Qj(t — ))ellelt=3) p(s, €) ds

where F'(s, f) in the second line denotes the Fourier transform with respect to the second variable. Con-
sequently,

1Q<;Fllrizz < llmollxllFllzsre

as claimed. ]
The previous result, combined with Lemma 2.7, implies the following square-function bound.

Corollary 2.16. For all j,k € Z and all k—adapted Schwartz functions ¢ one has ||Q<;¢llsp < Cll@ll s
with some absolute constant C'.

Proof. We may again take k = 0. The L{°L2-component of the S[0]-norm is covered by Lemma 2.15. The
X*b4_components are obvious , the Strichartz norms as well by construction, and the square-function is
a consequence of Lemma 2.7. ]

We remark that the analogous statement for N[k| holds as well, see Corollary 2.23 below. Next, for the
sake of completeness we state the full range of Strichartz estimates that follow from (2.14).

Lemma 2.17. For any 4 < p < oo and 2 < g < oo which satisfy 1% + Q—Iq < i,

3 2 2 4 12
(2.37) ( Z ||Pc¢||im) < 02t0=5—5=F)ok0—3 q)||¢|‘s[k]

c€Dy ¢

for any k € Z, ¢ <0, and with an absolute constant C.
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Proof. Assume first that 1% + 2—1q = 1. By interpolation, and with 6 = %,
1 1
2 2(1-0)\ 2
(2 1Polis)” < (3 IRl 1Pl
c€Do ¢ c€Do ¢
] 1-9
2 2
(2.38) (X IPwBe) (X IPSIR )
c€Do e c€Do,e

1_
< 2°G =9y g

To pass from (2.38) to the last line, one uses (2.14) as well as the energy component of (2.15). For larger
1 2 1

q, one gains a factor 226z=3—79) by Bernstein’s inequality, and rescaling to frequency 2* yields a factor
. 1 2
of 28175 73) as claimed. ]

Finally, we conclude this section with the following useful fact.
Lemma 2.18. Let ¢ be adapted to 0. Then for any mg < —10,
1
3
(> 1Pwbl3ese)” S Imolllsio
KECm,
Proof. First,
1 1
3 3
(> 1Ps@ezmetlizsz)” S (D 1Pos@szmodlinn)” S I9llso
KECWLO K€C7n0
by (2.15). Second,

Y (X IReelin) s Y (X 1l )

2mo<€<0  KECm, 2mo<l<0  KECm,

< Imolll 9l spo)

[N

And third,

[ Po,x @08l Loor2 S HPo,ano¢>||Xg,%,1 S [1Po.s@20¢| o122
whence

1 1
(2 1Pow@sodllEers)” S (D IPon@06)%01-c2)"
KECmg KECmq
S 1PoQ208| 012 S (|4l 5ol

as claimed. 0O

The central problems concerning the S[k] and N[k] spaces are how to obtain an energy estimate and
how to control the trilinear nonlinearities appearing in the gauged wave-map system. We begin with the
energy estimate, and then develop bilinear bounds which are preliminary to the central trilinear bounds.

2.3. The energy estimate. The purpose of this section is to prove the energy estimate in the context of
the S[k] and Nk] spaces, see Proposition 2.26 below. First, we require some technical lemmas. The first
two of these lemmas will arise in the Duhamel integral.

Lemma 2.19. For any F which is k-adapted and satisfies F = Q<ptcF,
(2.39) Ixe+Flingg S 1E v

where xr+ acts only in time.
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Proof. We may assume that k = 0. This is clear if F is an energy atom. Next, we consider the X 0,—3.1_
atoms. First, let F' be supported on €] ~ 1,]|¢] = |7]| ~ 27 with ||FHL§L£ < 27/2, Then
Ixr+ Fllnjo) S I1P<; Ocre ) F [ vioy + [P (xe+ ) F'll o)
S 2_j/2||P<j(XR+)F||L§Lg + ||PZJ(XR+)F”L1L2
S 2792 P (xre )z I Fl p2rz + I1P; ) 2 | Fll 2z
S 2_j/2||F||L§L§ <1

Now let F' be a wave-packet atom, i.e., for some ¢ < —100,

F= ZFm supp(]/:’\,{)C{T>0, ‘£|N17 ||£|_7—|N22€7 @GKJ}
KECy

and 32, || FylRppg < 1. We write, with j = 22,
Xe+ = Pej(xr+) + P> (xr+)
as before. Then P.;(xg+) does not significantly change the support properties of F),. Moreover, since

| P<j(Xr+)lloo S 1, we see that Pej(xg+)E is essentially a wave-packet atom. On the other hand, since
[Fll 22 < 27/2 from (2.32) we conclude that

(2.40) 1P (X ) Fllpize S 27721 F 22 S 1
which proves (2.39). O
It is important to note that the previous lemma fails for functions in N[0] which are “elliptic” since the

Sl g
X, ate =162 1 orm is finite on functions which are too singular. But in the elliptic regime, there will be

no need for the Duhamel formula and thus for Lemma 2.19.
A technical variant of the preceding lemma will be needed in the proof of Proposition 9.14:
Lemma 2.20. Let F' be as in the preceding lemma, k C S*, and w ¢ £2k. Then for any ¢ € R we have
1PQ%,oXtu>cFllng S IF v
where the implied constant only depends on C' and |k|.

Proof. 1t is essentially identical to the preceding one: one replaces g+ by Xt >c and L{ L2 by Lj L2 . O

The Duhamel formula (in other words, O~!) introduces a Hilbert transform in the normal direction to the
light-cone. The following lemma is of this type.

Lemma 2.21. Let n be a smooth function on R such that 0 < n < 1, n(u) =1 on -1 < u < 1,
supp(n) C [~2,2], and n'(u) > 0 on u <0, and n'(u) <0 on u > 0. Define 7 (t) := X[0,00)1(t/T) for each
T > 1. Then, with X = X[0,00)7’,

(241) T () =~ (R(T7) +1)

In particular, nt (1) = ant (at) for all0 < a < 1 and

— B d — _
xS 7 [ ()] S 1172
Moreover, let i = p(7) be a smooth function on [—1,1] with u(0) =1 and p > 1 on [—1,1]. Then

sup [nf (1) — nf- (u(r)7)| < Clli' |l
T —_

with an absolute constant C. Finally, if T' € [T/2,2T], then

[n:(7) = m(7)] < CTmin (1, (T|7[) 1)
with a constant C that only depends on x.
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Proof. Integrating by parts in
w0 = [Tt du
yields (2.41). In particular, -
|7 (7)| < |7~ min(T|7], (T|r[)~*%%)
and similarly for the derivatives. Next, write
1 1

() = (u(r)T) =~ (R(T7) +1) o

(X(Tp(r)T) +1)

In view of our assumptions on u,
[T 1= () ™H] S Il
and similarly for the terms involving X(7'7). The final statement is an immediate consequence of (2.41). O

The following representation of waves O~ F with F a null-frame atom will be useful in several instances.
Hence, we state it as a separate fact.

Lemma 2.22. Assume that F € N[0] is a wave-packet atom, i.e., F = F* =% . F, with

> Pl g <1

KECy
for some £ < =100, see Definition 2.9. Then

P(t) =0 'F(t) = /0 Sln((tV_S)MF(S) ds

admits a decomposition of the form

(2.42) =07'Fi+ ) / o+ Bra¥i,)da

KECy

where || Fi|[pi2 1 and

sup [ Buallzz, < C, Z / 190l o 4. da < Cl| Eellnegs
K,a Xo

with an absolute constant C' whence
2
sup 7 ([ 1l oy d0) 51
j=1,2"7

Finally®, for j =1,2

(2.43) supp(‘lln a) C Csupp(F ), supp(3m7a) C C’supp(ﬁ;)
for all a and k and some absolute constant C.
Proof. As in the proof of Lemma 2.19, we first write
Xr+ = P>20(Xp+) + Pe2e(Xr+) =0 X1+ X2
Then Fy := x1 F' satisfies || Fi1[|p172 < 1, see (2.40). On the other hand, I := x2F is again a wave-packet
atom at essentially the same scale as F, i.e., F» = ZHGC@ ﬁ,i with

> e <1

KECy
Define @ := O~ 'F,. Then ® = Y- limg_,o0 P70 with

D (L) := /_00 sin((t|—v|s)|V)n;:(t — s)ﬁm(s) ds

8Here cE denotes the dilation of the convex set E about its center of mass by the constant c.
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It suffices to prove that
Q7 = / (\IllT,ma + BT,K»‘I\P%K,G) da

where
sup sup | Brx,allc S 1
T>1 a
and
(2.44) Sup sup / 1l ot da < [ llrpe
j=1,2T>1 Xo

both uniformly in .
Fix k € C; and w = w(k) € ST\ (2k) so that

d(w, k) Ml 12 < 20 Fellxer

As usual, we foliate relative to t,,. More precisely, define

fa(@o) = Fe((t,2)(a, 2.,))
where t,, = a means that
(t,x)(a,z,) = ab} + z,,

By Lemma 2.6
(2.45) SUPp(fa) C Hw({(Tv §) €l ~1, EAE g T =€l S 2%}) = Rew
Let (t,,z.) denote the null-frame coordinates. Then
2¢!
2.46 T— | = “ (1, — h(&,
(2.46) €= \5|( (&)
where & := ¢, -0, and, with |£,]? = (€1)2 + (€2)?, one has h(&,) == (€ Moreover, |£1] ~ d(w, k)? and

2¢
|€2] < d(w, k) by elementary geometry (cf. Lemma 2.6). We define

Pn,wf = ‘Fﬁl[XRN,w (gw)f(vagw)]

where xg, , is a smooth cut-off adapted to the rectangle xg, , in the §,-plane. Furthermore, we set
Luf = FH mo(277 O (5,0) (o = h(8))) f (7 €0)]
By construction, PK,’WQ;%W is essentially the same as Py ,Q<2¢, see Lemma 2.6. In fact, one has
Fr = PrwQLy  Fr
and PH,wQ;%,w is disposable. Clearly,
b7, = /(I)T,m,a da

where IS
Or ralt) := n,wQ;%,w [m Tn
Then ®r o = Po,Canzerc(I)Tﬁ,a and
(2.47) Bra = PrwQEg, F (nf (7 — [€]) = mp (1] +7))e ™ fu(€)]
We claim that the contribution of |1;£(|§| +7)| £ 1 to (2.47) can be added to \I’lT,,M- In fact,
1Q22esc FHOMET™ X (€)fal €] .1
(2.48) S 2 mo(27* 7 (r = [ED)X R, (€0) fal€o) | a2

5 Z%d(w’ "’i)_leaHL2
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which is better than needed. To pass to the final estimate here we used Lemma 2.6, especially (2.27);
the latter estimate can be applied for fixed 7, since then &, = £, (&, 7). Next, we split the contribution of

—

n7(|€] — 7) to (2.47) into several pieces. Since 7, — h(&,) = 0 implies that
20¢] = 7+ [¢] = 2h(€) V2 + & - e1] = g(€)
where e; = (1,0,0), one has by Lemma 2.21
2o (o~ b)) = O( ) = O(dw.)?)
9(&) & ’

In view of (2.48) (which gains a factor of 22¢ < d(w, k)2), the contribution of (2.49) to (2.47) can again be

(2.49) ni(r = €1) — i (

added to \Il} war Set b =0(&,) = gQéE). Furthermore, set by := b( 5,0)) where ¢ € R, . is fixed, cf. (2.45).
In view of Lemma 2.21,
251 T
§w — h(&w
T (e (e = M) =7t = )
(2.50) = b b (o — h(£w)) + O[T min(1, (T — [€]}) 1))

where we used that b ~ by on R, . The computation from (2.48) above now shows that the O(-) term
in (2.50) can be added to W}, , . It therefore remains to analyze the contribution of the first term in (2.50)
0 (2.47). Define

Brox(t,x) = /n;:)T(tw — s5,,)e "t T59) NG (As,, ) dse,

where 2/7¢d~2(k,w) =: A (recall that mg is even). On the one hand, ||Brq..| < |01 and on the other
hand,

PowQtar., F b 00 0 (m — hE))e ™™ fu(€0)]

= Brax F16(1w — h(EL)) xRN,w@w)gQ(?;)e‘ih(f““f;(sw)

. 2
= BTqaylf\IlT,n,a

By inspection, the Fourier support of U7, . as well as that of By, x¥% , , are no larger than that of the
original wave-packet F,, (up to a dilation by a constant). Finally, by a calculation similar to (2.48),

985 all o0 5 77 507 (&) S0 (€ €] oy

. — ( ) et (w)a ¢
,S d(w, 5)2 lljgljgop H]: 1[ ( ( |§|)) 251 hig KW (gw)fa(gw)mxg,%,l

< d(w, %) | fallz2

This concludes the proof of the lemma. O

In passing, we now prove the analogue of Lemma 2.15 for null-frame coordinates, which then gives
Corollary 2.16 for the N[k| spaces.

Corollary 2.23. For all F € N[k] and all j € 7Z one has |Q<;F||np < C||F||nw with some absolute
constant C'.

Proof. This is clear if F' is either an energy or a X®b_atom. Therefore, suppose that F' = ) _F, is a
wave-packet atom with & = 0. It suffices to prove that

HQSanllNF[I{] < CHFHHNF[I{]
This in turn follows from

(2.51) 1Q<iFulluy 12 < CllFulluy 2.
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which holds uniformly in w € S\ (2x). Fix such an w and apply Plancherel’s theorem in z,,. By (2.46),

FaQajFultune) = [ ma(27 2+§T£|( = (€)1 dry FaFy(s,6) ds

where for our purposes here F; refers to a partial Fourier transform relative to the second variable x,,. In
view of [£L] ~ d(w, k)?,

|-7:2 Q<j wafw ’/ 7j

2.,
T+ €]

SN 2jd(w7 5)72 /<2jd(w7 H)iz(tw - Sw N|-F2 Swagw ’dsw

(r = () )€™ || Fa (s 0 s

Performing an L estimate followed by an L;  bound yields (2.51). O

Finally, there is the following simple fact that will play a role in the proof of the Strichartz component
of || - [ spx-

Lemma 2.24. Let agym >0 for all1 <m < M and 1 < k < K. Suppose Zle apm < o for all m where
o >0 is arbitrary. Then

K M 1
(2.52) 3 ( 3 aim) oM P K
forall0 <0 <1.
Proof. Denote the sum in (2.52) by S. On the one hand,

On the other hand,

and the lemma is proved. O
Now we can state the main energy bound. We begin with the easier elliptic regime.

Lemma 2.25. Let F be a space-time Schwartz function which is adapted to k € Z. Assume furthermore
that F = I°F and set ¢ := O7LF, which is defined via division by 72 — |¢|> on the Fourier side. Then

lollsimy S IF vk
with an absolute implicit constant.
Proof. We may again assume that k¥ = 0. We then need to prove that
(2.53) 60— < min (|F 1y g2, |1 Fllgo.-1--2)

since, as we observed after Definition 2.3, the norm on the left-hand side dominates the other norms which
make up || - [|gpg. If we select ||FHX8,_1—E,2 on the right-hand side of (2.53), then this inequality is obvious.

On the other hand, if we select || F|| 1112, then one concludes via Bernstein’s inequality in time. O
Next, we deal with the hyperbolic regime.

Proposition 2.26. Let k € Z and suppose ¢g, &1 are Schwartz functions in R? which are adapted to k.
Further, suppose F' is a space-time Schwartz function which is adapted to k, and which is moreover hyper-
bolic, i.e., F' = IF. Then the unique smooth solution of

D¢ =F, (4(0),9:(0)) = (¢0, 1)

satisfies
(2.54) 18llsw) < 1(dos 1)l L2 -1 + 1F vk
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with an absolute implicit constant.

Proof. By scaling we may assume that k = 0. We first assume that F' = 0. Then

F0)(€) = cos(tlE)da(€) + Si“fg“ D356

Consequently, (2.54) follows from (2.21) upon sending 7' — oc.
Next, we assume that ¢g = ¢; = 0. By the Duhamel formula,

st = )E)
a0) = / R G d

In other words, we need to show that

sin((t — s)|V
H / |>| |)X[Oym)(s)F(s)d8HS[0}§||F||N[0]

In view of Lemma 2.19, we may remove the indicator function xjo,.0)(t) = xr+(t) on the left-hand side.
This is where we use that F' = I F, but after this point we may no longer assume that F' = I'F since xp+F
loses this property.

The goal is now to prove uniformly in 7' > 1

(2.55) | [~ sintte = 1ehn - yras] S 1w
where 17 (u) := n(u/T)xg+(u) is a bump function as specified in Lemma 2.21. Denote
oo
(2.56) o) = [ sin((t~ 5)| V) (¢~ ) F(s) ds
Then the space-time Fourier transform of ¢ equals (up to a multiplicative constant)
(2.57) 6(1,€) = (7 (r = [€]) = (r + [€D) F (. €)
whence, by Lemma 2.21,
(258) 8761 < (17l = lell™ Xricao) + 7110, ) |7, )]
and thus also
(2.59) 1Q<09ll ;0.4 + @500l xg:1-22 S | Fllwio)
0

from (2.32) and Lemma 2.25. By Lemma 2.4 it suffices to assume that F' is either an energy or a wave-
packet atom. Moreover, in each of these cases the X%2:°° and X%1~=2_components of the S[k] norm of
¢ can be ignored due to (2.59). Moreover, since the X01=%2 norm controls the entire S[0]-norm in the
elliptic regime, it suffices to consider only Q<o¢.

In case F is an energy atom, i.e., || F||z1z2 < 1 standard X*° and Strichartz norms for the wave equation
bound the norms in (2.13) and (2.14), see Lemma 2.2. We are therefore reduced to bounding (2.15), for
which it suffices to verify that

sup sup sup || B sin(t|V])
<— ?00T>I;Ke£) [P0, Q@ Zog sin(tV ) f||S[On] Sfllze

for any f which is O0-adapted (the case of @~ being analogous). We can ignore the further localization to
the rectangle R due to orthogonality, cf. (2.15). The Fourier transform of the function inside the norms
on the left-hand side is

—

X (E)mo (272 (1€] = 7)) (07 (7 — [€]) = 0 (1€] + 7)) f (€)
where y,; is a cut-off adapted to the cap k. The contribution by %(m + 7) is controlled by (2.19). As for

n+(]€| — 7), one needs to show that

i+ 22530 (22 Po e g0 S 1112
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However, since the term in brackets is a bounded function uniformly in ¢, one can again apply Lemma 2.4.

Now assume that F' is a wave-packet atom, i.e., F' = ZHEC@ F,, with

(2.60) > I FllRepg <1
K€ECy

where the F; have the wave-packet form as specified in Definition 2.9. We need to show that

1

2

(2.61) s swp s (3N [PrQE o dlp.) ST

+ 0<—100 £/<m<0 W/ ECy RERg 2rs m

We first consider the case ¢ < ¢. Lemma 2.11 implies that it suffices to assume that ¢ = ¢ and to show
that, uniformly in x € Cy,

Pl s70,x] < CllFxlINFr

with an absolute constant C' where

6= [ sinl(t = IV - )FL(5)ds
However, this follows immediately from Lemma 2.22 applied to ¢,, the stability property (2.16), and the
imbedding (2.19); note that the term O~ Fy in (2.42) can be ignored as it was dealt with in the beginning
of this proof. Finally, the case £/ > £ is reduced the to ¢ = ¢ by means of Lemma 2.7 (note that the
Fourier-support of ¢, equals that of Fy).
It remains to control the Strichartz norms (2.14). Due to Corollary 2.23, we may ignore the projection Q.
We split the argument into two parts: First, we will prove the estimate

o] . 2 1
(2.62) (X |7 e reas],, ) <24 1Flv

c€Do ¢ e

for any F as in (2.60), cf. Lemma 2.1. Second, we take the n}: cut-off as in (2.56) into account which then
yields the full result. This second step is done by an adaptation of the Christ-Kiselev argument and will
result in the loss of a power 29 where § > 0 can be made arbitrarily small. Lemma 2.2 reduces the proof
of (2.62) to the bound

o0
Fis|V| <
| [~ emeimsyas], < 1l
— 00 x
By orthogonality, it suffices to show that uniformly in x
H/ eFislVIE (s dsH < inf dew.m) |y, o2

with F,; as in (2.60). By Plancherel, this is the same as

|FeHE )2 S dlw ) N Flng, 2,

~

where we choose an arbitrary w ¢ 2k. As above, we may set F,, = 0(t, — t&o))fﬁ(xw) where ¢ € R
is an arbitrary number and f, € Liw is an arbitrary function whose Fourier support is contained in the
projection of the Fourier support of F,, onto the £, -plane. This reduces us further to the bound

(2.63) 1Fol€dllzz < dlw,m) ™ fulzz

where on the left-hand side we regard £, as a function of £. By Lemma 2.6 the Jacobian obeys ‘%‘ ~

d(w, k) =2 which implies (2.63). This concludes the first step, i.e., the proof of (2.62). Note that our proof
of (2.62) applies to any F' which can be written in the form F' = )" _F) provided F}; satisfy

supp(Fy) C {€ € R? : [¢] ~ 1, £ € K}
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In other words, one does not need any condition on the modulations of F,,. This fact will be most important
for the remainder of the proof (since we will need to multiply F' by cutoff functions in time). Our next
goal is to establish the estimate, with § > 0 arbitrarily small,

(2.64) ( Z HPC /OO eF =Vt (t — 5)F(s) ds’

CGD[),[ -

2 2 .
)" 5247 Pl

LiLg

for any F' as in (2.60) but without any restriction on the modulations of each F,. For the remainder of
the proof we will fiz such a Schwartz function F. Moreover, || - ||? without any subscripts will mean the
sum in (2.60). As mentioned before, we prove (2.64) by an adaptation of the Christ-Kiselev lemma. The
latter does not apply directly since the null-frame norm in (2.60) is not of pure Lebesgue type. We make
the following preliminary observation. Let xg = xg(t) act only in the time variable and define the map
u(E) = ||xeF|? as a set function on the Borel sets of R. Then one has the following o-subadditivity
property with {E;} C R an arbitrary collection of pairwise disjoint Borel sets:

D mE) =) Ixe, FIP =33 inf dlw.m)lixe, Fullly 1s,
J J Ko

. —92 2
< ] Jnf d(w,x) Zj:HXEjFRHL}ngw

1
. _ 2
<3 o dl ) N e BellEa, ) I
K J
- ZK:JQL d(w, k)N Elzy s,
= I Fellfepg <1
K

In view of this property it suffices to prove (2.64) for F which are supported on intervals® of size T" in time
and we may also replace 77;5 by the indicator x[s<;. We now perform a Whitney decomposition of the
triangle

Ap:={(t,s) : 0<s<t<T}
by means of squares (we have shifted the support of F' to be contained in [0, 7). This yields finitely many
disjoint squares of the form

Q = {Im,n X Jm,n}nZO, 1<m<M,,

with intervals I, ,, J;m,n such that M,, < 2" and
A=) U ImnxJmn
n>01<m<2n
Ul = |Imn| =T27" V1<m< M, n>0
dist(In,n X Jmon, {s =t}) € (T277/10,10727") V1<m<M,, n>0

We call any two intervals I, J of length T2™" related provided I x J € Q. Note that any I can be related
to at most 20 of the J intervals. To each n > 0 we now also associate 2" pairwise disjoint intervals

{jm,n}lgmggn which partition [0, 7] and with the property that
M(jm,n) = N(jm’,n) V1<m,m <2"

The subadditivity of p implies that p(Jp, ) < 27". Finally, we introduce an auxiliary function ® which
is piece-wise linear, strictly increasing on [0, 7] and which has the property that ®(Jy,.n) = Jomn. In view

9Strictly speaking, one would need to choose something like 107" here to accommodate the support of T]it, but we ignore
this issue.
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of all these properties

t 2
/ :I:i(tfs)|V\F(8) ds’

LiLg

c€Do ¢

t
(Z H Z X (L) (E / eE IV g1, (8)F(s) ds

cEDo ¢ n=0

)2
LiLge

Applying Cauchy-Schwarz to the sum over n allows one to bound this further as

2
X S| X xa 8 [ Ay or@ ],
CGDQ@R 0 t e
4 3
(2.65) < 2(1 +n)? ( / eH=INVIy (5)F(s) ds‘ )
7n n L?Lgo
n=0 c€Dy,py m=1
Label the disks ¢ € Dy by {cx}E_,, K ~ 272 and denote for fixed n,
i)V 2
. 1(t—s _
km,n = ’ P., /_OO e X (s)F(s) ds‘ .
The previous bound now takes the form
) 00 K omn 1
2
p im0y (3 dh)
c€Doy,¢ LiLg n=0 k=1 m=1
In view of (2.62) (and the remark at the end of its proof concerning time cutoffs)
K
> akmn S 2xg,  F|’ =20 n) <2277
By Lemma 2.24 with o = 27", M =27, K =272
gn .
3 (3 dhr) 2
for any 0 < ¢ < 1. In view of (2.65), one obtains (2.64). O

As a simple corollary, we now obtain the following continuity result. Recall that the norm of S[k] can
also be defined for non-integer k, cf. (2.18). The continuity in & is not obvious due to the various Fourier
multipliers in (2.14) and (2.15) over infinitely many scales.

Corollary 2.27. Let ¢ be a Schwartz function in R2 which is adapted to k € R. Then
Lim [[¢llste+n = 19lls7r

Proof. By (2.18),
Ao ) s = 191l spk+108, 2]
It therefore suffices to note that by the energy estimate
A e ) sy — Ndllsm| < IATATE) = Bllspy
<O AT = A0 Loy -1 + IBAT 6(AT) = &) vy
SHAT OOT) = )0l oy g1 + IDATOAT) = D)l sz = 0
as A — 1. O
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2.4. A stronger S[k]-norm, and time localizations. The energy estimate of Proposition 2.26 and
Lemma 2.25 can be summarized as the statement that ||@|| sz S |9l sk where

(2.66) llsik) = ¢l Leerz + 18l vk

for any space-time Schwartz function ¢ which is adapted to k € Z. To see this, one estimates

9l S M ellsm + 1190l s
S (I)(0), (0edD) ()l 2 g1 + 11O npwy + 11D | wpxg
Sdlleeerz + 1100 Nk = lollsim

To remove I from the right-hand side here one uses Corollary 2.23.

We shall henceforth use this stronger norm and the resulting smaller S[k]-space. We introduce this norm
because it leads to an improvement over the bilinear bound (2.30) in the case of high-high interactions, see
Lemma 4.5 below. This improvement reflects a smoothing effect of convolutions of measures supported on
the light cone. It thus cannot be obtained using the S[k, k] norms alone, since (2.30) is based on Hélder’s
inequality

L} LY -LPLE — L}L2
which does not allow for any gain in regularity. It will be essential to note that Corollary 2.16 still applies
to the stronger norm || - ||:

Lemma 2.28. For all ¢ which are adapted to k € Z and all j € Z one has [|Q<;¢|sp < Cllollsp with
some absolute constant C'.

Proof. This follows immediately from Lemma 2.15 and Corollary 2.23. |

Another property which the stronger norm inherits is that it is finite on free wave, cf. Lemma 2.4. More
precisely, for any ¢ which is adapted to k£ and satisfies ¢ = Q<¢,

ol sie) = 1l Loz + 100 Nk
Sellegerz + 1000 oga S 1l o.g
k

X, 2
As in [22], one needs to allow for time-localized versions of S[k], both relative to the original | - [|sp), as
well as the stronger || - [|-norm. This has to do with the fact that the we need to derive a priori bounds

in these spaces for Schwartz functions 1), which satisfy (1.12)—(1.14) on some time interval [T, T]. Since
the norms of the S[k] and N[k] spaces are defined in phase space, one cannot simply define these norms
by time truncations. Rather, one proceeds as in [57] and [22] by means of Schwartz extensions: with 1
and 1 both Schwarz functions, and 7" > 0,

ol siky(-T,1xR2) == . inf | Petd | spx)

bl r1=%|[-T,
(267) ‘[ T,T] |[ T,T]

WYl st (=111 xR2) == _ inf I Petd |l sx)

‘[—T,T]:wl[—T,T]

It is easy to see that the triangle inequality holds for these expressions and that they are actually norms.
Moreover, it is clear that these norms are nondecreasing in 7. Following [22], we now verify that these
norms are continuous in 7'.

Lemma 2.29. Let 1) be the restriction of some Schwartz function 1o in R1T2 to the time interval [—Ty, T
where Ty > 0. Then

[¥llsm-1,mxR2) and [[¥llsm(-T,m1xR2)
are nondecreasing and continuous in 0 < T < Tj.

Proof. The definition of S[k] with respect to either norm can be extended to non-integer k. Given T > 0,
let |e| be very small and set A := TE=. Then

| Pebll sipy((—T—e.mte)xR2) = [Pl sk ) (— T, 1) xR2)
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where p:=logy, A and ¥y (¢, x) := Mp(At, Az), and similarly for || - ||. Clearly, for € > 0,

| Pet) |l i) ((=T—e,7+e] xR2) — | Petdll sii) (=7, 7] xR2) |

= || Pretptrllspespy (=11 xR2) — |1 Pt | spiy (7,71 x%2) |

<Pt sty (=1, 11xR2) — 1Pl spy=1,11x82) | + 1 Pot (¥ = )| st (=7, 71 xR2)
By the energy estimate,

Pt (0 — V) sthtp(— 1,113 R2) S 1Pt a (0 — V) | S [kt
SN@ =)0l 2y -1 + 1BPresn(¥ = ) N[+
SN =)0l L2y g1 + (1B Prerp (¥ — w)\)|‘L}H*1(R1+2) —0
as A — 1. By Corollary 2.27,

lim | Pt ptorll sty (-1, 71 xR2) = 1 Pet|| )=, 7] xR2)

which implies that

81_i>r51+ | Proll sy (=1 —e, 146 xr2) = 1Pl spi) (=1, 1) xR2)

as claimed. The case of T' = 0 follows directly from the energy estimate. The case of || - || is essentially the
same. g

We define localized N[k]-norms similarly, i.e.,

10| M) ((—T, 7] xR2) = inf 1 Pktdl v
Pl—r, 1= [T, 1)

for Schwartz functions. In particular, one has a localized version of (2.66)

ol st 7,11 x®2) = 1@l L2(r;L2(R2)) + 1P| Nk ([— T, 7] xR2)

Furthermore, later we will also need localized norms on asymmetric time intervals [—7”,T] for which the
results here of course continue to hold.

Finally, in the perturbative steps to follow, we will need to piece together solutions of time-localized
wave equations to solutions on larger time intervals. To justify this procedure we rely on the following
lemma.

Lemma 2.30. Let I C R be a closed interval, with a covering I = Ué\’:llj by closed intervals; assume
that the I; overlap at most two at a time, and that consecutive intervals have intersection with non-empty
interior. Then if we are given k-adapted v; with

H¢j||S[k](Iij2) Scj7 j:1a27"'5Na
such that ;|1,n1, = Yel1;n1,, then defining ¥ via |y, == v, we have

N
[llsmiaxzey < D eillsmicr, <re)
j=1

where the implied constant is universal (independent of the decomposition of I or N ). The same applies
to the norms || - || sk (1, xr2)-

Proof. Chose a partition of unity {x;} subordinate to the cover {I;}, such that suppy; C I;. We shall
select the y; in such fashion that [suppx’;| < |I; N Ix|, provided the latter is non-zero (which happens only
for at most two other k). We first deal with the || - ||gpz-norms. By assumption, we can find Schwartz

extensions @/;j of 1;, ¥j, such that ||77/~1j||5[k](R2+1) < 2¢;. We now define

~ N ~
b= X
j=1
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and verify the desired bound |1)| Sikr2t1) S Y cj. For simplicity, consider a single interval half-infinite
I; with neighboring half-infinite I, and the corresponding expression

X1 U1+ X2%/~12
Note that x] + x5 = 0 on the overlap of the intervals. It is easy to see that the only potential difficulty
in controlling [x191 + X2%2||sx) comes from the “elliptic portion” of || - ||sx), as we have introduced the

cutoffs whose derivatives we do not a priori control. By scaling invariance, it suffices to consider k = 0.
Hence consider now

PoQj[x11 + xat)e]
for some 7 > 1. We decompose this by applying a frequency trichotmoy

PoQ;[x191 + xath2] =PoQ; [Qi-10,+10] (x1)¥1 + Qlj-10,j+10] (x2)?]
(2.68) + PoQ;[Q<j—10(x1)¥1 + Q<j—10(x2)2]
+ PoQ;[Q=j110(x1)%1 + Qs j+10(x2)¥2]

We start by estimating the last line: we have

1PoQ;[@>j+10(x1)¥1 + @>j+10(x2) Y] ez, < Z 1Po@Q;[Qr (X1)Qpr—5.r+5101 + Qr(X2)Qpr— 5,r+5]1;2]||L§z

r>j+10
—(1— 7
S Z Z 27 e)r||Q[r75.,r+5]¢f‘|X—%+e,1—e,2
4=1,27>5+10 0

From here we easily obtain
> RQsQs410(x1)n + Q>j+1O(X2)1Z)2]|| s S Y el o breres
j>0(1) £=1,2

The second line in (2.68) is estimated similarly, and so we reduce to estimating

Pij [Q[j—lo,jﬂo] (Xl)@l + Q[j—lo,jﬂo] (X2)1/~}2]

We may assume that F(x1,2) decay rapidly away from frequency scale 2% > 1, say. Write

0y PoQ;[Qj-10,+10] (x1)¥1 + Q[j—10,j+10] (x2)%o]
(2.69) = PQ; [Q[jflo,jJrlO]at(Xl)'(ZJl + Q[jflo,j+10]8t(x2)"/~)2]

+ PoQ;[Q-10,+10] (x1)0th1 + Qj—10,j+10] (x2)Oy1bo)]

We start by estimating the second row: we will consider the case j = R + O(1), since in the other cases
one obtains additional exponential gains from the frequency localization of x; 2. But then we can write

Q[j—lO,j+10]at(Xl) = )ZlQ[j—1o,j+1o]5t(X1) + OL%(RiN)

where y localizes to an interval around suppy) of length R‘%, say, and similarly for xs. By picking R
large enough, we may assume that ~ y

X1¢1 = X2tp2
Thus we obtain

PoQ;1Q1—-10,j+1010 (x1)¥1 + Qpi—10,j+10)0 (x2) 2] = Z Opz(R
£=1,2
and from here we infer
||P0Qj [Q[j—lo,j+1o]3t(X1)1/~Jl + Q[j—lo,j+10]at(x2)d~)2]||X—%+s,175,2 = O(RfN,) Z ||7;[~}€||S[0](R2+1)
0 (=12

where we recall the assumption j = R + O(1). The remaining cases j < R, j > R are lead to a similar
bound. Next, consider the last line of (2.69); here we write

Pij [Q[j—lo,j+1o] (Xl)atwl + Q[j—lo,j+10] (X2)8t7/~}2]

(2.70) ’ )
= PoQ;[Qr—10,j+10(X1)%Q < j 12001 + Qi—10,54+10] (X2)0: Q < +20%2]
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But this we can estimate by

| Po@; [Q[j—lo,j+10] (Xl)atQ<j+2(ﬂZl + Q[j-10,j+10] (XZ)atQ<j+20'¢~]2]||X7%+e,1fe,2

0
<Y 270799)9,Q 200l 12

0=1,2

(2.71)

One can now perform the square summation over j > O(1), and gets the upper bound < 21:1,2 ||1/~zl HX_%J”J_"Q’
0

where the implied constant is universal.

The argument for controlling the || - [|5;-norm is similar. One uses
N N
U ZXﬂ/;j = ZXJD%’
j=1 j=1
as well as Lemma 2.19. (]

Remark 2.31. In the sequel, we shall use the preceding lemma freely without an explicit reference.

2.5. Solving the inhomogeneous wave equation in the Coulomb gauge. Consider the wave equa-
tion (1.14), i.e., Oy, = F,. Here F, is a nonlinear expression in v, but we will not pay attention to this
now. In the sequel, we shall require a priori bounds on #,, in the S[k]-space. To do so, we reduce matters
to the energy estimates of Section 2.3 as follows: writing (suppressing « for simplicity)

Oy = IF + I°F

one concludes (with both ¢ and F global space-time Schwartz functions adapted to frequency 1),

t
(2.72) B(t) = S(t — to) () [to] + / Ut — $)[F(s)ds + O-LI°F

to
where the final term is obtained by division by the symbol'® of O, and the first two terms represent the
free wave and the Duhamel integral, respectively. Note that the first term here implicitly depends on all of
¥, not just 1[tp], and so in order to actually obtain a bound on ||¢||s, one needs to implement a bootstrap

argument. Specifically, assume that we a priori have a bound on

”w‘[—To,To]”S

for some Ty > 0. Also, assume that we define I = ), ., PrQ<rtc where 2¢ > Tofl. Then, using the
energy estimate from Section 2.3, we claim that

(2.73) 1¥lls S Tg 1Yl —10m) ls + [|1Fllv

where the implied constant is absolute (the T, ' here comes from the time-derivative in the initial data).
Indeed, this follows from

(IY)[to] = (L(X[—10,70)%)[to] + (L([1 = X[=1,70]]%)) [to]
and

L (= X )l s < s

as well as

I (=70 )90l 22 = IV e d (X - m) ) 22 S T 1l —my m s
due to our choice of I. The above energy inequality then follows immediately.
It is apparent that in order to use this energy inequality, one needs to establish an a priori bound for v
on a small time interval [—Tp, Tp]. In fact, in later applications we will always split the estimates for Py
into the small-time case [t — to| < £127% and the large time case |t — to| > £127% (with a small ; that is
determined by the specific context - this then requires the constant C' in the definition of I to be large).
In the small time case, the necessary a priori bound is derived from the div-curl system (1.12), (1.13) for
the gauged components. This information is then fed into the large-time case as described above.

101y the sequel, we shall understand the operator O~ to be division by the symbol unless otherwise stated.
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3. HODGE DECOMPOSITION AND NULL-STRUCTURES

Here we introduce the actual system of wave equations for which our S and N-spaces allow us to deduce
a priori estimates. From the discussion at the very beginning, we recall that the Coulomb components ),
satisfy the system (1.14), which has the schematic form

(3.1) Do = i0° o Ap] — i0° Y5 Aa] + i0a[1° Ag]

where Ag denotes the Coulomb gauge potential

Ag =" AT [wh? — )]

j=1,2

This system in and of itself does not appear to lend itself to good estimates, and to overcome this we have
to use a key additional feature, namely the fact that the flow of (1.14) preserves the div-curl system (1.12),
(1.13) in the obvious sense: if the 1, at time ¢ = 0 are the Coulomb derivative components of an actual
map, whence (1.12), (1.13) holds at time ¢ = 0, then the corresponding solution of (1.14) satisfies this
system on its entire time interval of existence. The div-curl system allows us to decompose the components
1o as the sum of a gradient term and an error term solving an elliptic equation, see (1.15). Thus we have
schematic identities of the form

1;[}(1 = Roﬂ/""Xa

Substituting the gradient terms introduces the desired null-structure. The present section serves to make
this decomposition of the nonlinear source terms precise. We now describe this procedure for each of the
three terms on the right-hand side of (3.1). First, define 8;1 = A~19; and

Qpj (1, ) = Rpp' Rjyp® — Rjp' Rgop?
Qs (¥, x) = Rap' x5 — Rjv' X3
Qpi(x: V) = X Rj¥* — xj Rpop?

Qs (X, X) = XBXF — XjX5

Then, adopting the Einstein summation convention,

(32) 10" [ads] = i0°[a I°0] " Qp; (v, ¥)] +i0” oo 107 Qpj (1, ¥))

+i0° [t 05 Quj (1, X)] +i0° [ha 051 Qp; (x, ¥)] + 10 [t D} Qi (X, X))
The two main terms here are the trilinear ones in ¥. We introduced the modulation cutoff I in front
of Qp; since the two resulting expressions are estimated differently: for the second, one uses a trilinear
null-form structure, see (5.46) below, whereas for the first the bilinear null-form Qg; suffices. Note that
the other three terms involving x are quintilinear and septilinear in v, respectively, due to (1.16). These

are discussed in greater detail below, under the heading “higher order errors”.
Next,

—i0°[pAa) = —i0°[ihp 05 Qaj (¥, 10)] — i0° [1hp 05" Quj (1, X)] — 10° [1hp 05 Quj (X, ¥))]
—i0°[05 05 Qus (X, X))

The x-terms need to be decomposed further, whereas the main term here is again the trilinear one in 1,
which we now rewrite as follows:

(3.3) —i0°[1pg 05! Qaj (v, ¥)] = —i0° [thg 05 ' 1°Quj(1h,)] — i0° [t 07 11 Quj(1h, )]
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The first term on the right-hand side will be estimated as is, whereas the second term now needs to be
rewritten according to the Littlewood-Paley trichotomy, in order to make it amenable to our estimates:

—i0%[1hg 07 1 Qu; (,0)] =
(34)  =—iY P00, TPk 5Q0;(,90)] =i Y PrlRgtp ;' TPek_50" Quj (v, )]

k k
—1 ZP’C[XB 8;1]P<k7585Qaj(¢7¢)]
k

(35) =i 0P Pu[PsrRsth 0 ' IPsry5Qaj(¥,90)] =i » 0P PrlPorxs 05 ' IPoki5Qaj (¥, 9)]

k k
(3.6) — izﬁﬁ[f’@ﬂoRMb O T Py—s5 k5] Qo (1, )] — iZ@B[P<k+10XB 07 M T P55 Qs (1, 1))
k k

The terms involving x are expanded further as explained below. For the first term on the right-hand side
of (3.4) one replaces 9°15 by the right-hand side of (1.13) which leads to a quintilinear term. The second
term can be estimated since the 9°-term falls on the small frequencies.

Finally, the third term in (3.1) is treated as follows:

(3.7) i0a[10% 4] = 104 [0P1°Ag) + 10 [0 1Ay

The first term on the right-hand side of (3.7) is estimated as is; in fact, it is essential that one does not
perform the Hodge decomposition in the first slot since otherwise 5 = 0 would create problems if 1 has
large modulation. For the second term, one needs to distinguish frequency interactions as before:

(3.8)
0[P TA) = iy Pil0at® 0] ' TP<y5Qp;(0, )]+ Prlt” 0 ' TP<y 500 Qs;(1), )]
k o

(3.9) +i Y 0aPe[Popis R 07 TPox Qp(0, )] 4+ Y OaPrlPorisx” 0 TP5Qp; (1), ¢))]
k k

(3.10) -H'Zaa [Perr10R%Y 3;11P[k75,k+5] Qg (¥, )] +izaa [Pori10x” 3;11P[k75,k:+5] Qg (¥, )]
% %

The y-terms need to be expanded further, see below, whereas the ¢-terms in (3.9) and (3.10) are estimated
as they are. The second term on right-hand side of (3.8) is expanded by means of the Hodge decomposition:

(3.11) iy P 07 TPy 500 Qu(,0)] =i Y Pe[R%Y 07 TPy 500.Qp; (1), 9))]
k k
(3.12) +i Y Pulx® 07 IPok_504Qp; (¥, 9)]
k

The trilinear estimates of Section 5 cover (3.11), and (3.12) is handled below, under ’higher order errors’.
Finally, the first term on the right-hand side of (3.8) is rewritten by means of (1.12):

(3.13) i) PrOath? 07 TPy 5Qp;(1h, ) =i »_ Pe0’tpo 0; ' IP<_5Qp;(¢, 1) + quintilinear terms
k k

where the quintilinear terms arise by using the curl identity for 041 — 0%, into this expression. Note
that we have switched the derivatives d, and Jg.
We still have to explain how to deal with the higher order terms involving at least one factor of x.

Higher order errors.
Note that these arise in two ways: first, we generate errors by replacing the Gauge potential Ag in
i’ [¢aAB]
by a Qg; (%, ) null-form, and similarly for the remaining types of terms
2‘85 [wﬁAa]a 104 W}ﬁAﬁ}
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We shall call the higher order terms generated by this process (and later further Hodge decompositions
applied to them) of the first type or kind.
Second, we generate errors of the schematic form

XVHQgs;(w, ),

and we call these together with all the terms generated by them upon applying further Hodge decomposi-
tions of the second type or kind. For simplicity, we omit frequency localizations in the ensuing discussion.
Considering the errors of the first kind, these are of the schematic form

Va0V V), Ve[V xxll,

where we recall from the very beginning, section 1, that

X =V v Tie?),
whence the above terms may be thought of as quintilinear and septilinear. Now as they are written, we
cannot yet quite estimate these expressions, and we need to introduce more null-structure, by expanding
the V~1(%?) in

X =V v i?),
into a @, j-null-form as well as even higher order error terms. To keep track of things we associate an
expansion graph, i.e., a simple binary tree with the expressions generated: represent the original terms

Vx,thAﬁ]
by a simple node, and whenever we replace one of the factors in the (schematically written)
Ag =V (¥?)

by the corresponding x, we draw a downward edge pointing left or right corresponding to which factor we
replace. We can now exactly specify the full expansion of the higher order errors of first type:

FIGURE 3. An example of an expansion graph

Precise description of expansion for errors of first type:
keep applying Hodge decompositions to the inner V~1(¢?) in all factors

X =V Vi),

generated until the associated expansion graph has a directed subgraph of length four. Then the process
stops. Note that formally, the terms with a directed subgraph of length four thereby generated are up to
at least the 11th degree in .

Next, we apply a similar process to the errors of the second type. We represent the first such error,
schematically given by

vm,t [Xvilel/j ('l/]a 'l/])]
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by a simple node, and whenever we apply a Hodge decomposition to one of the factors of V~1(¢)?) in
X =V HyVi?)
we draw a downward edge pointing left or right, thereby generating an associated expansion graph. Then
we have
Precise description of expansion for errors of second type:
Keep applying Hodge decompositions as above until the associated expansion graph has a directed subgraph

of length three. Then the process stops. Again we generated a list of errors of degree of multilinearity up
to order 11 and more in .

To summarize this discussion, we have now recast our system of equations in the form
5
_ 2i+1
Oty = Y _F2
i=1

where the superscript indicates the minimum degree of multilinearity of the corresponding terms in ¢ (i —1
indicates the length of a directed subgraph in the corresponding graph representation), and the leading
cubic terms F2 can be expressed as

(3.14)

F2 =i [0 T°0; " Qu; (1, )] + 00" [tho 10} Qi (10, 40)] — i0° [0 ;' T°Quj (10, 0)]
— iy Pu[Rstp 0 ' TPy, 50° Quj (b, 90)] —i > 0° Py[PoRytp 07 ' IPogy5Qa; (1, 9))]
k k

—i Z 0” Pr[P<i10Rp) 05 TPy s k451 Qo (U, ¥)] + 104 [0 1°0; 1 Qg (1, 4)]
k

+i Y P00 07 TPo—5Qp; (0, )]+ Y PR 07 TPy_500Qp; (1, )]
k k

+i Y OaPi[Pok R0, TPk 15Qp; (1, )] +1 ) OalPari10R ) 0 TPy 5 k151 Qps (4, 1))
k k

Here it is very important to note that the second as well as the eighth term on the right contribute a
magnetic potential interaction term of the form

(3.15) 2i) " Pu0” 0 'TP<y_5Qp;(1,1)),
k

the idea being that we interpret the low-frequency term aj— IP_y_s Qp;(¥, 1) as a magnetic gauge poten-
tial. The main issue here is that these high-low interactions cannot be made small in general which creates
problems for a bootstrap argument. Hence, in order to prove the core perturbative results in Section 9 we
shall have to move these interaction terms to the left-hand side, i.e., build them into the linear operator.
For later reference, we shall denote by F3k7 k =1,2,3, those trilinear terms contributed by the first, second
or third term in (3.1); thus for example, we write

FP =i0" [ 0; ' 1°Qa (v, 9)] =i Y 0° P Pog Ryt 05 T Ps o y5Qarj (1, 9)]
k

(3.16)
— iy Pe[Rgtp 07 TP 50°Quj(vh, )] — i Y 0°[PeyyroRph ) ' TPy_5 k151 Qo (4, 9)]
k k

Furthermore, we denote by

F2M (1,402, 43)
the corresponding multilinear expressions. We also introduce frequency localized versions
F3F(1; Pegs b, ¥3)

in which one includes a cutoff P, in front of all instances of Q,;(¢2,3), and similarly for other multipliers
P<y etc.
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4. BILINEAR ESTIMATES INVOLVING S AND NN SPACES

In this section we develop some of the required bilinear bounds. First, we present some bounds from
S x S into L?,, in particular one which involves a gain in the high-high case and which does not appear
in [57] or [22], see Lemma 4.7 below. This result allows for better control on products ¢; ¢ of S-waves
and will be most useful in the trilinear case. In addition, as in the aforementioned references we consider
the case of ¢1 € S and ¢3 € N. This section concludes with bilinear estimates for null-forms.

4.1. Basic L?-bounds. To begin with, we present the following geometric lemma for cones, see [56] for a
similar result. It will be used repeatedly.

Lemma 4.1. Suppose ¢1,¢o are such that
supp(6;) C {(€.7) | [e] ~ 2%, [I¢] = || ~ 29}
for j =1,2. Let £y, ko € Z and assume that there exists jo € {0,1,2} so that
(41) ‘€jo >€j+C’ Vje {0,1,2}\{]0}
Then there is the following dichotomy:
(A) If ko = kmax + O(1), then
(4.2) PeyQey (6162) = PryQus (D Proons 01 - Pt
R1,R2
where k1, ky are caps of size C~1r and separation dist(k1, ko) ~ r with
(zmax_kmin)/2

ri=2
In particular, bmax < kmin + O(1).
(B) If ko < kmax — C, then
(4.3) Py Qe (6102) = 3 PryQuo ( 3 P ot Pk%_ngb(;))
. "
(4.4) + 3 P (X P 0 P 0§)
e=% K1,K2

the sum in (4.4) runs over caps of size C~'r with
r := 9k0—kmax 9(lmax—Fmin)/2
and with separation dist(k1, k2) ~ 7, whereas the sum in (4.3) runs over caps of size r' where 2F0~Fmax <

r’ < 1 is arbitrary but fivzed. The sum (4.3) is empty if bmax < kmax — C and (4.4) is nonzero only if
lax < kmin + O(1). Finally, if (4.1) fails, then the same representations hold provided r < 1 and one

replaces dist(k1, ko) ~ r with dist(k1, k2) S 7.
Proof. We consider first the (+4) and (——) cases, i.e., when 71,75 have the same sign. Then
(4.5) 1] + [a] — |€1 + Eaf ~ 20me

whence

(|£1| + |£2|)2 . |£1 + 52‘2 ~ 2‘€rnax+knxax

and thus
<(€1,£2) ~ 2(£max+kmax—k1—k2)/2

Now assume further that kg = kmax + O(1). Then it follows that
(&1, &) ~ 2(bmaxhmin) /2

If on the other hand ko < kmax —C, then k1 = ka+O(1) = kmax+O(1) and from (4.5), lmax = kmax +O(1).
Furthermore, &, = —¢&; + O(2%0) implies that

&1 A & ko—k
_ ~ — O 0 max
|<I(£1a 52)| ‘§1||€2| (2 )
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Next, consider the (+—) or (—+) cases. Then

FIGURE 4. Opposing (++) waves

(4.6) 61+ &o| = [1&a] = [&]| ~ 20
which implies that
€1+ & = ll6] — &l ~ 2 (&1 + &f + ll&] - 1€])
or equivalently,
(4.7) MR 2 (&g, —&p) ~ 20mextho
If ko = kmax + O(1), then
(61, —6) ~ 202
If, on the other hand, ky < kpax — C, then
(€1, —Eg) ~ 240 Fmax(Emax—Fmin) /2

and we are done. While it is clear that £yax < kmin + O(1) if ko = kmax + O(1), some proof is needed in
case ko < kmax — C. Thus, suppose [£1] > |¢2| whence

|61+ Eo| — [&2] + [&a] ~ 20
which implies that
okotkL (2(¢) 4 €5, —£y) v Qlmaxthmax
since 2okt ~ 9Fminthmax the claim follows.
Finally, if (4.1) fails, then (4.5) turns into

1]+ |&2] — |&1 + & S 20me

which then leads to the claimed loss of separation between the sectors. However, their maximal distances
are controlled by the same quantities as before. (|

The special appearance of (4.3) derives from the contributions of waves which lie on opposing sides of
the light-cone. In fact, Figure 3 shows two vectors on the same half (i.e., 7 > 0) but opposing sides of the
light cone. They add up to produce a wave of small frequency but large modulation, as described by (4.3).
This is the mechanism by which nonlinearities can turn free waves into “elliptic objects”. This phrase
refers to functions whose Fourier support has large separation from the characteristic variety of O. Also,
following Tao we refer to (4.1) as the modulation imbalanced case, whereas its opposite is the modulation
balanced case.
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Remark 4.2. Lemma 4.1 is optimal in the following sense:
o Given by < ko < —10 there exist &1,&5 € R™ with 1 < [&1], €] < 2, <(&1, &) ~ 200tFk0)/2 and such
that
€14 &of — ||&1] — |&]| ~ 2
|61 + & ~ 280
o Given ly < ky < —10 there emist &1,& € R™ with 2M171 < |&] < 28 1 < |&],]&] < 2 and
(€1, &) ~ 2W0=k)/2 and so that
1] + [€2] — 1€1 + & ~ 2.

Our immediate goal now is the proof of Lemma 4.5. It is important to note that the improvement
of 27 over (2.30) which is obtained in Lemma 4.5 coincides with the gain for the case of free waves. In
order to accomplish this, we require three preparatory lemmas, all of which are well-known. The first is
Mockenhaupt’s “square function estimate” (more precisely, its geometric content), see [32], [33]. Recall
that © = sign(7)E.

Lemma 4.3. Let s,k € Cp with dist(k, &) ~ || < 1 and suppose that F; C Cy, for i = 1,2 are partitions
of k and R, respectively, by pairwise disjoint caps. Further, let v € (0,1), p € (1,2), and define for any
cap k' C St

Terpr i ={(16) : |lél = pl <7, @€/, |Ir) = [¢]] < &'}
Set M; .= #F;. Then

(48) sup H Z Z Xy p1,rtTreg ug,r

B, p2vl K1EF1 Ko €F2

. < Cmax(1,r(M; + Ms))

where C is some absolute constant.

Proof. Fix r € (0,1), and u1, pe ~ 1. Applying a Lorentz transform, one may assume that £ = —10, say.
Also, suppose without loss of generality that £; < f5 whence My, > M. We first consider the case where
rM; > 1. Fix (7,€) € R3 such that!!

Z Z X%(TNLNLTJ"Tﬁzwuzm)(T’ 6) Z 1

K1EF1 ko €EF2

Suppose Ty, uy,» With £1 € Fy contributes to the sum on the left-hand side. Define a mirror-image 7. . .
of T, juy,» by reflecting Ty, ., » about the point (7,§). Due to £ = —10 and the dimensions of the tubes T,
the mirror images of all {7y, 4, r}r,er, have uniformly bounded overlap. The same applies with the role
of 71 and F; reversed. In conclusion, each T, ,, » can pair up with at most O(1)-many 7y, ., » S0 as to
give a contribution to (4.8), whence the bound of M; for (4.8). To obtain the factor » improvement, we
further note that due to fixed p; and s, only those contributions to (4.8) need to be counted which derive
from pairs (T, u1,rs Tia,pe,r) Which lie in fixed cylinders |[&;| — p;| < r, i =1,2. In terms of equations, we
are given (0,() € R3 and we need to consider the sets of (7;,7w;), i = 1,2 with w; € S satisfying the
transversality condition <{(wy,ws) € [ﬁ, 5—10], say, and such that

T+ T =0, Tiwi+rows=(

lr1 —pa| <7, fro—pe| <7

22121 2252

Il =il <27, lm| =72 <
It follows from the second, third, and fourth conditions that

pwi + pows = ¢+ O(r)
and since the circular arcs containing wy and we are transverse to each other, they must be of lengths < r.
Consequently, we can only count tubes which correspond to an r x r disk on the light-cone and of those

HUThe %- factor is a convenient modification that can be made due to scaling.
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there are at most rMj-many. In case rM; < 1, then the number of the allowed pairs is < 1 in light of this
construction and we are done. O

Next, we present a standard bilinear L? bound for free waves.

Lemma 4.4. Let k, & € Cp with dist(k, &) ~ |k| := B and suppose k1 C k, ko C & are arbitrary caps. Let
r € (0,1) and py,pu2 ~ 1. Then

(4.9) e fr =Y o 2 S Bfl\/min (B, k1], [k2]) I fall2 ]l f2l2
provided

supp(fi) C {§ € R? = £ € my, [|E] — | S 7}

supp(fo) C {€ € R? : € € Fha, [[€] — pa| S}

and the sign in the last sign is chosen to be the same as in (4.9).

Proof. The proof reduces to the following well-known property of convolutions: suppose
Ty = {(|¢],€) €R® = £ € m, (€] — | S}
Ty = {(£[€],6) € R® : €€ tra, [|€] - pa| S 7}

Note that <(§,£n) 2 8 for any (|¢[,€) € I’y and (£|n|,n) € I's. Then

(4.10) [ for, * gor,llL2rs) S 5_1\/111111 (rB; |k, [m2l) 1f 1122 (dor, ) 9]l 22 (dor,y)

where o, and or, are the lifts of the measure in R? to the sectors I'y, 'y on the light-cones. To prove (4.10),
interpolate between L' and L>°. On L' we have the standard fact that ||u * v|| < ||ul|||lv| for measures
and their total variation norms. This fact does not use the angular separation of the supports nor their
sizes. On L°°, however, this separation and size are crucial and yield

[ for, * gor, |l @s) < B~ min(r, [£1|B7 )| fll 2o (dor,) 191l 2o (o)
assuming as we may that |k1| < |ke|. To obtain this bound, consider §-neighborhoods of T'y and Ty,
respectively. In other words, replace doy by
(5 _
dUJ(» V= 0 N aise((em).ry <51 dEdT
for small 6 > 0 and observe that

(4.11) limsup [|d7{”  d&y” || < 87" min(r, 1|87
6—0+ ’

by elementary geometry. To pass from (4.10) to estimates for the wave equation use Plancherel’s theorem.
O

We can now state the aforementioned improved bilinear L? bound. The norm ||- || is the one from (2.66).
Lemma 4.5. Let ¢; be adapted to k; for i = 1,2. Assume further that we are in the high-high case
k1 = ko + O(1) and that ¢; = Q<jtk—2k,—cPi fori=1,2. Then

ky k=g
(4.12) [PeQj(p1 ¢2)llp2r2 $2722 o1 llspen o2 llsima)

for any j <k < ky + O(1). Moreover, in the same range of j,

3k+j

T el spea N2l s ma

k
(4.13) |PsQ;(Rat1 Rt — Rpdy Radho)|| 22 S 277 2
for any o, 5 =0,1,2.
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Proof. We assume that k1 = ko + O(1) = 0. At first, we also assume that k¥ < —C so as to exclude the
opposing (++) and (——) waves in Lemma 4.1. We need to prove that

k—j
(4.14) [1Pe(d102) |22 S 277 (1(F 90l pawi—1 + 1 Flnien) - (1CF2s 92)lp2 s -1 + 1 P2l ngia))
for any k;-adapted Schwartz functions f;, g;, F;, i = 1,2 and
. t o ((h

(415) ou(t) = cos(ev]) i + VD o [P IR g )

VI 0 V|
‘We reduce this to three cases:

k—j
(4.16) 1PLQj(d102) 22 S 277 [1(fr, 90l pose sz 125 92) 1 2 s

k—j
(4.17) 1P:Qj(d102)I 222 S 2% 1(f1,90) 2w sr—1 12l k)

k—j
(4.18) [PeQj(d102)lI 2202 S 277 [[FUl Nk 172l N[k

where the absence of terms on the right-hand side implies that the corresponding functions are zero (thus,
Fy = F; =0 in (4.16) etc.) We begin with (4.16) which follows easily from Lemma 4.4. To see this, we
decompose ¢; into caps of size £ = (j + k)/2 as in Lemma 4.1. Adopting the convention that k1 ~ k2
means that dist(k, ko) ~ 2¢, and setting g; = go = 0 for simplicity, one has'?

1PeQi($162) 22 S D I1PQi(Pry sy @1 Proora®2) | 1212

K1~k ECy

S Y Y IPuw Pt P P2z

c€Do,r K1~k2ECe

k-t
(419) S Z Z ZTHPkl,mPC.fl||2||Pk27K2P—Cf2H2

CE'Doyk K1~k ECy

k—t
S 27 |l full2ll f2ll2

as needed. The estimate in (4.19) follows from (4.8) since k > £.

To prove (4.17) and (4.18) it will suffice as usual to assume that F; are N[k;]-atoms for ¢ = 1,2. In
fact, if Fy in (4.17) is either and energy or an X atom, then one again reduces matters to the free
case. Consequently, we may restrict ourselves to (4.18) when both F; and F5 are null-frame atoms. Using
Lemma 2.11 to refine these null-frame atoms one can thus assume that

(4.20) Fi= Y Fu, F= ) Fo»
K ECy K" €Cyrr

where ¢/, ¢ < {. Again by Lemma 2.11, we can further assume that there exists a fixed ¢ € Dy so that
P.Fy = Fy and P_.F» = F>. Applying the same decomposition as in (4.19), fix k1 ~ ko. In view of
Lemma 2.22,

(421) Pkl,'ﬁ ¢1 = |:]71(;"‘{1 + Z / (\Il}?',a + B"ﬂ/v“ \Iji/ﬂ) da
, R
K €Cy
k' Cr1
122) Prast =07t 3 [ (Bt B ¥2,) da
1" R
K GC[//

K CKa2

where the functions on the right-hand side satisfy the bounds specified in that lemma. Moreover, the
Fourier supports of the functions appearing inside the integral in (4.21) and (4.22) satisfy (2.43), and
they also retain the P, and P_. localization property, respectively, due to the fact that k > ¢. We can

12Recall our convention about Py, .« which takes the sign of 7 into account.



48 JOACHIM KRIEGER, WILHELM SCHLAG

ignore the terms involving G, and ém as they are reducible to free waves. For simplicity, we also set
vl o= \If,lgl,’a = 0. By Plancherel’s theorem and Lemma 4.3,

[Pk [Prey iy 01 Pk o 02) | L2 1.2

%
S, \/1+2k(M1+M2) Z ( Z Z ||Pk1,n/Pc¢1Pk1,n”P—c¢2||i§Li>

CEDO,k H/EC[/ I{Heceu
K’ CRr1 K”CHQ

where M; = ZZ’ZI,MQ = 20" On the other hand, applying Lemma 2.22 to P.¢1, P_.¢2 and using
Lemma 4.4 implies that

||Pk1,n’Pc¢1Pk1,l<&”P*C¢2||L2L2

5/ 1B o W% Bt W25 |l 212 dadb
R2

< /R 1925, W25 || 122 dadb

§2_£\/min(2k+€,2€',25”)/ 025 ol gy N5 0.0 dad
R2 Xo

5 2_6\/min(2k+€, 26/, 26”> ||PCFK’ HNF[H’] HP*CFN” HNF[H”]

One checks that

k—¢

\/1 + 28 (M + My) 2 \/mln 2kt 20 ") < 275

whence
1
k—¢ 2 ~ 2 2
Z | Py iy Pep1 Pry iy P-c@2lp22 S22 Z Z Z [ PeFer g |1 P-cFer || Npper
c€Do,k c€Do,k \Kk'E€Cy K" ECy

N'Cﬁl K”sz

In conclusion,

HP]CQJ (¢1¢2 HLQL2 Z Z ”Pkl,mpc(blpkmﬁzpfc(ﬁ?HL%Lg

c€Do,k k1~Kk2€ECE

> <Z > ||PcF~'|12\1F[Kq||ﬁ—cF~”12\1F[N~]>

c€Do,k k1~k2E€CE \ K'E€Cy K" ECy
R’Cnl K,”CKQ

Nl

A
ro

1

%( 3 ||FH,||§IF[H,])%( > IIE//H%FW]Y

K'€Cy K" ECyn

as desired; in the last step we have also used Lemma 2.11. This concludes the proof of (4.18) for the case
of null-frame atoms F, F5. As indicated, the other cases are easier since they can be reduced to free waves.
Finally, if & = O(1), then the proof is easier. In fact, it follows via a cap-decomposition from the basic
bilinear bound (2.30). We leave those details to the reader.

The second bound (4.13) follows by the same argument. The only difference from (4.12) lies with an
additional gain of 2¢ which is precisely the size of the angle in the above decompositions into caps. |

Later, we shall require the following technical variant of the previous bound.
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Corollary 4.6. Under the assumptions of Lemma 4.5, for any j < k < ki + O(1) and any mgo < —10,
B k=g
(4.23) > 1PsQ; (Pey ey @1 Prora®2) 2222 S22 27 61151021l s

K1,k2E€Cm
dist(r1,k2)<2™0

3 k1 k=
(424) (3 1P (Pt 62)l2212) S ol 225 s Id2lsiva

KZECnlo

Moreover, analogous bounds hold for the null form in (4.13) with an extra gain of 255", Finally, the
left-hand side in (4.23) vanishes unless j + k < 2mg < —100.

Proof. The final statement here is due to Lemma 4.1. Note that one cannot simply square sum the bounds
of Lemma 4.5 applied to Py, ., ¢1 and Py, .,¢2 due to the fact that > ”|Pkﬁ¢”|%[k] (or Y, HPk,n@ﬁH%[k]

for that matter) cannot be controlled. However, since we may assume that # < mg, the angular
decomposition induced by the frequency and modulation cutoffs P,Q; is finer than the one superimposed
by k1 and ko. Inspection of the proof now reveals that either by orthogonality or by organizing the
finer caps into subsets of the x1, k2 € Cpn,, and applying the Cauchy-Schwarz inequality yields the stated
bound. For (4.24) one needs to distinguish two cases: either mg > # or not. In the former case, the
decomposition into caps in C,,, is coarser than the one coming from Lemma 4.1 and one can again argue
by means of Cauchy-Schwarz as before. In the latter case, however, we split the modulation of the first

input as follows:

Qcjir-c = Qcamo—c + Qamo—C<.<j+k—C
The contribution of Q<om,—c®1 is handled exactly as in the Lemma 4.5 since one may always refine the
null-frame representation, cf. (4.20). On the other hand, Q2m,—c<.<j+k—c®1 is controlled by means of
Lemma 2.4. More precisely, for any 2mg — C < £ < j+k — C one has Qu¢1 = Q.01 F}, see (4.15). Since
(2.32) implies that

_ —1
||Qe</51\|)-(8,%,oo = [|Q.O F1||X3,%,oo S HQ4F1||X;>,7%,OO S 11| wvpo)

one can reduce the contribution of Q;¢; to the case of free waves as in the proof of Lemma 4.5. Summing
over all ¢ in this range loses a factor of at most |mgl|, as claimed. Finally, the claim concerning the
null-forms is immediate. |

Removing the modulation restrictions on the inputs in Lemma 4.5 results in the following estimates.

Lemma 4.7. If ¢1 and ¢ are adapted to ki and ks, respectively, then for j <k < k; +0(1) = ka+O(1),

[
(4.25) 1PeQi($162)lr2r2 S 277 272 |61 lspey) I b2l siaa)
whereas for j < ko <k =k +O(1),

3k j
(4.26) 1PQj(dr2)llrare S 275 27 5| |l sl b2l sira)

Proof. Consider the high-high case j < k < k1 + O(1) = k2 + O(1) = 0. On the one hand, there is the
bound

b
(4.27) 1PeQi(Q<jsn-ctr1Q<jrh—cd2)llzrz 27 Ibullsim o2l
which is given by Lemma 4.5. On the other hand, by the improved Bernstein bound of Lemma 2.1,

i—k
1PLQ;j(@sjir—cdr - da)llrzre S 277 "2|Qsj1h—cor - dollr2r
ik
<277 2Y|1Qs ko rllpzrz b2l L2
k=i
(4.28) S 277 ol spe) 102l s
In the high-low case j < ko < k =k; + O(1) = 0 consider the following three subcases. First,

_ika Ky
1PeQi(Qejmct1Qci—cd2)llrzrz S 27 27 | d1llsimn |2 sia)
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by a decomposition into caps of size 9252 and the L2-bilinear bound (2.30). Next, by the improved
Bernstein estimate Lemma 2.1,

[PeQ;(01Q>j-cd2)llrzr2 S 91llper2||@>5-cd2llr2re

ik i
S 277282275 ||y || s | D2 | 1]

And third,

1PeQ;(Qzj-ch1Qeicda)llzre S Y, PeQi(Q@mdrQeicda)llrzre

m>j+0(1)

SO D Pk @t Py s, Qejc 2l 1212

m>j+0(1) k1,K2

5 Z Z ||Pk1751Qm¢1HLfLi Hpkz,ﬁzQ<j—C¢2||Ltoiu

m>j+0(1) k1,K2

m m—k
S Z 27520275 | || sy 12 1k
m>i10(1)

sty
S 27727 7|1 || s 102l s7ks)

m—ko

as claimed. The inner sums run over £1, k2 € Cm-k, with dist(ky,K2) < 2 O
2

Later we shall also need the following technical variants, both of which are in the same spirit as Corol-
lary 4.6.

Corollary 4.8. Let ¢ be adapted to k1 and suppose for every k € Cp,, with mo < —100 there is a Schwarz
function v, which is adapted to ko. Then, provided j < ko < k = ki + O(1),

1
3ky o _J 2
(4.29) > 1PeQi(Pry w0l 212 < o272 4II¢Hsuﬁ]( > IIwnH%[kz])

KECm, KECm

Proof. One uses the argument for the high-low case of Lemma 4.7. In particular, k = k1 +O(1) = 0. First,
with m = 15k
2 )

> PQi(Qej—cPrnd Qejcthr) = > > PeQi(QcjmcPrywy Poyn® Qi Pry nyton)

KECm, KECmq K1,k2ECm

If m < myg, then by the L2-bilinear bound (2.30)

> IPQi(QejmcPry wd Qejctbn) 1212

NECmO

S Y IPQi(Qej Py ny ¢ Qi Py o)l 1212

KECm K1,k2€ECm
K1CK

_d—ka k3
5 Z Z 2 T2 ||Q<j7C'Pk1,H1¢HS[k1J€1]||Q<j*CPk2,H2wH||S[k2,ﬁ2]

KECm( K1,k2ECm
K1CK

1
_d—ka k2 2
<2752 0l (2 10elZp)

KECm,
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where we applied Cauchy-Schwarz twice to pass to the last line. If, on the other hand, m > mg, then we
first consider smaller modulations of ¢. In fact, dropping the Q«;_c on ¢ as we may one has

> IPeQi (Qeamy—c Pry it Qejcton)ll 212

KECm,

S D Y IPQi(Qezmo— Pryws @ Qim0 Pro o) | 1212

K1,k2E€Cm KECH,
rCK1

< _Jzka k3
~ Z Z 2 4 2 2 HQ<2m0—CPk1,H¢||S[k1,K,]‘|Q<j—cpk2,f€21/)li||S[k2,f€2]

K1,k2€Cm KECH,
KCK1

ji—ky kg H
<2720 ol (20 IinlEpe)”

K/ECNLO

where we again applied Cauchy-Schwarz twice to pass to the last line. Finally, we need to account
for Qomo—c<.<j—c¢. Fix £ with 2mg — C < ¢ < j — C and repeat the previous estimate. This yields

j—ko ko %
> IPQi(QePry it Qejctbn)llpzre S27 75 272 ||¢||S[k1]( > ||wn||?9[k2])

KECmy KECmy

which, upon summing in £ yields the same bound with the loss of a factor of (j — 2mg)+. Replacing this
by the larger |mg| then implies the bound of the corollary. Next, by the improved Bernstein estimate of
Lemma 2.1, and Lemma 2.18,

> NPQi(Prywd Q@sjcou)llzzee S IPryndllier2l|Qzj—ctullrzre

KECmy KECm,
1
iky g 3
< ol 22 2520 4 gl gpey (3 el
KECWLO
And third,
Z 1PLQi(Q>j—cPry n® Qej—cu)llL2r2
KECWLO

SO D PR (QunPry ikt Qejctn)ll 22

m>j+0(1) KECm,

S Z Z Z ||P7€1,51Qmpk1,ﬁ¢ sz,W2Q<j*CwH||LfL§

m>j+0(1) KECmy K1~vk2

—k
S Z Z Z ||Pk1,m1QmPk1,ﬁ¢”Lng 2k22m4 ’ ||Pk27K2Q<j—C"/)n HL;"’L?E

m>j+0(1) KECm K1~vK2

i—k %
5 2k227a : Z ( Z ”Pkl#’lemPkl,KqSHifLi) ( Z ||Pk27N2Q<j—CwR' ”%fOLi)

D=

m=3j+0(1) K1,k Ko,k
1
3ka 5 2 2
S22 ollsma (Y Meldnn)
KECm,
m—k
as claimed. The inner sums run over %1, k2 € Cm-k, and K1 ~ ko denotes dist(x1,k2) S 27 2 2 O
2

Remark 4.9. We note here that one may also gain in terms of mg at the expense of some losses in terms
of the frequencies/modulations; specifically, using similar reasoning and under the same assumptions as
above, one gets

. 3k j
(4.30) > HPij(Pkl,néwm)HLng5251m0252(k1_])2%2_iH¢”S[k1]( > ||%||§[k2])

KECm, KECm,

1
2
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for suitable d1 2 > 0.
We shall also require the following estimates which gain something in terms of the small angle.

Corollary 4.10. Given § > 0 small and L > 1, there exists mqo(6, L) < —1 with the following property:
let k, k1, ke € Z so that max;=1 2 |k — k;| < L. For any ¢1 and ¢ which are adapted to ki, ko, respectively,
and j < k+C,

ko KL
(4.31) > | Pe@j (Piy o1 $1 Prey o @2) |l 202 < 0277 272 || b1 [ sy | 02l s8]
Hl,ﬂzecmo
dist(k1,k2)<2™M0

In the high-low case k = k1 + O(1), ko < k1 — C,

ko—j ko
(4.32) > 1PeQ; (Pey s &1 Prona®2) 22 < 0275 27 |1 sy |62l 51t
517'€26C7n0
dist(k1,k2)<2™M0

as well as

(433) (3 IPQi(01 Prawta)lZzyy ) < 0275

K2 Ecmo

k
27 )1 [l s |62 i)

Proof. Let k1 = 0 whence |k| < L and |ks| < 2L. Implicit constants will be allowed to depend on L. By
Corollary 4.6 and (4.27),

> 1P:Q;(Q<jtk—Pryny 1 Q<jh—CPryrr®2)| 1212
K1,k2ECm,
dist(k1,k2)<2™0

ket

S22 5 bulsie o2l sira) < 6275 Iallsins) Idzllspa

which is sufficient. Note that we used interpolation and 25 < 272" which gives the desired gain of §
provided my is small enough relative to ¢ and L. For the remaining cases we use a variant of (4.28): with

_ 2 1 _ 1 1
2>’I">1,9—;—1,and17)_;_57
(34 1Py (@4 Py a1 - Pras) 1222

< 2%9||Q>j+k—0¢1 : szﬁz(b?llL?Ll

J
S 27%1Q5 54k Pryw D11l 2212 | P s P2l 120 12
1

J(g— mo(l—1
(4.35) < 2502 gmols P)HPkl,m¢1||Xo oo 1 Prey s P2l Lo 12
0

1
’2

Taking 6 close to 1, one can make this < 52775 as desired. This bound can be summed over K1, ke by
Cauchy-Schwarz and the definition of the S[k]-norm; see also Lemma 2.18.
In the high-low case j < ko < k =k + O(1) = 0 we proceed as follows. First,

[ PeQj(Q<j—c Py sy $91Q<j—C Pra iy #2) I 2 12
J—kg

_d=k2 mg ko
<2777 min (272,277 )27 [Py, Qi bt i) | Prosra @< i—c b2l siks)
.
<52

ko kg
57272 || Pry oy Q- D1l k) | Pro s @<j—c P21l S1a)

by a decomposition into caps of size 9222 and the L% bilinear bound (2.30). The summation over k;
and ko can be carried out since it leads to the square function (2.15). Next, by the improved Bernstein
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estimate, see Lemma 2.1,

[ PrQ;j (Prey iy #1Q >~ Prog iz $2) || L2 12
S Py @1l Lo £2 @ -0 Pry s P2l L2 L

J

—k m, j
S min(2 T 228074 Py, 6112 P a2 o
k

Lo
2
j_

ky kg
327 ||Pk1,m¢1||L§°Lg||Pk2,n2¢2||xo,%,oo
k2

<627

and summation over k1, ko is again admissible. Finally,

[1PeQ;(Q>j— 0 Pry ry 91Q<j— 0 Pry s b2) | 1212
5 Z HPij(QmPkl,ﬁ1¢1Q<j_CPk27H2¢2)||L%Lg26

m>j+0(1)

SO D Pk Qun Py, 61 Pry iy Q-0 Prg ey b2l 1212
m>35+0(1) Kk}

S Z Z 1Qm Py o1 Prey oy @1l L2122 | Q<=0 P s Py ity G2l L2,

m2>j+0(1) Ky ,K5

m . m—k mq
5 Z 272 2k mln(2 4 272 20)HPkl,N1¢1||S[k1]”P’f27f'€2¢2”S[k2]
m>j+0(1)

(4.36) <§2F9-

J—k2
@25 +00) Prrm d1ll o300 [1Phz o b2l 5o 2
k1

J—k2

z . The bound in (4.36) can

as claimed. The inner sums run over s}, k5 € C;—k, with dist(x],k5) < 2

2
be summed over the caps k1, ko by definition of the S[k] norm.
Finally, (4.33) follows from the preceding since the gain of § was obtained only from the low-frequency
function ¢o. We can therefore square-sum the final estimate to obtain the desired conclusion. (|

4.2. An algebra estimate for S[k]. The following bilinear bound expresses something close to an algebra
property of the S[k] spaces. It is obtained by removing the restriction on the modulation of the output in
Lemma 4.7.

Lemma 4.11. For any j, k € Z,
k—kqiVko i—kqiAk Y
(437)  [PeQi(00)]l 4o g o S 2HMR2T 2T A0 o VRe ) GO0 g g ) sk,
provided ¢, are Schwartz functions which are adapted to k1 and ks, respectively.
Proof. We commence with the high-high case k; = k2 + O(1) =0 and & < O(1). We need to prove that
[ B

1P:Q; (%) o300 S 27 min (27,277 7)) )l gy 19l 571y

To begin with, one has
V2| PLQ;(Qsj-cd - ¥)llpz2re S 27272275 MO PeQi(Qsiocd - )|l p2rs

. j—k
< 28292955 Qs 0@ o2 ||| Lo 12

e . S
< 2827 O min(1,27( )| 5111 191 512]

which is admissible. So it suffices to estimate PrQ;(Q<j—c¢ - Q<;—c?). As usual, we perform a wave-
packet decomposition by means of Lemma 4.1. Note that (4.1) holds here. We begin with (4.3) where we
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choose ' := 2%, Thus, k < —C and j = O(1), and in view of (2.30)

1PeQi(Q<jcd™  QejmctMrere S D I1PeQsjcd™ - PonQ<jcth™ |22

KECk

S D 6P Qs sty m 1 P-s Qi s, —r)
KEC

S 252010 sty 110 | 1)

where we invoked Lemma 2.12 in the final step. The same estimate applies to ¢~ and . It therefore
suffices to assume that j < k + O(1); but then Lemma 4.7 applies.
Next, we consider the low-high case k = ks + O(1) =0, k1 < —C. We need to prove that

i—Fk1

25| PoQ; (¢)ll 2 S 251277 " min(1, 279 9) 16 s 19 5701

In view of Lemma 4.7 we can assume that j > k;. From the X9 components of the S[k] norm,
22| PQi(Qzj—cd - ¥)lr2rz S 2/2Q5j-cdllr2pe ¢ L2
izky . —(L_¢)j
<2027 min(1, 277916 spa 1] spra
Finally, it remains to bound
22| PyQ;(Qej-cd Qo) r2re

which will be done using the usual angular decomposition. In fact, from Lemma 4.1, and provided j < C,

and with ¢ = m2EL A Q,

(4.38)

22| PyQi(Qejctd - QujmcWrzra S D> 277 D PoQj(Pry Qi@ Py Qutd) 1212
m>j—C K,k'€Cy,k~K'
S Y PP Y Py w@Qeio el pool| Py Qe 1212
m>j—C K,k ECp kK

. m—k

S D 2R Y 2R TPy kol e o | Pry o Qb 212
m>j—C K,k €Cy, kK

i—k
< 2512716 s 19 sk

where we used Corollary 2.16 in the final inequality. If j > C, then only m = j + O(1) contributes to the

sum in (4.38). The X%1~2 component of the S[k]-norm then leads to a gain of min(1,2~(2)7) and we

are done. O

Corollary 4.12. Under the same conditions as in the previous lemma and provided k1 < ko one has

(4.39) 1Pe(¢Q<ath)ll o3 S 25 (L4 (k2 A= k) ) 19l k) 19|52

where k = O(1) + ko.
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Proof. Summing (4.37) over j yields (4.39) with a > ko. It thus suffices to consider a < ky. If a < k; we
use Qcq = Qcp, Q<o to reduce matters to a = k1 (see Corollary 2.16). If a = kq, then

Z 2j/2||Pij (PQ<a?) ”LfL?c
J

< Z 2j/2HPij(Q<a¢Q<aw)”LfLi

j<a+10

+ Y 2PIPQi(Qr00)0Q<at) lir2

j>a+10

S22l salelswa + Y. 2721Qsr00)®ll L2 Lo |Q<att Lo L2
j>a+10

i 3_ —i(1—
< 2 lls19llsia) + Y 2772279270 s 1Q<atll spra)
j>a+10

< 25|l s 19N sk

as desired. The sum over j < a + 10 was estimated via Lemma 4.11. If k; < a < ko, one proceeds
similarly. O

4.3. Bilinear estimates involving both S[k;] and N[kz] waves. The following lemma is a crucial tool.

In essence, it expresses the property N x § < N.

Lemma 4.13. For ¢ and F which are k1 and ko-adapted, respectively, one has

j—kAkyAkg
(4.40) 1P(@F) vy S 252 271 019 g | Fl| i
provided Py,Q;F = F and under the following condition

(4.41) PiQ<j—c(Qej—cd  F) = PuQ<j—c(Q<jtr—r,—c® - F)

in the case ky = ko +O(1) > k+O(1) > j. If (4.41) fails, then one loses a factor of 1+ (k1 — k)4 on the
right-hand side of (4.40); alternatively, one has the following weaker version of (4.40)

j—kAkyAkgy
(4.42) 1Ps(6F) iy S 2572 275 "lI6] o g allFllvika)

k1

Proof. We remark beforehand that this proof will only use the X,S;%’Oo—norm for the elliptic regime ¢ =
P Q> ¢ of the S[k] norm. In particular, the imbedding |||l sk, S H¢||Xo,%,oo holds without any restrictions

k1
on the modulation, cf. (2.20). We start with the high-high case k; = ks + O(1) = 0. Throughout this
proof, we shall freely use Lemma 2.15 in order to remove @ «;_¢ from various estimates. First, we consider
the case where ¢ = @>;_c¢. If j > k, then by Bernstein’s and Holder’s inequalities

1Pe(F) vy S 27 M I1Pe(@F) | pire S |6F || i

Szl Fllzzre S N9llspwa2 2 1F ] L2 z2
S el st 1| viks)

which is admissible. If on the other hand j < k, then we again have to consider several subcases. If

¢ = Q>r9, then

27MQxr0 - Flipize S1Qxk¢ - Flipiny S 1Qxkdllr2r2 |F |l 2re
ik
S 272 |9l | F ks
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which is admissible. Hence it suffice to assume that ¢ = Q;_c<.<x¢. Furthermore, we can assume that
the output is at modulation < j. In fact, by the improved Bernstein’s inequality,

1PeQs5 (6F) vy S 27> 273 | PuQe(6F )| 212

>3
4 —k
<N 25T G e
>5
it t—k _i
522]2 277 "¢l pgor22 %”FHL%Lg
>3

d
S 277 1Bl s 1] N ks

as desired. Now consider the output of modulation at most j. We also first restrict ourselves to the
contributions by Q;_c<.<j+c®. Thus, by Lemma 4.1 and Lemma 2.15,

| PrQ<;(Qj—c<.<jrcd F)lnw
S27F Y 1PiQ<i(Qed- Bl ze
€:j+0( )
Y > |PQ<i(PoPiQr ¢ PuP_pF)| 2
{=j+0O(1) DEDy K~k €C([+k)/2
Y ) > IPoPué PuPpFlin:
l=j+0(1) DEDy k~vr' €Co41) /2

where k ~ k' means dist(k, k") < diam(k). Moreover, Dy is a cover of {|¢{| ~ 1} by disks of diameter
2% and with overlap uniformly bounded in k; the associated projections are Pp. Hence, one can further
estimate (recall j < k)

| PeQ<j (¢ F)llngy
S0 3 > X IPoPQedllzrz 1P PpF e

£=j+0(1) DEDy, kK’ €C (o1 k) /2

)DIEEDY

(=7 +0(1) DEDy, imh’ €C 441 /2
S 2(j_k)/4||¢HS[k:1]”FHN[kz]

Next, we consider the output of modulation at most j and ¢ = Q;1+c<.<x®. Then we are in the “imbalanced
case” of Lemma 4.1 whence

PpQ<;(oF) = Z Z P Q< (Pry Q19 Proy i F)

k>0>5+C ko k"

where k € Ce— ok, ', K" € Clpqry 2 and dist(k, ') ~ 25" , dist(k', k") ~ ~ 25" Using (2.29) one obtains

1PeQ<; (0F) vy
<27k Z Z | Pr, s Q< (Piy i Qe+ Proy i F) || NF[w)

k>0>54C kw5
L+k

g 274
S > 2 = > 1Py Qe ll sy | P Fll 212
k>0>54+C 27 KKk
ik it _3 ik
SO 2T 2T Qedllsiwn2 2 I Flee S2°F 16llspen I Fllvika

k>£>j+C

as desired. To pass to the final inequality one uses (2.20) as well as | Q¢ s[,] ~ ||Q/¢|| 0.1, 00
k
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Now assume Q<;_c¢ = ¢. We first dispose of outputs of modulation exceeding j — C. If j > k, then

I1PQ>j—c(6F) vy S 27 1PeQsi—c(6F) 1201 < 272 ll o 2| F |l oo
S 27%”¢HS[I€1}”F”L§L3 S 191 st 11| 3 i)
which is admissible. On the other hand, if j < k, then
1PeQsjc(0F) vy S 275 3 27| PuQe(dF) | 122
>j—C
< Y 2T PQUOF) Nz + 27 FIPQer(0F) iz S 27T 19l | Fllviea)
k>0>5—C

as desired. It therefore remains to consider

PiQ<j-c(Qejctd - F) = PiQ<j—c(Qej_co™ - F*)
+

where all four possibilities (++), (+—), (—+), (——) are allowed on the right-hand side. We first dispose of
the contributions “opposing waves” as described by (4.3). This occurs only if k¥ < —C and j7 = O(1), in
fact,

PQ<j—c(Qcj_cdt - F')=PQ_cc.cc(Qej_cot - FT)

whence

1PeQ<j-c(Qcjmcd™ - F)lInpm
SN Fllzep S N6  lpoera 1 F T llzzr2
SN lspen 1 v pws)
which is admissible. Therefore, we can now ignore the contribution of (4.3). Let us now also assume

without loss of generality that ¢ = ¢, see Lemma 2.12. Using duality and Lemma 4.1, one obtains in
view of (4.41)

(4.43) PiQ<j-c(Qejcd F)=> > ProxnQZ, c(PrwQcjsn-c®: PrywrF)

+ K,k K"
with caps k € Cy, &/, k" € Cy satisfying dist(x', &) ~ 2™, dist(k, &) ~ 2¢ where £ = (j—k)/2, m = (j+k)/2.
Note that Lemma 4.1 also implies that j < k4 O(1). Since

(4.44) Py 2xQ%; ¢ = PrxnQia o

the right-hand side of (4.43) represents a wave-packet decomposition in the sense of Definition 2.9. More-
over, the operators in (4.44) are disposable in the sense of Lemma 2.14. Therefore,

1PeQ<j—c(Qej—cd F)llnp S 27° max Z | Pey i Q< jt ki@ * Pry e I Nwi)
HI,K://
We could discard k here since the choice of £’ leaves only a finite number of choice of . Invoking (2.29),
this can be further estimated by
oI
<27k max > p||P1c17H'Q<j+k—0¢|\sw1,n']Hsz,n”FlngLg
I{,,Hl/ 2

S Q(j_k)/4||¢||8[k1] 1 Fl| k)

To pass to the final inequality here it was essential that (4.41) reduced the modulation of ¢ from < j — C
to < j+k — C. Indeed, if (4.41) fails, then we need to write Q<j—c¢ = Q<jtr—c® + Qjtk—c<.<j—C®.
For the first summand here one applies the argument we just gave, whereas for the second summand the
best one can do is to invoke (2.20) which results in the loss of of factor of k a claimed. This concludes the
high-high case.
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Let us now consider the low-high case k; < —C, ko = k = O(1). Since (2.24) implies that
1@>j—cd Fllrize S @>j-cdllrzr=|Fllrz2

i—k1

S 27527702 @l sy | Fll 2

Ji—k1

S 277 102518l sy 1 F || v o)

it will suffice to bound ||Q<;_—c¢ - F||n[x). Moreover, if j > k; + C, then the modulation of Q<;_c¢- I is
on the order of j whence

1Q<j—cd - Flln

$270|Q<j—co - Fllpzr2
<$270|Q<j—cdll oLl F || 212
_i
S 27225l sy | Fll 22z S 25 10l spia) |1l vra)

as desired. We may therefore assume that j < k; + C. We first consider the case where the output has
modulation > j — C. More precisely, let j —C <m < ky +C, ¢ = (m —k1)/2, as well as without loss of
generality F' = F+. Then by the balanced modulation case of Lemma 4.1,

Qm(Q<j-c¢F) = PunQf(PrywQ<jct-F)
where , k" are caps of size C~12¢ and with dist(k, x’) < 2¢. Therefore,

1@m(Q<j—cd vy S22 Pew@ib (P wQsjcd - F)llr2r2

KK’

1

—m 2
S 272 (N 1P Qejmodlin o | F e 2)

K,k

<22 (92 Pry Qa0 o 1 I2o12)

K,k

S2mm2em Mo Q|| peore (PRFEY
S22 mm/gh gl g

N

k) llF | L2z
where we used Lemma 2.15 in the final step. Summing over m > j — C implies that
1Q5j-c(Q<jmcd - F)linp S 282797227 R0/ 16 g |1 F 22
< 28127 D ) s I F v e

which is admissible.

It therefore remains to bound ||Q<;—c(Q<;j—c¢ - F)| ) for which we shall again apply a wave-packet
decomposition as in Lemma 4.1. Since j < k1 + C and k1 < —1, we can assume that j < —C in applying
Lemma 4.1 (which allows us to ignore the opposing (++) or (——) contributions in (4.3)). Without loss

of generality, we assume further that ¢ = ¢+ (see Lemma 2.12). Then with caps , ' of size C~12™ and
separation ~ 2™ where m := (j — k1)/2,

[Q<j—c(Q<j—cd F)lIng S H > PurQej-c(Pry wQ<j—cd- F)HN

KR!

[k]
(4.45)

S (X [P (Praweyco- 1)’

KR!

where we used Corollary 2.23 to dispose of Q<;_¢. In view of (2.29) this is further bounded by

1

2
(2 1P Qs 9l o I F 13312 )

< 2070498 1| 501y | F | v e

i—k1
I

k1
<272
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as desired.
It remains to consider the high-low case k = k1 + O(1) =0, ko < —C'. First,

1Q>j18:0 Flingy S NQ>j4k:0 - Fllipe
SNQsjirllL2p2 | Fllpopee

G izky
S 2 (J+k2)/2\|¢||3[k1 20227 O Pl 22

ko

< 2k29% M@l sa2” 59~ k2||FHL2L2

k
which is acceptable with a factor of 2% to spare. The reason for using Q> j+k, rather than Q- ; will
become clear momentarily. Next,

(4.46) 1Q<jth:® - Fling) S 1Q@>j4k:—clQ<jtka® - Fll N
(4.47) H1Q<jtro—clQ<jrr® - Fll vy

As usual, (4.46) is controlled in the X ~1~2°1 norm whence

(4.46) < 27U 2YQj ik, Fllpape

S 27Uk /2\|Q<g+k2¢||LmLzHFIILzLao

ko
PONE L2z

S 27tk) /2\|Q<J+k2¢||LocL22k22

ko

< 2522 TN ) g 27827 | F 1

which is again acceptable. Finally, we perform a wave-packet decomposition on (4.47) via Lemma 4.1 in
the imbalanced case and duality. Thus, one has

Q<jthr—0(Q<jind F)=> PurnQii i c(PoywQsjtrd- F)

K,k

where the sum runs over pairs of caps , &’ of size C~12¢ with £ := (j+ks)/2 and dist(x, ") ~ 2¢. Moreover,
J < ka + O(1) since the only other possibility j = O(1) allowed by (4.3) contributes a vanishing term (as
does Q;j+k2—0)‘ Therefore, with &’ ~ k denoting the admissible pairs,

S (Z I Z PewQZ s hy—c(Praw Q<iths ||N[n]>§

K/ ~K

~529/29%2|6 | 511y |1 F | g
S 282207416 a1 F | v

as desired. O

There is the following general estimate that does not require (4.41) since we restrict ourselves to k >

Corollary 4.14. For ¢ and F which are k1 and ko-adapted, respectively, one has
j—kAk1 Ak

(4.48) 1PL(SF) vy S 2972 27510 )| sy [Pl v

provided Pp,Q;F = F and k = ki V ky + O(1).

Proof. This is an immediate consequence of Lemma 4.13. |

Another important technical variant of Lemma 4.13 has to do with an additional angular localization
of the inputs. This will be important later in the trilinear section. Its statement is somewhat technically
cumbersome, but this is precisely the form in which we shall use it later.



60 JOACHIM KRIEGER, WILHELM SCHLAG

Corollary 4.15. Let ¢ be ki-adapted, and assume that for some mo < —100, for every x € Cp,, there is
a Schwarz function F,; which is adapted to ko and so that P,,Q;F, = F,,. Then
izky 3
(4.49) S IP(Pay s Fe) g S Imol 2 25l (D2 1Pl
KECm, KECm,

provided we are in the low-high case k = ko + O(1) > ky. The sum here runs over caps with dist(k1, k2) <
2mo

Proof. For this, one simply repeats the proof of the low-high case of Lemma 4.13 with one additional
twist: since ) ||Pk1,n¢|‘%[k] cannot be controlled by ||¢|g(x,}, one has to check carefully that the square
summation — which (4.49) leads to after Cauchy-Schwarz — is compatible with the estimates we are
making (the norm for F is always L?L2). This is the case if we place Py, ¢ in L{°L2 or an X*t-norm.
In the latter case one does not incur any loss due to orthogonality, whereas in the former case there is
a loss of |mgl|, see Lemma 2.18. The only place where one cannot use either of these norms is (4.45).
Indeed, if k; + 2mg < j — C, then the caps of sizes 2™ are smaller than those of size 2¢ = 225 in the
wave-packet decomposition of (4.45). In this case, however, one considers a wave-packet decomposition
induced by the projections Py, ,.Q <k, +2m, With k& € Cp,, which leads to the desired bound; the remaining
projection Py, xQk,+2me<-<j—c is then controlled by means of Lemma 2.7 leading to a loos of |mg| as
claimed. If, on the other hand, ki 4+2mg > j—C, then this issue does not arise at all and the estimate (4.45)
is performed essentially as in Lemma 4.13 — the only difference being that the caps in the wave-packet
decomposition are grouped together inside the larger C,,,—caps. (]

4.4. Nullform bounds in the high-high case. Henceforth, ||-||s will mean the stronger norm || - || ).

The following definition introduces the basic nullforms as well as the method of “pulling out a derivative”.

Definition 4.16. The nullforms Q.p for 0 < o, <2, a # 3, are defined as
Qaﬁ(¢a 111)) = Ra‘vaﬁw - Rﬁ(bRaw

whereas
Qo(¢,v) :== RadpR™ Y
By “pulling out a derivative from” from Q.p we mean writing
Qup(,9) = 0a(IV| "' ¢Rsv) — 95(IV| ™ 6Ra¥)
or the analogous expression with ¢ and 1 interchanged.
Recall the L2-bound (4.13) of Lemma 4.5 for Q,g-nullforms. We separate the nullform bounds according
to high-high vs. high-low and low-high interactions. The high-high case is slightly more involved due to

the possibility of opposing (++) or (——) waves with comparable frequencies and very small modulations
which produce a wave of small frequency but very large modulation.

Lemma 4.17. For any { < k+ O(1), and ¢; adapted to k; with k1 = ko + O(1),

Lk Bk
(4.50) 1PeQeQap (91, d2)llr2rz <277 22272 |11 lspay | b2l siia)
In particular,
k1

(4.51) 1PeQ<iicQas(dr, d2)ll 2z S 257 7 1ol sl b2l sis)
Finally, for any mg < —10,

1

3 k
(4.52) ( > ||PkQ§k+CQa5(Pk1,N¢1,¢2)H%%Lg)2 S Imol 277 161l siin 02k

KECm,

Proof. We can take k1 = kg + O(1) = 0. First, by (4.13),

L4k Kk
1Pk Qap (Qehre—cdr, Qerpe—cd2)lr2rz S 275 2% 6l spe 62l sihy
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Second, by an angular decomposition into caps of size 2%,

S IPQQus(Quor, Qamdn) 2o

L+k—C<m</

ik _t—k
(4.53) S Y 2727 2YQuillzr |Qemdall ez

trk—C<m<e
43k
S 277 (|1 lspr 102l ks

To pass to (4.53) one uses the improved Bernstein inequality, which yields a factor of 2’“2%, whereas

the 25" corresponds to the angular gain from the nullform (note that the error coming from the modulation
is at most 2™ < 2¢ which is less than this gain). And third, by the improved Bernstein inequality and a
decomposition into caps of size QmTM,

Y 1PQeQap(Qumor, Qem) iz S Y. 27

1<m<C 1<m<C

S > 25"

ngSC
L=k
S27 2k||¢1||5[k1]||¢2||s (k2]

The factor 2”3 + 2™ here is made up out of the angular gain 22 7 and the loss of 2™ in modulation (in
case = 0). And finally, due to € < 5,

1PeQeQas(@scbr, #2)ll2re S 2727 Qap(Qscér, 62) 11 p
< N 2250 |Qudn [l 22 | Qb 22

+ 2")|Qmérll 2 L2 |Q<m®2ll Lo 12

m

+2m) -

D1l s(k11 |02l 5182

m>C
£ mao—zm —E€
< 2M23 Z 227207961 || s B2l 5]
m>C
S2 2k|\¢1HSk1]||¢2||S[k2

as desired.

Next, we consider (4.52). Here one essentially repeats the proof of (4.51) verbatim. The only difference
being that instead of Lemma 4.5 one uses Corollary 4.6, in fact the null-form version of (4.24). Note
that this loses a factor of |mg|. To sum over the caps one also needs to invoke Lemma 2.18 in case of
a L$°L2-norm, which incurs the same loss. ]

We shall also require the following technical variant of the estimate of Lemma 4.17. It obtains an
improvement for the case of angular alignment in the Fourier supports of the inputs.

Lemma 4.18. Let § > 0 be small and L > 1 be large. Then there exists mg = mo(d,L) < 0 large and
negative such that for any ¢; adapted to k; for j =1,2,

k
(4.54) > 1PeQ<rrc Qap(Pry s 1 Prora®2) 1222 < 0272 |61 llspky) |82 5710

K1,k2ECm,
dist(k1,k2)<2™0

provided max;—12 |k — kj| < L. The constant C is an absolute constant which does not depend on L or 4.
Proof. Set k = 0. We first note that summing (4.50) over £ < — B already yields an improvement over (4.51)
provided B is large enough (in relation to 6 and L). Hence it suffices to consider the contribution of

PyQ19Q0s(Pry iy 1, Proy.rp¥2) with —B < ¢ < O(1) fixed. First, if we choose mg to be a sufficiently large
negative integer, then

Z PyQiQap(Q<t—cPryry 1, Q<t—CPryrot2) =0

K1,k2E€Cm
dist(k1,k2)<2™M0
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by Lemma 4.1. Second, by an angular decomposition into caps of size 2%,

Z Z ||P0QZQO¢ﬁ(QmPk1,N1 ¢1, QSmsz,Nz(b?)”LfLi

K1,62€Cm, £—C<mZC
dist(k1,k2)<2™0

< C(L,9) > > QmPey s b1ll 222 |Q<im P na 2l Lo e
K1,k2€Cmy  £—C<mZC
dist(r1,k2)<2™0

< C(L,8) Imo| 272" | @ullsih |02 sa) < 6 61l 518 02l 7hs

To pass to the last line we applied Cauchy-Schwarz to the sum over the caps as well as Lemma 2.18.

case dealing with Q< Pr, x; $1 and Qum, Pr, «,¢2 is analogous. And finally, due to € < %,
> [PoQe¢Qap(Q>c Pry oy @15 Piy ey 02) || L2122

K1,62€Cm,
dist(k1,k2)<2™M0

S Z HPOQ@Q()tﬁ(QZCP’fhKl ¢17 Pk27f”v2¢2)HL}Li

K1,62€Cm,
dist(r1,k2)<2™0

< C(L,6) Z 2" Z HQmPkl,mﬁblanLi ||Qmpk2,ﬁ2¢2HLfL;°

m>C K1,k2ECm,
dist(r1,k2)<2™0

<C(L,9)27% Y 2m27 079 16| sy b2l s s < 01161 15wy |21 87k
m>C

as desired.
In case the output has “elliptic” rather than hyperbolic character, there is the following bound.

Lemma 4.19. For any ¢; adapted to k; with ki = ko + O(1),
_ ko
Z 2 E£||PkQZQa5(¢1a¢2)||LfL§ <2227 R (kg — k)61 || spiy 162 sk

(>k+C

Furthermore,

(4.55) > I1PiQeQas(Qski o, Qsksodo)llrzre S 2% (ki — kY[ 61l spea 162 s
>ktC

Proof. We set k1 = kz + O(1) = 0. One has the decomposition

(4.56) [PeQeQap(1,P2)ll 1212 S |1PeQeQap(@>e—c 1, Q<iy+cd2)llL2r2

(4.57) + |1 PeQeQap(Qze—c 1, Q> +cd2) | L2 12

(4.58) + 1PeQeQap(Qer—c 1, Q>e—cd2)llp212

(4.59) + |1 PeQeQap(Qee—c 1, Qeo—cd2)llL2r2

We begin with the estimate
Z 27| PeQeQas (01, 82) 212 S 2% 101l s 82l s1ka)

1>k+C
L#k1+0(1)

The

which is stronger than what we claim — this is due to the fact that the the case of opposing (++) and (——)
waves is excluded in this sum. We first consider the case £ < k; — C” where C’ is large but still smaller

than the constant C in (4.56)—(4.59). Then the term in (4.59) vanishes. On the one hand,
(4.56) S 28| PeQe[05(Qze-c VI 61 - QzrarcOalV[ ™ 62)
—0a(Q>0—c|VI ™ 1 - Qerrrcsl VI b))l 1211

S 2 Qoo llz e b2l s
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Here we used that
Q<ka+cOsIV I b2llLeor2 S @2l sihs)

Furthermore,

> S 20k RNQ by s b2l s, S 2kH¢1HX2’11—Ev?||¢2||S[k2]

k+C<t<k;—Cm>{-C
< 25|61 | s | b2l sika)

as desired. The term (4.58) satisfies the same bound, more precisely, it can be reduced to (4.56), (4.57).
Next, note that due to £ < k; — C” it suffices to consider ¢1 = Q>k,+c®1 in (4.57). Consequently,

Z 27°4(4.57) S Z 27 Z 1PeQeQap(Qmdr, Qo) r212

k+C<t<k,—C k+C<t<k,1-C m2>k1+C
_ ¢ ~
S Z 27 Z 2k22||Qaﬂ(Qm¢1an¢2)HL%L}U
k+C<<ki—C m>ki+C
_ £ _ _
S o2t Y 25220m27 20 gy |l gy b2l sk
k+C<U<ki—C  m>ki4C

< 27|61 || sk || B2 58]

where we used that ¢ < i in the final step. Second, suppose that ¢ > k; + C’. Then

> 27 PeQeQas(d1, 62)ll 212

>k +C

(4.60) < Z 27| PeQeQap(Qedr, Q<o—502) |l 212
>k +C7

(4.61) + Y 27 PuQrQas(Qei—sdr, Qed2)ll 212
>k +C7

(4.62) + Z 27¢t Z HPerQaﬁ(de)hQm¢2)||L3Lg
0>k 1O m>l—5

which are in turn estimated as follows:

(4.60) S > 272" PuQrQap(Qudr, Qe—s2) |21

>k +C7

SO0 272% 2 Qudn |l pare 1 dell e e

>kt
< 28\ |l spen || B2l i)

and similarly for (4.61), whereas (4.62) is bounded by

< Z 9—et Z 2g2kl|Qaﬁ(Qm¢1aQm¢2)HL%L}E

0510 m>5
_ I _ _
SO0 2 YT 20272206 gyl b i)
0>k 1C" m>-5

< 2811 || sk |2l s8]

as desired.

It remains to consider the case [¢ — k1| = |¢| < C’, which gives us the weaker bound stated in the lemma.
We use the decomposition (4.56)—(4.59). The terms (4.56)—(4.58) give a bound of 2¥ as before. The main
difference lies with (4.59) which is nonzero only due to the contribution to opposing (+4) or (——) waves,
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see Lemma 4.1. In fact, one has with £ = k; + O(1) = O(1),

[PLQo(1)Qas(Q<—cd1, Q<—c2)ll 212
SO IPQo) Qap(Qe—c Padt , Qe Poyy )l 212

+ kel
k
(4.63) S 22Qec Pt sy i | Q< — P 5 [l (ka1
+ keCk
1 1
k 2 2
283 (D 1Q<-cPutt ) (2 1Q<-cPrd5 I )
+ kEC KECK
k
< 22K\ 61 |l s i) 102 ]| s1a)

To pass to the last line, we wrote

2
S Qe Pty £ 3 1@<k Petit P + 3 (30 1Q5P6E stsi )

~ECy r€ECy KECE 2k<j<-C
(4.64) S L TR LD D W (020 o
2%k<j<—C KeCy Xy

S RPN

and the result follows.
The second statement (4.55) follows by essentially the same proof. ]

Remark 4.20. Tt is important to note that the logarithmic loss of (k; — k)2 in (4.55) only results from
the case of opposing waves in the high-high case. Later we will use (4.55) without this loss in those cases
where these interactions are excluded.

Later, we shall also require the following technical refinement of Lemma 4.19 dealing with a further
angular restriction of the first input.

Corollary 4.21. Under the assumptions of Lemma 4.19 and for any my < —10,

2\ 1
( Z ( Z 2_6€||PkQ€QaB(Pk1,H¢17¢2)HL§LZ) )2 S |m0|2§2_6k1<k1—k>2||¢1|\8[k1]||¢2||S[k2]

KECm, £>k+C
with an absolute implicit constant.

Proof. This can be seen by reviewing the proof'® of Lemma 4.19. Specifically, up until (4.63), one places
Py, x¢1 either in the Xt or L°L2 norms. The norms are amenable to square summation, in the latter
case at the expense of a factor |mg|, see Lemma 2.18. However, as far as (4.63) is concerned, we distinguish
two cases: k < mg and k > mg. In the former case, the caps in Cj, are smaller than those in C,,, and (4.63)
applies directly (one organizes the caps in Cj into subsets of the larger C,,,—caps). In the latter case,
however, the C,,,—caps are smaller which forces us to write

Q<c—ct1 = QcameP1 + Q2mo<-<—cP1

The former is subsumed in a square-function bound as in (4.63), whereas the latter leads to a loss of |myg|
as in (4.64) and the corollary is proved. O

Next, we obtain an improvement in case of angular alignment of the inputs. This is analogous the case
of low modulations, see Lemma 4.18.

B3¢ is important to observe that one cannot square sum the bound of Lemma 4.19 directly due to the fact that
Enecmo HPIc1,n¢1”2§[k] cannot be controlled.
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Lemma 4.22. Let § > 0 be small and L > 1 be large. Then there exists mg = mo(d,L) < 0 large and
negative such that for any ¢; adapted to k; for j =1,2,

(4.65) > > 27 PeQrQas(Pry iy 61, Pro s $2) 1212 < 520798 1 || 511y D2l 51k

Kl,ﬁzECmO L>k+C
dist(k1,k2)<2™M0

provided max;—1 2 |k — kj| < L. The constant C in (4.65) is an absolute constant which does not depend
on L oré.

Proof. The proof consists of checking that one can glean a gain from angular alignment by following the
proof of Lemma 4.19. In effect, this will always be done by means of Bernstein’s inequality. The only case
where this is not possible is (4.63), but that case is excluded by the angular alignment assumption.

We set k1 = 0 whence |k| < L and |ko| < 2L. Implicit constants here will be allowed to depend on L,
but not the constants C' appearing in modulation cutoffs. As before, one has the decomposition

(4.66)  [|PeQrQap(Pry s 15 Pry i ®2)ll 202 S 1PkQeQap(Q>0—c Pry iy 01, Q<by +0 Ph s 92 2 12
(4.67) + | PeQeQap(Q>t—cPry iy #15 Q> ky +0 Piy 2 02) | L2 12
(4.68) + |1 PeQeQap(Qce—cPry ny $1, Q50— Pry i 02) | L2122
(4.69) + |1 PeQeQap(Qee—c Pry ny $1, Q<o—c Pry i 02) | 1212

We first consider the case £ < ky —C’ where C” is large but still smaller than the constant C' in (4.66)—(4.69).
Then the term in (4.69) vanishes by Lemma 4.1. By Bernstein’s inequality,

oo 27766 S D 1PQul0s(Qse—clVIT Py &1 - Qo t 000l VI Pry iy 82)
k+C<t<k,—-C k+C<t<k:1-C

—9a(Q>0-c|VI ™ Pryny 01 - Qa0 05|V ™ Prg ey 02)]l| 2.2

S @ Prmibllrzra || Pryra b2l oo Lo
k+C<t<k;—-C

<2 > |@>0—c Prywy 112212 | Poa o 21 Lo 12
ket C<l<ky—C

S 6HP]€1;51¢1HX0~ ,00 HPkg,N2¢2HLf°L£
0

1
2

Summing over k1, k2 now yields the desired bound by Cauchy-Schwarz (see also Lemma 2.18). The term
(4.68) satisfies the same bound. Next, note that due to £ < k; — C’ it suffices to consider ¢1 = Q>i, +cP1
in (4.67). Consequently,

>, 2taen s Y D 1PeQeQas(QunPry sy &1 Qo Pro s 2)l| 212

k+C<t<k,-C k+C<t<ki—Cmzk14+C

5 Z Z ||Q0t5(QmPk1,m¢17QmPk27H2¢2)||L,}Lg

k+C<t<k1—C m>k1+C

5 Z Z 2m272m(176)”Pk17K1 Qm@i)lHLfoD ||Pk27H2Qm¢2“L,?L;°
k+C<t<k1—Cm>k1+C

5 6||Pk17"€1 ¢1||X8*1*E*2 ||Pk27f€2¢2||)'(0°'1*5*2
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Summing over k1, ke again leads to the desired bound. Second, suppose that £ > k; + C’. Then

> 2 PaQeQas(Pry i, d1: Prora®2) | 1212

0>k +C"

(4.70) S Y 27PeQeQas(QePry b1, Q<5 Pry s b2) | 212
0>k +C"

(4.71) + > 2 PeQeQap(Q<o—5Phy iy 01, QePry s ®2) 1212
0>k +C"

(472) + Z 27 Z HPkQKQOtB(QmPkl»MqSlvQmpkmi‘équ?)”LfLi
0>k +C" m>0—5

which are in turn estimated as follows:

> (4.70) 5 > > 2 PeQeQap(QePry s b1, Q<5 Pry s ®2) | 1212

K1,k2ECm, K1,62€Cm,  €>k1+C’
dist(r1,k2)<2™0 dist(r1,k2)<2™M0

S > > 207 QuPe, b1l 1212 || Pro o b2l Lo 12

K1,k2€Cmg  £2k1+C’
dist(k1,k2)<2™M0

< 0|1l sk ll@2ll ks

and similarly for (4.71), whereas

oo owms > Y 2 Y 28]0us(QuPr k61, QP rat2)ll a2

K1,k2E€Cm, K1,62€Cm, £2k1+C’ m>£—5
dist(k1,k2)<2™M0 dist(r1,k2) <270
mo 1_2o)y —2 1—
$27 ) » 202 79)me=2mU=9)| B 61|l s(ku) 1P .o D21 57k

K1,62€Cm, mMmA5>4>k14-C’
dist(k1,k2)<2™M0

<SPl st i@zl 5]
as desired.
It the remaining case |¢ — k1| = |¢] < C’ we use the decomposition (4.66)—(4.69). The terms (4.66)—
(4.68) give a bound of § as before. The main difference lies with (4.69) which is nonzero only due to the

contribution to opposing (++) or (——) waves, see Lemma 4.1. However, this case is excluded due to the
angular alignment assumption. |

4.5. Nullform bounds in the low-high and high-low cases. We now derive analogues of the previous
two lemmas in the high-low case, with the low-high case being completely analogous.

Lemma 4.23. For any ¢; adapted to k; with ks < ki + O(1) = k one has

1PeQ<krcQas(d1,62)ll 202 < 23 22551 gy || gpu) 2l sy

Proof. We may take k = k1 + O(1) = 0 and ko < —C. Assume first that Q<,$; = ¢; for i = 1,2. Then
the modulation of the output does not exceed 22, and we are reduced to bounding the following three
expressions:

(4.73) > PQj(RaQej—cd1RpQcj—cd2 — RsQej—cdr1RaQej—cd2)| 212
J<k2+0(1)
(4.74) + ) [PQ<jrc(RaQid1RsQ<;d2 — RpQid1 RaQ<;d2) | 1212
j<ka+0(1)
(4.75) + Y PQejrc(RaQejdr RpQid2 — RpQjd1 RaQ ) 1212

J<k2+0O(1)
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Each of the summands here is bounded by 20U+%2)/4_ For the first, one decomposes into caps of size 9552,
47) s Y > 1RQi(RaQcj-cPad1RsQ<;—cPoha
j<ko+0O(1) NNH,ECm
2
— RsQcj—cPudp1RaQcj—cPud2)|L2L2
i=ky ko

> o2 “27Qj—cPatill s ) |Q < Prr b2 s(1ea )
j<k2+0O(1)

kg
S 27 (|1l g |2l s8]

where we applied (2.29) in the last step. Note that the nullform gains a factor of the angle in this bound.
As for (4.74), one performs a similar cap decomposition but without the separation between the caps:

47 s Y > 1PQcjic(RaQ;Pett RsQ<; Prrho

J<kz+O(1) KK EC;—ky
2
- RﬁQjPﬁ‘blRaQéjPM@)||L§Lg
J=Fko
S Z 2772 ||Qi Pl 212 |Q<j P b2l Lgo Lo

A

j<k2+0(1)
J—ko j Jd—ko
S Y 22272 T 2R |Qu Pt |l siiy | P b2l e 12
7<ko40(1)
Jdtka kg
S Z 277 | p1llsall@2llsira) < 272 91l sprn @2l s
j<k240(1)
Finally,
47) S Y > IPQcjrc(RaQej Pt RoQ; P o

J<ko+O(1) K,k €C _ky
p)
_RﬂQ<ij¢lRanPm’¢2)||L3L32C
j—ko
S Y 27 Qe Padillrer2 Qi Padall o

J<ka+0(1)
j—ky j—k )
S Y 272 27 2R|Qu P sk, | Q) P 2l 212
J<k2+0(1)
SO 27 dnllsmlldal s S 27 I6nllspe llé2llsge,)
j<k2+0(1)

If Qr,<.<cP2 = @2, then we may take ¢; = Q<c¢1 whence
[PoQ<0(1)QLas(d1,2)llL2r2 S llé1llLserz || Rod2l L2
Slolleer: Y. 271Q02ll 121z

ka<j<C
S 207952 | sy 02 s
On the other hand, if ¢ = Q>c @2, then necessarily also ¢1 = Q>c¢1 so that
[Po@<0(1)Qap(d1,92)llr212 S [[PoQ<0(1) Lap(d1, d2)ll L1
S D 1@ménllrzr22™ 1 Qmésll 2Lz

m>C

mao—2m(1— i_
Sllonllspy 3 2m2-2m=2 2k (3=2) g, | g
m>C

< 2G79%2) g || gy 192 | s k)



68 JOACHIM KRIEGER, WILHELM SCHLAG

and the lemma is proved. O

Next, we deal with the case of outputs with large modulation.

Lemma 4.24. For any ¢; adapted to k; with ko < k1 + O(1) = k one has

> 2 PeQeQaps(¢1, d2)llL2re S 22 79%2|6 | 511, D2 i)

(>k+C

Proof. Set k =k +O(1) =0 and ko < —C. Then
Z 27| PoQeQap(¢1, 62) 1212

i>c
(4.76) S 2 PQrQas(Qedr, Qee—cd2)ll 22
i>c
(4.77) + > 27 PoQeQap(Qxe-cd1, Qi) 1212

>0
First, taking « = 0 and 8 =1,

(4.76) S Y 27| RoQe(RoQe1 Ri Q- cp2 — RiQup1 RoQer—ca)| 212
(>c

S Z 272" Qedn [l 22 ld2ll Lo oo + Qe |l 2 r2 [ RoQee—c ol Lo o)
>c

~ 1,0 1_.
< N llspen o2l sia 2™ + Z ||Qe¢1\|L,?L§2(2+ V62278 || | 51y
>C

S 2047952 1 gl 82 s

To pass to the second to last line we used the estimate

N
IRoQer-collizre S 2% 1Qckat2llzors + > 27 [|Q ¢l 1212

ko<j<t—C
5 .
< 2% Qaky b2l pgo 2 + Z 2%2_(1_6)]2(%_8)162H¢2||S[k2]
ko<j<t—C
1 ; 1_
§2k2||Q§k2¢2||Lg°Lg+ Z 2(3+e)ig(3 s)]€2||<252H5[1€2]
ko<j<t—C

< 252)| Qg ol ez + 23 F2GE TR g, | oy

On (4.77) one has the bound (again for « =0 and g = 1)
(4.77) < Z 2| PoQe(RoQum$1 Ry Qumyy — R1Qumpr RoQumb2)|| 1212

m>£>C
1_ m 9

S D 25792 Quéi e |1 Qmel a2

m>0>C

—(2—e)m 3¢

S Y 2G5k, 207 R2 6ol sk,

m>C

1_ 2
< 2G| sk, | D2l 5ka)
as claimed. .

5. TRILINEAR ESTIMATES

The purpose of this section is to derive the estimates on the trilinear nonlinearities which govern the
wave map system. To clarify the role that these estimates play, we include here a table which explains
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TABLE 1. Relation of trilinear estimates to null-forms

69

Estimate Trilinear expression
Lemma 5.1 1,2
Corollary 5.2 3,7
Lemma 5.3 4-6, 8-11
Corollary 5.4 1,3,7
Lemma 5.5 2,5,6,8-11
Remark 5.6 2
Lemma 5.7 4,9
Lemma 5.9 1,3,7
Corollary 5.10 2,5,6,8-11
Lemma 5.11 2,5,6,811

how these estimates relate to the trilinear terms arising in section 3. Recall that the trilinear null-forms
are summarized in the expression (3.14). In the table, we number the terms in this expression 1-11.

The gist of the estimates to follow is that whenever one is given a trilinear null-form of the schematic
form

Vi Po[t1 V™ hat)s]]

with each 1; localized to spatial frequency ~ 2%, i = 1,2, 3, then one gains exponentially in the difference
of the largest to the smallest logarithmic frequency present, unless one is in the situation where k; = O(1)
and ko3 < —1,i. e. the high-low-low case. This latter feature forces us to modify the procedure of
Bahouri-Gerard in section 9, and it also informs our choice of the weight w(ky, ko, k3) below.

In addition to the bilinear estimates of the previous sections, we will also heavily use the Strichartz
component of the S[k]-norm, see (2.14). As already in [22], we will partially rely on Tao’s trilinear
estimate from [57] which states that (relative to our norms in the S[k]-spaces)

3
(5.1) 1Po[pr RP42 Raths)|| oy S 272" R0 028 T |lapy | s
i=1

for some oy > 0. To obtain (5.1) from [57], one observes that ||[V4)| sy (strictly) dominates the S[k]-norms
of [57], whereas || Fy - || yjo) is dominated by the respective N[0]-norm used in [57]. Because of this property,
the trilinear bound from [57] can be adapted to this setting provided the correct scaling is taken into
account. Moreover, throughout this section we define, with kpax := k1 V k2 V k3, kmin := k1 A k2 A k3, and
kmea the median of kq, ks, k3,

9—00kmax 900kmin A0 i kmax > C
w(ky, ko, k3) == 9= 00(kmed—Fmin) if k= kpax = 0(1)
200 (k1+k2/\ks) if k1 < kmax = O(1)

where o9 > 0 is some fixed small constant.
We split our argument into two cases, depending on whether all inputs are “hyperbolic” or not. This
distinction is based on modulation vs. frequency.

5.1. Reduction to the hyperbolic case. The following lemma deals with the case where at least one
of the inputs or the interior null-form have “elliptic” character. Recall that I := ), _, PiQ<pyc and
I¢:=1—1 (here C is an absolute constant, C' = 10 will suffice). Throughout this section, we will write
ﬁk to denote a projection Zk’:kJrO(l) Py, and similarly with Qk

Lemma 5.1. Let v; be Schwarz functions adapted to k; for i = 0,1,2. Then for any a = 0,1,2, and
J=12,

3
[ Po0” Ag[A1 Rat1 A™19;A1 Qg (Aatha, Asts)]|Iwvjo) S wlky, ko, k) H ll1%ill sk

i=1
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where A; and Ay are either I or I¢, with at least one being I¢. Moreover, we impose the condition that
Ay = Ay = I°¢ implies a # 0.

Proof. Case 1: 0 < k; <kgs+ O(1) = ks + O(1). We begin with Ay = I¢ and A; = I. Then we can drop
IR, from 1; and estimate!®

(5.2) [ PoQ>00" (11 A710; Qg (W2, ¥3)] | vjo) S 1Po@300” (1 A1 0; Q<+ Qpj (W2, ¥3)] | o)
(5.3) + | PoQ00" [Y1 A1 0;Q>ky + Qs (V2. ¥3)]| v (o)

By Lemma 4.17, placing (5.2) into X8’7175’2 implies

ko
918710 Q<ky+0 Qi (Y2, 3)lll 22y S N1llee 2227 2 bl st 193]l sikal
k
<27 F |l sgayg 192l 571 11903l s

whereas

(5.4) (5.3) < Z 1PoQm0” [Q<m—ct1 A7 0;QmQp; (Y2, ¥3)] | npo]
m>k1+C

(5.5) + Y 1P0Q200°[Qem-ct1 AT 0;Qm Qs (W2, vs)] | v
m>k1+C

Lemma 4.19 yields the following bound on (5.4):

> 1PQm0” [Qem—ct1 AT 0;Qm Qs (W2, ¥3)] | o)

Y 1PoQund°[Q<m—ct1 A0 Qum Qs (2, 3)] | xo.-1-2.2
mZkH—C

SO 27 W g 22 |1 Pry Qun Qi (W2, v3) | L2 e
m>k1+C

3
k
<$275R227 % (ky — ki) [ [ il sim
=1

The bound on (5.5) proceeds similarly:

(5.5) < Z 1 P0@300" [Qsm—cth1 A1 0;Qm Qg (2, ¥3)] | v o)

m>ki1+C
S Y Y IRQO Qe m—ctr AT 0;Qm Qi (¥, ¥3) | v
m>k1+C 0<l<m+C

+ Z Z 1 PoQe0” Qb1 A™10;Qum Qs (W2, 43)] || w0

m>ki1+C £>m+C
Y > 2(%_E)Z”Q>m—0¢1”L%L§HPMA_lanmQﬁj(w?a¢3)]”L§L§
m>k1+C 0<l<m+C

+ Z Z 27 Qetn ll L2 L2 1Py A7 9@ Qi (W2, 3l e 12

m>k1+C £>m+C

In the second to last line we applied Bernstein’s inequality in the time variable to switch from L? to Lj.
We now replace the L on the right-hand side of the last line by an L? at the expense of a factor of 2% .

147¢ is convenient to prove the somewhat stronger bound with Ag = Q¢ here.
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Together with Lemma 4.19 this yields

(5.5) < Z Z 2_k1+(%_8)ZHQ>mfcw1||L§L§||Pk1QmQBj(1/)2a1/’3)]||LEL§

m>k1+C 0<l<m+C

+ 0> > 27| Qe [l 2z | Pry Qun Qi (W2, )]l 22

m>ky+C £>m+C

< N0 2GR gy gy | Py @ Qs (W2, v3)] 212

m>k1+C

—ky— m o (1— 1_ ~ ~
+ Y Y 2o m9GmOR 1y | g | Pry Qm Q5 (W2, ¥8)] [ 2212

m>k1+C €>m+C

3
k
<2727k (ky — k)2 T 10illse
i=1

Next, we consider the case where both Ag = I° and A; = I°. If a # 0, then one can drop R, altogether
so that the previous analysis applies. Otherwise, if & = 0, then by assumption A; = I and

[PoQ500°[Qsk, +0Rath1 A710; Py, Q<iy 10 Qpj (Astha, Azths)] l| vio]

(5.6) < Y 1PQm0” [QmRathr AT Pry Qi +0 Qs (Atba, Asths)]|| wiop
m>ky +10C
(5.7) + | PoQo<-<ky +1000° [Qo<.<ky 1100 Rath1 AT 0; Py Q<+ Qs (Aatha, Ass)] || wpo)

By Lemma 4.17, (5.7) is bounded by

||POQO§~§I§1+1006[3[QO§-§k1+IOCRa¢1A718ij1Q§k1+CQﬁj(A2¢27AS¢3)]||X0°>*1*&2
S Qo< <k +100 Ratin A_lajﬁk1Q§k1+CQﬁj(A21/J27A3¢3)||L3L;
S Qo< <k +100 Rathn || s 2 87105 Py, Q<ry 10 Qpi(Aatha, Asths)| a2

3
_ k2
S277 H %3 | s(k4)
i=1
On the other hand, (5.6) is estimated as follows:

> 1PoQund” [Qun Ratp1 A0 Py Q <y +0 Qs (Aatpa, Agths)]|| o122
m>k,+10C

S Y 27N @mRat I r212 |A 710 Py Qe+ Qi (Astha, Asths)] | p 2

mZkl

k ~
< 27Ok || 01 272 (| Pry Q0 Qi (Aot Astps)]ll 22

3
ek k2
S 27 I il s
=1

where we applied Bernstein’s inequality relative to ¢ as well as Lemma 4.17 to pass to the last line.
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Now suppose Ag = I (in fact, Ag = Q<o), but at least one of A or Ay equals I¢. But then the modulations
of 11 and Qg; essentially agree, whence a # 0 and

S 1P0Q<00%[QunRathi A0 Qum Qs (42, ¥3)] | vpo)

m>ki1+C

S Z 1PoQ<00” [Qum Rath1 A7 0;Qm Qs (12, v3)]ll 1,

S Z HQ’meHL%ngikl||Pk1Q7nQ5j(w2aw3)HL%L%

mZkﬁ-C

i-¢ —m(1— — —me|| D )
N Z 202 kg mm=29) gy, || gy 27512 [P, @m Qpj(¥2,¥3) || 1212
m>ki1+C

3
k
<o Feka (g, )2 H %3 ll stk
i=1

The final estimate here uses Lemma 4.24. The last case which we need to consider is Ag = A = A; =1
and either one of Ay, A3 equal to I¢. But then necessarily Ao = A3 = I whence

| Py@P I[IRa1 AT 0,195 (@5 ky+ 02, Q> kyc3)] || V(o)
S MR AT10;1Q55(Qs kv 02, Qo rcts) |l
Sliloerz Y 1Py Qekirc Qi (@mtba, Qo)L 1

m>katC
3
Slnlleerz > 2 F2272m 0020290 1y | 9l sire) S 27 [T 1illspe
m>kat+C i=1

which concludes Case 1.

Case 2: 0 <k; =ko+ O(1),ks < ko — C. We again begin with Ay = I¢, A; = I and the representa-
tion (5.2) and (5.3) (dropping IR, from 1; as before). By Lemma 4.23, (5.2) is bounded by

191 A0, Qciy ¢ Qps (2, ¥3)ll p2r1 < 91| 0 2 202 Ra 2=k [l || g0 1403 g

whereas

(5.8) G3)S Y. PQumd’ [Qem—ct1 A 0;QmQp;(v2,v3)] | v
m>k1+C

(5.9) + Z 1PoQ500°[Q3m—ct1 A~ 0;Qm Qa5 (W2, ¥3)] || v o)
m>ki1+C

Lemma 4.24 yields the following bound on (5.8):

Z | PoQm0® [Q<im—cth1 AT10;Q0m Qg (o, ¥3)] 0

k‘l-‘rCSW'L

< Z ||P0me9ﬁ[ng—cwlAflanmQﬂj(¢2,¢3)]||ng*1*f’2

k1+C<m

S Y 27 Wl g2 27| Py @ Qi (W2, ¥3) || 212

ki+C<m

3
S 2067 R T ] gy
i=1
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The bound on (5.9) proceeds similarly:
(5.9) < Z 1P0@300" [Qsm—cth1 A1 0;Qm Qg (2, ¥3)] | vpo)

mZkﬁ-C
s > > 1PoQed”[Qsm—ct1 AT 0;Qum Qaj (2, ¥3)]l| go.-1-2.2
m>k1+C 0<t<m+C
+ > > ||P0Qz<9’6[Qf%A_lanmQﬁj(%,¢3)]||X§~*1*572
m>ki1+C £>m+C
(510) 5 Z Z 2(%7€)£”Q>7n—0¢1”L%L3 HPMA_lannLQﬁj (¢2, ¢3)]”L§L§
m>k1+C 0<l<m+C
(5.11) + Z Z 27| Qe[| 222 | Py A7 0;Qmn Qs (Y2, 3)]|| Lov 2
m>ki1+C £>m+C

To pass to (5.10) we used Bernstein’s inequality to switch from L? to L}, which costs 25. We now replace
the L$° on the right-hand side of the last line by an L? at the expense of a factor of 2% . In view of
Lemma 4.24 one concludes that

— 1_ ~ ~
GO9S Y > 2T Qs ot |l 1P Qm Qs (¥, ¥3)] | L2 2
m>k1+C 0<l<m+C

m

+ Z Z 27 M2 F | Quthr || L2 L2 || Py @ Qi (2, ¥3)] | 2122

m>k1+C L>m+C
(1 1 L
SN 2GR gy || gy | Pry Qun Qs (W2, )]l 212
— k= m (11— 1_ ~ ~
+ Y Y 2o (G mOR gy || || Pry Qn Qs (¥, v3)]l| L2 12
m>k1+C £>m+C

3
< 27kigla—aks 1T 1%l s
i=1
Next, we consider the case where both Ag = I° and A; = I°. If a # 0, then one can drop R, altogether
so that the previous analysis applies. Otherwise, if a = 0, then by assumption A; = I and as in Case 1
one obtains (5.6) and (5.7). By Lemma 4.23, (5.7) is bounded by

||P0Qog<§k1+1ocaﬁ[QoggklﬂocRa%A*lajpklngﬁch(AzibmAs%)]”)‘(;’fl—fv"‘
S Qo< <ky+10c Rathn A_lajplegkﬁcQﬂj(AmeA3¢3)||L3L;
< 2G| Qoc. <ky 4100 Ratht [ 222 [|A710; Py Qry 10 Qg (Aatha, Asths)| 22

1

3
k
<2 22k H 1%ill sk
i=1
On the other hand, (5.6) is estimated as follows:
> ||P0Qm3ﬁ[QmRa¢1A713jpleglichﬁj(Azi/)z,As¢3)”|xgﬁl*5=2

m>k1+10C

S Z 27" Qun Vo VI T |22 275 | Py Qs 0 Qi (Aatha, Asts)]|| oo 2

m2>ky

ky o~
<27 GOk gy |l gy 27 7 (| Py Q<ir+0 Qpj (A2v2, Ashs)|ll 22

3
< g—kit(3—e)ks H [9ill sk

i=1

where we applied Bernstein’s inequality relative to ¢ as well as Lemma 4.23.
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We now turn to the case where Ag = I, but at least one of A; or Al equals I¢. But then the modulations
of 11 and Qg; essentially agree whence a # 0. Bounding N[0] by L} L2 and invoking Lemma 4.24 yields

Z 1 PyQ<00" [Quntp1 A 9;Qm Qs (2, ¥3)] | (o)

m>k1+C
<

~

Z 1Q@mtr 22 2% (| Py, Qun Qs (W2, ¥3)] | 212

3 3
< 27 GGk TT sy speyy S 275129k T [l s
=1 =1

The last case which we need to consider is Ag = A; = Al = I and either one of Ay, A3 equal to I¢. We
begin with As = I°. But then necessarily A; = A3 = I¢ whence

| Pod” T[Ty A~ 0;1Q (@5 kyy ¢ 2, Q> kst c¥3)] | o)
S 1A 01 Q8(Q> ks 402, Q3 har0¥3) | Li L

Sl per227™ Z [ Pry @<y ¢ Q55 (Qutha, Qs 11 12

m>kao+C

Slipillpere Y 2mheam20=emola=akeg(=aks |1y || gy |5 ik
m2k2+C

3 3
< 9Bkt (3—e)ks H il sy S 27 M1 23—k H il sk
i=1 i=1

It remains to consider the case Ay = I and A3 = I°. We begin by reducing the modulation of the entire
output. Indeed, by Lemma 4.23,

[ Po0° Q1 —3e)ky <. <@ty -1 A0 Q <y .0 Qi (Inha, I3)] | (o)
S 27303 g | oo 278 1Qp; (b2, T°5) | 212
< 2 kg3 (1-39)ks 11l Leo 2 2(3—kagehs 192l s1xa) 1193 || s [ks]

3
< 9—(1-e)k195ks H %3l stka)
1=1

Next, we reduce the modulation of );:
1 Po0° Q< (1-36)1s [@> (1 -3¢ )hs —ky V1 AT 0;Q <y ¢ Qi (T2, I°03)] || o)
S 1Po0” Q< (136 ks (@ (132 kg — iy V1 AT 03 Q< 1.0 Qs (T2, I03)] || i 11
SNQ>—seyks—r ¥1llzzr2 275 [ 1Qg5(Inha, I°4s) || 1212
S _%2_5(1_35)k3||1/)1||5[k1] 25 = Mka 922 |y | i) 03|
<27 (Gmkigsks ﬁ il sk
i=1

Finally, we reduce the modulation of the interior null-form using Lemma 4.13:

1 Po0" Q< (1 -3¢k [Q<(1-30 kg — ks V1A ™05 Qg <-<iey ¢ Qj (112, I93)]| W (o)
S ol s Z

275275 ()| P, Qe Qp; (T2, I0%s) lz2r2
k3 <t<k1+C

3
1 1_
<9 (1-2e)k19(% E)kBHHd)iHS[kJ
i=1



CONCENTRATION COMPACTNESS FOR CRITICAL WAVE MAPS 75

which is again admissible. After these preparations, we are faced with the following decomposition:

Pod®Q<(1-30)ks [Q< (136 ks — 1y V1A ™10 Q <y Qj (112, I90)3)]
= Po0P Q< (1-3)ks [Q< (130 kg — ks V1A T 0 Q <y Q5 (Qhy < <o 4 0V2, Qg 1 O<- s 1 0U3)]
= Z Po,50” Q< (1-30)ks [Py i Q< (1—30 ks — ks V1 A0 Q <1y Q5 (Queg < <hp+ 02y Qg+ 0<-<hn+0V3)]

K,k ECy

where ¢ = (1 — 3¢)ks and dist(x, x’) < 2. Placing the entire expression in L; L2 and using Bernstein’s
inequality results in the following estimate: with J := Qr,<.<k,+c

1P00° Q< (1-36 )y [Q< (1 -3 ks — oy V1A ™1 0;Q <y Qi (Ih2, 1°03)] || 11 12

SH( Z ”PO,H[Pkl,n/Qg(l—Se)kg—klwlAilanSkg.Qﬁj(J¢2,Jw?))]”ng)E

K,k ECy

Ly

1
s _ 2
<22 Z 1P, [Pry v Q< (1—36) kg —ky V1A 1an§k3Qﬂj(J¢2,J”(/Jg)]”QL;) ,
K,k E€Cy t
1
i _ 2
<2z ( Y 1P Qe1-seks—r 112 1A 16jQ§ngm(J¢2,Jwg)}llii) o
K'E€Cy t
A _
< 22|Q<(1-30 ks b V11l Lo £2 AT 105 Q <y Qaj (S, J3)] | L1 12
< 280738 gy gy 278 [V V|7 T2 2212 Ve |V T8l 2 e
k
< 2%(1_35)%”%”3[1@1] 2_k12_%}”¢2||5[k21 2(%_6)k32€k2||¢3||3[k3]

which is again admissible for small € > 0.
Case 3: 0 < k; =ks+ O(1),ke < ks — C. This case is symmetric to the previous one.

Case 4: O(1) < kg = ks + O(1),k; < —C. This case proceeds similarly to Case 1. We again begin with
Ay =1I¢ and Ay = I. Then we can drop IR, from v, and estimate

(5.12) |1 PoQ300" [¥1A710;Qp; (2, v3)] I vjo) S 1Po@300° [h1 A8 PoQ o Qi (12, v3)] [l o)
(5.13) + |PoQ00° 1 A1 PoQ> Qs (¥2, ¥3)] | viog
where we write ﬁo = P_¢,¢) for simplicity. By Lemma 4.17, placing (5.12) into Xg’_l_E’Q implies

~ k
11 A0, PoQecQps (v, ¥s)ll 2z S I¢nllnserse 277 W2l spoa) ¥ siis)

3
ko
S 28277 [T lIill e
=1

whereas

(5.14) (5.13) < Z 1PoQm 8’ [Q<im—ct1 A8, PoQun Qg (2, ¥3)] | v o]
m>C

(5.15) + Z 1PoQ500°[Q5m—ct1A710; PoQum Qs (12, 13)] || w0l

m>C
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Lemma 4.19 yields the following bound on (5.14):

Z 1 Po@m0” [Q<im—ct1 A0, PoQin Qg (%2, ¥3)] || v o)

m>C
SJ Z ||P0Qma'8[ngfcwlAilanmQﬂj(w%w3)]|‘X3’_1_5’2
m>C
< Z 27mEH'¢1”L§°Lg°||ﬁ0QmQﬂj(1/)2aw3)HLfL§
m>C
3
<2827 (ky — k)2 T T il spm
i=1

which is admissible. The bound on (5.15) proceeds similarly:

(5.15) Z 1PoQ500" [Qm—ct1 A7 0;Qum Qs (¥2,13)]| N(0)

m>C

SY Y 1PQe% Qe 1 AT 05Qun Qpy (W2, 5] 012

m2>C 0<t<m~+C

+YY ||P0Qe85[QMlA_laj@mQﬂj(wz,¢3)]||Xg’*1*5’2

m>C €>m+C

<3N 2879 Qum—ctnll 2 re | Po@um Qs (%2, %5)] | 2 12

m>C 0<4<m+C

+ Y 27Qeth |2 Lo [1PoQum Qs (2, 3)] | e 12

m>C €>m+C

In the second to last line we applied Bernstein’s inequality in the time variable to switch from L? to Lj.
We now replace the L on the right-hand side of the last line by an L? at the expense of a factor of 2% .
Together with Lemma 4.19 this yields

L o
(5.15) Z Z 2G99 Qun o |l L2 2 || Po@m Qs (2, ¥3)] | 212

m>C 0<4<m+C

+ 30> 2720 Qi 1 | Po@um Qo (2, 65)] | 2.2

m>C L>m~+C
“1m ~ ~
Sk Z 272" 11 || g ([ Po@m @pj (2, ¥3)] | 2 L2
m>C
+2M YN 2725 27y || 511, [ Po@um Qs (2, ¥3)] [ L2122
m>C eL>m~+C

< 23-hg=shyg 2H||wz||s

which is admissible. Next, we consider the case where both Ag = I¢ and A; = I¢. If a # 0, then one can

drop R, altogether so that the previous analysis applies. Otherwise, if @ = 0, then by assumption Ay =1
and

| Po@500°[Q5c Rath1 A™10; PoQ<c Qaj (Aatha, Asths)]|| npol
(5.16) < Z ||P0Qmaﬁ[QmRa%A_lajﬁoQgcQﬁj(A2¢2,A3¢3)]||N[0]

m>10C

(5.17) + 1 PoQo<.<10¢9°[Qo<. <100 Rath1 A™19; PoQ<c Qg (Aatha, Azs)] | vpo)
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By Lemma 4.17, (5.17) is bounded by

1 PoQo<.<10¢9°[Qo<. <100 Rath1 A0, PyQ< Qs (Astha, Azths)] ||X8’*1*5'2
S [[Qo<-<10c Rathn Ailaj];OQSCQBj(Aﬂ/}Q;A377[}3)HL§L§
< Qo< <ki+100 Ratt || oo |A710; PoQ<c Qpj(Aztha, Asths)|| 212

3
k
< 26027 [T il e
i=1
On the other hand, (5.16) is estimated as follows:

Z ”POQmaﬁ [QmRawlAilaj‘ﬁOQgc Qﬁj (A2¢2, A3¢3)] ||X8,7175,2

m>10C

S 2™ Qm Ve VI 1| 2 | PoQsky +0 Qi (Aatba, Asths)] || oo z2

m>0

< 2679k |y, stk | PoQ<c Qs (Aztha, Azihs)] lz2r2

3
1 Vky— k2
SPARR 22H||1/1i|\3[m]
=1

where we applied Bernstein’s inequality relative to ¢ as well as Lemma 4.17. Now suppose Ay = I (in

fact, Ag = Q<o), but at least one of Ay or Ay equals I¢. If Ay = I¢, then the modulations of ¢, and Qs
essentially agree, whence o # 0 and

Z [ PoQ<00" [QumRath1 A1 0;Qm Qp; (2, ¥3)] || o)

m>C

S Y 1PQ<00” [QmBRathr A1 0;Qum Qu; (W2, s)] | 1 12

m>k1+C

S Q2 roe 1 PoQum Qs (2, s) | 212

m>C

< D7 26 kgmmA=2) gy | g 277 PoQn Qp (Y2, 5) 2 12
m>C

3
< 267k )2 T (1wl siw
i=1

The final estimate here uses Lemma 4.24. Now suppose that A; = I and A; = I¢. Then

[PoQ<00”[I° Ratp1 A1 0;1Q3;(¥2,¥3)] || o]
S Rathr A710; PoI Qg (w2, vs) |l 1 12
SV el VI 01 [l 2 poe | PoQ<c Qs (2, 93) | 1212

1_ _ka
S 2067 (4[| 21227 ([0 s 103 |5 0o

s
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The last case which we need to consider is Ag = A; = ;11 = I and either one of As, A3 equal to I¢. But
then necessarily A, = Az = I¢ whence

[P0 T Itp1 A1 0;1Q3; (@3 ka2, @3kt c¥3)]| N(0)
ST AT 0, 1Q8;(Qsky 02, Qo kysc¥s) | Lips
Sltnlleere Y, 1PQ<cQs;(Qmtba, Qmis) |l iy

m>ko+C

< 2k1H1/)1||L§’°L§ Z 2m7k2272m(176)2(172e)k2||¢2Hs[k2]”¢3||s[k3]
m2k2+C

3
Sk H il s(xi]

i=1
which concludes Case 4.
Case 5: O(1) =ky, ke = kg + O(1). We begin with Ay = I° and A =1 (in fact, A9 = Q>¢ suffices here

as usual). Moreover, we will drop R, from 1); which amounts to excluding the case Ay = I¢ and o = 0
but nothing else. Then, from Lemma 4.17,

| PoI 0P (91 A~ 0;1Qp; (2, 3)] | (o)
S AT TPQp(va, )l 22

k<kaAO+O(1)

S Y nlloere 27 TP Qg (W2, )| 2 e

k<kaAO+O(1)

3
K k2l
N Z 1l e 222577 ||tba | sipeay 193]l ska) S 2772 HH%HS[M]
=1

k<kzAO+O(1)

which is better than needed. Now suppose o = 0 and Ay = A; = I¢, which implies that Ay =1. Then
| PoI¢0° [I¢ Rotpy A0, 1Qp (12, ¥3)] |~
SOD D 2 RQu[Qm Rt AT Pl Qs (2, 4s)] |22

k<kyAO+O(1) m>0

S 20 Qutlle a2 1P Qs (v, )]l e e

k<kaAO4+O(1) m>0

k
S0 Wallspe 22 T PeQs; (o, ¥8) 2212

k<kzAO+O(1)
3
k _ ko _ ko]
N Z 22 [|91 [l sy 257 7 112l spiay 1903 L sig) S 272 H‘Wi”S[ki}
i=1

k<kaAO+O(1)

Next, consider the case Ag = I¢, and Ay = I¢. Since I Ry is now excluded, we may drop AiR,
altogether. Then

[ PoI¢0P [1h1 A~ 0;1°Qp; (12, %3)] || wpo)

(5.18) SO IRQxo[ti AT 0 Qrs. <o P Qs (2, s)] [ 1212
k<ka AO+O(1)
(5.19) + Z Z 2_8m”POQm[QSme@blA_lanmPkQB]‘(w%1/}3)]||L3L§
k<kaAO+O(1) m>C
(5.20) + Y > 1PoQ20[@5m—cth1 A7 0;Qum PrQp; (12, ¥3)] || 212

k<kaAO+O(1) m>C
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First, by Lemma 4.19,
(18) S > sz 27" 1Qr<. <o PeQps (W2, ¥l L2 L

k<kaA040O(1)

S Z 91l Loe 2 [|Qr< < PuQpi (2, ¥3)l L2 12

k<kaA0+0(1)

3
ko _
S0 llngerz 2227 (ke — k)2 W2l spral 1€l sike) S 27512 (ko) T T el s
kSkz/\O#»O(l) i=1

Second, again by Lemma 4.19,
(G195 > > 2 PoQu[Qem—ct1 AT 0;Qm P Qs (2, s)] | 1212

k<kyAO+O(1) m>C

S Z Z 27 [ | Lo 12 |Qum P Qi (2, 3)] | 2 1.2

k<kaAO4+O(1) m>C

3 3
< Y 28Rty — k)2 T Iwillspe < 2752 (o) T Il s

k<kan0+O(1) i=1 i=1
and third,
(5.20) £ Z Z ||Q>m7Cw1||L;-’L§2_kHQmPkQ,Bj(w27¢3)]||L§°Lg°

k<k2A0+O(1) m>C

S D 2 I s 2% (1@ Pr Qi (2, )] 212

k<kaAO+O(1) m>C

S Z Z 2= 729™ 14y || 14y 27| Qu Pe Qs (02, v3) | p212

k<kyAO+0O(1) m>C

3
< 27kl TT Iill s

i=1

where one argues as in the previous two cases to pass to the last line. ~
Thus, A9 = Q<o for the remainder of Case 5. If A; = I¢, then necessarily A; = I which implies o # 0.
Therefore,

1 PoQ<00” [T AT 0;1°Qp;(v2, ¥3)] | v o)
s D> > Q1 AT 0; PuQin Qs (b2, ¥3)] 1 2

k<k2A0+O(1) m>C

S Z Z |1@mrll 22 | Pe@m Qs (¥2, 403 1212

k<kaA04+O(1) m>C

(5.21) SO D> 2Oy gy 27T Pe@un Qs (2, v3) | 212

k<kaAO+O(1) m>C

E ok,
S0 alsm 27272 (ke — K212l sika 19 s1ka)
k<kaAO+O(1)

3
< 272l TT Iill s

i=1
which is again admissible. So we may assume also that A; = I which means that we can drop R, from ;.
First, consider the case A; = I¢, whence we now face the expression

PoQ<00° 1 A10;1°Qp (12, 13)]
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with the implicit frequency constraints of case 5. We write this as

PoQ<00” 1 AT 9;1°Q4; (2, 13)
> PiQ<0d’[1 AT 0;Qs ket PrQpj(th2, 13)

k<O(1)
Y PiQ<od’[Qau—cthi AT 0;Qu P Qp; (W2, 4s)
(5.22) k<O(1) O(1)>I>k+C

+ Z Z PyQ<00°[Qs1-c1 AT10;Qi P Qg (Vo 13)

k<O(1) O(1)>I>k+C

+ Z Z PyQ<00°[Q>1-ct1 A710;Qi Py Qg (Yo, 1)

k<O(1) 1>0(1)

To estimate the first term of (5.22), we use

Y PQ<0d’[Qarctr AT 0;QuP:Qs;(v2, ¥s) | o)

k<O(1) O(1)>I>k+C

(5.23) < > > 1PQirory< <00’ [Qai—cti AT QPR Qs (Y2, ¥3)ll 1.

k<O(1) O0(1)>I>k+C %o

Z Z 2*(%*5)1||Q<I,C1p1||L?QL32*5[||A*18jQszQﬁj(¢2a1/13)”1:%1:;0

k<O(1) O(1)>I>k+C

1
301

Recalling the assumptions on the frequencies in case 5, and using Bernstein’s inequality as well as
Lemma 4.19, we can further bound the preceding by

_(1_ ko _
(5.24) = Z Z 27 (279122 97F2 |y || gy H | Pe; ¥jllsry) < 2 EkzvoHH%”s[k]

k<min{O(1),k2} O(1)>I>k-+C §=2,3 i=1

The second term of (5.22) is handled similarly, using

> > PQ<0?’[Qx1-cthi AT 0;QiPk Qg (V2. s) | o)

k<O(1) O(1)>I>k+C

(5.25) < Z Z 1P0Q<00” Q51— ct1 A™18;Q1 Py Qs (o, ¢3)“L%H*1

k<O(1) O(1)>I>k+C

S ) > 1@si-ctnlzz 1A' 0;QuPLQs; (W2, vs) 121

k<O (1) O()>I>k+C

and from here the estimate continues as for (5.23). The third term of (5.22) is handled identically, and we
note here that one actually gains exponentially in .
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Finally, suppose at least one choice of j = 2, 3 satisfies A; = I°. Then necessarily, Ay = A3 = I and

|1 PoI0° [Ty A™10;1Q 5 (102, T3)] || o)
S Y M AT O IPLQu (I, I°0s)] | 2

k<kaAN0+O(1)
(5.26) S Wlloena 2 M ITPQey (I, I0s) 1y
k<kaN0+0O(1)
S D Wnllegre 25 PeQpy (I, I9s) | 1y 1
k<kaAO+O(1)
SN lrns D 195(Qumite Quts)lnyry
m>ko+C
S22y |l poepe Y 2 Ragm2Ammo(-2ke |y | o403 | sy
m>ko+C
3
(5.27) S 27RO T Il spw
=1

as claimed.

Case 6: O(1) = ky > kg + O(1) > ks + C. This case proceeds similarly to Case 5. We begin with Ag = I°
and A; = I (in fact, Ag = Q> suffices here as usual). Moreover, we will drop R,, from %; which amounts
to excluding the case A; = I and a = 0 but nothing else. Then, from Lemma 4.23,

1PoI°0  [th1 A1 031 Qs (w2, ws)llwior < 1 AT 051 Qi (2, 3)]ll 22

3
_ ~ 1_ -
Snlleerz 277211 P, Qa (v, ¥3) 12 poe < 2(a=Sksteks H 193l 1)

i=1
which is better than needed. Now suppose a = 0 and Ay = A; = I¢, which implies that A; = I. Then

| PoI¢0P [I°Roypr A1 0;1Qp;(¥2,¥3)] || o)
SN 27 PoQun [ Qum Rotby A0 Py, TQp5 (12, 453)] |2 2

m>0
S 020 Qi [l 2 2 27F2 | Py T Qp (W2, 903)] | oo e
m>0
) 3
< 9 olh—elhatehs 1T 1ills
=1

Next, consider the case Ay = I¢, and A; = I¢. As before, we can drop A, R, in this case. Then

| PoI 0% s A 0;1°Qp; (2, 1b3)] | (o)

(5.28) S 1PoQx0[t1 AT 0;Qu< <o Py Qs (2, 93]l 1212

(5.29) + Z 278m||P0Qm[Qévn—CiblAilaj‘Qmsz Qﬁj(w%z/’?»)mLng
m>C

(5.30) + Z 1PoQ>0[Q5m—-ct1 A~ 0;Qm Pr, Qpj (2, 03)] | 1212

m>C
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First, by Lemma 4.24,

(5:28) S 91l ez 2721 Qra—0(1)<- <0 Prr Q5 (2, ¥3)]l| 12 0
S I llnse 2 1Quy—0(1y << Piy Qa5 (12,13l 2212

3
< 2679 TT |l | i
=1

Second, again by Lemma 4.24,
(5:29) S > 27 PoQun[Q<im—ct1 AT 0;Qm Pr, Qg (2, ¥3)]l 12 12

m>C

SO 2 MW || e 2| @ Pr, Qs (b2, 103)] | 2 .

m>C
. 3
<2675 TT 1villspe,
=1
and third,
(5.30) S Y NQsm-ctllz2r22 % | Qm P, Qa5 (W2, ¥3)] |l L= 12
m>C

< Z 2™ 4hy | 511y 2% 11 Qun Pry Qs (W2, ¥3)) | 1212

m>C
—(—2e)m —em||) D
S Y0 27 (g, 27 1 Qun Py Qi (%2, ¥03)] | 12 2
m>C

3
< 2067k 1Tl
=1

where one argues as in the previous two cases to pass to the last line. 5
Thus, Ay = Q<o for the remainder of Case 6. If A; = I¢, then necessarily A; = I° which implies o # 0.
Therefore,

[ PoQ<00” [T A1 0,1°Qp; (Y2, ¥3)]| w0
S Qi AT, Py Qun Qs (W2, ¥s)] 1 12

m>C
< Z 1@l 222 1P, @m Qs (2, ¥3) | L2 2
(5.31) m>C
S D 270 sk 27| Pry @ Q5 (W2, ¥3) | 212
m>C
1 3
<2679 I T Il spa

i=1

which is again admissible. So we may assume also that A; = I which means that we can drop R, from ;.
Next, assume Ay = I°. Then write

PoQ<od 1 AT 9;1° Q5 (12, 13)]

(5.52) = Z PoQ<00"[Qci—ct1AT10; Py 001)Q1Qp; (2, ¥3))]
: I>ka+C

+ Y PQ<09’[Qzi-cth1 A0 Pry oy QiQpi (W2, ¥s)]

I>ko+C
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The first term we estimate by using Lemma 4.24: we get

I Z PoQ<00°[Qci—cth1 A0, Py, 0(1)Q1Qs5 (Y2, 3)] || w0y

I>ko+C

< Z [ PoQi—c<-<00° [Qci—ct1 A1 0; Pry 01y Q195 (2, ¥3)]| Moy

O(1)>I>k2+C
_(1_ _ _
S Z 277N Qo || peer2 27| A 105 Py 01y Q1Qp5 (¥, 3)]l| 12 120
O(1)>I>ke+C

3 3
< Y 2GR T (1P yllsp, < 259 F ) TT 1P vyl
O(1)>I>ko+C j=1 j=1

(5.33)

The second term in (5.32) is more of the same, and estimated using

1 PoQ<00°[Q31—ct1 A0, Py, 1 01y Q1 Qa5 (%2, ¥3) || Njo]

(5.34) < )
S NQzi—c¥nllpz [|A™ 0P, +001)QiQp; (V2,v3)l 2 poe

from which point the estimate is concluded as in the preceding case. This leaves the cases Ay = I¢ or
Az = I€ to be considered. In the former case, necessarily Ao = A3 = I¢ and

[ PoIOP [Ty AT 0,1 Q5 (I, T03)]| o) < 1191 AT 031 Py Qi (1902, I°03)] || 1 12
Sl lleer 27 F2 11 Py Qi (12, IYs) | 11 poe S 1901 lloo 22 111 Pry Qs (102, Is) || 11 12
Sltnllieerz Y 1198 (Qutba, Qutbs)ll iz

mZkz

S lvallngere Z (||vt,-r|v|71Qm"/)2”L§Lg”de)BHL%L;O + HQm@b”LfLi|‘vt,r‘v‘7lém¢3||L$Lg°)

mZkg

3
Slrllgers D 27 O2moG=keaG=oks |y || g [hs 51k S 20372278 TT [l sy

m>ks i=1

which is acceptable. The one remaining case is Ag = A; = Ay = Ay = I and A3 = I°. Of course one may
also assume that 13 = Q<g,+c¥3. Then we write

(5.35) PoIdP Iy A710,1Qp (Ithe, I°3)] = Pol[0° Inhy Py A™10;1Qp5;(Iha, I03))]
(5.36) + PoI[Iypy A™10;0° Py, 1Qp; (Inha, I°3)]

The term on the right-hand side of (5.35) is difficult. More specifically, the methods that we have employed
up to this point do not seem to yield the necessary bound. However, Tao’s trilinear estimate (5.1) implies
that

3
(5.37) 10° Pyypy Rpabs Yol npo) S 90 (k3 —k2) k2 H ll1%all sk
i=1
for some constant o > 0 as well as
3
(5.38) 107 Potpy Rgtpo sl vy S 2% T 101l sim
i=1

Since 22 Pk2 AT19;1 can be replaced by the convolution by a measure and all norms involved are translation
invariant, these estimates imply (5.35).
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The analysis of (5.36) is easier and similar to the considerations at the end of Case 2. More precisely,
we first reduce the modulation of the entire output by means of Lemma 4.23:

1PoQq1—seyky < < 1 AT10;0% Py Qs (12, I°43)] | ol
< 27 3(=3ks |y, lzor2 11Qp;(Ith2, I%3)|| L2 oo

< 273073k | oy g 2=k k2 o || <o 11003 571y

3
< 20k ks TT |4 s

i=1
Next, we reduce the modulation of 1:
[ Po@<(1-3)ks [@ (13 ks Y1 AT10;0° I Py, Q (Itha, I°03)] || wpo)
S 1PoQ<(1-36 ks [@ (1-32) ks W1 AT ;07 1 Py, Qj (I, T3)] || 11 12
< 2%(1Qx 1—sepks V1l 1212 1 Pey 1 Qa5 (T2, I°03) || 1212

< 2*%(1*35)163”1#1 2(%*5)k32(1+€)k2”w2

[ETT | sika] 193 | 51ks)

3
< 25ROk TT | s e,
=1

Finally, we reduce the modulation of the interior null-form using Corollary 4.14:

1 PoQ<(1—36)ks [Q< (1 - 30 k5 W1 A 1 0;0° Pty Qg <. <z Qj (1102, I03)] || wio]
L—k _ L ~ c
Slillsm D, 27 277 PeQeQpy(Teha, I0s) || 1212

k3 <f<ko+C

3
< 2679k TT sy s,

i=1

which is again admissible. After these preparations, we are faced with the following decomposition:
PoQ<(1-3¢)ks [Q<(1-30 ks V1 A1 0;0° Q<oy Qi (Itha, I3)]
= PoQ<(1-30)ks [Q< (1-3e)ks V1A' 0°0;Q <y O (Qby < <ot 02, Qg 0<- ko 0¥3)]
= Z Po,xQ< (13 ks [Piy o Q< (1-3e) ks V1A ™ 0;0° Q <1y Q. (Queg < <hp+ 02, Qg+ < <hs+0V3)]

K,k'€Cy
where ¢ = 1[ks + (1 — 3e)ks] and dist(k,x’) < 2. Placing the entire expression in L{L? and using
Bernstein’s inequality results in the following estimate: with J := Qr,<.<k,+c,

1 PoQ<(1-3¢)ks [R< (1 =36 kg ks Y1 AT 0;0° Qciy Qi (Itha, I03)] | 2 12

SH( 2 HPOv“[P’Ch“’Q§(1—3s)k3—k1¢1A713j8ﬁ62§k3Qﬁj(ﬁbz,st)}H%%)

1
2

K,k ECy L%
<28 (X 1Pl Pl Qsa-soy 4 1A 10,07 Qi Qs (T, JunlIE ) |
K,k'E€Cy t
¢ _ 1
< 28| (2 1P Qe V1132 18720,0° Qe Qs (T, T2 ) ||
K/ ECy t
£ _
< 27| Q<1=se)ks—kr V1 lL2o 12 1A 71 0;0° Qs Qi (Jtb2, Jt3)] || 2 12

£ — _
< 22 [l st (I Vee VI T2l 22 [ Vew | VI Tt 200

L ks _ kg 1_
S 20T gy 1) 27 2 [0k 22795022 ) 1y

which is again admissible for small £ > 0.
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Case 7: k; = O(1) > kg + O(1) > ke + C. This case is symmetric to the previous one.

Case 8: kg = O(1),max(k;, ks) < —C. We begin with Ay = Q>0 and Ay = I, and we drop R, from
excluding the case A; = I¢ and o = 0 but nothing else. Then, from Lemma 4.23,

| PoI0° 1 A 0;1Qp, (2, ¥3)] I vio) S 11 AT 0,1 Qg (v, )]l 12 2

3
~ 1_
Sl nee 1TPoQs; (W2, )l 2 e < 252079 TT Iillspea
=1

which is better than needed. Now suppose o = 0 and Ag = Ay = I¢, which implies that Ay =I. Then by
Lemma 4.23

| PoI°0° [I° Royp1 A1 0;1Q5 (2, ¥3)] || wpo]
S Z 27| PoQum [Qm Rothr A1 0; PoI Qg (2, 3)) |l 1212

m>0

S D2 Qe VI il e A0 PoT Qg (w2, )] o2

m>0

S 20 Qb [l 22 1 PoT Qs (2, v3)] | 12 12

m>0
3
< 2la =) kitha) H %3 [l s(ka)
=1

Next, consider the case Ay = I¢, and A =1¢. As before, we can drop AR, in this case. Then

||P0I085[7/)1A718j-[cgﬁj (¢27 1/’3)} HN[O]

(5.39) < Z 27| PoQum[Q<m—cth1 A 0;Qun Po Q (2, ¥3)] || 12 2
m>C
(5.40) + Z [1PoQ>0[Q5m—-cth1A ™' 0;QmPoQp; (th2,13)] 1212
m>C

First, by Lemma 4.24,
(5.39) S > 27 PoQum[Qsm—ct1 AT 0;Qum Po Qs (2, s)] | 12 12

m>C

SN0 272 by e 12| Qe Po Qs (2, 903)] | 212

m>C

3
< 2tk 1T 1illsge

i=1
and second,
(5.40) 5 Z 2| Qs m—ct1ll 1212 |Qm PoQp; (2, vs)] [ o= 2

m>C

3_ —(1—&)m mo X ~
<> 2GR0 14 g1 2% (| Qun Po Qs (W2, )]l 12 2
m>C

<2k Z 2_(%_25)7””1/’1”5%1] Q_Em”Qm]’:’oQﬁjW%¢3)H|L3Lg
m>C

3
< ok1+(5—¢)ks H 1[40 571
i=1

where one argues as in the previous two cases to pass to the last line.
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Thus, Ay = Q<o for the remainder of Case 8. If Ay = I, then necessarily A; = I¢ which implies o # 0.
Therefore,

[1PoQ<0d” [T°41 AT 0;1° Qg (2, 4b3)] | vpo)
S Z |Qmt1 AT 0; PoQum Qs (12, s)] | 11 12

m>C

SO 25Qmtn |l 22 1 PoQum Qs (W2, ) 12

m>C

S 2PN 2Oy gk, 275 | PoQun (W2, sl 22

m>C
) 3
< 28126798 TT ||l spa
i=1
which is again admissible. So we may assume also that A; = I. Now suppose that A; = I¢. Then we can
take A1 = Qg,<.<c whence
1PoQ<00”[Qry <.<cRatb1 AT 0;1Qp; (12, ¥3)]| N0
S 1@ri<<oRatr AT 0; Py Qpj (12, 903)] | 3 12
SNQn<<o Vil VI 1l L2 poe 1 PoI Qg (tha,s) | 1212
1_ 1_ o)k,
< 2074 [l gy 22 7R [k 13 57
3
S 27tk H %3 |l s(ra)
i=1
So we may assume for the remainder of this case that A; = I which means that we can drop R, from ;.

This leaves the cases As = I°¢ or A3 = I¢ to be considered. In the former case, necessarily A, = A3 = I°
and

| PoI0° [Ty A~ 0;1Q35 (142, I03)] | wjo) S 111 AT ;1 Py Qi (14, I°4s)] || 11 2
S 25 [ [l g2 1T PoQps (1, Is) I papa < 2% vl Lee r2 11T PoQaj (1902, I0s3) || 11 12
S22 nllerz Y 11985 (@t @umtbs) i 2

m>0

S22l > (IVeal VI Qmtball 22 1Qm sl 20 + 1Qmt2ll 22 [Vew VI Qumtdsll 21

m>0

3

—(1-2e)mo(%—¢ 3—¢

S illppere S 27072 gy sl siag) S 2 E R T il sy
m>0 =1

which is acceptable. The one remaining case is Ag = A; = A; = Ay = I and A3 = I°. Of course one
may also assume that 13 = Q<cvs. The analysis in this case is similar to the considerations at the end
of Case 2. More precisely, we first reduce the modulation of the entire output by means of Lemma 4.23:

[ Po0° Q1 —3eyky << [T1 AT10; PoI Qg (Inha, I3)] | v(o)
< 273030 |l || oo oo (|1 Q5 (Th2, I3 212

_10_ 1_
< 25127273955 [y | g,y 20799 |[4hy | g 193 | s k)

3
S2Mosh H 193l sk

i=1
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Next, we reduce the modulation of ;:
1 PoQ<(1-3)ks 0° (@ (1 -3 ks Y1 AT ;1 Py Qg (Itha, I43)]| (o)
S ||P08ﬁQg(1735)k3 [Q2(173s)k3¢1A713j1f’o Qpj(Ith2, IP3)]| 1112
S 21Qx (1—sepka Vil 1212 1PoT Qp (Ith2, I°0s) | 212

_ 1 1_
< 2k =373kl || gy 22 7R3 by || 1y 103 | 1)
3
< 23kath H [T
1=1

Finally, we reduce the modulation of the interior null-form using Corollary 4.14:

| PoQ<(1—3¢)ks [Qg(1735)k3¢1A_15j130Qk33-§CQﬂj(I¢2, I93)]|| njop
L—k y ~ c
S dillomy D 27T 272 PoQeQps(Tvha, T9s) | 212
ky <f<C

3
k1 1 .
S27 5 TETOR T il sy
1=1

which is again admissible. After these preparations, we are faced with the following decomposition:
PoaﬂQg(k?,a)kg [Q<(1-30)ks V1A 0;Q <y Qi (Itha, I°03))]
= PyQ<(1-3:)k5 0" [Q<(1-30) ks V1A 0;Q <ty Q5 (Quey <. <hoa - cV2, Qg < <o+ c3)]
= Z Po,nQ<(1-3¢)ks 0° [Py Q< (1—30) ks V1 A0 Q <1y Q8 (Qiy < <hp+ V2, Qg+ 0<-<hy+cV3)]

Kk’ ECy

where ¢ = 1[(1 — 3e)ks — k1] A 0 and dist(k, ") < 2°. Placing the entire expression in L;L2 and using
Bernstein’s inequality results in the following estimate:

1 PoQ<(1-36 ks [Q< (1—3e)ks V1 AT Q< Oy (T2, I°43)][| L1 12

< ( > ||Po,f<,[Pkl,n'Qg(l—sa)kmlA*langkaQﬁj(ngg.gc%,Qk3+cg.gc¢3)]||%g>2 o
K,k E€Cy t
< 1Py @ AT} Qe Oy (Qryzcctr2. Q vs)ll3: )
< Jer ' @< (1-36) ks Y1 @<k Qi (Qrs<-<c¥2, Qraros<c¥s)llzz )|,
K,k E€Cy t
= (Z ||Pk1,n'Qg(1—3s)k3¢1||%;e||A713ngk3Qﬁj(Q@g-ng)mQk3+cg~§c¢3)]||ig)2 o
r'€Cy t
£ _
<272 Qc1-seyks V1l Lo 22 1A 719 Q ks D (Qhs<- <2, Qg yo<o<ots)]llzize
£ — _
S22 [ [k Vel VI T Qrsco<otball 22 | Ve VI Qusroc<otbsll nz e
3k 410 _ks 1_
S 2 RO [l gpay) 27 ([ s 1k) 202K s L)
which is again admissible for small € > 0.
Case 9: ks = O(1),max(ks, k) < —C. Symmetric to Case 8. O

It is important to realize that Lemma 5.1 yields the following statement, which is really a corollary of
its proof rather than its lemma.

Corollary 5.2. Let 1; be Schwarz functions adapted to k; for i =0,1,2. Then for any o, 3 =0,1,2, and
J=12,
} 3
|PoVe.w Ao[ A1 Rathr A7 0; A1 Qi (Agtha, Asths)llI o) S w(kn, bz, k) [ T Iillspe

i=1
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where A; and Ay are either I or I¢, with at least one being I¢. Moreover, we impose the following
restrictions:

o if A = Ay = I¢ then a = 0 is excluded y

. kal = O(l) > ko > k3 + C, then Ag= A = /}1 = Ay = I, Az = I°¢ is excluded

o ifky =0(1) > k3 > ko + C, then Ay = A1 = A1 = A3 =1, Ay = I° is excluded

In particular,

3
(5.41) | PoVio[1 AT10;1°Qp; (v, ¥s)]| nio) S wlki, ke, ks) H 10l s1k:)
i=1
Proof. Note that the first exclusion in our list is precisely the exclusion in Lemma 5.1. The only real
difference between this statement and that of Lemma 5.1 lies with the fact that we no longer require
the outer most derivative to be 9°. But this mattered only in one case, namely when we applied Tao’s
bound (5.1) in Cases 6 and 7 above. Moreover, inspection of the argument in those cases reveals that the
o8 ¢0p1 null-form was needed only in those instances which are excluded as the second and third conditions
of our above list (in fact, the modulations were narrowed down much more before any need for (5.1) arose).
The final statement is an immediate consequence of the first one, since we removed R, altogether (which
eliminates the first exclusion) and since the other two exclusions do not arise due to A; = I¢. Therefore,
one simply sums over all choices of Ay, Ay, Ay and As. |

In fact, the proof of Lemma 5.1 makes no use of the fact that A='9; contains the same index as the
null-form Qg;. But the strengthening resulting from replacing A~19; by |V|™!, say, is of no benefit to
us so we do not carry it out. The following variant of Lemma 5.1 covers the other two types of trilinear
nonlinearities arising in the Coulomb gauged wave-map system.

Lemma 5.3. Let ¥; be Schwarz functions adapted to k; for i =0,1,2. Then for any « =0,1,2, j =1,2,

3

(5.42) [ Po0” Ag[A1 Rgtb1 A~ 0,1 Qo j (Aatha, Asts)]| I nio) S w(ki, ko, ks) H l|19all sk
i1
3

(5.43) | Po0™ Ao[ Ay RP4py A1 0,1 Q5 (Axtha, Asths)] | vio) S wikn, ko, ks) [ T il siw
=1

where A; are either I or I, with at least one being I€.

Proof. Both these bounds follow from Corollary 5.2 provided we are not in those cases described as Items 2
and 3 in the list of exclusions (observe that the first exclusion does not arise due to our limitation to A =1 ).
So let us consider the second exclusion k3 = O(1) > ko > k3 + C and Ag = 41 = A=Ay =1, Ay = I°¢
(the third one being symmetric to this case). Then (5.43) is an immediate consequence of (5.1), see (5.37)
and (5.38) above. As for (5.42), observe that due to the analysis of (5.36) we may assume that the outer 9°
derivative hits v;. Hence, it suffices to bound

[PoI[10° Rgtpr AT 0,1 Q0 (Inha, I°93)] || o)
However, due to the property that [0 Pyl p2z2 < |6 sp0) and %05 = O, this is easy:
1Py T[Q<c0” Rothr A~ 0,1 Qs (Ttha, I°03)] || v
S IPI[Q<cd” Ry A7 051 Qo (1o, I03)] | L 2
S 1Q<cd’ Rt || 1212 | A0 Pey I Qanj (Ith2, I03)] || 120
S 1l spe) 22 739802552 |4 | sy 1405 10

as desired. O

The following technical corollary will be important later.
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Corollary 5.4. For some absolute constant g > 0, and arbitrary Schwartz functions ;,

2
(5.44) > P Va1 AT 0;1°Qp; (1ha,v3)] | vio) S K sup max 277l Py | s
he i=1,2,3

j=1
provided max;—1,2,3 EkeZ ||PkwiH?q[k] < K? and with an absolute implicit constant. Moreover, given any
0 > 0 there exists a constant L = L(0) > 1 such that

2
!
Zk ok Z||P0Vt,z[Pkﬂ/flA*laﬂcQﬁj(PkwmPk3¢3)]||1v[o] < 6 K?sup max_ 2"l Pey| sy
1,k2, 3j:1 kez =1,2,3

where the sum Z;ﬁ,k%,% extends over all ki, ko, ks outside of the range
(5.45) |k1| < L, ko ks <L, |ka—ks| <L
Further, if Zghk%kg denotes the sum over this range, then

2
"
Yoiin 2 D NPoVia[Pe 1 AT P Qs (P, b2, Piys)] o

k<ky—L' j=1

<5 K%sup max_ 277 Pyl s
keZ 1=1,2,3

where L' = L'(L,6) is a large constant.
Finally, given 6 > 0, there exists C > 1 large enough such that we have

3> P VewlPry 1 AT 0 T1°Pe Qs k-0 Qs (Pro o2, Pryt3)] || vio)
k1,2,3 k<—-C

< § K?sup max 270/l | Prtbi|l s
ez i=1,2,3

Proof. Write 1; = EkiEZ Pr,; for 1 < i < 3. In view of the definition of the weights w(kq, k2, k3),
summing (5.41) over all choices of k1, k2, k3 yields (5.44). The second statement follows immediately from
the fact that the weights w(k1, k2, k3) gain some smallness outside of the range (5.45) (namely 27°F). For
the third statement one needs to observe that in Case 5 — which is the one specified by (5.45) but of course
with a range specified by the constant L — an extra gain can be obtained by restricting & to sufficiently
small values compared to ks, k3. O

5.2. Trilinear estimates for hyperbolic S-waves. The following lemma finally proves the trilinear
estimates in the “hyperbolic” case. The argument will rely on the following trilinear null-form expansion
from [22]:

2%y AT10; Q5 (w2, vs) = (OW1) V| 452| V|~ b3 — D (e[ V]~ 1) V| ~Heb
(5.46) + 1OV )|V s 4+ D1 AT (Ryta| V] 3))
— (O) AT (Rjp2| V| 3) — 1 DA, (Rjpa| V| hs)
as well as its “dual” form
20° [ AT10;Qp; (2, ¥3)] = —O(| V|1 V| ei3) + D (4 [V~ 43) V|~
(5.47) —10(V[ 1) [V s — (D9n) AT, (R4 | V|~ o)
+O(1ATI0;(Rj12| V|~ s)) + 1 OATI0; (92| V| eis)
Strictly speaking, we shall want to apply these identities to the trilinear expression
0°[1 A0, 1P Qpj (Y2, 13)]

for some Pj. In the case of (5.47) the operator IP; can be inserted in front of any product involv-
ing ¥9 and w3 which is the case for all but the second term on the right-hand side of (5.47), i.e.,
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O(1 |V~ 193)| V|~ g (and similarly for (5.46)). Since I P is disposable, it takes the form of convolution
with a measure v with mass ||vk|| < 1. Thus, the second term needs to be replaced by the convolution

(5.48) / (19" s — )V ] (- — y)u(dy)

The logic will be that any estimate that we make on O(¢1|V|143)|V| 7115 in the context of the S[k]
and N[k] spaces will equally well apply to this convolution since all norms are translation invariant. We
shall use this observation repeatedly in what follows without any further comment. Finally, the weights
w(ky, ko, k3) are those specified at the beginning of this section.

Lemma 5.5. Let v; be adapted to kj, for j =1,2,3. Then

2 3
(5.49) 1> Pold® [T Rathr A 031 Qp; (T2, T0h3)]|| gy S wilkn, s k) HH%HS[ki]
j=1 el
2 3
(5.50) ||ZPolaa[IRﬁ¢1A718jIQBj(Iw27Iw?))]HN[O] w(ky, ka2, k3) HH%HSW
j=1
2 3
(551) ||ZP0185[IR[3¢1 A~19. IQQJ(IwQ,I¢3 ||N[O] kjl,k‘g,kg HH%HS[’%]
Jj=1 =1

for any a=0,1,2.

Proof. We begin with (5.49). Due to the I in front of ¢); we shall drop the R, operator. Also, it will be
understood in this proof that 1; = Q<k,+c¥; for 1 <i < 3 and we will often drop the I-operator in front
of the input functions.

Case 1: 0 <k; <ks+ O(1) =ks + O(1). By Lemma 4.17,

I1PoI0°[Qx0t1 AT 051 Qp; (Ith2, Iv3)]l| wio) S 1PoT0° [Q=0t1 AT 0;1Qp, (Itha, Iths)]l| 1 12
S ||Q>01/11||L2L2 27| P, Q5 (Ina, T3] | 212

2% H I3l 51k

(5.52)

So it suffices to consider

(5.53) PoId°(Q o1 AT 0;1Qp; (Inho, Ihs)] = PoQ<c8’ Qo1 A™19;Q<c Qs (112, I1)3)]

One can also limit the modulations of ¥9, 15 further. Indeed, by (4.42) of Lemma 4.13 and Corollary 4.14,

[ PyQ<c0”[Qeot1 AT 0, I Py, Qi (Qery 2, Ith3)] || (o)
5 27k1||¢lvx,t|v|71]¢3” 50,31 HQzekzvx,dvrlhpQ” L0, —
X, X,

1
301

(5.54)
3
<272 (ky — k) [ il spm

=1

which is admissible. Note that we replaced A‘lﬁjf’kl by 27%1 as explained in the paragraph preceding
this lemma. Thus, assume that ¢ = Q<c¥1, ¥; = Q<cr,;¥; for j = 2,3, apply the identity (5.47), and
estimate the six terms on the right-hand side of (5.47) in the order in which they appear. First, by the
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Strichartz component (2.14),

1

[P I8V 2| VI~ s) [ vio) S 1P IB (@ [V] ™ bV~ s) || o
0
S V7 2 VI s 22

S ||¢|‘L°°L227k2||¢2‘|L§L§27k3||¢3‘|Lngc

s2 % H il sk

1
27

Second, by (4.40) of Lemma 4.13 and Lemma 4.11,

1P I[O(1 [V~ 403) [V o]l wio) S (K| Prg Qeres D1 [V~ 403)| 0—l1|Hv| "2l spa)

< (k3) [Py Qs (W1 V] )l o 1||¢2||s k)

k3

3
< 2kkop ks =k (k) TT sl

Here we use that the restriction on the modulation of the output and the modulation of ¥ allow us to
restrict the modulation of O(1/1|V|~14)3) to size < 2¢k2. Third, by (4.42) and Lemma 4.11,

[P I[y1 OV~ 42) [V~ 4] [ oy

S 1 Pry Qe W11V ) | 0.4 Y- 2598000, (Iv| 11/}2)|| 0-3

]‘3 j<eks

< ok —kag(Beks—hn) (1 QHH’(/JZ”S[k]

Fourth, again by (4.42) and Lemma 4.11,

PO I[(D41) A~ 05 (Rytba | V|~ b3)] [ wpo)
<S27h N 28 |0Qull o,,xupklcz@[ Rjha| V[~ 5] .

0,1
FUES
<C ks

k
f H il sk
i=1

1

Flfth, with ¢ = kl — kg,

[ PoIO[y1 A8 (Rj2| VI~ 403)]l o)
S 01 AT Py (R | V| 40s) [ 12 2
Slnllrger227™ > PRl VI Poctis 2 e

CeDkzl
1

<l (X IPRwal e ) (2 NPl )

€Dy 4 c€Dgy 0

3k
S Wl oo p2 271 7F22 2290955 14y | g 1403 ks

1
2
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which is admissible for small & > 0. The sixth and final term is estimated by means of (4.40) and
Lemma 4.11:

1P I[r DA™ 05 (Rjo2| VI )] vpo) S (k) 1l | Py @2 DA™ 05(Ryj2| V| Hbs)

||X21 s
S <k1>H¢1”S[k1]||Pk1QSC(RJ“/&‘VFH/)S)HXO,%J
Ky

5(kj—ka)

_ka
S lvallswn 2”7 277 2]l sk 193] siks)

which concludes Case 1.
Case 2: 0 < k; =ks+ O(1),ke < ks — C. By Lemma 4.23,

|1 PoI0° Q>0 AT 0,1 Qa5 (T2, Tvs)]| o) S 1P I0°[Qz0v1 AT ;1 Qs (Itb, I103)] || 2 12
S1Qz01llzzr2 27| P, Qg5 (1o, I1vh3)][ L 2

i=1

So it suffices to consider

(5.55) PoIdP[Qootn AT 0;1Qp, (b2, Ih3)] = PoQ<c0’[Q <01 A1 0;Q<c Qs (Itha, Ih3)]

One can also limit the modulation of 15 further. Indeed, by (4.42) of Lemma 4.13 and Corollary 4.14,

1PoQ<c0”[Qeot1 AT 0,1 Py, Qp; (112, Q@ ciy I1h3)] || M(0)

5 Q_kl ||15k3¢1Vw7t|V|_11¢2|| 50,31 ||Q26ksvx7t|v|_1]¢3” L 0,—
(5.56) Xies Ky

3
5 kafkl <k1 _ k2>276k1 H ||¢z||5[k1]

=1

1
20!

which is admissible. As explained in Case 1, we replaced A‘lﬁjpkl by 27%1. If 0 < ko, then we can
similarly reduce the modulation of the small frequency term, cf. (5.54):

[ PoQ<c0”[Qeot1 AT 0,1 Py, Qi (Qery 2, I1h3)] || N0
S 27 P [1 Vit VI 8] 0,40 Qe Vet VIT Tl o3

ko —

3
k1 _
2772 EkQH”wi”S[ki]
=1

As a final preparation, we limit the modulation of the output in case ko < 0. In fact, by Lemma 4.23,

[ PoQ1-3e)ks <. <cO° [01 AT 0;1Q; (Itha, Ih3)] || wio)
SN PoQ1—3e) ks <. <c0° 1 AT 0,1 Qg (Inha, Ih3)]

1

1
|| .0,—L

=
sz

N 27%(1736)162”%/11”@%3 27| Pr, Q5 (o, It3)] || 212
3
< 23%keg=(=a)k TT il
=1

Thus, for the remainder of this case we assume that ¥ = Q<c¥1, V2 = Q<cponk, V2, and VY3 = Q<cp, V3.
Moreover, the output is restricted by Q<(1_3c)x,nc- We now estimate the six terms on the right-hand side
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of (5.47). First, by the Strichartz component (2.14),
I PoQ<(1-3¢)kanc B (1| V]~ 02| V[ 3) [ vio) S HPoQg(l—se)szcD(%|V|71¢2|V|71¢3)||Xo,7%,1
0

< 230739020y, |7 L) | V| 0 | 2 12

11— _ _
S 22030y [| e 12 27%2 |4 | a o 272 )3 | L2 1.

3
< 93(1-80)kan0g— b o= 52 TT 1l sie.

i=1
which is admissible. Second, by (4.40) of Lemma 4.13 and Lemma 4.11,
1PoQ<(1-3)kanc (D1 |V~ 3) V[~ o] | o)
N 2k2/\0<k1>||pk2\/OQ§(1—35)k2/\ak2D(¢1|v|71¢3)”X0,7%,1 1V 2| s

ko VO

< 2720k ) | Pryvo Q< (1-36 )k ncks (¢1|V|_1¢3)||Xo,%,1 P2l 5[k

ko VO

527k2v0<k1>2k2v0 kl 11(1=3e)kaAeka—F:] HH%HS[I@

i=1
which is again admissible. Third, by (4.42) and Lemma 4.11,

1 PoQ<(1-3e)kanc 1 O(IV] b2) [V~ 93] || vjo)
N ||Pk2VOQ§(1—35)k2/\akz(1/}1|v|711/)3)||x L (ko \/O>||D(|v|71Q§5k2/\k2¢2)HXo,—%,oo

1
3,
v k2

0
ko
koVO—kq

< (ko v 0)2 5T 25 (1-30)kaneka kg 2002 H”%Hs

Fourth, again by (4.42) and Lemma 4.11,
[ PoI[(O91) A™10;(R2| VI~ ¢3)] | o)
$270 3 24 0Quun | o -y 1P Qo Rl VI ]|

0,3,
X
L<c k1 3

3
k
SPACRP 1T 1illsge

i=1

1

Fifth,
| PoIO[pr A0 (Rina| VI~ 03)]l o) S 101 A7 05 Pr, (Rjaa| V|~ 03) | 212
Slnlleers 275 R w2l VI sl 2o S 2725 1001 pge L2 | Ryjtbal a poe 3]  pa p.e

3k2 5k1
2 H Wsz

The sixth and final term is estimated by means of (4.40) and Lemma 4.11:
| Pl [$10AT0; (Rl V™ )l v
S (k)1 spia) 1Py Qeks DA™ 05 Ryt VI~ 4b3)]| o~
k

S (B[l s | Pry @y (Rj2| V| 11/J3)|| 011

kl

1
7‘1

< (ky)2kamgm (- H 11403l 57k
=1

which concludes Case 2.
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Case 3: 0 < k; = ko + O(1),ks < ko — C. This is symmetric to the preceding.

Case 4: O(1) < kg =ks+ O(1),k; <—C. This case proceeds similarly to Case 1. Following (5.54), we
begin by limiting the modulations of 15,13 to 2%2. Indeed, by (4.42) of Lemma 4.13 and Corollary 4.14

||POQ<08ﬁ[[1/}1 718‘Iﬁ0Qﬁj(Q>ekzl¢2’[w3)]HN[O]
S P Taa VI sl Qs Vel VI ] -

31
kz
3

< 2R ey — k) [T 11w
i=1
which is admissible. Next, we limit the modulation of the output: by Lemma 4.17,

| PoQry<.<cO° [p1 AT 0;1 Qg (Inha, Ihs)] | wjo) S | PoQry<.<c 0P [1 AT10; IQﬁJ(IT/Jle/Js)]” 0,—

1‘2

1
5.1

<2 ullrre 1P Qpy (T, Tl 212 S

H il 51w,

We now again estimate the six terms on the right-hand side of (5.47). First, by the Strichartz compo-
nent (2.14),

1 PoQ<iy D1V~ 02| VI 03) [ vio) S 1PoQ < D@1 [V~ | V[T )| o

1
5,1
x0Tz
0

k1 _ _
<27 [l VI 2 VI s 22

Ky _ _
S22 [l ra 272 Y2l Lanee 27 |9sl| Laree

||S[kz]

Second, by (4.40) of Lemma 4.13 and Lemma 4.11,
|PoI[D(¢1 V|~ s) [V~ 4ba]l| o)

S (Fa)[| Py Q< D4 [ V]~ 11/}3)” 011 VI 2l s1ky)

k3

S (k)| Py Qe (01 V17 03)1| o302l
k3

3
< 2k17k32%(ek37k1)<k-3 — k1) H Hd’i”S[ki]
i=1
Third, by (4.42) and Lemma 4.11,
[1PoI [ OV~ 402) V]~ 3] [ v

S <k2>||15k3QS6k3(¢1|v|71¢3)”)‘(0,%,1”D(‘v‘il@[&)”xo,—%,m

3
< 2P hagiGeka =k ()2 ey ) T bill s
=1
Fourth, again by (4.42) and Lemma 4.11,
IIPo (@) AT10;(Ry2 V|~ 4s)] [ wpoy
< Y 2 oQunll, 0,,m|\PoQ<c[ Rjto| V|~ 1w3}||

Z<k1+C

ks
Sk HH¢Z’”S[I€7¢]

=1
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Fifth, with ¢ = —ko,

[ PoQ <, O[th1 A™10; (Rjab2 | V|~ 3)]| w0y
< 25 ([yr AT10; Py, (Ryaha| V| 403) | 212
S llpers Y 1PeRja|VI T Pothsll 2 o

CGDkQ i

1

1
_ 2 2
< lzerz2 (X 1Rl ) (X 1Pl )

CEDpy c€Dky.e

3
< 20 k290290952 TT |l s
i=1

which is admissible for small ¢ > 0. The sixth and final term is estimated by means of (4.40) and
Lemma 4.11:

| PoI {1 BAT10;(Rjab2 V|~ 3)] || ol
S 21| s | Po@ <y DA™ 05 (Rjaha |V~ 4p3) || o,

Xy
S 225 [l e | Po (R V17 5)] oy
0
2kt o— X2 &
S22t H [T
i=1
which concludes Case 4.
Case 5: O(1) =ky, kg = kg + O(1). We start with the decomposition
(5.57) P’ [0 AT 0T Qpi (02, 00s)] = Y Rod’[Y1 AT, Pl Qs (1ha, v3))]

k<kaAO+O(1)

We first limit the modulation of );:

S PP Qurl(Qsric Ity A0, PiI(Rats Ryt — RjvbaRaws)] |l wio
k<koAO+O(1)

S Y IR QukIQskr oIty [ATO3 PRI (IV] ™ o Ryths) — BI(IVI" 2 Ravs)]lll go.- 3.0
k<k2AO+O(1)

A

> 25 Qskrctillrar: |AT 0% P (V| o Rys) — Prl(IV] "2 Rats)] | oo e
k<kaA0+O(1)
SO 2Kllswn AT O PI(IV| T Yo Ryjtbs) — Pl (1Y) 2 Rats)]|| e 1t
k<kaA0+O(1)

(5.58)

3
SO 2R sy el ez sl e S 27O T Iillsie

k<kaAO+O(1) =1
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Hence, if the inner output has frequency ~ 2* then we may assume that ¢; has modulation < 2*. As
usual, we apply (5.47). First, by the Strichartz component (2.14),

> IPIO(Q<rthr PRIV 2| VI~ 5] | o)

k<kaAO+C

S Y 1PQekreD(Qertr PeI[|V ] o V[ eig))

”)&0“7%’1
k<ka AO+C 0

3
S D 2HQun PV T eV sz S Y 277 [T Iills
i=1

k<koANO+C k<koNO+C

3
_1
SPAEL H 193l sk

=1

For the second term, we can assume that 1 = Q<g,n0+c¥1, see above. Then, by (4.40) of Lemma 4.13
and Lemma 4.11,

| Po[O(1 |V~ 3) [V~ 4ba] | v o)

j—kaANO  ~ _ _
< 2ken0 277 [ Pryvo0Q; (V1|7 0s) | o1 11V 02| 5]
X 2
j<kaANO+C ko VO

S 2_k2V0||PongzA0+c(¢1\V|_1T/)3)||Xo,%‘1 %2l sika)

ko VO

3
S 27O T ([l s

i=1

Third, by (4.42) and Lemma 4.11,

| PoI[Q<kono+ct1B(IV ] 02) V|~ 3] vio)

J—koNO - ~ _ _
S Y 2 BveQeranor o[V ) | oy 2 IDQ5 (V102 oy
§<kaAO+C Xpovo X,

3
S 27RO T il s

i=1

Fourth, again by (4.42) and Lemma 4.11,

> IRI(EQ<kicth) AT 0; Pl (Rt |V~ 3)] | v

k<kaNO+C

A ~ —
Y Z24||DQW1||X0,7%,00\lPkQ3k+c[Rj¢2\V| sl co.g
k<kaAO+C L<C k1 k

3
k—ko _ 1y,
S ) H¢1||X2,%,oe2 2 |2l s o 193l sira 27 252Y0 S T T il spie
1

k<kyAO+C i=1
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Fifth, with ¢ = k — ko,

> 1P IOQ<k it AT 0 Pl (Ra| VI~ 43)] | oy

k<koNO+C'

<

~

S 28| Qaircti AT P (Rja| V| s) | 22

k<kaAO+C

_k _
Slnloerz Y 277 Y [[PRjwa|VI T Poctis|l o

k<koAO+C cE€Drgy 0

1

1
_k_q. 2 2
Sloiller: > 2750 IRRwaE) (X 1Pl

k<kaNO+C CGDk%g CG’Dkz)(

3
1_op _ (L _92¢
Sltnlleers Y 2729070 | gy sl sprs) S 27220 T T 40l 1k

k<koAO+C' i=1

97

which is admissible for small ¢ > 0. The sixth and final term is estimated by means of (4.40) and

Lemma 4.11:

> IR IQ<ktotr DA™ 0, PeI (Ryaha| V|~ 4s)]|| wio)
k<kaNO+C

Slllsper D 28 1PeQerrc DA™ (Rl VI )l o,
k<koAO+C k

1
301

.0,1 1

Slnllspg Y. 2M1PeQarrc (Rjtha| VI~ 4hs)] 0}
k<koANO+C k

3
k—kg _1
Slillswg S 28272 g sllsiee) S 272520 TT llsiwa

k<kaAO+C i=1

which concludes Case 5.

Case 6: O(1)=k; > ko + O(1) > ks + C. Since Lemma 4.23 implies that
1Po0% [Q5 1y 1 AT 051 Qi (2, )l pi 2 S Q5 k¥l p22227 " 11Qp5 (2, ¥3) [l 12 Lo

3
5 2(%,5)(]@,7]@2) H ||7/}2HS[’“]
=1

we may assume that ¢1 = Q<k,1¥1. Next, we reduce matters to (5.1). More precisely,

(5.59)
(5.60)

PoI0 [y AT 0,1Qp; (1, v3)] = PoI[0° 4y Pr, AT 0,1 Py, Qi (12, )]
+ Pyl [Ithy A™10;0° Py 1Qg (12, 43))]

The term in (5.59) satisfies the bounds (5.37) and (5.38), whereas (5.60) is expanded further:

(5.61) Pol[Ity A710,0° Py 1Qp;(12,103)] = Pol[Ithy A7'0; Py, [(O|V| " o Rjtbs — Rjaho0|V|1ehg

(5.62)

+ Rg20° Rjips — 0P Rjaba Rpths)]

The two terms in (5.62) are again controlled by (5.1). Consider the first term on the right-hand side
of (5.61). Replacing A=10; Py, by 27*2 as usual, one obtains from Lemmas 4.13 and 4.11,

l[4h1 O|V [ 4pa Ryt vy S 282 ) 273 ||DQJ'|V‘_1¢2”XO,7%,OO||1/}1Rj¢3||~
ko

j—ka

0,11
‘ X, 2
j<k2+C

<2k 12l .o 1.0 2" (Ra) 901 || s 193]l s ko)

k2
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which is more than enough. The second term in (5.61) is estimated similarly:

— izk —
l[4h1 O|V |~ e Ryt v S 282 ) 273 * 10|V 11/)3“).(0,—%,00”% Rﬂ/&HXo,%J
j<ks+C k3 0
< 2k3||1/12||X2,%,002k2<k2>||1/)1||5[k1]||¢2\|S[k2]
2

which concludes Case 6.
Case 7: ky = O(1) > kg + O(1) > kg + C. This case is symmetric to the previous one.
Case 8: ks = O(1),max(k;,ke) < —C. By Lemma 4.23,

[ PoI0” Q5,4+ (1 -3y ks V1 A1 0,1 Q5 (102, I13)]| | o)
S NPT [Q k- (1-3e ks Y1 AT 051 Q5 (Itha, Teh3)] || 1 1.2
S 251Qs k4 (1—3epka V1 [ 212 |1 PoT Qpj (Ttb2, Ths)] || 1212

3
1 kg
< 225225 [T il sim

i=1

A similar calculation shows that one can place Q<p,(1-3:)k, in front of the entire output. So it suffices
to consider

PoQ<hy+(1-32)ks 0° [Q by + (130 ko V1A T 0;1 Q5 (Inho, In3)]
= PoQ <y +(1-36)62 0 [Q <y + (1-30) ks V1A T 0 Q <oy . Po Qg (1o, Ith3)]
We now stimate the six terms on the right-hand side of (5.47). First, by the Strichartz component (2.14),

1 PoQ<ky+(1-30)k D (W1 [V 02 V|7 ehs) v o)
S IP0Q <y +(1-32)k, B (1| V] 42| V| Hehg)

||X([]) 7%'1
231(=3)katal s, 17| =Ly | 97| Ly 1 2

S
< 2%[(1—35)k2+3k1]||¢1”

ko

reorz V2l papee2” % |93l papse
3
k
< 2%[(1—35)11cz+3k1]Q—T2 H ||17[)7;||S[k3i]
i=1
which is sufficient. Second, by (4.40) of Lemma 4.13 and Lemma 4.11,
1 P0Q <y +(1—32)k [O(W1 | V|1 403) [V |~ H40a] | v
S 2'”HPoQg(lfse)i@D(¢1|V|_1¢3)\|Xo,7%,1 1V~ 2 s1ky)
0

S NPoQ<(1—3e)ks (¢1|v‘_1'¢}3)”)~(0,%,1 192l spks)
0

3
G-se)kp—ky
S22 0 T il s

i=1
which is admissible. Third, by (4.42) and Lemma 4.11,
1 PoQ<ky +(1=32 )5 (W10 (|V |~ Teb2) [V |~ 3] | o
SN PoQ<(1—30y; W11V 3) | o1 s ||D(|V|7II1/J2)||X0,7%,OC

1
H 0,5,
X2
0 ko

k (1—3e)kg—k; AO
<okig—

3
(kx) [T 1sllsge
i=1
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Fourth, again by (4.42) and Lemma 4.11,
1 Po@ <y +(1-30 )2 [(OQ < +(1-30) ks 1) AT 05 (R 02|V |~ 03)] || vio)

L—ky ~ o
<2 Y 2 W1l o 1o |1 P0OQcky 4[R2V T 5]l o1 s
0<ki+(1—3¢)ks Xy X,

<22k124(1 36 k22k2 H”w'LHS

Fifth,
1 PoQ <y +(1-32)k, D1 AT 05 (R 02| V[~ 03)] || w0
< 23l(=3kathlyy A=19; Py, (Rjt2| V| 3) | L2 2
< 281073kt hal| ) || oo o || Rjho| V" s 2

S 23(0 =3kt |y, ||L°°L2 1R allpsree 9]l Lape

< 93l(1-38)katk1]9 %52 H”%HS

The sixth and final term is estimated by means of (4.40) and Lemma 4.11:

1 PoQ<ky+(1-30 k2 [Q<hoy +(1—30) ko Y1 DA T 0 (Rjh2 |V ™ 4b3)] || o)
<2 Hw1”5’[k1}HPOQSICH-CDAilaj(Rj"pQ‘vrld)S)”Xo,—%,l
k1

< 25 [ sy [ Pes @<y (Ry462| V1~ |

X 3
3
< 28002 () TT il s
1=1

which concludes Case 8.
Case 9: kg = O(1),max(k;, k3) < —C. Symmetric to Case 8.

Hence we are done with (5.49). Next, we turn to (5.50) which is similar; basically, one uses (5.46)
instead of (5.47). First, one observes that any reductions in modulation which preceded application
of (5.47) to (5.49) can equally well be carried out for (5.50) since these bounds only use Lemmas 4.17
and 4.23. Second, observe that the last four terms of (5.46) reappear as the last four terms of (5.47) up
to the order and the choice of signs, both of which are irrelevant. Consequently, one only needs to verify
that the first two terms of (5.46) satisfy the desired bounds.

Case 1: 0 <k; <kg+ O(1) =ks + O(1). In this case the second terms in (5.46) and (5.47) satisfy the
same bounds, whence it will suffice to bound the first term in (5.46). However, by (4.42) and Lemma 4.11,

1P I [(T901) [V~ 42 | V| 4bs] | v
<> 25 |0Qeu | o_,mnPlewuw Lo V|~ lwg]n

<C

3
2=t H il sk

which is admissible.

Case 2: 0 <k; =ks+ O(1),ke < ks — C. Using the arguments from Case 2 above, we may assume that
Y1 = Q<(1-32)ksn0—k, %1 In addition, it was shown there that it suffices to assume that Vo = Q<crynr, P2,
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V3 = Q<cr,¥3. First,
[ PoI(Q<(1-3¢)ksno—k, 01 Q< |V 02|V 3]) | o)

(1— 35)k2/\0 Ky

S2 10Q<(1-3)kano—ks Y11l . oﬁoo||Q<c[|V| o | V| ]|

1

0,11
5>

X

k1 1

(1— 35)k2/\0 Ky
(k1 — k2) H\|¢z||5[k

i=1
which is admissible. One may also restrict the modulation of the entire output by Q<—_3ec)ksn0—k -
Applying Lemma 4.13 and Lemma 4.11 to the second expression in (5.46) yields

1 PoQ<(1-36) ks n0—r [DQ<(1—36)ka neks (V1| V| 102) [V~ 03] | o)
(1—=3e)koA—(1—e)ko

S2 : | Piey Q< (1 -3 ks neks (W1 [V [0 || O—ll|||v| "3 | 5ks]

< (1— Sa)kQA (1—e)ko 1
S2 |Q<(1-3e)ksnek, (V1| V|™ 1/J2)|| 0.1 1H¢3||s[k3

k

(1— 35)k2A (1— 5)k,2

(k1 — k) H||¢z||5[k]
=1

which is admissible provided |kz| > ~k; for some v > 0. When this condition is violated, we have to
work a little harder. First, since we may choose v > 0 arbitrarily small and the ensuing estimates won’t
be affected by our choice of v, we may from now as well assume ko = O(1). With the modulation and
frequency restrictions from above in place, and going back to the original (un-expanded) version of the
term under consideration, write schematically

Vet [h1 AT 0;1Qs; (W2, 93)] = ¥1 (V™ hs)1ho

where we suppress the action of convolution operators of bounded L!'-mass, as they don’t affect our
estimates. Then we get (for some d; > 0 small)

[ PoI[t1Q>—(1—51 )k (V" 03)12]| o)
3
S o]l o3 (V@i sl ¥sll o30S 270 T 1Pe, 5L s
X’n k3 j=1
In light of the modulation restrictions from earlier, we now reduce to estimating
PoIQec— iy 01 (V7 Qe (16, )1y ¥3)12)]

Decompose this expression into

Pol[Qc—ky 01 (V' Qe (1—5, )1y ¥3) 2]

(5.63) = PoI [Pe_s5,1, [Qe— iy V1(V T Qe (16, )1y ¥3) |12
(5.64) + Pol [P> 5,1, Q<6301 [Qe— 1 V1 (VT Qe (1-51 1 ¥03) |12
(5.65) + PoI[Ps 5,0, Q> 65k Q< -1y ¥1 (V1 Q15 )k, ¥3) 2]

where we pick 0 < d2 < d3 << 1. For the first term on the right, suppressing the action of the convolution
operator P._s,, and reverting to the original form, we have reduced to estimating the term

PoV o i [br A1 0;1Q5; (¢, 103)] = Z Py V[ A™10;1Q5;(Po tha, 13)],

K,k €C_syky 5 KK/

where the point is of course that we can localize the output as well as the small-frequency input 15 to
approximately the same small angular sector. If we then make the null-form expansion as at the beginning
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of Case 2 above, we reduce to estimating

I Z Py, Q<(1-32) ks n0—ky (R<(1=32) ks neks D1V | P th2) [V~ 3] || o)

Kok €C_ sk s KK

SO Y. IPQ<i-3e)kan0— s (Q(1-30)kaneks D1 V[T Posth2) VI~ s]) [ 3r01) 2

KEC_55k;

3
< 2798 TT 1Py ¢l s

j=1

where we have used (the proof of) Corollary 4.10, which concludes estimating the contribution of (5.63).
As for that of (5.64), here we can write

PyI [Ps 5,0, Q< — 55k, Qe iy V1 (VT Qc (16, )iy ¥3) |02

= Z PoI[P> 5,k Q< —53ky [Pry v @<k V1 (V! Pry i Qe (16, )8, ¥3) 102
kR €C— (1465422502,

= Z Z PoI[PiQ <531, [Proy 5 Qe — ks 01 (V™ Prog s Q< — (161 )iy ¥3) |02
O(l)>l>752k1 Hwn,ec—k1+L+%

= > > PoI[Pr i Q< 3y [Pry s Q< —tey 1 (V™ Pry it Q< (1-6, Y1y ¥3)] 2]

’ ~T !
O(1)>1>—02ky K,k ecfk1+l+ 717253k'1 K FR

where in the last sum «” ranges over the O(1) many caps in C-i-s3x; such that either one of +x” is at
2

—1—53k
distance < 2 2 from k. As the operator P, .. Q< _s,k, is given by convolution with a kernel of bounded

L'-mass, we can then again suppress it and revert to estimating the expression

> PoV o t[Pry w1 A1 0,1Q3; (b2, Pry wribs)]

K,k €C - K~FR!
’ —k1+l+%, +

where we have suppressed the implicit dependence on ! (coming from the suppressed action of P v Q< _s,k, )-
Due to the preceding identity, it is easy to see that we may write

> PoV [ Pry w1 A1 0;1Qp3; (Y2, Pay wths)]

K,k €C - K~FR!
) kit 1537@17 +

= Z Z Po.#y Ve t[Pry nt01 A1 051 Qg5 (Po,r, V2, Prywr3)]

K,k E€C K~FR R12€C 1~tK+FRo

o —1—53ky > —1—53kq R
k4 ——537L —aL

For fixed k, k', one can now again expand the null-form as at the beginning of Case 2, and as for (5.63),
one then gets for fixed «, x’ that

[ Z Py.7s Vit [Pry 01 A710;1Q 55 (Po, 7y 2y Prog,wr¥3)] | 0]

R1,2€C 1§55k, sR1~TER+R2
2

S 275K Pyt | s P02 || s (ko) || Pra o 3| s1)



102 JOACHIM KRIEGER, WILHELM SCHLAG

for some d5 > 0 depending on d3 >> d5. One can then perform the summation over &, s’ with the aid of
Cauchy-Schwarz, and the summation over [ only costs logarithmically. In conclusion, we get

> > PV t[ Py w01 A1, Q5 (W2, Pry ro3)] | o]

O(1)>1>—0d2k1 N’K/ec—kl+z+ 71—253k1 S FR

3
< 2708 TT Py ¢sllsin,

j=1

for some small dg > 0, which concludes the contribution of (5.64). Finally, we consider the contribution of
(5.65). Here we take advantage of Lemma 4.11, which gives

l—k
I[P1Q> =63k [Q<—ty V1(V ' Q (16, )iy 103)] 2] <27 Qe U1l e 1 Q<= (1= 50 1 3 71

HX?,%xm
Then we use Lemma 4.13, which gives
| PoI [Po1)>> b3k @3 — 5k [Qe -k ¥1 (VT Qe (161 )1 ¥3)]02] | v 0]
< Z 1 PQ> 65k, [Q<—k1¢1(v71Q<—(1—51)k1w3)]||X0,7%,1 %2l sk2)
l

O(1)>1>—b2k1

3
< 2Dk 1T 112, 51118,
j=1
Case 3: 0 < ky = ko + O(1),kg < ko — C. This is symmetric to Case 2.

Case 4: O(1) < kg =ks+ O(1),k; < —C. This is similar to Case 1. Indeed, the second terms in (5.46)
and (5.47) satisfy the same bounds, whence it will suffice to bound the first term in (5.46). However, by
(4.42) and Lemma 4.11,

| PoI[(OI41)| V|~ 1b2 |V~ 3] | w0
L—ky ~
S 4 W1 Lo—1 o || PoQ@<c ||V 2|V Ws]|| Lo,11
S 27 BQetll oy [PoQ<c V] Yol VT 8]l o
k1 k

b'e
1<k +C

2
3
S 28R I T M1l s

i=1

which is admissible.

Case 5: O(1) =ky, kg = ks + O(1). Here again it suffices to only consider the first term in (5.46).
Moreover, (5.57) and (5.58) apply whence that first term is bounded by the Strichartz component (2.14):

Y P Q<kOe PI(IV| 42| VI~ i3] | vy

k<kaNO+C
S Y PQekrc(QarDr PI(IV| ™ 2| V|~ ) Ly g2
k<kaAO+C
S IQ<kDY Lz L2 I PRIV 2| VI~ sl L2 e
k<koNO+4C

k2 T kw0 T
S Y 2 [T Illswy S27 77 [ Iillsw
k<koANO+C 1=1 i=1

Case 6: O(1)=k; > ko + O(1) > ks + C. Here one basically starts from (5.59), which can be handled
via (5.1).

Case 7: ky = O(1) > ks + O(1) > kg + C. This case is symmetric to the previous one.
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Case 8: kg = O(1), max(ks,kz) < —C. Asin Case 8 above, one first shows that one can place Q <, +(1-3¢)k,
in front of the entire output, as well as in front of 1. So it suffices to consider

PoQ<hoy+(1-32)ks [Q< s+ (1-30) k2 0P V1 AT 0,1 Q3 (Inho, In3)]
= PoQ <y +(1-36)ks [Q< b+ (1-30) ke V1 A0 Q <oy 1. Po Qg (o, Ith3)]

We now stimate the first two terms on the right-hand side of (5.46). First, by the Strichartz compo-
nent (2.14),

||POI(Q§k1+(1—35)k2D¢1|v|71w2‘V|71'¢)3)”N[0]
5 HPOI<Q§I€1+(1*35)]€2D¢1|v|_1¢2|V|_1¢3)HL%LZ
S 2073 Ry || Lo 12 ||V 02| V] s 2 e

k
< 203kt E | || e 2 [0l pa e 27 |83l o

3
< 9(1=3e)kathig—"F H 1¥ill sra)
i=1

which is sufficient. Second, by (4.40) of Lemma 4.13 and Lemma 4.11, and assuming first that k; =
ko + 0(1),

[ PoQ <ty +(1-30) k2 [O(Q <y 4 (1-30) ks V1 [ VT 002) [V | 1403] || o)
S Y IR[OQ<k 10 Pr(Qar+(1—30ka 1 [V~ 02) V[~ 03] [ o)

k<ki+C
Y ”PkQSkH-CD(wl|v|71¢2)||xo,—%‘1”|v|71¢3”S[k3]
k<k,+C k
S k<ki+c(V1IV] "2 o2 1[|¥3]S[ks)
S 2" P Q (V| V[ 1o M o321l
k<k,4+C k
k—k 3
—K
S Z 2k H||¢i||s[k7:]
k<ki+C i=1

which is admissible. If ks < k; — C, then by the same lemmas,
1 PoQ <y +(1-36)ka [C(Q <y +(1-30) k2 1 |V~ 1102) [V~ 403] || v
S NPo[OQ<(1-36) ka0 Piy Q<+ (1-36)ka 1|V~ 102) |V " 03] | wpo)
S ||pk1Q§(1—3s)k2+CD(¢1|v|_11/}2)HX:,17%,1” N B

<2 ||15k1Q§(1—3e)k2+c(¢1\V|711/}2)||X A llvsllses)

0
k1
(1—3e)ko—k 3
—o€)k2—FR)
SPA H il sk
i=1
which is again admissible. Finally, if k; < ko — C, then arguing analogously yields
| PoQ <y +(1—36)ks [C(Q <y +(1-30) k%1 | V| 12) [V 03] [ v o)
S N Po[OQ<ks Pra Qs +(1 -3y, 1| VI ™ 02) [V ™ 5] i)
< HpszgkzD(¢1|V|_1¢2)on,f%,1 11V 3] s kg]
ko

< 28| Py Qi (1 1V 1 02) o, 3.0 11903 511

X,c2

3
S 28 T il s

i=1
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which concludes this case.
Case 9: kg = O(1),max(ks, ks) < —C. Symmetric to Case 8. This concludes the analysis of (5.50).

Neither of the identities (5.46) or (5.47) applies to (5.51). Hence, (5.51) requires somewhat different
arguments.
Case 1: 0 <k; <kg+ O(1)=ks+ O(1). As in (5.52) one sees that it suffices to consider 1); = Q<o1.
Then Q,; = Q@<cQa; and we split

PoIdP IRy A1 0,1Q0;(Itha, Iths)]

(5.66) = Z PyQ<r—c0°[RpQ<i— o1 A710;Q0Qu; (Itha, Ih3))]
<c

(5.67) + Y PoQud°[RsQer, 1 AT 0;QrQay; (1o, Iths)]
—c<n<C

(5.68) + Y PoQer,0[RsQu, i AT 0;Q0Qa; (12, Iths)]
(—C<tr<C

Decomposing (5.66) via Lemma 4.1 into caps of size 2% yields

PoQ<r-c0°[RpQ<i—cth1 A710;Q0 Q0 (Itha, Ih3)]
= Z Po.xQ<0-cO0’[RpQ<i—cPry w01 A70;Q0Quj (Itha, Ih3)]

kK €C
2

where x ~ k'’ denotes that these caps have distance about 25. Hence we gain a factor of 2¢ from the
nullform involving 9” and Rg. From (2.29) one now obtains

=

1(5.66) || o] S > ( > ||Po,nQ§é—056[RBQSZ—CPkl,n'¢1A_18jQéQaj(Wz,hbs)]llﬁm])

L<C  k~K'ECY
2

o=

Y _
<) 2fama2 21( D 1Py Qe [[312 2k1||QeQaj(¢2,¢3)H%ng)

<C HEC%
3¢ k1 L )
SO 2527 || a2 27 7 ([0l ko) 193]l 1k
i<C

3
Kk
S2%77 HH%‘HS[M]
i=1

Here we also used Lemma 2.7 as well as Lemma 4.17. The expressions in (5.67) are decomposed into caps

2
of size 27 but without separation. Therefore, with a gain of 241 from the outer null-form,

[N

166DIv0 S D (X 1PwQad’RsQet Pl tr A0 QeQuy (2 1V)IIP, 3 1)

—C<0<C KW' ECy,
2

=

S Y (Y IPsQud’[ReQst, Py tn A0 QeQa (T, Ts)] 32,

(—C<6,<C KoK €C 1y

(5.69) S Y (X I1PuwQud[RsQer Pyt A1 0,Q0Qu; (T, 1¥0)] 221, )
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To pass to (5.69) one invokes the improved Bernstein estimate of Lemma 2.1. Hence, this can be further
bounded by

SIS

DY 2@( > HQS&PM,MMH%?"LE272k1||QeQaj(h/)2,I%)]HQL%Li)

(—C<,<C K'€C ey

1
35 L—Fkq ko
S Y (X Qe Pl w) 27 2T 2 QeQay (12, 1) 212

—C<t,<C K/ E€Cy,
2
R 3
_ k1 kg
S270 7 [ Illspea
=1

For (5.68) one proceeds similarly, performing a cap decomposition and placing the entire expression
in L}L2. We skip the details.

Case 2: 0 < k; =kg+ O(1),ke < kg — C. This is essentially the same as the preceding with Lemma 4.23
replacing Lemma 4.17.

Case 3: 0 < ky; = kg + O(1),ks < ko — C. This is symmetric to the preceding.

Case 4: O(1) < kg =ks + O(1),k; < —C. This is very similar to Case 1. First, one checks that the entire
output can be restricted by ()<,. This implies that due to the I-operator in front of 11, the decomposition
(5.66)—(5.68) continues to hold but with ¢ < ky + C":

PoIdP[TRphy A0, 1Q. (1o, I1h3)]

(5.70) = Z PoQ<r-c0°[RaQ<r—cth1A710;Q0 Q0 (Itha, Inh)]
L<k1+C

(5.71) + Z PyQu,0°[RsQ <0, 1 AT10;Q0Qui (b2, Ih3)]
L—C<tl1<k1+C

(5.72) + Y PRQen,0’[RpQurhi AT 0;QuQuy (T2, Iths))]

{—=C<lr<k1+C

One can again decompose (5.70) into caps, but of size 27+, Therefore,

SIS

1(5.70) [ S D ( > ”PO,HQSZ—Caﬂ[RﬁQSE—CPkl,H’wlAilanZﬁOQaj(Iw%Iw3)]||12\IF[n])

L<k14+C K~K'ECy_ kl

Nl=

< Y 2 k), ( > 1P, xQse- c¢1||3[n]||QzPoQag(¢27¢3)||L2L2)

€<I~c1+C KEC ¢
2

1) k1 _ k2
272 |91 || sir1127 2 (192l sk 193] s1ks]

L<k1+C

3
Kk
S22 H||¢i||s[k7:]

i=1
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which is admissible. Furthermore, ||(5.71)| o] is bounded by

N|=

S > ( > HPo,nQél3ﬁ[RﬁQgélPkl,n'7/11A713jQzQaj(I¢2,I%)]H;O,f%,l)

—C<l<ki+C  KK'ECH —ky 0
Gk

N|=

S X Y IRuQud Qi P w1 AT 0,QeQu; (I, 1) )

1—C<t, <k, +C Rk €C oy 1y
Gk

Nl=

£ ~
S > 271_’“( > ||Qgelpkl,n'1/}1||%m;oHQePoQaj(h/Jmst)]HQLng)

(—C<, <k, +C K'E€CL —k,
Lok

A

-k 30 ko -
S 28 (Y Qe P tildp ) 2 F QP Qus (s, T 11

1—C<t1<k1+C K'E€C ey —1y
hok
3
71,i2
S oo H W%HS

Finally, (5.72) is similar to the previous estimate and we skip it.

Case 5: O(1) = k;, ke = ks + O(1). We apply (5.57) and reduce the modulation of ¢ via (5.58) to 1)1 =
Q<r1. Furthermore,

(5.73) PydPI[RsQ<pthy AT 0, PrI Qo (12, 03)] = PoI[O|V| " Qepthy AT 0 Pl Qo (12, 3)]
(5.74) + PyI[RQ<ithr A710;0° Pl Quj (12, 103)]

Lemmas 4.13 and 4.17 imply the following bound on (5.73):

Z P IOV Q<ithr A0, Pl Qaj (Y2, ¥3)] || npo)

k<kaAO+C
S Z Z H —31 ||A_laijIQOéj(¢2»1/13)]||X0,%,1
k<kaAO+C m<k k
3
Y s S 2725V T il siw
k<koNO+C i=1 i=1
which is admissible. The second term (5.74) needs to be expanded as follows:
(5.75) 2R3Q<kth1 A™10;0° Pl Quj (12, v3) = O[Q<k| V| 1h1 A0, Pl Quj (o, ¥3)]
(5.76) — 0Q< V|1 AT 05 Pl Quj (2, 13)
(5.77) — Q<i|V| 11 DA, PLIQ, (W2, 93)

We just dealt with the term (5.76). Since the modulation of the entire output is < 2, one concludes that

(5.75) < Z 10[Q<k V|~ 1 A0, Pl Quj (2, ¥3)]| .

07%,1
k<koAO+C Xo
< > 25 [l 2 AT PRI Quj (W2, 5) | L2 e
k<kaAO+C

S >

k<kaAO+C

3
1
stk S 272%2Y0 H [T
=1
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as well as, from Lemma 4.13,

GINS Y 1Q<klVIT 1 DA™, Pl Qo (2. 9s)]lInpol

k<koANO+C
N 1] poe 2 |OAT 9Pt Qu (2,13 o, -1
~ TILg=L 3k 2 (W2, V31l Lo, a
k<kaAO+C 0
3k—k 3 3
s B
< Y 2 [ Iillsi < 27 F= O T  Iillspe
k<ko AO+C i=1 i

which is sufficient.

Case 6: O(1) =k; > ko + O(1) > ks + C. As before, one reduces the modulation of 1 to Y1 = Q<k, 1.
Furthermore,

(5.78) Pod° IR Q<kythr A0 Pry 1 Q0 (2, 903)] = Pol OV ™ Qiyths A710; Py 1 Quj (b2, )3)]
(5.79) + PyI[RpQ <y tv1 A10,0° Py 1Qj (12, 43)]
Lemmas 4.13 and 4.23 imply the following bound on (5.78):

P IOV Qrythr A0, Pry 1 Qaj (2, 403)] | vio)

S 3 2BV Quitnl o AT 05 P Qg (2 )]

|| .0,11
m<ks X’S;
. 3
< 26790 =R T 144 s
i=1

which is admissible. The second term (5.79) needs to be expanded as follows:

(5.80) 2R3Q <k, b1 A710;0° Py 1 Qo (12, 13) = D[Q, | V|~ b1 AT10; Py 1Q0j (02, ¥3)]
(5.81) — 0Q <, |V 1p1 AT10; Py 1 Q0 (Y2, 13)
(5.82) — Q<ky [V ™11 OAT0; Py T Q0 (02, 1)3)

We just dealt with the term (5.81). Since the modulation of the entire output is < 2*2, one concludes that

(5.80) < (|9[Q<ky V|21 AT10; Py 1Q0 5 (12, 1)3)]

1
|| 2 0,—5,1
x T2
0

. .
S 27 [l nge 2 1A 05 Pry T Qui (2, ¥3) | 20

3 3
< 2= ka—ke) 1T 0%ilspe S TT il
1=1 1=1

as well as, from Lemma 4.13,

(5.82) S |Q<k| V|~ 1 DAT0; Py I Q0 (2, ¥3)] || v (o)
S ]l spen DA™ 05 Pry I Qaj (W2, 403)

1

1

o3
5
Xo

3
< 9(5—¢)(ks—k2)gk2 H HW”S[I@J
i=1
which concludes Case 6.

Case 7: ky = O(1) > ks + O(1) > kg + C. This case is symmetric to the previous one.
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Case 8: ks = O(1),max(k;, ke) < —C. The modulation of the output can be reduced to Q< :
1Po0” 1Q >k, [RsQ<k, 1 A7 05 Pol Quj (2, ¥3)] || w0
£ 27 % ol e ne A0 Po Quy (W, )l 3z

3
k1 1
S27 267k H 93l 511
1=1

Similarly, the input 9, can be reduced to Q<x,%1. As in Case 6,
Py0° Q< [RQ<iyth1 A0 PoQ<ry Qaj (12, ¥3)]
(5.83) = PoQ<, [OIV] ™' Qe Y1 A0 PoQ<ky Qg (2, ¥3)]
(5.84) + PoQ<, [RpQ<iy 01 AT10;0° PoQ<ry Quj (12, 13)]
Lemmas 4.13 and 4.23 imply the following bound on (5.83):
|1 PoQ<ky [O|V]| T Qi1 A0, PoI Quj (Y2, 43)] || (o)

m—k ~
S 2 2OV bl o1 PoQs Qas (W, vl oy
m<ky 1
Mo(i-o)k -
<22 2079% I |willspy
i=1
which is admissible. The second term (5.84) needs to be expanded as follows:
(5.85) 2R3Q <k, 1 A710;0° Pyl Quj(th2,1)3) = O[Q<k, V]~ o1 AT 0, PoI Quj (2, 1)3)]
(5.86) — 0Q<k, |V 1 A0, PoT Qaj (02, 3)
(5.87) — Q<iy V|11 OATI0; Py I Qo (12, ¥5)
We just dealt with the term (5.86). Next,
(5.85) < 10Q<k, [Q<k, VI~ 1 A_lajPOIQaj@/fz,1/13)]||Xo,7%,1
0
k ~
S22 |||V Lo noe A0 PoT Qaj (¥2,3) || 212
3
k
< 272678 I |l spay
i=1
as well as, from Lemma 4.13,
(5.87) S 1Q<k, VI 41 DA™, PyQ<k, Qa (Y2, 93)] I (o)
Sl s lOAT!0; PoQ<, Qaj (2, ¥3)l| o3
0
(3-e)ksgF -
<2679k 25 T il s
i=1
which concludes Case 8.
Case 9: kg = O(1),max(k;, k3) < —C. Symmetric to Case 8. O

Remark 5.6. It follows from the high-low-low interaction case of the proof of Lemma 5.5 that for some
o >0,

3
(5.88) [ PoI[Pa, Ity 070, A7 Pl Qs (Prytha, P )| i) S 27F wikn, ko, k) T T 1
i=1

provided k1 = O(1), k < ko = ks + O(1) < O(1).
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In effect, for later use, we also mention the following lemma, which is proved using identical reasoning:

Lemma 5.7. Assume k1 = O(1). Then we have the bounds

3
|Po [TRP 4105 P A1 05 Quj (o2, ¥3)] | vio) S 27wk, kg k) T | 1Pkl s
=1
3
|| Po[IR%4100 P A™10; Qs (2, 93)] IOPS 27w (ky, kg, k3) H | Pre; Vil sk
=1
for suitable o > 0.

5.3. Improved trilinear estimates with angular alignment. We conclude this section on trilinear
bounds with a technical result which we shall require in several instances, such as the blow-up criterion of
the following section. By Corollary 5.4, one gains extra smallness outside of the parameter range (5.45);
note that the latter describes precisely Case 5 in the proof of Lemmas 5.1 and 5.5 which is the high-low-low
case of interactions. In fact, the exact same gain as in that corollary can also be obtained for the trilinear
expressions of Lemma 5.5.

Corollary 5.8. The nonlinearities of Lemma 5.5 satisfy the estimates of Corollary 5.4. Le., given § > 0
there exist L, L’ large so that the §—gains in the sum over Z;Cl,k2,k)3 as well as Zgl’kz,k?’ with k < ky — L
are obtained for the three types of trilinear null-forms in Lemma 5.5.

Proof. As in the case of Corollary 5.4, this follows from the form of the weights w(ky, ko, k3) as well as
from the fact that an extra gain in Case 5 of Lemma 5.5 was obtained when k < ko — L. (]

However, one cannot gain smallness in the high-low-low case without further assumptions. In this
section we shall prove that angular alignment between the Fourier support of at least two of the inputs
implies smallness in this case.

We start with the contributions by I°Qg;. In Corollary 5.4 we isolated one case where smallness cannot
be obtained without any further assumptions. It was given by the sum Zgl ko ksez OVer the range (5.45)
together with ko — L' < k < ko 4+ O(1). Recall that L and L’ are very large depending on §. Throughout
this section, ¢; will be Schwartz functions satisfying

2 2
ig%}f:jkzz |1 Peil§pg < K
€

for some constant K. We shall use Zzl ko kscz Tepeatedly in the sense that it was defined earlier.

Lemma 5.9. Given any 0 > 0 there exists mo(9) large and negative such that

k2+0(1) 2
Z Zk ko k Z ZHPonPkl% AT, i1 P Qg (Pry roa V25 Pry i ¥3)] || N(o0)
1,k2, 3€Z -
K2,k3ECm, =ko—L’ j=1

dist(ko,k3) <20

<6 K?sup max, 7UO|k‘||Pk'¢iHS[k]

kez =1
as well as
k24+0(1) 2
Z Zk ko k Z Z 1PoV 0[Py iry 01 AT 051 P Qp (Piy ey Y2, Pr¥3)]l| o)
1,k2,k3€Z
Klﬂ'iZECrnO k=ko—L’ j=1
dist(k1,k2)<2™M0
ka+O(1) 2
+ Z Zk‘l ko,k3€Z Z Z ||P0Vt x Pkl’mlwl 18 I PkQﬁ] (Pk2¢27 Pk3753w3)]||N
K1,k3E€Cm, k=ko—L’ j=1

dist(r1,k3)<2™0

< § KZ%sup max_ 27 G"‘k‘HPk%HS
kEZZ 1,2,3
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Proof. The proof simply consists in verifying that the argument in Case 5 of Lemma 5.1 allows for this
extra gain. We first consider angular alignment between 7 and 5. In this case, we will need to repeat
the argument of Case 5, obtaining the gain from Bernstein’s inequality. First, restrict the output by Qo
and assume that ¢ = Py, ., %1 and ¥g = Py, x,%2 with fixed caps k1, k2. In the end, one verifies that it
is possible to sum over these caps. Then

|1 Po@300" [h1 A™10,1°Qp; (12, ¥3)]l o)

ka+O(1)
(5.89) S Y 1PQxo[th AT10;Qre <o PrQs; (2, ¥s)] 212
k=ko—L'
ko+0(1)
(5.90) + Y Y 2 PQun[Qem-cti AT 0;Qm PLQs; (W2, v3)]l| 212
k=ko—L' m>C
ka+O(1)
(5.91) + > Y 1P0Q0[@sm—ct1 A0 Qu PeQp; (W2, 93)] | 212

k=ko—L' m>C
First, by Lemma 4.19, and with M large but finite and % + ﬁ = %,

ka+0(1)
(589) S > illzers |Qrs <o PrQpi (W2, )]l 12 pas

k=ko—L’

ko+0O(1) 3

< N 2G| e 2 25 2722025 iy | sp g sl spay) < 0 T il

k=ko—L’ i=1

Since p > 2 one can take mg large and negative to obtain the final estimate here. Second, again by
Lemma 4.19,

ko+0O(1)

(5:90) S D> D 27 RQmQm—ct1 AT 0;Qm PrQpj (12, ¥3)] | 212

k=ks—L' m>C
ka+O(1)

S D D 2 Wl rn 2701 Qu P (w2, )l 3

k=ks—L' m>C

k2+0(1) 1 1 k 2 3 3
S Y 2meGmwgramekaglbe b T (vllspg < 0 [ il s
k=ko—L’ =1 =1
and third,
ko+0O(1)

(9D S D D @sm-ctillzzrr2 P Qum Pe Qs (1, v3)]|| o s

k=ky—L' m>C

k2+0O(1)
1_1 —(1—e)m mo X
< 2lkelar > 2meTe) N om0y gk, 27 || Qo P Qs (2, )| L2 2
" m>C

k2+O(1

)
11 = —(5—2e)m —em || )
< g2mola—y)glkald E E 2~ (5-2¢) 1l spkn) 27" | QP @y (Y2, ¥3)]ll L2 L2

k=ks—L' m>C

3
<o Il s
=1
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where one argues as in the previous two cases to pass to the last line. Next, suppose the output is limited
by Q<. Then

ka+0O(1)
1PoQ<0d’ I AT 0;1°Qp; (o, ¥3)lIvey S D D Q1 A0 PuQun Qg (W2, )]l 1 12
k=ko—L' m>C
ka+0O(1)
S Z Z 1Qm 1l L2 e 27 F (1 PeQm Qp; (W2, ¥3) | L2 pas
k=ko—L' m>C
ka40(1)

i-1 —(1-2e)m —em %+ A
<ome=e) NN omUm20m gy 2722 || PuQu Qs (2, 903) | 212

k=ko—L' m>C

(5.92)

1 1 k2+0(1) k 2 3
$2mGTD) N [ [lspey) 27 272220 ([ gy sl spea) < 6 ] T Isllspea
k=ko—L’' =1

which is again admissible. On the other hand, assume now that ¢; = I1;. Then, as we may suppose that
k=ks+O(1) = ks + O(1), we get

1 PyQ<00” [I1 AT 0;1°Qp (12, 3)] || wio) < [PoQ<00” [TY1 A™10; i 1°Qs; (W2, V3)lll 1.4

Xo LAY
< -% -1
S > 272(|Q<i—10¥1 e r2[|AT70;QuQp5 (Y2, ¥3)]l| 2 Lo

0(1)>1>ky+Cy

5.93 L
G S Qs ol AT 0,Q1 Qs (0, ) 1

O(1)>1>k2+C1

+ Z 1 PoQ<00” [I1h1 A™10;Q1 Q55 (W2, ¥3)] || o]

ko4+C<l<ks+Cq

Here we have chosen C; large enough depending on §, while C' is as in the definition of I¢. Then using
Lemma 4.19, we infer that the first two amongst the last three preceding terms are bounded by

3
SO 1Pk, il sy

Jj=1

and summation over the angular sectors/frequencies is straightforward to give the bound of the lemma.
On the other hand, for the last expression

Z 1 PoQ<00” [Iv1 AT10;Q1 Qg (W2, ¥3)] | o)

ko+C<il<ks+Cy

we use Lemma 4.17 to give the same bound. To conclude the case of angular alignment between 1, ¥,
we sum over K1, ko using Cauchy-Schwarz, Lemma 2.18, and Corollary 4.21.

Finally, consider the case where ¥9 and 13 are aligned on the Fourier side. Using Lemmas 4.18 and 4.22
instead of Lemmas 4.17 and 4.19, respectively, one immediately verifies that the desired gain can indeed be
obtained. The only exception here is the estimate (5.26). But this case is excluded here as it involves 1Qg;
and not 1°Qgj. O

Next, we need to obtain an analogous statement in the hyperbolic regime of the inner nullform. As in
Corollary 5.4, Lemma 5.5 implies the following result.
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Corollary 5.10. Let § > 0 be small. Then

"

2
Zk1,k2,k3€Z Z ||ZPoaﬂ[RaPquz[}lAilajIPkQ,Bj(Pkgw%Pkgq;[}S)]HN[O]

k<ko—L' j=1

"
+Zk1,k2,k3€Z > ||21Po o[ R7 Prytn A 05T Qg (Pey 2, Pey03)] |y
J

k<ko—L'

2
"
+Zk1,k2,k362 S IS PodslRP Pyt A 0 TP Qo (Prytia. Peytis)l

<ko—L' j=1

< 6 K? sup max 7go‘k‘||Pk1/1iHS[k]
k‘EZZ 1 3

where L' = L'(L,6) is a large constant.

Next, we need to obtain an improvement in the range (5.45) under the additional assumption of angular
alignment.

Lemma 5.11. For any 6 > 0 there exists mg(9), a large negative constant, such that

ko+0O(1) 2

> Zklkzkﬂ Yo 1D P [RaPrytn AT 01 PL Qs (P w2y Prg g )]l o)

K2,k3ECrmq k=ka—L' j=1
dist(ko,k3) <20

<JK?%sup max, 2- “O'k'\\Pw | sik]
keZ’L_ 12,3

as well as
k2+0(1
Z Zkl k2 ksGZ Z H Z PO R Pkl wl 18.711:)1C Qﬂj(sz,szQa Pk3,fi3w3)]HN[0]
K2, H%GCmO k=ko—L" j=1

dist(k2,k3)<2™0
ko+0O(1) 2

* Z Zm ko, k3 €Z Z H Z Poaﬁ[Rﬂp’ﬂ¢1A718J1Pk95j(PkM2w2’ Pk37”3w3)]||N[O]

KQ,K?,ECWLO k=ko—L’ j=1
dist(k2,k3)<2™M0

< § K?sup max 2~ °°‘k|||Pk1/Jz||S[k
kez 1=1,2,3

for any o =0,1,2. An analogous statement holds in case 11,%s or 1,13 are similarly aligned.

Proof. We begin with the first trilinear form, and also assume alignment between 1o and 3. We first
reduce ourselves to the purely hyperbolic case, i.e., when all inputs are restricted by the operator I, as
well as the entire output. Without further mention, implicit constants are allowed to depend on L, L.
In particular, we assume that k, ki1, ko, k3 are fixed in the range we are summing over. In the notation of
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Lemma 5.1, if Ag = I¢, then A; = I¢ and by Lemma 4.18,

> [P 0P [1°V 1 o)1 A1 031 Q5 (Pry s 25 P s ¥3)] [ o)
K2,k3ECm,
dist(k2,k3)<2™0

< Y S 2 PQul@u Vet AT Pl Qs (Pry a2, Prgny )]l 212
KQ,IQ?,ECMD m>0
dist(k2,k3)<2™M0

S > > 2™ Q[ 2 £2 27 F 1 PeT Q5 (Pry ey Y2, Pry s ths)ll| e e
K2,k3E€Cm, m>0
dist(ko,k3)<2™M0

k
S > 011l sk11 22 11 Pi Qa5 (Prs 22, Piog s ¥3) I 2 L2
K2,/k3E€Cm
dist(k2,k3)<2™M0

x Ky
<027 [t llspk)2 T 1 Preatllspal | Peatsllsis] < 011901l sipea) P2l sisea) | Pres o3l 1)

Summing over k1 = O(1), ko = k3 + O(1) yields the desired gain. Hence, we can assume that Ag = I as
well as Ay = 1. If Ay = I¢, then also A3 = I¢ and

| PoT 0" [Ty AT 051 Q55 (1° Py ey b2, 1 iy ey th3)] | v

S 1 AT ;1P Qi (I Pry ey V2, I Pry iy ¥3)] |l 11 12

Sl lleerz 2721 TP Qs (1° Pry o2, 1 Pry iy s) | 3 Lo

S rllgere Z 27521 Q; (Qum Pry s V25 Qi Prg s ¥3) || 11 £

In the last inequality we use that we may assume k = ks + O(1). Splitting the modulations of the last two
inputs dyadically yields

IS ||¢1 ||L§°L§ Z 2m -2k ||Pk2752Qm¢2||Lng° Hsz,Hstw3HL$Lg°
m2k2+C

< 2m0+k2”¢1”L?¢L§ Z 2m7k2272(176)m2(1726)k2HPkQ,QO¢2||X—%+E,1*E:°°Hpk3v"“3Qm¢3HX’%*EJ’E*O"

m>ko+C k2 k3
S 2" Y1l stk ||Pk2,ﬁ2¢2||x—%+e,l—6,2||Pk37"'€3w3||x—%+€,1—5,2

k2 k3

Summing over the caps ko, k3 and k1 = O(1), ko = k3 + O(1) yields the desired gain.
We may therefore assume that Ay = A; = As = As = I, which reduces us to the trilinear nullform
expansion (5.47) restricted to Case 5 of Lemma 5.5. Beginning with the first of the trilinear nonlinearities
and for the case of aligned 9,13, we now modify the analysis of Case 5 from that lemma. For ease
of notation we will fix caps x2,x3 and drop the projections Py, ,,. In the end, an application of the
Cauchy-Schwarz inequality will allow for summation over the caps. We first limit the modulation of y:

P00 QuiI[QsprcIthy A0; PI(RppaRjbs — RijvpaRpts)]| vjo)
S NP0 Quil[QsrroTn [AT 03 PI(|V ] o Rytps) — Pkf(\w_lszB%)H||Xo,7%,1
<278 1Qsk+ctnllzrz [AT 05 Pl (V] W Rytps) — Pl (V] 2 Rpts)| poe roe

3
S 27 s 2227 o1 | ey 1902l 5o 2 1003 ]| poo 2 < 5H il s
i=1
where the gain is a result of Bernstein’s inequality. Summation over ko, k3 is admissible here in view of
Lemma 2.18. Hence, if the inner output has frequency ~ 2* then we may assume that 1; has modulation <
2F. Next, we apply (5.47) and bound the six terms on the right-hand side of that identity one by one.
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Previously, we estimated the first term by means of the Strichartz component (2.14). However, this does
not seem to yield the angular improvement so we use a different argument:

| PoI0(Q<kth1 PeI[|V | 02|V~ 3)) | wio)
S > 1P0Qu(Qartr PI(IV ™ |V T b)) o1 a

a<k+C X
(5.94) S D 28Qaitn e 28 P (1Y e V| T ) e e
a<j<k+C
a—k
+ Y 22T Qs IPAQs VI el VI sl oy
j<a<k+C k

Lemma 4.11 was used to pass to the last line. By Corollary 4.10 one can continue as follows:

3 _d=ka 3k
S Y 22| llpgere 256275 277 ([l s 193 i)
j<k+C

(5.95) -

ko _ 3ka j 2
5277 27| o 193l ska) < 0 T ] Iillsprag
=1

+ > 2K llsp 027

J<k+C

Moreover, Corollary 4.10 shows that this bound allows for summation over the caps.

For the second term, we can assume that ¢ = Q<x,+c¥1, see above. Then, by Corollary 4.15 as well
as Corollary 4.10, and some large constant M,

> [P I[B(41| V|~ Pry ey 3) [V |~ Py oo 2] | w0

K2,63E€Cm,
dist(ko,k3) <270

1
ji—k ~ _ 2 _
S 2M2me| Y 2 42( > 1B0Q;(¢|V] 1Pk3,l€3w3)”io,7%,x) 11V b2l 51ks)
9

j<katC #3€Cumg

3 3

mg i=hy ka=i ka i _

S22 mel Y 27w 2w 27 2527 [ Illspey S 0 [ il s
J<k2+C i=1 i=1

Third, by Lemma 4.13 and (4.33) of Corollary 4.10,

Z ||POI[QSI€2+C¢1D(‘v|7lpk2-ﬁ2w2)|v|71Pk3»K3’l/}3]||N[O]

K2,63E€Cmg
dist(k2,k3)<2™0

J—kg ~ _ _
S >, 2 > [PoQ<kotc(¢1]V] 1Pk37'€31/}3)”X0,%,1|‘DQJ(|V| Isz,mbz)HXo
j<ko+C K2,/k3ECm, ©
dist(k2,k3)<2™M0

~ _ 3
(X 1PQekarc @IV Pyl 4 1) Il
0

K£3E€Cm

1
7_2700
k2

A

1

S Y (X 1BV Py a)lZ0 1) Iellsie

Z§k2+c K/SECWLO

3 3
£ ka=t ks
S Y0 22 232 [ Iillsig S 0 ] Iillsie
=1 =1

(<kotC
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The summation over the caps was carried out explicitly for the second and third terms since it requires
some care. Fourth, by (4.42) and Corollary 4.10

| PoI[(BQ<kyctr)A
<

~

L0 PeI Ry V| )] v
> 280Quhl| oo | PrQekrc[Ryal VI~ ]|
k1

1<k+C

<6 Z Z 2l o 4. 2 2F 2%

1
2

1
- 0,5,1
x>z
k

stk V1™ sl sk < 0274 * H 19l s

=1

Since k = k1 + O(1) = ko + O(1), the fifth term

I PoIO[Q<k+ctp1 A0, Pl (Rya| V|~ 43)] | w0

is bounded exactly like the first, see (5.94), (5.95). The sixth and final term is estimated by means of (4.40)
and Corollary 4.10:

1 Pol[Q<ktct1 DA™ 0; Pl (Rytha | V|~ 4bs)] | ol
S W1l s 281 Pe@Q<is cOAT 05 (Ry1b2| V|~ 17!’3)“

0, %,1
k
Slnllswy D, 2°1PeQm (B2l VI 9s) oy
m<k4+C k
Sollllsw) Y R 2l 5ol ¥l spks) <52k2HHwi”S[ki]
m<k+C

as claimed.

We now repeat this analysis for the case of alignment between v; and 3 (the remaining case being

symmetric). We again begin with the reduction of various modulations. Using the notation of Lemma 5.1
if Ag = I¢, then A; = I°. By (4.52) of Lemma 4.17 and with 3

2.

| PoI¢OP [I°V 4 o Piy ey V1A 0;1Q55 (12, Prey s ¥3)] | 7o)
K1,63E€Cm,

dist(k1,k3)<2™0

< > Y 2 PoQu[Qm Ve Pry oy 1 D710, PrI Qs (W2, P g ¥3)] 2212
K1,63€Cm,  m20
dist(r1,k3) <270

S Z 2(175)777, Z

m>0

5+3 where g < oo is very large,

||Qmpk1,m¢1“L$L£ 2ikHPkIQ/3j(w23 Pka,f@sqz[}ii)]”L;x’Lg
k1,83 ECm,
dist(k1,k3)<2™M0
< gmo (z—3) Z 9(1-¢) Z ||Pk1”“Qmw1”i§L§)2 2(§*E)k( Z ||IPkQﬁj(¢2,PkS,,gswg)H%sz)
m>0 K1€Cm,

K3ECm,

Nl

3
ma(L_1y (12
< Imo| 27072207 b | goueoz | Pry ol 18 | Prasllstig) S 6 T il s

i=1
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Hence, we can assume that Ag = I as well as A; = I. If Ay = I, then also A3 = I¢ and
|PoIO% (I Py ey 1 AT 051 Q5 (142, I Py e t3)] | v

S Z ”kal7K1¢1Ailajlpkgﬁj(lcw2’ ICPk37K3w3)]||L%Lg
mZkz-‘rC

S ||Pk1,51’(/}1||L§°L§ 2_k||IPkQﬁj(Icw2= ICPkS,N3¢3)||L}L;°
S ||P]€17K1¢1||LE°L§ Z 2_k2||Q5j(Qmw27 QmPk3,H3¢3)HLt1Lg°

mZkg-&-C
S ”Pklﬂflwl”LfOLi Z gm-2he ”QmeHL,ZL:C ||Pk3,f€3Qm¢3HLfL;°
m>ko+C
S 2m0+k2||P/€17'i11/}1“L,?°L3c Z 2m_k22_2(1_6)m2(1_2&>k2HQmwQHXf%Jrs,lfs,ooHPICS,NSJQmQZ)S||X7%+s,175,oc
m>ko+C k2 k3

< 2mo ”Pkl,nl'l/]l ||L;?°L§ Hw2”X7%+s,175,2 ||Pk3,n37;/}3 HX7%+5,175,2
ko k3

Summing over the caps k1, k3 and k1 = O(1), k2 = k3 + O(1) yields the desired gain. For 1); one uses

Lemma 2.18. As before, this reduces us to the trilinear nullform expansion (5.47). By the estimate (5.94),

it suffices to consider P<j4c: if the inner output has frequency ~ 2% Beginning with the first term on
the right-hand side of (5.47), one has

> 1P IO(Q<k Pry sy 1 PRI (||~ 40|V | ™! Prg e 03)) | vi0)
R17'§36C7n0
dist(k1,k3)<2™M0

<S> > 1P0Qa(Q<k Pry iy 01 PRIV |~ 42|V |7 Pry ey tbs))|

XU‘%,I
a<lk+C nl,kag,ecm() o
(5.96) dist(k,r3)<2™0
3 1
a 1 B - 1
s 2 B N0aPuwm il ) (IRl VI Pyl
a<j<k+C K1 o

|

3k a — — 2
+ 30 2o s (IR IV IV Pl )

j<a<lk+C

Corollary 4.8 was used to pass to the last line. By Lemma 2.18 and Corollary 4.10 one can continue as
follows:

g _Jd—ko _ 3ko
S Y 25| nllnerz 2527 27 [[Walsa 198l
i<ktC
(5.97)

3
_d—kay _ 3ky g
+6 Y 2| enllsmg 277 277 25 [l spka 1€l sikay < O [T I0ill s
J<k+C i=1
Moreover, Corollary 4.10 shows that this bound allows for summation over the caps. For the second term,
we can assume that 11 = Q<k,+c¥1, see above. Then, by Lemma 4.13 as well as Corollary 4.10,

> 1P I [O(Pay e, 1V ™" Pry ey ¥3) [V 2] v

K1,k3E€Cm
dist(k1,k3)<2™M0

J—ka ~ _ _
/S 2 Z 271 Z ||P0DQj(Pk1,'€1w1 |V‘ 1Pk37'€3¢3)||)~(0,—%,oo H|V| 1w2||5[k2]
J<kas4C K1,k3E€Cm, 0
dist(k1,k3)<2™0

3 3
d=kp ka—j k3 _j
55 Z 2 422 2 2222%2 k2HH1/)1||S[kl] §5HH1/%||S[1€Z]

j<ko+C i=1 i=1
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Third, by Lemma 4.13 and (4.33) of Corollary 4.10,

> [P I[Q <kt Pry sy 101V |~ 1402) [V Prg 03] | v10)

K1,k3€Cm,
dist(k1,k3)<2™0

J=ka ~
< D 2 > 1PoQ <k +0(Pry s V11V Pry ey 3) | 011 10Q;5 IV 02) | o— 1
j<ka+C K1,53ECm, Xo Xy
dist(k1,k3)<2™M0
5 Z ||P0Q§k2+C(P’€17K1w1|v|_1P’€37K3w3)||X0‘%,1 H,(/)QHS[ICQ]
K1,63E€Cm, 0

dist(k1,k3)<2™0

< ¥ 3 HpOQg(pkl,mpl|V|*1Pkm¢3)|\xo,%,l %2 (k2]
(<ko+C Nl,l‘iBecrno ’
dist(k1,k3)<2™M0

3 3
L ko=t ks
< Y0 22232 [ Iillsig S 0 T Iillsie
=1

£<ko+C i=1
Fourth, by Lemma 4.13, Cauchy-Schwarz applied to the cap-sum, and Corollary 4.10,

> [P I[(OQ <+ Pry ey ¥1) AT 0PI (Rjtb2 [V |7 Prg iy ¥3)] [ o)

K1,k3E€Cm,
dist(r1,k3)<2™0

[SIE

A ~ —
< lmol D 24||DQW1HX0,_%,&( > 1PQekic RV 1Pk3,n3¢3]||2.0,%,1>
k1 k

<k+C k3ECm, X
3
2 k—m ko m _ ko
S8 D D 2l oy 2757 2F 2% [allspn 11V1 sl S 027 T Iillsie
L<k+C m<k+C k1 i=1

Since k = k1 + O(1) = ko + O(1), the fifth term
[P IO[Q<r+ct1 AT 0; Pl (Ry2 V|~ 43)] [ o)

is bounded exactly like the first, see (5.94), (5.95). The sixth and final term is estimated by means of
Corollary 4.15 and Corollary 4.10:

> [P I[Q<kcPry oy Y1 BAT 03 Pl (R 12| VI ™ Prg ey ¥03)]l o)

K1,k3E€Cm,
dist(r1,k3)<2™M0

Nl

Stolloallspn 2 3 (X 1PQuOAT O (RitalVI P )2, )

m<k+C  Kk3ECm, X

3
k—m m __ ko
Sollnllsmg Y. 28275725277 Wallsa 1¥sll sy S 02% [ I1¥illsie
m<k+C i=1

as claimed. The other two types of trilinear null-forms are similar and left to the reader. |

Remark 5.12. The proof of the preceding estimates actually leads to a slightly better result: letting
PyF(Py, %1, Prytba, Piytps) be a frequency localized trilinear null-form as above, then given any § > 0,
there exists some [y < —100 such that we can write

PyF (P 41, Peytba, Pryps) = Fi + F
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where F} is a sum of energy, X*"%, as well as wave-packet atoms of scale [ > [y (where scale refers to the
size 2! of the caps s used), with the bound

3
1Pl vioy S wlkens ko, k) T 1Pk, ¢l sy

Jj=1

and universal implied constant (independent of §), while we also have

3
£ vjo) S dw(ka, ka2, k3) H | Pre; il sk

j=1
The reason for this is that whenever a wave-packet atom of extremely fine scale is being used to estimate
some constituent of PyF’, one gains a small exponential power in that scale.

6. QUINTILINEAR AND HIGHER NONLINEARITIES

Here we detail the estimates needed in order to control the higher order error terms generated by the
process described in Section 3. This section is quite technical but the main point here is that the higher
order terms, while still somewhat complicated, are much easier to estimate than the trilinear null-forms,
and only require a very mild null-structure. We start with the lowest order errors, of quintilinear type.
These are either of first or second type, see the discussion in Section 3. We commence with those of the
first type, which can be schematically written as

Va0V HRAVTH WV TIQu; (v, 1)),

where not both v, u are simultaneously zero. Assume that v = 0, 4 # 0, the remaining cases being treated
analogously. The following lemma is then representative for the higher order errors, for a universal § > 0.

Lemma 6.1. We have the estimates
1Vt [PotooV " Pr, (Ro Piey 1V " Pry (Pay 02V Pry Qi (Pry b3, Proytba)))] v o)

4
S 26[minj¢0{rj7kj}—maxj¢u{7‘j,kj}] H “Pki¢i||5[ki]a r < —10
=0

[Vt [Pro oV ™ Pry (Ro Py 1 V' Pry (Piy 02V ™ Pry Qi (Pry 03, Py ¥04)))] o)

4
< 98kogdmin{r; k;}—max{r;,k;}] H | P, sl sprg, 71 € [—10,10]
=0

IV 2,6 Po[Pryt0V ™' Pr, (RoPiey 191V " Pry (Piyth2V " Pry Qi (P 3, Prytba)))] v o)

4
5 275k025[min{7‘j,kj}*max{’l‘ﬁkj}] H ||Pk,;1/)i||5[ki]7 ry > 10
i=0
All implied constants are universal.

Proof. All three inequalities are proved similarly, and we treat here the high-low case in detail, i.e., the
first of them. We first deal with the elliptic cases:

(i): Output in elliptic regime. This is the expression (we have included the gratuitous cutoff P_s 5 in
light of r; < —10)
VP 55Q510[PotoV " Py (Ro Py 1 V" Pry (PeythaV ™ Pry Qi (P ts, Pry4)))]

=Y Vau P55 Qu[PotooV " Pr, (RoPry 1 V' Pry (Pry 02V ™ Py Qi (Paytbs, Paytba)))]
1>10

Now distinguish between further cases:
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(i1): max{ki,..., ka} < I, RoPr, Y1 = RoPy, Q<i—100%1- In this case at least one other factor Py v;
has modulation at least 2710, For argument’ s sake, let this be Py, = Py, Q>;_10%2 (the other cases
being similar), so we now reduce to estimating

Z Vi Pl=s55QuPotoV " Py (RoPry Qci—10001Y ™' Pry (Pry Q>1-10%2V ' Pry Qi (Piey b3, Py ¥04)))],
1>10

where we also make the further assumptions of case (il). Freezing [ for now, we estimate this expression
as follows: first, note that we get

Hvilprz (Pk2Q>l—10w2v71PT3ij(Pk3¢3’ Pk4w4))”L -

2772
tHiz

4
< 2(176)(k271)2[min{r2,3,k2,3,4}7max{7"2,3,k2’3,4}] H ||Pk/l/]]||s[k]
~ J J
=2

This follows by straightforward usage of Bernstein’s inequality and the definition of S[k], as well as ex-
ploiting the null-structure of @ ;3. Furthermore, we have

.
[RoPr, Q<i—100¥1llzz , S 20=k1)2= 3| Py ¥ || s k)

where € > 0 is as in the definition of S[k], which implies that

1—ky

= || Pry ¥l sk ]

| RoPi, Q<i—100%1 || psor2 S 290742
From here we get

[Vt Pl—s,5Qi[PotooV " Pry (Ro Pry Q<i—100%1
x V7P, (PkgQ>l—10w2v71Pr3ij(Pk3¢3,Pk41/)4)))]||X7%+e,7175,2

0
S 276l||PO¢OHLf°Li
X [V Py, (RoPry Q<i-10001V ™' Pry (Pry Q511002 V " Pry Qi (Pry 3, Py )|l p2 200

min{min{ry o} —k1,0}

< 93 gmin{ky—min{ry »},0} g ———3*=—— | Ro P, Q<1—100%1 || L3 12
x |[V7'P, (szQ>1710¢2v_1Pr3ij(Pk3w3aPk4¢4))”L

L1
PHZ
Substituting the bounds from before, this is bounded by
min{min{rle}fkl,(J}

2

52_512"71 gmin{k; —min{ry 2},0}9

4
« 26([—k1)2% ||Pk1w||S[kl]2(1—6)(k2—l)Q[min{rz,s,k2,3,4}—max{rz,s,k2,3,4}] H ‘|ij¢j||5[kj]
j=2
This is equivalent to an estimate of the form claimed in the lemma, with an extra gain 2~ which allows
us to sum over [ > 10.
(i2): max{ky,...,ka} < I, RoPx, Y01 = RoPr, Qu—-100.14+100/%1. The estimate here is similar except that
square summation over ! is made possible since we have

1
. —=+4e€,1—¢€,2
Py, Qs 1 € Xk12

(i8): max{ky,...,ka} <1, RoPy, %01 = RoPy, Qsi141001¢1- This is again similar. Fixing the modulation of
Ro Py, Q14100191 to size 2513 > 1+ 100, there is at least one other input which has modulation at least
comparable to 21. Then one proceeds as in case (i1).

(24) max{kh ey k4} >+ O(].), R0Pk11/)1 = ROPk1Q<max{k172,3ﬁ4}w1'
Here we obtain a gain in min{ry 23, k1 2,34} — max{ry 2.3, k1,2,3,4}, which suffices to offset the loss due to
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the possibly large modulation of Ro Py, Q <max{k, ».5.4}%1. Specifically, write

Va,tQi[PotoV ™ Py (RoQ <max{hy 25,4} Pin 1

X V7 Py (P02 V™ Pry Qi (Pry s, Piytba)))]
= Vit Qu[PovoV ™ Pr (RoQ<k, Pry 1

X V7 Py (P02 V™ Py Qi (Pry s, Prytba)))]
+ Vot Qu[PotoV ™ Pr, (RoQ iy smax{kr 2.5 4} Prr U1

X V7 Py (P02 V™ Py Qi (Pry s, Prytba)))]

Here we use the inequalities

”vilPTz (szrw?vilPTstk(Pksw?n Pk4w4))||L2H%

4
< 2%[min{m,s,k1,2,3,4}fmax{r2,3,k1,2,3,4}] H Hpk s
~ i
=1

HS[ki]a

IV Py (Pry 02V ™' Pry Qi (Pryths, Prytha)) |l poe 2

4
i k — k
5 gmin{ra 3,k1,2,3,4}—max{rs 3,k1,2,3,4} H ”PkiwiHS[ki]-
=1

Then we can estimate

||VI,th [PowovilpTﬁ (ROQ[k1,max{k1,2‘3,4}]Pk1wl
x VP, (Pk2¢2v_1PT3ij(Pk3w3)Pk4¢4)))]”X—%+s,—1—e,2

0
< 27 Potbol| oo 12
X IV Py (RoQ(ky max (ki 2,541 Pra 01V ™ Pry (Piy 02V ™ Pry Qi (Pry s, Proyt0a)))l| 12 Loe

To conclude the contribution of this term, one then checks, using standard Littlewood-Paley trichotomy,
that

||v_1P7"1 (ROQ[kl,max{k1,2,3,4}]PI€1wlv_lprz (sz"/JQv_lPTe,ij(Pkgw?n Pk4w4)))||LfL;°
min{ry 9,k1} min{ry 9,k1}—max{ry 2,k1}

S22 2 2 ||R0Q[k1,max{k1,2,3,4}]Pk1¢1||L§H§
x valpm (Pk2¢2v71PT3ij(Pk3w37 Pk41/}4))||Lf°L§

Combining with the bound from above, and furthermore assuming the € in the definition of ||.||s to be
small enough, we conclude that for suitable 6 > 0 we have

va,th [Poqbov_lpm (ROQ[kl,maX{k1,2,3,4}]Pk11/}1
X vilpTz (szq/}QvilPT;;ij(Pk‘d’l/)?)’ Pk‘4d)4)))]||X—%+e,—l—e,2

]

4
< g—elgd[min;xo{r;,k;}—max;zo{r;,k;}] H || P, ¥
i=0

and square summing over 10 < | < max{kj 234} yields the desired bound.
For the term

Vi QuPooV Py (RoQ <y Pyt
x VP, (Pryt2V ™ Pry Qi (Prg b3, Pryt0a)))]
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from further above, estimate

|Vt Qi[PotoV ' Pry (RoQ <y Pry 1
x VP, (Pry 2V Py Qi (Piy s, Pk4¢4)))]||x_%+e,_1_e,2

0
< 27 Potpol| poe 2
X ||v_1Pr1 (R0Q<k1Pk1¢1v_1PT2 (Pk2w2v_1PT3ij(Pk3¢3ﬂ Pk4¢4>))||L%LZ°;

and we have

IV Py (RoQ <k, Py 1V ™ Pry (Pry 92V ' Pry Qi (Pry s, Prytba)))ll 2 roe
min{ry g,k1} min{ry o,ky}—max{ry g,k1}
2

S2 2 2 | Pyl Lo 12
X ||V_1PT2 (szwQV_lstij(Pk:iw& Pk4z/}4))||

L2H3°
which in conjunction with the bound from above
IV Py (Pry 02V ™' Pry Qi (Pryths, Pk4w4))”L2H%
4
< 2%[min{T2,3,k1,2,3,4}*max{7’2,3,k1,2,3,4}] H “Pk¢z‘|s[k]a

i=1

implies that

|Vt Qi[PotooV ' Py, (RoQ<ky Pry 1
v_1P)7‘2 (Pk2w2v_1PTBij(Pk3,¢)37Pk4w4)))]||x—%+e,—1—e,2

0

min{ry o,k1} min{ry o,k3}—max{ry o,k1}
2 2 2

5 2—6l2
4
% 2%[min{Tz,SJ€1,2,3,4}*maX{Tz,S,kl,z,SA}] H ||Pk'l/)zHS[k]
=0

Square summing over [ > 10 yields a bound as claimed in the lemma with § = %
(25) max{kl, RN k‘4} >+ 0(1), ROPklwl = ROPk1Q>>maX{k1,2,3,4}'(/J1-

Freeze the modulation of RyPy, v to dyadic value 21 > gmax{ki 2,34} Here there must be at least one
other input with modulation at least comparable to 2/t. Let this input be Py, for definitiveness’ sake,
the other cases being treated similarly. Thus consider the term

Vit QuPotboV ' Pr (RoQu, Py ¥1 V' Pry (Pry Q51,1012 V™ Pry Qi (P03, Proy¥01)))]
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Assuming a high-low frequency cascade 1 < k1 < ko, we can estimate this by (using Bernstein’s inequal-
ity)
IVt Qu[PotpoV " P, (RoQ1, Pryth1
X V_IP’Fz (szQ>l1+0(1)w2v_1p7‘3@jk(Pk3¢3a Pk41/)4)))} HX7%+6,7176,2

0]
S 2l(%76)”P07/’O“L§°L§
X [V Py, (RoQuy Pry 1V Pry (Pry Qs 01y %2V~ Pry Qi (Pry s, Pry¥0a))) |l 11 poe

< 2l( % —e)+r1 2min{7’3 ,k374}—max{r3 ,k3)4}2k1 —ko
~

x || Povoll g L2 [|RoQuy Pt | 22 1 Pro@stvomy®ellzz . T I1Pswillsim,)

j=34
4
< 21(%—e)2min{7-3,k3,4}—max{r3,k3,4}26(11—k1)27-1—klj’W ok1—ka o(1=e)(k2—11) H 1P, %515
j=0

Summing over l; > max{ki 234} > |+ O(1), one obtains a bound of the form claimed in the lemma
with § = % — ¢ in the particular case at hand. The remaining frequency interactions, while keeping our
assumptions on the modulations, are treated similarly. This concludes the elliptic case (i).

(ii): Output in hyperbolic regime. Now we consider the expression

vx,tP[—5,5]Q<1O[P0w0v_lpn (ROPlﬁwl
X V71P7'2 (Pk2w2V71PT3ij(P’€3w3a Pk4¢4)))]

We decompose this into

VaiP_55Q<10[PotoV ' Py (Ro Pry 1
X V7 Py (Pry 92V = Py Qi (Pry s, Prytba)))]

(6.1) =V P_55Q<10[PotooV " Pr, (Ro P, Qry 1

X V7 Py (Pry 2V ™ Pry Qi (Pry s, Pryts))))]
(6.2) + Vot Pi_5 5/Q<10[PotoV " Pr, (RoPry Qty,max (ks 2.5.4}+0(1)] Y1

X V' Py (Pryt02V ™ Py Qi (Pry s, Pryiba)))]
(6.3) + Vot Pi_5 5/Q<10[PotoV ™" Pr, (RoPry Qs max (ki 5.5.4} V1

X V' Py (Pryt02V ™ Py Qi (Pry s, Pryiba)))]

To estimate the first expression (6.1) on the right, we exploit the fact that we control sharp Strichartz
norms, in addition to the basic null-form bilinear estimate controlling Qi (Pi, s, Pr,¥4). The key is the
fact that we have the almost sharp Klainerman-Tataru norm built into .S. To see this, consider the most
difficult case, a high-low frequency cascade corresponding to r; < k1 < ko. We estimate the expression
by starting from the inside:

IV 71 P,, (PrythaV ™t Pry Qi (Pry s, Prdpa)ll 4,

=27" Z HPT2(Pkmclw2v71PT3702ij(Pk31/)33Pk4w4))||L%L2
€1,2€ Dy, ry dist(c1,—c2) Sra v

—r 1 —
S22 Y Pretellfare) 211V Pryes Qi (Prgts, Prta)llz

¢c1E€Dgy,ry
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Here we have used Cauchy-Schwarz and Plancherel’s theorem. Then using the definition of ||.||s, we can
bound this by

272 Y NPl ire)? IV Proe @k (Pry s, Prytba) 2

Cc1 eDkz,rQ

4
ko ro—ko min{rg,k3 4} —max{r3,k3 4}
—roa2 > >
<2722 2T 3 HHijiﬁzHS[kj]
j=2

Turning to the full expression further above, we then get for the contribution of this term to the hyperbolic
part of the output

[Va,tQ<10[PotboV ™" Pr, (RoQ <k, Pr,th1

X VT Py (Piy 2V ™ Pry Qi (Pry 3, Pry )l 1 g
S 1Potoll Lo £2 1V " Pry (RoQ <y Pry 01V ™' Pry (Pry 2V ™" Pry Qi (Piy 03, Preyt0a))) |l i oo
S [Fovol L

x ”V_lph( Z R0Q<k1Pk17C1wlv_1PT27c2 (Pk2¢2v_1PT3ij(Pk3w37 Pk4’(/}4)))||L%L;’,°

c1,2€Rk; vy dist(c1,—c2) <271

We intend to substitute the intermediate bound from above for

||v_1PT2 (Pk2w2v_1PT3ij(Pk3w3’P/f4w4))H

i
L3L2
where we can exploit that, by Minkowski’s and Plancherel’s inequality, we have

1
(X WPeFI2y ) SIPFI g

L2
2 t x
C1ERy ¢y ‘

Thus we can estimate, using Cauchy-Schwarz, Bernstein’s inequality and the preceding observation
V7P ( Z RoQ <k, Pry ey 1
m,zERkl,Tl,dist(cl7702)52ﬁ

X V7 Py e (Pry 02V ™ Pry Qi (Prgths, Proy0a))) || iz
1 _ _
SC D IPuetilfape) IV Pryey (PrathaV " Py Qjk (P s, Petba))) g

L3
C1 eRkl ,T1

r1

4
—k1 3 kg ro—ko min{rg,k3g4}—max{rg.k3 4}
Bt o— kg
52 ¥ Q2aR197Tr297F 97 9 3 | I ||ijw2‘|s[kj]

j=1

But by our assumption 1 < ki < ko we have ro = k1 + O(1), whence we can replace the above bound by

|V2tQ<10[PotboV ™ Pry (RoQ< ey Prytn
X VP, (Pry 2V ™ Pry Qi (Pry ¥, Pey ) 1y

4
ri—ky rog—kg min{rg,kg4}—max{rg,k3 4}
<27 27aF 2 7 HHijl/Jsz[kj],

Jj=0

and this is again enough to yield the statement of the lemma (here with § = ﬁ

interactions can be handled similarly.

). The remaining frequency

Next, consider the second term (6.2) above, i.e.,

Vi Plo5,5/Q<10[PotoV ™ P, (Ro Pry Qey smax{ks 2.5.41+0(1)) %1
x VP, (PeythaV Py Qi (Pry s, Pryiba)))]
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This is much simpler: we get
IVt Pl—5,5Q<10[Pot0V ' Pr, (RoPry Q[ry smax{ki.2.5.4}+0(1)] Y1
X V7 Py (Pry 02V ™' Pry Qi (Pry s, Pr b))l L1 g1
S Potoll poe 2V Pry (RoPry Qiy ma s 2.5.4}+0(1)] Y1
X VP, (Piyth2V ™ Pry Qi (P s, P a))l 2y e

For definitiveness’ sake, we again assume that r; < k1 < ko, the remaining cases being similar. Then we
get

v_lpﬁ (ROPle[kl,max{k1,2,3,4}+0(1)]¢1v_lprz (Pk2w2v_1PT3ij(Pk3¢3ﬂ Pk4¢4)))||L%Lg°
S 2" [ RoPry Qi macthr .5, a3 -0 V1l 22 IV 7 Pry (Piy 2V ™ Pry Qi (Prog 3, Prya) || 212

4
S e | (XIS
~ J J
§=0
This corresponds to a bound as in the lemma with § = % — ¢, where we recall € is as in the definition of

| - llsjx]- The remaining frequency interactions for this term are treated similarly.

Finally, consider the last term above
Vi Plo5,5Q<10[PotoV ™' Pry (RoPi, Qsmax{ky 5 5.41 01
X V_1P7”2 (sz'w?V_lPT?,ij(Pksw?n Pk4’(/)4)))]

Here we again need to compensate for the losses coming from estimating Ro Pk, Q> max{k, »5.4}¥1- Freeze
its modulation to dyadic size 2!. Then either at least one other input has at least comparable modulation,
or else the output has modulation ~ 2! (in which case necessarily [ < O(1). In the latter case, one then
estimates (where [ > max{ki 234} and we assume all other inputs to be at much lower modulation)

IVt P=5,5Q<10[PotooV ™" Pr, (RoPr, Quibr
X V' Py (Piy2V ™ Py Qi (Pry 3, Py ¥04)))] | o)
= ||Vt P55 Qi[PotooV " Py, (Ro P, Quib
X VP, (Piyh2V ™ Py Qi (Pry 3, Py ¥04)))] | vjo)
< ||Vt P55 Qu[PotboV ™ Py, (Ro P, Quib
X VP, (PeythaV ' Py Qi (P s, Pk4w4)))]HX[;1,—%,1
<27t | Potboll e 2 |V ™" Pr, (Ro Pr, Qo
X VP, (P, 02V~ Pry Qi (Pryths, Pryt0a))) |l 2 oo

Here the second factor above is estimated by

IV~ Py, (RoPr, Quin V™ Pry (Pry 2V " Pry Qi (Pry 03, Prytha)))l p2 100

4
2= TT | P, 05l s,

j=1

min{ry 2,k1} min{ry,rg,k;}—max{ry,rg,k1} min{ry 3,ka 3 4}—max{ry 3,k234}
2 2 2

Inserting this bound into the last inequality but one and summing over ! > max{kj 234} results in a
bound as in the lemma with § = % — €.

The case when at least one further input has at least modulation at least comparable to 2! is similar, one
places the output into L}H’l.

This completes the proof of the first inequality of the lemma. The remaining ones are treated by an

identical procedure. O

In a similar vein, one has estimates controlling the second kind of quintilinear term. We state the
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Lemma 6.2. For the second type of quintilinear null-form, we have the following estimates for suitable
0>0:

||vm,t[(PO[vil(Pk1w1P51 VﬁlQU‘j (PkQ/(/)Qv Pk31;[)3))]P’r‘1VﬁlIQﬂj(szLw‘l) Pk5¢5)) ||N[0]

5
< 90r198[min{0,k1 23,81} —max{0,k1,2 3,51 }] 9d[min{ri,ka 5} —max{ri,ka,5}] H ||Pk_¢j||g[k.] rp < —10
~ j Zikl

j=1

||vx,t-P()[(Psl [V_l(Pk'lwlPSg v_lQuj(szw% Pkng))]Prl v_le,uj (Pk4’(/14, Pkr)'l/}E))) HN[O]

5
< 9Bsr98lminer 2k 20} —max{sl 2k gflmin{raka sy —mex(ri kasH TT || Py sl e, 71 € [—10,10)
j=1

IVt Pol(Pe, [V (Piey 101 Psy V' Quj (Pry 2, Pry¥03)) 1 Pry V1 IQpu5 (Preythas Piyths)) || vpo)

5
SJ 27651 25[min{5112,klyzyg}fmax{sl’g,k:1,2’3}]25[min{r1,k4’5}7max{r1,k4’5}] H ||PkaJHS[k;J], ,’,,1 > 10
=1

Proof. We verify this again for the first inequality above, the other ones following a similar pattern. As
usual, we distinguish between elliptic and hyperbolic output components:

(i): Output in elliptic regime. This is the expression

Vet P5,5/Q>10[(Po[V ™ (Pr, 001 Ps, V1 Quj (Prytha, Pryhs))]
X P, VQ i (Prytba, Pegtbs))

As usual the only slight complication arises due to the fact that w may have v = 0. Freeze the modu-
lation of the output to dyadic size 2!, I > 10. Then one re-iterates the same steps as in the preceding proof:

(i1): max{k1 23} < I, time derivative falls on term with modulation < 2!=00. In this case at least one
additional input (which is not hit by a time derivative) has modulation > 2!=1°. For example, assume this
is Py, 1 = Py, Q@>1—10%1, the other cases being treated similarly. Then assuming a high-low scenario, say,
i.e., k1 > 1, we have (using Bernstein’s inequality)

1Po[V ™ (P, Qs1-1091 Ps, V' Quj (Pry o2, Pryts))]l i 2

S 1P Qsi10%n 22 1Py V7 Quy (Pytin, Pryts)llre
3
< 27 R p0m 9t =loel=k) TT P ol s

j=1
Substituting this into the full expression, we obtain for the output the bound
Vet Plos 5/ Qi (Po[V ™ (Pry @>1-10%1 P, V' Quj (Pry tha, Py ts))]
X Prl Vﬁl]Q,uj(Pkﬂ/}éh Pks'l/}?))) ||X7%+e,7175,2

0
S 27 P [V Py, Qs 1—10%1 Po, V1 Quj (Piyiba, Pkﬂ/’:s))]HLg@
X || Pry V7 Qi (Prytha, Prosts)ll e,

< 267N Py [V (P, Q121091 Py V7 Quj (Pry Pigps))liLize
X P,V Quj (Prytha, Pigths) | Lye,

j=1
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Summing over ! > max{k; 2 3}, the desired inequality of the first type of the lemma follows in this case.
The remaining frequency interactions within

Po[V (P, Q>1-10%1 Ps, V' Quj (Pry b2, Pryths))]

are handled similarly.

(i2): max{ky 23} < I, time derivative falls on term with modulation ~ 2'. In this case, we place the
time derivative term into L%’z, and are guaranteed gains in the maximal occurring frequency: for example,
consider the term (arising upon unraveling the inner @, ; null-structure with v = 0)

Po[V ™ (Piy 1 Ps, V™ (Piy Qrro(1) Rotba Pry ¥3))]
In the high-high case ks > s1, one can then estimate

|1 Po[V ™ (Pe, 191 Ps, V™ (Piy Qo) o2 Preg ¥3))) 2

min{0,ky,s1}—max{0,ky,s7} min{sy kg kg}—max{sy,ka,k3}
2 2 2

<2

~

X ||Pk1¢1||Lchg||Pk2Qz+0(1)Ro¢2||L3H% | Prssllpee 2

From here one estimates the full expression by

Vet Pi—s 51 Qi (Po[V ™ (Pryth1 Ps, V7 (Pry Qi 0(1) Ro2 Pey ¥3))]
X Prl V_IIQuj(Pk4w4a Pkst)) ||X7%+5,7175,2

S 27U P [V (Pry b1 P, V71(szQl+O(1)RO¢2Pk3w3))]||L§Ym
X 1P,V Quu (Prytoa, Prsths) | e,

min{0,k;,s7 } —max{0,ky,s1} min{sy,ko,kg}—max{sy,ko,k3}
2 2 2

< 2—6[26([—]62)2

X ||Pk11/)1||L;>°L§ ||Pk2Ql+O(1)1/)2||X_%+g,1_e,1 |‘Pk3¢3HLt°°L§
k2

% 2r12min{r1,k4,5}—max{r17k475} H ||sz/}jHS[k]
J J
j=4,5

One may sum here to obtain a bound of the type as in the first inequality of the lemma, with § = % — €.
The remaining frequency interactions within

Po[V ™ (Peyth1 P, V! (P Qro(1) Rot2 Py ¥3))]

are again handled similarly.

(i8): max{ky 23} < I, time derivative falls on term with modulation > 2'. In this case at least one
additional term has at least comparable modulation, and one argues as in case (il).

(i4): max{ki 23} > [+ O(1), time derivative falls on term with modulation < max{ki 23} -+ O(1). Here
the losses coming from the time derivative are easily counteracted by the gains in the large frequencies:
first, one reduces the inputs Py, ,12,3 to the elliptic regimes. To do so, note that we have

[P0 [V ™ (Pry 1 Poy V7 (Proy Qta e .5} Bov2 Preg ¥3)]ll 22

i —max s C 9 3
P20 RS o c(max (k1 2,5} k) 1T 1P, 55w
J J

j=1
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and inserting this into the full expression is easily seen to yield the desired inequality. Hence we have
reduced this case to the expression

Vit Pios s Qul(Po[V ™ (Pey 1 Poy V' Qu (P Qa2 Py Qg ¥3))]
X P, VQ i (Peytba, Pegibs))

Of course in the present case at least one of ka3 > [ + O(1). Assume that we have a high-high-low type
situation in

Py, V7 Quj (Piy Q <y 2 Py Qs ¥3),
i.e., s1 < kg, this being the most delicate case. We distinguish between two cases:

(a): modulation of Ps, ... is less than 27O In this case, we may ”pull out” a (time)- derivative from
the @, ;-null-form, using the simple identity

R Rjp? — Ry Ryyp? = 0, [V Rjyo] — 0;[V 19! Ryabo]
Hence in this case we can estimate
IVt P55 Qul(Po[V ™ (P, 1 Ps, Qcir0(1) V™ Quj (Pry Q< kg2 Proy @<y ¥3))]
X Prlv_llQuj(Pk4w47Pk5w5))||X7%+e,7175,2
S 27N Py VT (P 1 Py, Qi o) V' Qui (Pry Qcies V2 Py Qg ¥3))] | oo 12
X || Pr, V7 Q i (Prytha, Py t5)l| L2 poe
min{ry,kg 4} —max{ry,k3 4}

5
5 2—el2l—]€22%2 . 2min{s1,/€170} H ||ij d}jHS[k’j]
Jj=1

One can sum over [ < max{ky 2,3} to get the desired first inequality of the lemma in the case at hand.

(b): modulation of P, ... is > 2!. In this case the modulation of the first input Py, 1; needs to be
comparable to that of

Py, V1 Qui (Pry Qeioy 2 Py Q <k ¥3) )]

Hence we can write this contribution as

Z Vi P55 Qul(Po[V ™ (P, Quu+0(1) V1 Py Q1 V™ Quj (Proy Q<o 2 Pry Q <y ¥3))]

>
X P, VQui (Peytba, Pegibs))

To estimate it, we use

1Ps; Q1 V™ Quj (Pry Qa2 Pry Qs ¥3) 12, S gh—keg=% H | Pr, Q< V2l 511
i=2,3

We the insert this bound into the full expression. In case that k1 > O(1), we can estimate
Vet P—5,5Qu(Po[V ™ (P, Qry 1011 Psy, Quu V™ Quj (Pry Q <y W2 Py Q< iy ¥3))]
X Prlv_llQuj(Pk4w47Pkg,’(/)f)))]] —%4»5‘—1—5,‘2
0

—elat _
S/ 2 l22 H-Plell-‘rO(l),lplnL%m H-Plellv 1621/‘7'(-13162Q<l€2’¢2-Pk3Q<l€3’l/}3)HL%’m
X || Py V7 Qi (Prythas Prys) | e,

I
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In case that I3 < k1 + O(1), we can bound this by

ek _
27922 | Py, Qu+oy¥ull iz 1P Qi V™ Quy (Pioy Qi V2 Pry Q<ia¥s) 2
X || Py V7 Qi (Pryta, Prgs)ll e,

—elatlao—l _ _ 51
< 27922273 | Py ¥ [l sin 2 227 T 1Pk Qe ol sing
i=2,3

X || Pr, VHQu5 (Prytbas Prgths)ll e,

5
5 276l2%27%2l17k227%27‘12min{k3,k4}7max{k3,k4} H |‘Pk1¢z‘|s[kl]
i=1

Summing over k1 + O(1) > I; > [ and then over I > O(1) results in a bound as in the first inequality of
the lemma with § = £ +e.
Next, still in the case k; > O(1), if Iy > k1 + O(1), one proceeds as before but uses

.
1P, Quy+oy¥illrz, S 272 209" P | gy

One obtains a final bound with the same § = % + € as in the preceding case.

In the case k; < O(1), one simply places Pr, Q;, +0(1)¥1 into L?L2°, thereby gaining an additional factor
2%1. We omit the details.

(15): max{k1 23} > 1+ O(1), time derivative falls on a term with modulation >> max{ky 23}. This is
similar to the preceding an omitted.

This concludes case (i), when the output is in the elliptic regime.

(ii): Output in hyperbolic regime. This is the expression
Vi Ps,51Q<10[(Po[V ™ (Pry 1 Ps, V' Quj (Pry b2, Pry¥03))1 Pry V1 IQ,u5 (Proytba, Progths)
To treat it, we decompose
Po[VTH(Pr, 01 Ps, V7 Quj (Py 2, Prog ¥3))] =Po[V ™ (Pry 1 Po, VT Qo (Piy ¥, Prg¥3))]
+ Po[V (P, 01 P,V Quj (Pryth2, Pryths))]

(iia): contribution of the elliptic type term. This is the expression
VaiP_5.5Q<10[(Po[V ™ (Pry 1 Ps, V7 IQu i (Piytb2, Prgths))| Py V7 IQ 5 (Prytba, Prgths))
We shall treat the case s; < —10, i.e., the case of a high-low interaction within
Po[V ™ (Peyth1 P, V' Quj (Prytha, Prgts))]

The remaining cases are again more of the same. Now freeze the modulation of the expression
Py, V7 Qu; (Prytb2, Pryths))
to size 2!, | > s;. Then decompose the corresponding full expression into the following:
Vi Plos5Q<10[(Po[V ™ (Pey 01 Ps, QY " 1°Qu 5 (Pioytb2, Prgt03)) Pry V7 IQ uj (Proy s, Prsts))
= Vi P_55Q<10[(Po[V ™ (Pry @>1-10%1 Py QiV  1°Qu j (Prytha, Pryt)s))]
(6.4) X P,V Q5 (Prytba, Prsths))
+ Vot Ps 51Q<10[(Po[V ™ (Pry Qei—10%1 P, QiV Q. (Pry b2, Pryt3))]
(6.5) X Py V7 Qu5 (Prytba, Prsths))
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The first term (6.4) on the right can then be estimated by
IVt P 5,51 Q<10[ (Po[V ™ (Pry @s1-10%1 Poy QuV ' T°Qu(Piy 2, Pieyths))]
X Prlv_lfQuj(Pm%,Pk5¢5))|\Lt1H—1
S 1Pk, Q110122 1P, QY Qo (Prytha, Prgth3))l| 12 £oe
X || Pry V7 Qi (Prythas Pross)l e,
Then from Lemma 4.18 and Bernstein’s inequality we infer that provided ks > s1, we have

27 || Py QiV T IQu (Pry b, Pry )l 2o S 227 moxlorkond maxc ey — 51,132 T 1Pk, 5l
j=2,3

Inserting this into the preceding bound we infer that
1Py @1-1001 122 1Py QY TQu (Piy b, Pryths)) | L2 poe
X || Py VI Q i (Prythas Py s L,

s1

5
S 9 2_l gelg—e max{sy,k2,3} maX{kQ — 51, 1}227“1 2min{r1,k4,5}7max{r1,k4’5} H ||ij1/)j||5’[kj]
j=1

Summing over [ > s; yields the bound of the first inequality of the lemma with 6 = e—. On the other
hand, when ks = s1 + O(1), say, one can use Lemma 4.23 instead, which then gives the desired inequality
with § = % — €.
Next consider (6.5). Here we distinguish between the cases [ < r; + O(1) and [ > r1. In the former case,
as before assuming s; < —10, we get
IV, P55/ Q<10[(Po[V ™ (P Qei—10%1 Ps, QiV  I1°Q (Pry¥2, Piiyths))]
X P V7 Quj(Prythay Pegths)) | i
S Py Qei—10¥1 [l Lo 22 [|1Poy @1V M T°Quj (Pry 2, Piyt0s) || 2 poe
X || Pry V7 Qi (Prythay Py s)|| L2 Lo
Using Lemma 4.18-4.23 again, we obtain the bound

s1+71

5
min{ry kg 5} —max{ry kg 5}
< 27 hgelmmax{kakal) |g) k|23 2 2 H | Pr; 5l str;)

~

j=1
One may sum here over s; <! < r; + O(1) to get the desired first inequality of the lemma with 6 = e—.
Next, consider the case [ > 1. But in this case we can write

Vet Ps,51Q<10[(Po[V ™1 (Pr, Qio10¢1 Po, Q1Y I°Qu 5 (Prytha, Pryhs))]

X P, VQ i (Peytba, Pegtbs))
= ViP5 51Qu-10,10)[(Po[V ™" (Pr, Q<1-10%1 Po, QiV " I°Qu; (Pry o2, Py b))

X P, VQ i (Peytba, Pegths))

But this we can then estimate via the ||.||X,1,,§1 -norm of the output, i.e., it suffices to bound
0

IV, P55/ Qi—10,10) [(Po[V ™! (P, Qi— 1001 P, QIV  I°Qu; (Proyth2, Prytbs))]
X Prlv_llQﬂj(P’mwéh Pk5’(/J5)) ||X7 —1n1

2
0
< 27% ||R91Q1V71]CQVJ‘(PI€2¢27Pkle’S)HL,?LgO HPk1Q<l—1o¢1||Lg°Lg ||
X Pr, VQu  (Prytbay Prys) | Lge,

From here the estimates are continued in a fashion identical to the ones used to control (6.4). This com-
pletes estimating the contribution of Py, V71I°Q,; (P, 2, Pry1s))-
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(iib): contribution of the hyperbolic type term. Next we consider the contribution of
Py, VM Qu;j (Prytha, Pryt3)),
which is the expression
Vit P_55Q<10[(Po[V ™ (Pry 1 Ps, V™ Qy j (Prytha, Pryts))]
X Pry V7 Q 5 (Prytoa, Pigths))

We shall again make the reduction s; < —10, the remaining frequency interactions being treated analo-
gously. This is accomplished using Lemma 4.16. We obtain

Vet P55 Q<10[(Po[V ™" (Pry 01 Po, V' IQu (Pryth2, Pryts)))]
X PﬁV—lIQW‘(PM?M,Pk5¢5))”L,}H*1
S 1Pl 12 1Py V™ 1Qu (Phaa, Py ts)l| e 1P V™ 1Qug (P s, Pyl

5
< ouEn min{sy kg g} —max{sy, kg g} min{ry ,kyg}—max{ry.ky s}
< 9™ : 2 z | § N P

j=1
This is as desired with § = % O

6.0.1. Error terms of order higher than five. Here we consider the errors generated by repeated application
of Hodge decompositions, which are of higher than quintic degree. We recall that they arise when we apply
repeated Hodge decompositions to the second and third input in

ViV (0?)]

or else to the second and third input in

Ve VTV @)V THQu,(4,)]

To simplify the discussion, we shall call terms that arise in the first situation ’of the first type’, while
those in that arise in the second situation will be called of ’second type’. In either case, we associate
a binary graph with each such expression as in the discussion above, see section 3. We call expressions
whose associated graph has only directed subgraphs of length at most three ’short’, and those with directed
graphs of length at least four ’long’. For technical reasons, it will be most convenient to organize the ’short’
and ’long’ higher order terms into suitable sums, which are easier to estimate. Specifically, note that each
of these higher order terms consists of nested terms of the form

(6.6) ...V7P, [Py, RoAYP, V(P P,V P, [.. ]],
here the case of a node with one outgoing edge, or alternatively
(6.7) VTP [P, VTP,V TP IV T (P Py, VL)

in case of two outgoing edges.

It is the first type of expression which may cause some mild difficulties due to the presence of the R,-
operator, which for ¥ = 0 may be formally unbounded. However, re-combining a term of type (6.6) with
a suitable term of the form (6.7) and using the relation

Rap+xy =1y, =— Y Rt
k=1,2

we replace each such ’intermediate’ gradient term (i.e., not contributing to one of the innermost @,,; null-
forms in case of ’short’ expressions) R, by its non-gradient counterpart t,. We shall call the resulting
expressions ‘reduced’. Thus for example the (short) quintilinear expression

Vz,t[Pkl ¢1v_1pr1 [szRV,(/J2PT2 [Pkng_lprgQuj(szlwéla Pkst)”]

has reduced version

Vot [Pey 01V " Py [Pry b2y Pry [Pra OV ™ Pry Q1 (Proyt0a, Piy5)]]]

Now we can formulate
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Proposition 6.3. Let
PoFa(¥), 1=2,3,4
be short reduced higher order expression of first type at frequency ~ 1. We can write it in nested form
PoFor1(¥) =
vw,tPO I:Pk:1¢1v_1p7‘1 [ .. v_lp’!‘j [ij+1wj+1v_lp7‘j+1 I:ij+2wj+2

X V_l [ . v_l‘PTQl—lQﬂj(Plele’ Pk21,+1w2l+1)ﬂ]]]
Then we have the following bounds:

(1) If r1 < =10, we have

2l+1

| PoFopr (1) | i) < 200min ke cokarn misirais ) =max{kas ot s coran 1} H 1Pe, il st
j=1
for a suitable constant § > 0.
(2) If r1 € [-10,10], we get the bound
1 Po s () o) < 200 @0min b bat o i vraros bomasc{ sy harsn a1 2ﬁ1 1P, 05151t
j=1
(8) If 11 > 10, we have
[ PoFar1(¥) || wioy S 270 20lminthasshatpnmesrarmafmmaxha, o kot oo} 2ﬁ1 1Px; %05 || sk
j=1

The proof of this follows the exact same pattern as the one for Proposition 6.1, and is omitted. In fact,
for [ > 2, one no longer needs to use the sharp improved Strichartz endpoint as in the case [ = 2.

In a similar vein, we have the analogue of Proposition 6.2. A short reduced expression of the second
type can be written as

(6.8)
PyFory3(¢) =V Po[V ' Pr [ .V P [Py 01V Py [Pyt

x V! [ .- V_1PT2L—1QMj(Pk21¢217 Pk2z+1w21+1)]]” PSlQVjV_l(szz+2w21+27 Pk21+3¢21+3]7
where [ = 1,2,3. Then we have

Proposition 6.4. Using the representation (6.8), let PyFy13(10) be a short reduced term at frequency ~ 1
of the the second type. Then the following hold:

(1) If s1 < —10, we have
HPOF2I+3 ('L/})”N[O] <90s19d[min{s1,kait2,kai 3} —max{si,kar+2,k2143}]

20+3

o 9olmin{k ... kap,r1.o o1} —max{kz.. ko rrra ) H 1P s
j=1
(2) If s1 € [—10,10], we have
[ Po Far (1)l o 5207 20mintsnkarez kot hmmaxtn Rarpa batvs
2143

O[min{ks,...,k21,71,...,r21—1 } —max{ka,...,k2;,71,...,r21 1} .
x 2 1Px; 5l 51,1

j=1
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(8) If s1 > 10, we have
| PoFoteea () oy 52707 20t fares favss) mmaton fare oo

2143
d[min{ks,....k21,71,...,r21—1 } —max{ka,...,k2;,71,...,r21 1} .
x 2 | Pe; %5l 51,1
j=1

Again the proof is similar to the one of Proposition 6.2.
Note that in order to estimate the expressions of short type, we still need to to use a little bit of null-
structure to make them amenable to estimation by the S-spaces. This is no longer the case for ’long’
expressions PyF11(1)) of reduced type: write such an expression as

PoFi1 () =
Ve, o [Pkl ¢1V—1PT1 [ - v_lij [ij+1¢j+1v_1pm+1 [ij+21/)j+2
x VL VT Py (Pryo 10 Peyy ¥11)] 1]
if it is of first type or
PoF11() =Vt Po [V Py [ VT Py [Pry 0501V Pry [Pry o
x VL VT Py (Pryg¥10Pryy ¥11)]]]] Py V7 (Pryy 12 Pryyth13)]

if it is of the second type. Note that the innermost bilinear expressions
v_1PT9 (Pklo¢1opk11¢11)

are no longer null-forms.

Proposition 6.5. Let PyFy1(¢) be a long expression of either first or second type, written as in immediately
preceding. The if PyFy11(v) is of the first type, we have if r1 < —10
11
||POF11(7/})HN[O] < 9b[min{ks,....kg,r1,...;ro }—max{ka,....kg,r1,...;ro } 98 [min{ki0,k11 } —max{ki0,k11}] H ||ijwj||5'[kj]
j=1
Thus by contrast to Proposition 6.3 case (1), we have an extra factor
2§[min{k10,kll}fmax{klo,ku}]

whence we cannot gain in case of high-high interactions in the innermost expression

v_lprg (Pk10¢10Pk11¢11)
Similarly, if PyF11 is of the second type, we get
||P0F11(’(/})||N[0] <26[min{k2,...,k9,r1,...,rg}—max{kg,...,kg,rl,4..,r9}26[min{k10,k11}—max{kw,ku}]
13
X 275|51\25[min{51,klg,klg}fmax{sl,k:12,k:13}] H ||Pk;7 Q/JJHS[k;]]
j=1

Proof. This is purely an application of our available Strichartz norms: indeed, for expressions of the first
type, we have for suitable § > 0

||P7“8 [Pkgwgvilprg (Pkmwlopkuwll)”'

L§L§+
11
< 2(%+V)T‘g26[min{7‘g’9,k‘g}fmax{’l“gvg,k‘g}]26[11’11[1{]6‘1(],](}11}7max{k‘10,k}11}] H ||P]§¢j||5[k]
~ i J
3=9
where we define
3
v=—-—(=
4 3
Further, we have for p =1,2,...,7 and suitable J, > 0
—Vpp1T -1 Op[min{ry 2,k}—max{ri 2,k}|[o—vpr
2 +1 1||PT1[Pk1/JV PmF]”LtP%L?JF SQ 1,2 1,2 [2 2||PT2F||L5%L§+]
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where scaling dictates

p 4 4
vp=2—--—-2(z+
p=2-L -2+
The proposition follows by applying these two inequalities sufficiently often. The argument for expressions
of the second type is similar. O

Remark 6.6. We note that in the estimates above, we have not used wave-packet atoms.

Remark 6.7. Using the arguments of the present subsection, it is straightforward to obtain the following
refinement: given § > 0, there exists C' > 1 large enough, such that if PyFy; 11 = Po[Py, 1P, V.. ]] is
of the first type, i > 2, and we specialize to k1 = O(1) and

PyFyipri= Y PolPuth1 PryQsr 120V ),
r<—C

then we can improve the bounds of the preceding propositions by a factor 4.

7. SOME BASIC PERTURBATIVE RESULTS

This section develops some of the basic perturbative theory required for our work. More precisely,
we introduce a norm locally on some time interval (—Tp,T1) which we denoted by |[¢||g(—7, 7,) with the
property that its finiteness insures that the gauged wave map 1 can be continued outside of that time
interval. The second topic we discuss is the issue of defining wave maps with data which are merely of
energy class. This is accomplished by means of passing to the limit in energy of smooth wave maps.

7.1. A blow-up criterion. Assume we are given a wave map u : (=Tp,T1) x R? — H? with Schwartz
data at time ¢ = 0, by which we mean that the derivative components ¢!, i = 1,2, @ = 0, 1,2, and thus
also the Coulomb components !, are Schwartz functions at time ¢ = 0. These functions will then also be
Schwartz on fixed time slices on the maximal interval of existence (—Tp,T}) x R2. The following norm will
provide us with sufficient control for long time existence and scattering.

Definition 7.1. For any Schwartz function on (—Tp, Ty) x R? set

lells = (32 1Pl

[N

kez
Here
P, _ = su P, _
| Pt || k] (=0, 71) xR2) T<T1,7P/<T0H kil S[k) (=7, T xR2)
where the local norms are those from (2.67) using the || - ||-norm.

The goal of this section is to prove the following result.

Proposition 7.2. Let (—Ty,T1) be the maximal interval of existence for the wave map u in the smooth
sense. If ||]ls < oo then necessarily To = Ty = o0o. Moreover, the wave map scatters at infinity, i.e., the
components ¥, ¢ approach free waves in the energy topology as t — +oo.

The strategy for proving the theorem will be to demonstrate an a priori bound

sup_ [0, )= < oo
te(—To,T1)

for some s > 0, using the assumption [|¢||s < co. By the Klainerman-Machedon local well-posedness
theory, this implies that u may be extended smoothly to some interval (—Tp,T; + ¢) for € > 0 provided
T) < 0o, which contradicts minimality, and similarly for Ty. Once we know that w exists for ¢t € (—o0, 00),
scattering will follow by using a similar argument. To obtain a priori control over sub-critical norms, we
use Tao’s device of frequency envelope: for some d; > 0 depending only on certain a priori parameters
specified later, define

(7.1) cr = (Y 270 =) Py 0, )]13) %

LEL
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Here as always we let ¢ = {¢¢ } the vector of derivative components. Proposition 7.2 now follows from the
following result.

Proposition 7.3. Let (—Ty,T1) be the maximal interval of existence for the wave map u in the smooth
sense. If |Y|ls < oo, then there exists a number C; = Cy(u) < oo (which may depend in a complicated
fashion on the wave map u, and not just its energy)'® such that

| Peoll oo ((—10,1):22) < Crck
In fact,
| Petd| k) ((—0,10) xR2) < Crcg

To establish the existence of Cy, we shall cover the time interval (—Ty,T}) by a finite number of shorter
open intervals I; (which can still be very large): let ||¢||s < Cp. Then

(7.2) (=To, Ty) = UL I, My = Mq(Cy),

where |7, will satisfy a suitable smallness property. The idea then is to bootstrap certain bounds on each
I;, beginning with the interval containing the time slice ¢ = 0. More precisely, the intervals I; will be
chosen so that the wave map restricted to each I; is well approzimated by a free wave. While the error
can be treated perturbatively, the free wave has better dispersive properties which we can exploit. All
functions will be smooth in space and time and Schwartz functions on fixed time slices.

7.1.1. Splitting the wave map on shorter time intervals. We first derive a simple estimate on the nonlinear-
ities appearing in (1.12) and (1.13). It will be based entirely on the Strichartz estimates, see Lemma 2.17.
We will keep the time interval (—Tp, T} ) from above fixed throughout.

Lemma 7.4. Let max;=1,2,3 ||1/12HS < Cy. Then

_ _lk
[ Po(1|V |~ (2tba)) | L3 (=1 12y S € Sup - sup 27 || Preabs || s (i) (= To,11) xB?)

provided M is large and with an absolute implicit constant. Alternatively, one has the bound
— _ 1kl
1Po(o1 [V~ (aoa)) | e ((—my iz S NW2llnge 2 193] poe 2 Sup 27 || Pt || i) ((~ 0,70 ) xR2)

with an absolute implicit constant.

Proof. Assume to begin with that 1; is adapted to k; € Z. Asin Section 5, we now consider all possible cases
of interactions. Also, we shall drop the time interval (—Tp,T1) from our notation with the understanding
that integration in time is to be restricted to this interval. Moreover, replacing each ¢; by a globally
defined Schwartz function v; with the property that

[9ill st < 20l speg et mxr2ys  ilor 1) = il o1 1]

for some T”,T as above, allows us to assume that the 1); are globally defined initially. Finally, fix any
M > 100.

Case 1: 0 < k; <kgs+ O(1) =ks + O(1). Then
1Po(o1 |V~ (atps)) | a2 S N1 Po(@a V|~ (Whats) | g
3
k1
Sl poe 27 W2l oo 2 sl ooz < 277 T il spm
=1

where the final estimate is from (2.37).

15This is an artifact of the proof to follow and will be improved in the following sections
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Case 2: 0 < k; =ko+ O(1),ks < ko — C. If k3 > 0, one proceeds as in Case 1. Otherwise,
[1Po(1 |V~ (2v03)) | 2ar 2 S 1Po(r] VI~ (Whaths)) L

Sl llnserz 27 1]l Lo 2 |9s] v o

3
S 27}@12163(17%) H ||1;Z)ZHS[’€L]
i=1

by (2.37) and Bernstein’s inequality.
Case 3: 0 < k; = ks + O(1),ko < kg — C. This case is symmetric to the previous one.
Case 4: O(1) < kg =ks+ O(1),k; < —C. Here

1Po (1| V| (Wvbs) e rz S (1Po (w1 [V~ Po(whatbs)) | o 1
3
_ 1
Sl poe 1W2llzoe 2 llvsllzee e S 207305 TT I1sllspe
=1

Case 5: k; = O(1), ko = ks + O(1). In this case we estimate
[Po(1|V |~ (203)) | 1oz S Z 1Po (41| V|~ Py (that)3)) | p 2

k<kaAO+C
S Z ||¢1||L§V1Li+|||v|7lpk<w2w3)”L§°L§’
k<EkaNO+C

_2
< Z 91|k 20 % [[9aths | oo 1
k<kaAO+C

3
< 20RO T |l s
=1

Case 6: O(1) =k; > ko + O(1) > kg + C. Here one has
[1Po (1 |V~ (hats)) par 2 S 1P (1| V|~ Py (h2803)) || e 12
SNl e 2+ V17 Py (dh2hs) | e v
S lls 12¥sllnere S 11l steallzll sz 19sll e oy

3
< 2= ks 1T 1%l
=1

Case 7: k; = O(1) > kg + O(1) > kg + C. This case is symmetric to the previous one.
Case 8: kg = O(1),max(k;, k) < —C. Finally, in this case the estimate reads

1P (1| V|~ (2v0)) s 12 S 1Po (91| V|~ Po(th2ths)) | Lar 12

3
_ 1
Sl poe 23]l e 2 < 29077025 TT il s ey
=1

Case 9: ks = O(1),max(ks, k) < —C. This is symmetric to the preceding case.

We now drop the assumption on the frequency support of the inputs. Summing over all these cases yields
the bound

_ _Ix
1P (1| V| (hatps)) I parpe S sup sup [27% | Pehillspg] max Y [[Prtdsl| 3y
T i=1,2,3 kez J—1,273k€Z

which proves the first bound. The proof of the second estimate is implicit in the preceding and the lemma
is proved. O
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Remark 7.5. If 19, 13 are gauged wave maps with energy bounded by F, then the second bound of the
preceding lemma becomes

- _ Ikl
(7.3) 1 Po(1 |V |~ (W2v0s)) | 1ar (=1 1522y S E? sup 27 M || Pei)r || S[k)((—To, 11 ) xR2)
with an absolute implicit constant.

Our main goal here is to prove the following decomposition of the gauged wave map.

Lemma 7.6. Let ||[¢]ls < Cy. Given g9 > 0, there exist My = M1(Cy,e9) many intervals I; as in (7.2)
with the following property: for each I; = (t;,t;41), there is a decomposition

Ol = v + iy, v =0

which satisfies

(7.4) Z HPW%)LH%[M(QW) <¢o
kEZ
(7.5) IV, | e 1 < Ma(Co,0)

S C’S’z—:gﬁ with M > 100 as in the preceding lemma.
Moreover, Pkw](\],)L and sz/J(Lj) are Schwartz functions for each k € Z. We also have the bounds
(7.6) ||Vx,th¢(Lj)HH;1 + ||Pk¢§§)L|\S[k](1ij2) S ck

with implied constant depending on Cy, provided cy is a sufficiently flat frequency envelope with || Py spr) <
Ck.

where the constant Ms = My(Co,e0) satisfies My <

Proof. The 1, satisfy the system (1.12)—(1.14). Consider the frequency component Pyt),.

Case 1: The underlying time interval I = (=Tp,T3) is very small, say |I| < &1 with an &; that is to
be determined. As explained in Section 2.5 one uses the div-curl system (1.12), (1.13) in this case.
Schematically, this system takes the form

0 Potp = Vo Potp + Po[ypyV  (¥?)]

where we suppress the subscripts and also ignore the null-structure in the nonlinearity. Therefore,

t t
@D R - ROl < | [ Vorwas] 4| [ Ry ]
O x 0 x
For all j € Z define
kil
(7.8) aj =sup 27 % || Put)l|sprxr) S Co
kez
Clearly,
t
(7.9) H/ VaPoy(s, ')d5HL2 < e1||Pov|spo)(rxr2) < ao €1
0 2
Lemma 7.4 implies
t 1
—1/.,2 2 M
| [ plov-i @b, < Clane

t
| [ v as
0
(From the div-curl system (1.12) and (1.13),
1_ 1
10cPoll r2(r,p2) < IVaPotllr2riz2) + 1PV~ (W)l 2 122y S €5 aned ™

where we assumed without loss of generality that Cy > 1. We claim that these bounds imply that

(7.10) H /0 t PV (2] HS[O] < £0a0

(IxR2)

LF(I;L2)
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provided &; was chosen sufficiently small depending on gg. To see this, let I’ .= [-T",T) C I = (-Ty,T1)
and pick any smooth bump function y supported in I so that x =1 on I’ and with 0 < y < 1. Moreover,
let ¥ be any smooth compactly supported function with ¥y = 1 on I (the choice of this function does not
depend on I’). Then define

t
306 = KO [P 0) + [ x(6)0.Pu(s)ds]
0
By construction, 1]) is a global Schwartz function so that 12) =) on I'. Moreover, by the preceding bounds,
||7/;HL%L§ + ”atJJHLng <K gg ag
provided €1 was chosen small enough (this smallness does not depend on the choice of I’). This now implies

that ]
191 g0 < 000

whence (7.10). In view of (7.9), (7.10) and (7.7),

(7.11) ||P()’(/J(t) — Pow(O)HS[O](IX]RZ) K ggap
We now define Pytpr, to be the free wave with initial data (Pyt(0),0) at time ¢ = 0. Clearly
1PV Ll Lo -1 S ([P0 (0)| 2
[Potr, — Povr(0)]|sj0)(1xr2) < €0 @0
The second inequality here implies that

[Pov — Potpr[sjo)(1; xr2) < €0 a0

Thus in the present situation, we approximate Pyt by the free wave Py, just described and the bounds
which we just obtained should be viewed as versions of (7.4) and (7.5) on a fixed dyadic frequency block.
Several remarks are in order: First, we shall of course need to construct ¢, and ¥, for each such dyadic
block Py, and then obtain the global bounds required by (7.4) and (7.5). In this regard, any bound
depending on a; can easily be square-summed since

Za? <C(M) Z 1 Petb S (1 xmzy < C(M) CF
J

keZ

Second, the construction we just carried out applies to Pyt equally well provided |I| < 27*¢,. Moreover, I
can be any time interval on which 1 is defined — with any t¢ € I playing the role of ¢t = 0 — and we shall
indeed apply this exact same procedure to those intervals I; which we are about to construct provided
they satisfy this length restriction.

Case 2: The underlying time interval I = (—Tp,T1) satisfies |I| > ¢; with €; as in Case 1. To construct
the I;, we shall use the wave equation (1.14) for ¢,. By means of Schwartz extensions and successive
Hodge type decompositions of the v,-components as explained above, the nonlinearity can be written as

(7.12) Otpa = Fo(¥)) = Fo () + FR(4) + EL(4) + Fo () + Fo ' (¥),

where the superscripts denote the degree of multi-linearity, see Section 3. The contribution of the trilinear
null-form F3(1)) here is in a sense the principal contribution, and causes the main technical difficulties.
We now make the following claim: There ezists a cover I = U;M:ll I; by open intervals I;, 1 < j < M,
My = Mi(gq), such that

(7.13) | Jnax, > 1 PeFo () e, xrey < €0C8
SIS e

This will be enough to ensure the conditions of the lemma, if we replace ey by Cj b¢0, whence the number
of intervals will then also depend on Cjy, the bound on |¢|s. We verify this for each of the differ-
ent types of nonlinearities appearing on the right-hand side of (7.12) starting with the trilinear ones.
Let us schematically write anyone of these trilinear expressions in the form Vi ,[11 V|7 1¢Q(¢)2,3)] or
Viz[RY1|V]7HTQ (12, 13)], where Q stands for the usual bilinear nullforms and R for a Riesz transform
(each of the ¥; = 1 but it will be convenient to view these inputs as independent). Break up the inputs



138 JOACHIM KRIEGER, WILHELM SCHLAG

into dyadic frequency pieces: ; = Eki Py, for i = 1,2,3. In view of our discussion in Section 5.3,
it suffices to consider the high-low-low case |ko — k3| < L, ko < k1 + L for some large L = L(gg). In
addition, it suffices to restrict attention to frequencies k > ko — L’ where Py localizes the frequency of Q
and L' = L'(§) is large. Finally, one can assume angular separation between the inputs: there exists
mo = mo(go) < —1 so that (7.13) reduces to the estimates

(714> 1%?23@[1 Z ” Z vt,IPf[Pklﬂilwl|v|_1P’€ICQ(Pk2,H2w2ﬂ sz,ﬁawfﬂ)]”?\’[ﬂ(lj xR2) < EOCg
M
(7.15) | Dnax S D VeaPulPry s RV PRIQ(Pry 2, Py s ¥3)] | R0ge) (1, 2y < €0C8
- £ k,k1,ka,k3
Ki,k2,R3

where the sums extend over integers k, ¢, k1, ko, ks as specified above and further |k; — ¢] < L, as well
as over caps Ki, ke, K3 € Cm, with dist(k;, k;) > 2™ for ¢ # j. Let us first consider the case where the
entire output is restricted by Q<om,+e¢ in modulation, and the inputs are in the hyperbolic regime, i.e.,
Py, i = Q<k,+¢cPr, i where C is large depending on L. Then we bound (7.14) (and (7.15)) as follows,
first on the whole time axis R (assuming as we may that the inputs have been suitably extended):

Z [ Z ViwQ<2mott-PelPry iy 01|V 7 Pl Q(Pry s 2, Prg s ¥3)] | 374
¢

k,k1,k2,ks3
K1,K2,K3

(7.16) SO Y. PusQeamore—c[Pey sy 01|V T PhI®Q(Pay ey 2, Py ny3)]Rip

U RECmy kb1 ka ks
1,R2,R3

Note that the 2%*-factor produced by the output is canceled against the scaling factor which is part of
the N[¢]-norm, see Definition 2.9. By the usual arguments involving disposable multipliers, we may replace
|V|~1P.I¢ by 27%2 (implicit constants are allowed to depend on L). Since the inputs are hyperbolic, we
may also ignore the null-form Q. For any «,

max dist(k, k;) 2 20

i=2,3
Let us assume that this happens for ¢ = 3. Then by (2.29), followed by (2.30) and Cauchy-Schwarz(recall
that ko = k3 + O(1)),

(716) < C(L7m0) Z 27k HPkl,filwlsz,Nzw?”ing ||Pk37ﬂ3w3“§[k3]

k,L,k1,k2,k3
R1,R2,R3

<CILmo) D Py 1 a1 P 2130 ) | Prs s U313 1y )
kLK1 k2 ks
R1,Rk2,R3

3
< C(L,mo) (3 IPll3y) < C(Lmo)CY
keZ

Note that we are not assuming that Py, .,1¢; are wave-packets, i.e., localized in modulation to < 22motki
but only to modulations < 2%+t€. Therefore, to pass to the last line one needs to use Lemma 2.7 for the
modulations between these two cut-offs. However, this only costs a factor of < |mg| which is admissible.
We now rewrite the first line in this estimate in the form

(716) < C(L7m0)/ Z 27k2‘Pk17*€1¢1(t7x)Pk27f€2¢2(t7x)‘ZHPkaﬁgwl’»”%[kg] dtdx < C(La mo)cg

R? k, k1, k2 ks
K1,K2,K3

By the dominated convergence theorem, we can cover the line (and especially (=70, 71)) into finitely many
intervals I such that

(7.17) C(L’mo)/j D 2782 Py e (6 @) Py ey (8, ) )| Pay e 3|3, dtda < £0CF

XR2 g 0k ko ks
K1,k2,R3
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for each I;. Moreover, the number of these intervals is < Mj(ep). Unfortunately, in the preceding
calculations we happily suppressed the action of the nonlocal operator PI¢, which is given by convolution
with a kernel (in both ¢, ) of bounded L!-mass. Although this is only a technical nuisance, we quickly
explain here how to deal with it for completeness’ sake: consider the schematically written expression

ZII > > /RM @) Piy oy 1 P ey 2+ — @) Pay g 3(- — )30

k1= ZJrO(l) ko= k}3+0
<k‘1+0(1)

where we have ||m(-)|[L1@2+1) = O(1). Under the same assumptions on the frequency localizations as
above, we estimate this by

(718) ~ Z Z ( Z / HthKld)lsz,H’zd}Q( 70‘)”[‘%@ da”Pks,K:squ”S[ka])Q

0 k1=040(1) ka=ks+O(1
<k1+0( 1)

where we have used Minkowski’s inequality as well as the translation invariance of the norms used. We
proceed by using Cauchy-Schwarz twice in a row, to bound the preceding by

1 2
S Y X U PP satia ~ 0l dal? [P sstalsi)

k1:Z+O(1) k2:k3+o(1)

<k14+0(1)
S Z (/ [m(a)|[| Pry iy 1 Phey iy 2 (- — a)||2L§z da)(z 1Py s 3 S ks))
ki=tt+o(1) R ’ ks
SC Y [ m@l [ 1Pt P tnlc = ) did da) (3 1Pay i)
k1 >ko+O(1) R“l k3

Thus, properly speaking, instead of smallness of

| Y Rt Pt o),
1

iXR? S kt0(1)

we need to achieve smallness of

/] R2 |m(a’)‘ ,/]RQJrl ‘Pkl,nlwlpkg,nng(' - a)|2dtd$ da,
i X

k1>k2+0(1)

which of course can be achieved identically, via divisibility of the inner integral and Fubini’s theorem. We
shall henceforth suppress this technicality and stick with the notationally simpler condition (7.17) as well as
similar ones in the sequel, it being understood that we sometimes suppress harmless convolution operators.

Retracing our steps shows that the intervals I; have the desired properties (7.14) and (7.15) under the
modulation assumptions Py, 1; = Q<k,+c Pk, i, and the additional assumption that the output is limited
to size < 22m0+* (the Schwartz extensions implicit in (7.14) and (7.15) are simply obtained by multiplying
the L7, functions by smooth bump functions). The remaining cases where these modulation assumptions
are violated are handled similarly. For example, consider (7.15) for outputs of modulations > 2*¢ but
again on the whole time axis; here, it is easy to see that we may assume k = k; + O(1), j = 1,2, 3, whence
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we reduce to estimating (with the preceding frequency restraint implicit in the summation)

> Ve PiQser0[Pry sy ROAN | Pl Q(Pay iy, Pry sths)ll[ vy
k,4,k1,k2,k3
KR1,R2,R3

< Z ||Vt,xPesz+c[Pk1,mR¢1\V|_1PkIQ(Pk2,n2¢27Pkg,n_g?ﬁs)]HQ.,%+5,,1,E,2

o0,k K s X
R1,k2,R3

A

2
Z ( Z 2*(%76)42(175)m24”pk1QOlpl||L?Li) Q*QkHPkIQ(PkQ,RJ/)%Pk3,53¢3)||2L?oL;o
k k1 ko, ks m>04+C
K1,R2,R3

5 Z 2_2£||Pk1#€1¢1”2. —L1te1-e2 2k||PkIQ(Pk2,H2¢27 Pks,ﬁ3w3)”%$Li
kb by k2 ks Xe
R1,R2,K3

5 Z 272Z||Pk17mw1H;—%+5,1—s,2 2k||£(Pk2,H2¢2a Pkaﬁsw?’)Hing

kLK1 ko k3 ¢
K1,K2,K3

S C(L, mo)Cg

where the final bound again follows from (2.29) (£ stands for the usual averaged space-time translation
operator which arises via removal of disposable multipliers). Writing out the L?L2-norm explicitly in the
previous estimate allows us again to choose intervals I; with the desired properties. The remaining case
of output modulations Q,, with 2mg+ ¢ < m < £+ C' is similar:

> IVewPQum[Pay ey RV T P Q(Pry iy V2, Py s ¥3)] vy

k,l,k1,k2,ks
R1,R2,K3

S IV PQulPryw RV T PIQ(Pry g2, Prg s3]l 1oy o

kol ken K s X
KR1,k2,R3

S Z 2_€||Pk1,N1Qmw1H%f°L§ ”PkIQ(sz,sz% sz,ﬁsw3)H%?Li

kLK1 k2 ks
K1,R2,K3

< C(L, mo)Cg

Due to the L? L2-norm one can now proceed as before. Finally, suppose that the output as well as ¢ are

hyperbolic, but that 15 and 3 are elliptic. Then, restricting the inner sum to k = ¢+O(1) > ko = k3+0O(1)
as we may, we have

Z || Z Vt,mP€Q§Z+C[P/€17N1 Q§k1+cR¢1|V|_1PkIQ(sz,~z¢2a Pk37fi3w3)]”?\f[€]
4

k,k1,k2,k3
R1,R2,K3

/S Z 2724” Z Z vt,zPZQSE-‘rC[th.m Q§k1+cR¢1|V|71PkIQ(Pk2,n2Qm¢27 Pk37K3Qm1/}3)]||i%L§
14

k,k1,k2,k3 m>ko+C

K1,R2,Kk3
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which can be further estimated as (using Cauchy-Schwarz for the third inequality)
SO 1Y Y PQeticlPrm Qe+ R V[T Pl Q(Pry oy Qutba, Prg ey Qmtbs)] 171 12
¢

k,k1,k2,k3 m>ke+C
K1,K2,K3

S Z ( Z Z ”‘Pkl,lﬂ'l/}l”L;’OL?C Hv_l‘PkIQ(sz,lemwQa Pksﬁs@mw?))]”l,%lzg)z
L

k,k1,k2,k3 m>ka+C
K1,R2,K3

S Z Z HthmleQLgOLg 22(m1_k2)||P7‘027N2Qm1w2||2L%L§HPkB,NSszw?)H%ngO

k,l,k1,k2,ks my 2>ko+C
K1,R2,KR3

S C(L, mo)C’g
by Bernstein’s inequality and the definition of S[k]; to pass to the second line use that PrQ<eyc is
disposable. Partitioning R into finitely many intervals on which ) ., 22(1*5)”"”2*(1*25)’“||Pkaw2||2L2
= t,x
is small allows us to obtain the desired conclusion as before. Alternatively, one can gain smallness here

by taking C' in m > ko + C large; this will be important later (see Remark 7.8). We leave the analogous
analysis of (7.14) to the reader.

The proof of the claim (7.13) for the higher degree nonlinearities is outlined in the Appendix.

A crucial feature of the construction of the intervals {I;}1<;<ar, above is that is universal, i.e., it does
not depend on the choice of the underlying frequency scale. We now conclude the proof of Lemma 7.6.
Fix some I; and localize 9 to frequency 2%. If |I;| < e127%, then Pkwj(\j,)L = Py — Pt satisfies the
bound (7.4) by the analysis in Case 1. Otherwise, one represents the solution via (2.72). The bounds in
Case 1 above then imply the estimate

||(sz/;)|[tj_81 o ;e ok Ist) S 1Ps sk

The free wave Pyt at dyadic frequency 2 is now defined as the free evolution in (2.72) with data at some
tg € [tj — €1 Q_k,tj +eé1 2_k] where

1
[(Prtas OcPrtba)tos )l Lo i1 S €0 ™ i,

whereas Pkw%)L is the sum of the other two terms in that formula. That the preceding choice of ¢g is possible
follows from Lemma 7.4. Summing over k now yields the claimed local splitting of % in Lemma 7.6.
Finally, the proof of (7.6) is implicit in the preceding and we skip the details. (I

Remark 7.7. Later we will apply (7.6) in the following context. If

(D 1P ) < 6

k>ko
for some (very small) d3 > 0, we have

j j 1
IVt Porg s+ (D 1P R W, xm2)* < 8
k>ko

where the implied constant depends on |9 s.
Remark 7.8. The preceding proof can be easily modified to give the following result that will be important

later: Let 1 be the gauged derivative components of an admissible wave map. Assume that we have an a
priori bound of the form

(7.19) > Yo 27 Py Pl + Y ROTITETRPQu e P < A

k1>ko K/])QECm,O k<l
dist(k1,k2)227 "0

where my is sufficiently large depending on the energy E of ¢). Then we can infer a bound of the form

”'IZJHS 5 CQ(Ev mo, A)
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This is done by a bootstrap, with the desired smallness coming either from the intervals I; or the gains
from the angular alignment. Moreover, assume that for each k; > ks one has

Z Pkl’fﬁwpkz,lw(b = fkl,kz + Gk ks

K12 GCTILO
dist(k1, ko)227 "0

PLQsrt = hy +ig,

with for some positive integer v

Y 2l kel + DU Qu ) < A

k1>ko k<l

(7.20) —k 2 (1—e)l— (L —2)k . 2 v
> 2R g, w2+ Y12 R Quikllzz 1® < 8%
k1>ko ’ k<l

where § > 0 is small depending on the energy and the integer v, but independent of ||¢||s. Then one can
again conclude
[¥]ls < C2(E, mo, A)

Note the the time intervals I; are determined only by means of the fi, r, and not the gy, i,-

7.1.2. Proof of Proposition 7.3. Recall that we are making the assumption ||¢]|s < Cy. We first show that
the wave map cannot break down in finite time, i.e., T = T” = co. Assume for example that T' < co. For
g0 > 0 a sufficiently small but absolute constant (which will be specified later), pick the M;(Cy, eg)-many
intervals I; as in Lemma 7.6. It will suffice to consider that interval I, which has T as its endpoints.
Alternatively, starting with that interval I; containing the initial time slice ¢ = 0, one can inductively
obtain control over the frequency-localized constituents of 1, the Pg1).

Lemma 7.9. Let I; = (tj,tj41) be an interval as in Lemma 7.6. Introduce the frequency envelope

oalk— 1
o = (Y27 Prp(ty, )72 )
LET
where g > 0 is some small constant. Also, write 1/)|1j = Y1 + Ynr. Then there is a number C; =
Cy (Y1) < oo with the property that

| Pyl sy, xr2) < Crer, Vk€Z

Proof. We prove this by splitting the interval I; into a finite number of smaller intervals depending on vr..
Thus we shall write

Ij = UiJjZ'
for a finite number of smaller intervals depending on ;. The exact definition of these intervals will be
given later in the proof. On each Jj;, we now run a bootstrap argument, commencing with the bootstrap
assumption:

| Petbll sy (g, xr2) < A(Co)er
Here A(Cp) is a number that depends purely on the a priori bound we are making on the wave map. We
shall show that provided A(Cj) is chosen large enough, the bootstrap assumption implies the better bound

A(C
| Pepll sir) (7, xr2) < (2 O)Ck

We prove this for each frequency mode. By scaling invariance, we may assume k = 0. As before, one needs
to distinguish between |J;| < €1 and the opposite case, where €7 is chosen sufficiently small. In the former
case, one directly uses the div-curl system

O = Voo + PV (4?)

as in the previous section to obtain the desired conclusion for Pyw. Thus we can assume that the interval
satisfies |J;| > &1, which means we can control (Pt (to,-), Podyt(to,-)) for some to € J; via

1(Pot(to. ), Podetp(to, )l pa -1 S A1(Co)eo
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for some constant A;(Cp), which is explicitly computable, independently of A(Cp). Passing to the wave
equation

5
0Py = PoFa(v) = Y RFY ()
=1

via Schwartz extensions and Hodge decompositions as before, we first consider the principal terms Py F(1)).
These terms can be schematically written as

PoV [0V (1?)]

More accurately, they are of the form

Vi Po[Pry sy 01|V PeI®Q(Pry W2y Prg i3]
vt,xPZ[Pkl,mlRwl|v|_1PkIQ(Pk2,fi2w2; Pk3753¢3)]

with a Riesz projection R and a nullform Q. Substituting the decomposition 1) = 1, + 1N, into the inner
null-form yields

PoV o [V @) = PV 0V (W3] + PoVa WV Wrne)] + PoVa WV (W3 1)]

Note that the last term automatically has the desired smallness property if we choose £y smaller than some
absolute constant. Indeed, by (7.4), and the trilinear estimates of Section 5,

1 PoV ot [0V~ (W% )] voy S €6 sup 2770 K1) Pl spay S €2A(Co)eo < A(Co)co
S

for small £g. Next, for the mixed term PyV, +[V 1 (¢19n1)], choosing e sufficiently small (depending
on (), we can arrange in light of Lemma 7.6 and the trilinear estimates

1PV s [0V (W ton )] | v S A(Co)Ciey™ ™ co < A(Co) co
The first term
Povx,t[wv_l(¢%)]

requires a separate argument. In fact, we treat this term by decomposing the interval I; into smaller ones.
In order to select these intervals, first note that upon localizing the frequencies of the inputs according to

PoN 4 [Py 0V ™ Pro( Proytor, Piybr)]

one obtains from the trilinear bounds of Section 5

1 PoV ot [Proy ¥V ™ Pr( Pyt Prgr)]l vjo) < 0 27 FH || Py i |57y < A(Co) o

in the following two cases: ki, ko, k3 fall outside the range (5.45) (the high-low-low case), or, if they do fall
in the range (5.45), then k < ko — L’. Here L and L' are large constants depending on Cjy, g9, due to the
bounds on vy, from Lemma 7.6. Thus, denoting by

PV [V W)

the sum over all frequency interactions described by these conditions, one then obtains the estimate

1PoV e[V (W1)] o) < A(Co) co
Employing the notations of Section 5.3, it thus suffices to consider the sum of expressions

” k}2+0(1)
D inen 2o PoVealPutV T PP Piyr)),

k=ko—L’

where, of course, the implied constants may be quite large depending on Cy,eq. Furthermore, by the
results of that section, we may assume that the inputs have pairwise angular separation on the Fourier
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side, and in particular we make this assumption for the free wave inputs Py,v¢r, and Py, 1. Thus we have
now reduced ourselves to estimating

. ko+O(1)
g g E PoV o t[Pey s OV Py (Prog i W1 Prog s 1)),
k1,k2,ks€Z
”1752;N3€C7n0 =ko—L’

max;; dist(k;,m;)>2"0
The next step is to exploit the dispersive properties of the expression
V7 Py(Prg s ¥L Prg s ¥'r)

First, due to the energy bound for v, there exists some finite set A C Z so that

k2+0O(1)
"
Z Zkl,kg,kgez Z HPOvm,t[Pklﬁlwvilpk(PkmwwL Pkg,nng)]”N[O]
K1,K2,K3ECm koA p—py— L

max;; dist(k;,m;)>2"0
— k
< £02” 7 || Py, ) | sy

On the other hand, assume now that ks € A and consider

V_lpk(sz,NzwL Pk3>N3wL)

where k, k3 are chosen as in (5.45). Note that the set A depends on the dyadic frequency of the output,
in this case frequency 2°. Changing the frequency localizations of the output amounts to a rescaling of A.
Nonetheless, one has the following estimates which are independent under rescaling:

Hvilpk(Pk‘zﬂ2¢LPk3,H3¢L)HL%L;C < 03(¢La kQ)
In particular,

Z ||v_lpk(sz,szLPk&KSwL)HL%L;O < C4(¢L) <0
ko€A

To prove these bounds, set ks = 0 by scaling invariance. But then Py, (t;,-) is a Schwartz function in
the z-variable. Using the angular separation of the inputs it is now straightforward to see that

Hv_lPk(PkazwL Pk3,53’(/}L)||L%Lg° < 03(1/1117 k2)

Indeed, this follows from stationary phase and the angular separation of the inputs. We now define the
intervals J; by requiring that

ka+0(1)
> > > VT Pe(Prgra L Prg s )l 1 poe (7, xm2) < €0
K17527/‘€36C7n0 ko€A k=ko—L’

max;; dist(rg,k;)>270 [k2a—ks|<L

It is furthermore clear that we also obtain

k2+O(1)
1
> D kikakser D NP0Vt Py sy ¥V Pe(Pay iy ¥L Py sy L) N0l (s, x2)
k2€A  p—py— L

K1,K2,k3E€Cm,
max;; dist(rkq,k;)>2"0

< g2 M| P || sy < A(Co)eo
which completes the bootstrap for the trilinear source terms.
The contribution of the higher order terms is dealt with in the appendix.

By applying the above bootstrap argument on each of the finitely many intervals J;; comprising each
1;, the proof of Lemma 7.9 now follows. ]
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The proof of Proposition 7.3 can easily be concluded. Indeed, one infers from the Klainerman-Machedon
criterion that T = T’ = oo. Moreover, we obtain a global a priori bound

| Petp|| sy < Crek

were the constant C; depends implicitly on 1y,. As the above argument is fairly crude, we have no a priori
way here of controlling this number. In section 9 we will refine this type of estimate Finally, Lemma 7.6
implies the scattering for large times.

7.2. Control of wave-maps via a fixed L?-profile. A fundamental issue that we need to address is
the very definition of wave maps with data that are in some sense only of energy class. To propagate such
data under the wave map evolution, we shall use approximations by smooth wave maps each of which can
be continued canonically. The following lemma justifies this procedure.

Lemma 7.10. Let ¢7 be the derivative components of a sequence of Schwartz class'® wave maps u”
(=T, TP) xR? — H? on their mazimal time interval of existence and assume that the Coulomb components

P(0,-) satisfy

Tim 420, — Vallzz = 0
for some V,, € L?(R?). Denoting the collection of components V,, by V, there is a time Ty = To(V) > 0
such that min(T§, T7) > Ty for all sufficiently large n and

lim sup ||w2||5((7T0’TO)XR2) < C(V) < o0
n—oo
Furthermore, there is a constant C1 (V') with the following property: defining the frequency envelope

(n) ._ —olk—t 2,)2
o = arznoaffz(%Q d |||Pé¢2\|Lg)2

for sufficiently small fizred o > 0, one has for all k € Z and all large n
Jmax ([P lsir((—1o,10) xR2) < 1 (V)el™

Finally, the wave map propagations of the ¥ converge on fixed time slices t = to € [—To,Tp] in the
L?-topology, uniformly in time.

The proof of this lemma will occupy the remainder of this section. Before we begin with the proof, we
discuss some related results and implications of Lemma 7.10. Most fundamental is the following stability
result:

Proposition 7.11. Let u : [Ty, T1] x R? — H? be an admissible wave-map with gauged derivative
components denoted by 1p. Assume that ||[¢||g(—7, 1]xr2) = A < 00. Then there exists €1 = €1(A) > 0
with the following property: any other admissible wave-map v defined locally around t = 0 and with gauged
derivative components v satisfying ||1)(0) =1 (0)||2 < € < &1 eatends as an admissible wave-map to [T, T1]

and satisfies ||1;||S([7T0,T1]><1R2) < A+ c(e1) where c¢(e) = 0 as e — 0. We also have the local Lipschitz type
bound

10 — Y| s, 10 xR2) < [[%(0) — 9(0) ] 2

for v satisfying the above prozimity condition, with implied constant depending on 19| s((=10, 70 x®2) -
Proof. The proof will be given in Section 9.5, as it follows directly from the proof of Proposition 9.12. O
As a consequence, one has the following important continuation result.

Corollary 7.12. Let {¢"}°°, be a sequence of Coulomb components of admissible wave maps u™ : I — H?>
where I some fixed nonempty closed interval such that for some ty € I one has

i [[¢2(t0,) — Vallzz =0

161 the usual sense that P% |t=const is Schwartz on R2.
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with V,, € L*(R?) as well as
sup [[¢" || s(rxr2) < 0o

Then there exists a true extension I of T (meaning that it extends by some positive distance beyond the
endpoints of I in sofar as they are finite) to which each u™ can be continued as an admissible wave map
provided n is large.

Proof. By Proposition 7.11 we can define lim, o %" (¢,.) in the L?-sense for ¢ an endpoint of I. By
Lemma 7.10 the ¢ extend beyond the (finite) endpoints for n large enough. O

We can use the preceding results to define wave maps with L? data at the level of the Coulomb gauge.

Definition 7.13. Assume we are given a family {V.}, a = 0,1,2, of L*>(R?)-functions, to be interpreted
as data at time t = 0. Also, assume we have

V, = lim ¢"

n—oo
where {7} are Coulomb components of admissible wave maps at time t = 0. Determine I = (=Tp,T1) =
Ul to be the union of all open time intervals Iy with the property that
sup  liminf |9 g fxp2) < 00
fCIl,f closed N0 1S(IxRE)
Then we define the Coulomb wave maps propagation of {Va} to be

Uo(t,x) := lim o (t,x), tel
n— oo
We call I x R? the lifespan of the (Coulomb) wave maps evolution of {V,}.

It is of course important that the life span does not depend on the choice of sequence and, moreover,
that the “solutions” V,, are unique. These statements follow from Proposition 7.11.

The aforementioned uniqueness properties are now immediate — indeed, simply mix any two sequences
which converge to V,,. Moreover, we can characterize the life-span as follows.

Corollary 7.14. Let Vo, {42}, and I be as in Definition 7.153. Assume in addition that I # (—00,00).
Then
(7.21) sup liminf |97 s(rxr2) = 00
JcI n—oo
J closed
Proof. Suppose not. Let I = (=T, T1) where w. 1. 0. g. we assume T} < co. Then there exists a number
M < oo with the property that for every closed J C I with 0 € J one has
liminf {45 srxp2) < M

Now observe that

lim sup [|1g || s(7xr2) = 00,
n, JCI

where J ranges over the closed subsets of I. Indeed, if not, we have

limsup [[¢¢ ] 5(jo,,)xr2) < 00
n— oo

But then by Corollary 7.12 one can extend ]} beyond the endpoint 7} of I to some interval I for n large
enough while maintaining the finiteness of |[¢2|] S(Pxrz): contradicting the definition of I.
Now pick €; as in Proposition 7.11, with M replacing A, and pick J C I, ng large enough such that

196 ls(rxmz) > M, sup (g = ¥a")(0, )]z < @

n,m>ng

But by our definition of M there exists kg > ng with the property that

H’(/)QOHS(JX]Rz) <M

and then applying Proposition 7.11 to ¥*°(0,-) we obtain a contradiction. This proves the corollary. [
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Another important property is to be able to ensure the a priori existence of wave maps flows “at infinity”,
i.e., the solution of the scattering problem. In this regard, we have the following result.

Proposition 7.15. Assume we are given admissible data at time t = 0 of the form
VYo =04 (S(0—t0) (0 V,V)) +012(1), a=0,1,2
Here (8,V,V) € L? x H' is a fized profile. Then for ty = to(8,V,V) > 0 large enough and or>(1) small
enough, the wave map associated with 1., exists on (—o0,0], is admissible there, and we have
[%alls((—o0,0xr2) < 00

Moreover, letting ¥ be a sequence of admissible Coulomb components (i.e., associated with admissible
maps) at time t = 0 satisfying

Yo =+ 9a(S(0 —10)(8:V, V)
for (0:V, V') as before and toy large enough also as before, the limit

lim ¢ (6 a) = U2 (1), ¢ € (~o0,0]

n—roo

exists independently of the particular sequence chosen. We call this the Coulomb wave maps evolution of
the data

804 (S(O - tO)(atV; V))

at time t = —oo. A similar construction applies at time t = oco.

Corollary 7.16. Assume that for a sequence of admissible Coulomb components ¥, at time t = 0 we have
wg = Oq (S(t — t”)(@tV, V)) + 0L2(1)

Then if t, — oo, the limits

lm . (t+t", x) = V(t, x)

n—oo
exist in the L%-sense on some interval (—oo, —C), uniformly on closed subintervals, for C large enough.
We have

limsup || (£ + 1, @)||5((=o00,— o] xR2) < 00
n—oo

for Co > C. We call the mazimal interval I = (—oo, —C') for which these statements hold the lifespan of
the limiting object WS°; here C may be negative or —oo. A similar construction applies when t,, — —oo.

Both Proposition 7.15 as well as Corollary 7.16 will be proved in Section 9.8. Having defined limiting
objects ¥ as in Lemma 7.13 (temporally bounded case) as well as Corollary 7.16, we can now define in
obvious fashion the norms

||‘I’ZOHS(JxR2) = nlgrolo ||¢Z||S(JxR2)
for J C I closed, with I the lifespan of the limiting object. This is well-defined due to Proposition 7.11.
We can then also state the following

Lemma 7.17. Let U° be as before, with lifespan I. Assume in addition that I # (—o00,00). Then
(7.22) sup | W7 ||s(rxr2) = o0
JcI
J closed
The same conclusion holds for arbitrary I provided the sequence Y7 is essentially singular'”.

We now turn to the proof of Lemma 7.10. We begin with the the lower bound on the life span of the
Y. In essence, this is a consequence of the fact that " — V,, in L? implies a uniform non-concentration
property of the energy of the ¢7. This then allows one to approximate the corresponding wave maps
with derivative components ¢ on small discs — with radii depending only on the limiting “profile” V —

by small energy smooth wave maps; the small energy theory and finite propagation speed then imply a
uniform lower bound on the life span. Technically speaking, restricting to small scales requires some care

17Recall the definition in section 1.4
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since localizing the wave map by applying a smooth cutoff does not necessarily decrease the energy. To
see this, let x be a cutoff to a small ball B of size . Then the first term on the right-hand side of

(7.23) [ vao@rar s [ P+ [ (Vo) ds

does in general not become small as r» — 0.
Let €p > 0 be the cutoff such that smooth data with energy less than ¢ result in global wave maps. More
precisely, we will rely on the following result by the first author, see [22].

Theorem 7.18. Given smooth initial data (x,y)[0] : 0 x R? — H? which are sufficiently small in the
sense that
2
OaX 0
[T (P i <
oxrR2 =, Y y

where €9 > 0 s a small absolute constant, there exists a unique classical wave map from R?T1 to H?
extending these data globally in time. Moreover, one has the bound Zi:o [Valls@i+ey < Ceo where C is
an absolute constant.

Denoting the actual map at time ¢ = 0 giving rise (together with the time derivatives) to ¢%,¢?,

by (x,¥)(0,-) : R? — H2, where we have omitted the superscript n for simplicity, we now consider a
“re-normalized” map, subject to a choice of o € R? and ry > 0,

X~ X0 w—wgl<2rg) 108[2= (0,
(7.24) (x1,y1) = (Xux—zo|<ro]T, Xliz—sql<2ro] 108[35 ( >])
Here X[jz—ao|<ro] 18 @ smooth cutoff to the disk Dy, ., := {|z —z0| < 70} which equals one on |z —zo| < 22,
say, and

Xg = 7[ x(x) dxidxs, Yo := exp ( 7[ logy(z) dxldxz)
[lz—zo|<ro] [lz—zo|<2m0]

with 5, := |B =t - Note that we have chosen the cutoffs on the two components differently — the one
on the second component is slightly larger than the first. This is merely a technical convenience which
amounts to y; = ;’—0 when VX[jz—z|<ro] # 0. Lemma 7.21 below verifies the desired smallness of energy
property for these data. We begin with a basic imbedding lemma which we shall need in the proof of that
lemma. Even though we only require the case d = 2, we formulate this lemma in any dimension.

Lemma 7.19. B2_(R%) — BMO(R?).

._d
Proof. By duality, it suffices to prove that H! B, ¢ (R?) for the Hardy space H!. Thus, we need to
show that

> 279%|Pigll2 < C(d)

JEZ
for any ¢ which is an H!(RY) atom. Here P; are the usual Littlewood-Paley projections to frequencies
of size 27. By scaling and translation invariance we may assume that supp(¢) C B(0,1), |¢| < 1 and
J ¢(x)dx =0. If j > 0, then we use that

1Pioll2 < [[¢ll2 < C(d)
If j <0, then writing P;¢ = 279)(27.) * ¢ we conclude that

1
Po)|<c [ o / V9|2 ( — ty) di|(y)] dy
B(0,1) 0

which implies that
1Poll2 < C / 21D | V1,272 |p(y)| dy < O(d)2?EHD
B(0,1)

and we are done. O
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The importance of BMO in this context lies with the fact that exponentiation maps small balls in BMO
into the Ap-class. Recall that w is an A,-weight in the sense of Muckenhaupt (see Chapter 7 in [7] or
Stein [44] for all this standard material) provided

(7.25) @ [ wiwyde (1017 [ w @yda)” < A,0)

uniformly for all cubes @ C R? for some constant A, (w). Here 1 < p < oo and p’ = 527 as usual. Note that
A, C Aqif p < q. The A; class is defined as all w with Mw < Cw a.e., where M is the Hardy-Littlewood
maximal operator. At the other end one has A, := U1<p <o Ap, which is characterized by the estimate

w(S) 151y2
(7.26) w0 =)

for all S C @ (this is deep and requires the “reverse Holder inequality”). Here C' and 6 > 0 only depend
on w. (From the John-Nirenberg inequality, w = e? is an A, weight for some 1 < p < oo provided
ll¢llBMo < 7o is small enough and the A,-constant A,(w) in (7.25) only depends on 7.

_1
Lemma 7.20. Let ||¢||z: < A and set w := (=2 *%. Then for any 1 < p < oo one has A,(w) < C(p, A)
where the latter constant only depends on p and A.

Proof. For any § > 0,
#{j € Z||Pjpll2 = 6} < 6724

In particular, for any 6 > 0 there is a decomposition ¢ = @ + (¢ — @) so that |[(=A)"2@|e < CH243
and, by Lemma 7.19,

I(=A)"2 (¢ — §)|lB7o < €6

By the John-Nirenberg inequality one may choose § small depending on p € (1, 00) such that exp (( —A)"2(p—
$)) € A, with some absolute A,-constant. Since
1 L,
o239 < e
we are done. ]

The importance of A, weights lies with the fact that the Hardy-Littlewood maximal operator M as well
as Calderon-Zygmund operators T are bounded on LP(wdz) with constants that only depend on the
dimension and the A, constant from (7.25) (and T in case of a singular integral) provided 1 < p < co. In
the present context, we will require a version of Poincaré’s inequality with Ay weights. Now for the small
energy lemma.

Lemma 7.21. Let (xT,yT) be as in (7.24) applied to (x™,y™). Then given g9 > 0, we can pick ro > 0
small enough such that

Vx" vyn
120+ 122, < 20

Here V is the spatial gradient and vy does not depend on n. Since one can clearly also arrange

IX[lz—a0|<ro)®0 L2 < €0,

we have now achieved smallness of the energy of these data. Moreover, rg > 0 can be chosen uniformly
in zo € R2.

Proof. We assume as we may (by rescaling) that ||¢L ||z + ||¢2 |2 < 1 for a = 0,1,2. We shall also suppress
the time dependence and drop the superscript n. In view of (7.23) it suffices to estimate the contributions
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of those terms in which the derivatives falls on the cutoff x in (7.24). Starting with the component
y1= X[|m_10|<m]%, note that Poincaré’s inequality implies that, with B := {|x — x¢| < ro},

-2 / g (X" o / St

/|¢a )|? dzyday = /|1/1a )|? dzidrs < &

a12 a=1,2

uniformly in n provided 7 is small enough. Here we used the relation (1.4) and that the gauge change
is given by multiplication by a unimodular factor. For the x;-component, we make the preliminary
observation that y € A, for any 1 < p < co. Indeed, by Lemma 7.19, for any 1 < M < oo we can find
C = C(M) so large that

| Pr\[—c,c1 logyllBMO = || Pr\[-c,0) Z AT'9;¢%Bvo < M
j=1,2

which implies that y, := exp (PR\[—C(pLC(p)} log y) € A, for any 1 < p < oo with a suitable C(p). Since
Lemma 7.19 implies that ||yy; '|lee < C, the claim follows. We now use the following weighted Poincaré
inequality, see Theorem 1.5 in [8]: for any w € Ay, and ball B of radius r > 0,

[ 15@ = (sl w@de < cp [ V@R w@dr. (5= f@)do

Consequently, with w = y~2 € Ay, and in view of our definition of xq,

/‘ _XO‘ dz 1dm2N/ ‘VX ) dovdes Y / |6} (2) 2 daryday

j=1,2

By our choice of cutoffs in (7.24) we are done. To obtain the final statement of the proof, simply note that
we can always find 7o > 0 such that

2
sup Z/ Vo ()2 doy dy < €3
)

zo€R? T 0,70

Consequently, for all sufficiently large n,
sup Z/ |l (x \2dx1da:2 < 50
xoER? 10 0

and therefore also

sup Z/ |on (z dxldxz < 58

xo€ER2 390 ro

for all large n, which is all that is needed for the proof. O

We will also require an analogous result on small energy outside of a big ball. Thus, let Ry > 1 be large
and define

(7.27) (x2,y2) := (X[|m\>Ro]

X — X ex[\z\>%1] log[%(Oy)])
b
Yo

Here x[jz|>r] is a smooth cutoff to the set {|z| > Ry} which equals one on |z| > 2Ry, say, and

X 1= ][ x(x) dzydxs, Yo 1= exp (7[ log y () dz1das)
[Ro<|z|<2Ro] (50 <|z|<Ro]

In analogy to (7.24) the construction here is such that y; = % on the set {Vx[jz|>ro] 7 0}
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Lemma 7.22. Let (x5,y%) be as in (7.27) applied to (x",y™). Then given €9 > 0, we can pick Ry > 0
Vx8 Vy%
s 122,
p L3

large enough such that
1Ty ) %

Here V is the spatial gradient and Rg does not depend on n. Since one can clearly also arrange

||X[|m\>R0]¢(T)L||L§ < €p,

we have now achieved smallness of the energy of these data.

Proof. The argument is completely analogous to the one for Lemma 7.21. The only difference is that one
uses the following Poincaré inequalities on annuli instead of disks: for any Rg > 0,

/ £0) = (P w(o)ds < CRS [ V@) w(o)ds

R0<|x‘<2Ro Ro<‘.’E|<2R0

for any As-weight w and a constant C' which only depends on the As constant of w. As usual (f)g,
denotes the average of f over the annulus. For w = 1 this is of course standard, and for general w it
follows from [8]. |

Next, we wish to establish control over the ¥ in the S-norm on a nonempty time interval (=7, 7o)
uniformly in n. The idea is to apply Theorem 7.18 to the finitely many small energy maps given by
Lemma 7.21 and then to reconstruct and also bound the original sequence ]} in terms of these constituents.
The latter of course relies on finite propagation speed and involves smooth partitions of unity. In order to
handle partitions of unity, we need to derive estimates of the form

Ix¥lls < COONYls

for Schwartz functions y and some constant C'(x). Due to issues having to do with the slow decay as well
as limited regularity of the logarithmic potential A=19¢ which appears in the phase of the gauge change,
we will need to allow for a larger class of functions x. The following lemma is tailored to such purposes.

Lemma 7.23. Let y € C™(R?T!) satisfy the following properties'®: for some constant A
® maxy—o,1 max|a|<100 [|F VX[ Lary <A forall2 <p<oo,1<g< 00
o [[{m) max(|¢], [€]*")X(T, &)l parge < A for all2 < g < o0

Then there exists an absolute constant Cy such that | x¥|ls < CoAl||ls for any Schwartz function . The
S-norm here is defined in terms of the || - ||-norm, and it can be either localized to some interval in time
or be defined globally in time.

Proof. 1t suffices to consider global in time estimates. We need to prove

1 1
2 2
(7.25) sl = (1P i) < A( T 1Peslyg)
keZ ez
Written out, the left-hand side here means
1
3
(7.29) (S IPO) I3e2 + IPOG) g )
keZ
and we shall write || - || instead of || - ||. We begin with the energy component of the norm. If £k < C, then
by Bernstein’s inequality
2k 2k 2k
(7.30) HPk(Xw)”L;”Lg S2% HXHLg@LiWHLgOLg S2% ||X||L§’°L§;||¢HS S 23 AllYlls

18The logarithmic potential in (1.11) decays like |2|~1 (but in general no faster) which explains why we need p > 2 in
the first condition. Since one in fact has asymptotic equality with |z|~! up to a multiplicative constant, it follows that the
Fourier transform of this potential around zero exhibits a \§|*1-sing1.1larity7 which explains the second condition. Finally, we
cannot control more than one time derivative of (1.11), and showing that one time derivative can be controlled in terms of
the energy alone is nontrivial and requires the div-curl system for ¢, see Corollary 7.25.
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Here we used that

Iz < (Do NPIEers)” < (Do I1PI) " < Il

kEZ keZ

On the other hand, if £ > C, then
[1Pe(xt) |z zz < |1 Pe(Pek—10X Prth) |l noor2 + || Pe(Psi—10X %) £oo r2
S Iz poe 1 Prtdll e 2 + 1 Psk—roxlge, [ Lo 12
(IxllzgeLee + 1Vl Lgeo Lo ) 1 Pettll sperocry + 27 * 10 lls)

S A(1Petlsperoay + 27" 1wl s)

where we used the reverse Bernstein inequality
[ Psk—10Xllzeeree S 27"Vl oo L

Square-summing now implies the desired bound. It remains to bound the second term in (7.29). First

S IPQers DO R S HPkQ<k+cD(xw)|| g

k<C k<C
S Z 2k | P ( Xd})HL?L? S ||XHL2L<>cH¢||S N A2||¢||S
k<C
Second,
Y IPQskr DO S D I1PeQsre D) godeimes
k<C k<C
< Z Z 2_(1_25)k22j(1_8)HPij(XTﬁ)H%ng
k<C j>k+C :
2ek 625 (1— 2
(7.31) S Y 2RUTIIRQ (k)| reud
k<C j>k+C Lz

The sum ), +Co<j<C does not pose a problem since in these cases P,(); is disposable whence

||Pij(X¢)||L2 a Slixllzzral¥llnere S AllYls

tax

which can be summed in this range. So we restrict our attention to 5 > C. We can assume furthermore

that x = P<;_cXx as otherwise

|P:Q;j(P>j-cXx w)H 213 S27NVPsj_oxllpzrall¥llier: S 277 Al s

makes a summable contribution to (7.31). We now split x = @>,—cx + @<;j—cx. On the one hand
||PkQ](Q>j—cX1/J)HL2Lg S1Qj—oxlrzrs 1¥leerz S 277 IVeaxlzs 1¥llLer2

<277 AlYlls

which makes a summable contribution to (7.31), and on the other hand

1PeQ;(Q<j—cx w)nj%g S I1PeQi(Q<j—cx PSJ'*Cij)||i%L§

SA Y 1+ 2972PQ N3 e
t<j-c
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Substituting this bound into (7.31) yields

Z Z 92ek92j(1—¢) 42 Z (1_‘_22)72”P4Qj1/)||i§L§

k<C j>k+C <j—C
<Y S 2091429 2P
¢ j>e+C o

S A NPl S A2
4

which is admissible. We may therefore assume that k > C. To proceed we need to control ||Ppx||sjg. If
¢ <0, then

[ Pexllstg S 1PeQ<exll ox0 + 1Pe@sexll, —34en—c
X@ XZ
£ _1 _1
S 27| PiQ<exllrzre + 22T PiQeccoXllnzrz + 202 PeQso ixll 22

< 23(/ sup (|n|2|>?(7-,n)|2)d7')% +2<*%+€>f(/<r>2 sup (In\QIQ(T,n)\Q)dT)%

In|~2¢ [n]~2¢
(7.32) < A2ztel
whereas if £ > 0, then
1Pexllstg S 1Pe@<exll oy + 1 Pe@>exll hren-en
2

£
S22 ||P€Q§€X||L§Lg +207 2+E)€||PZQ>Z 9exllLz L2

1
(7.33) s270( [(0)? sup (mPIR(r ) ar)” 5 A2

[n]~2¢

Using these bounds and applying Lemma 4.11 one obtains
D IPQ<cBd) iy S D IIPeQ<cD(xw) ||2 LS (Z [1P:Q; (X))l

% 1 )
2 12
k>C k>C E>C j<C Xk

2 k—kqVk 2
(7.34) S S0 (X 22 P g | Pesllsiea ) S A%0003
k>C  k1,ko

The sum over k, k1, ko here respects the usual trichotomy. We remark that one needs to limit the output
here to modulations QQ<¢ as one would otherwise encounter logarithmic divergences. Next, one estimates

D IPQ=kD0) vm S D D 1RQB0w)I? L hre1men

k>C E>C j>k X,
(7.35) S D> 27 R P (x) 72
k>C j>k )

The contribution of P> ;_cx is bounded by
1PQj (P>j—ex¥)llzrze S I1Poj—eXlpzrell¥llier: S A27 7|0l

which can be summed in (7.35). Furthermore,

1PeQj(P<j-cQxj-ox¥)lrzrz S 27| PejcQsj—cOxllpzrll¢lLeore S A277 |95
which is again sufficient for (7.35). Finally,
(7.36) 1PeQj(P<j-cQ<j—cx¥)llzzre S I1PQj(Pak—cQ<j—ox PrQyv)ll 22
(7.37) +11PQj (Pr-c< <j-cQ<i—ox P<j Qi) 1212
Substituting (7.36) into (7.35) yields the estimate

S S22k 3|2 | BQy) |2 a S A%WN1E

k>C j>k
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Similarly, after a further frequency decomposition of v, substituting (7.37) into (7.35) leads to the same
estimate. In summary, we are left to consider the output under the modulation constraint Qo«.<r. As a
first reduction, we limit the modulation of y (since we cannot control Ox):

1P Q<kB(Qs s x V)i S 1PeQrB(@ssx X Y 130 S 2% | Pu(Qs e x )21z

2
k
k k ~
S 22| Pe(Psr—10Q5 3 X ¥)llp2r2 + 22 || Pe(P<r—10Q5 35 X Petp)|l 22
k —~ k R ~
S 2% Ixpeiz2 X O lzzzz 19lls + 25 x g mo X Ollzzzz [Pt s

_ N _k N ~
S2 k|||§‘100X(7—7§)HL2L2"”w”S + 275 () [€] Vv 1€1MOX(T, f)||L3Lg°||Pk1/JHS[k]
S A275 ¢

~

which is admissible. We now estimate each of the three terms on the right-hand side of
[1P:Q>c0(Qcze X )lIng S 1PrQ>c(BQczx X ¥)lInw + 1Pk@>c (0aQc s X 0°Y) [ N1
+ |1 PeQ>c(Q< e x OY) || Nk

4

(7.38)

First,
1PeQsc(0Q st x ¥)lInpy S 27 M 10Qcse X Yllrire S 27 10Q s Xl 1o 1915
<

k k
271 v < A2 1
max Irglég 107 VEX| i [¥lls 1¥]s

which is admissible. Second, by estimate (29) in [57] as well as (7.32) and (7.33), and with k, k1, ko
respecting the usual trichotomy,

1PLQs ¢ (0aQc s x O°W) iy S 275 D 2577 || P Xl 1) | P L s
k1,k2

< A27h N7 ofithe min(9m (9K 910k B gl g
ki,k2

S AT |ls + [1Pevllspa)

which is again square-summable in k. As for the third term in (7.38) we are reduced to showing the bound

(7.39) D IPQsc(Qeonx Pl S A2 D IPF Iy
k>C ez

This bound in turn follows via Schur’s lemma from the following claim:
(7.40) 1PeQ>0(Qearx PoF) | wppy S A2 35| PP | g
If j < /¢ and j < C, then by (2.32) one always has the bound
1PQ>c(Qesex PrQ<iF)lIny < 27 F(1Pe(Qese x PeQeiF)llpire S 27 1Qcse Xl L2 1o 1Pe Q< Fl 1212
S 27k2d|IR(r, 2 1PeQ<iFllnig S A2 |1 Flnig

which agrees with (7.40) provided ¢ < k + C. On the other hand, if £ > k + C but still j < C the same
estimate holds with an additional high-high gain of 27199 coming from y which is of course more than
sufficient for (7.40). Finally, if C > j > ¢, then an additional Bernstein gain yields

1PeQ>c(Qesex PiQ<i F)llniy < 27 (1Pe(Qesr x PeQ<iF)lLir2 S 27 |Qcsk Xl 121 | PeQ<iFll 121
£ _ ~ _
<22 7F|x(r, €)||L§L2 1PeQ<iFllrzrz S A2 Fllnig

as desired. Therefore, the claim (7.40) holds provided F' = Q<cF'. Let us now verify (7.40) for each of the
four types of N[{]-atoms with the additional assumption that F # Q<cF. If F is an energy atom, then

1PeQ>c(Qese XPeF) vy S 27 Qe XPeFll i S 2£7kHQ§%X”L;’°Lg°”PEF”N[Z]
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which is sufficient if / < k+ C and if £ > k + C then

1PeQ>c(Qese XPeF) Ny S 27 1Qese xPeF iz S 27 7 F1Qcse Xl pge = | PeF | v
which is more than sufficient. Here we used the estimate
(7.41) 1Qcsexllzere S IN(T Ol S KT)IENV €1 R(, )z S A

For the remaining atoms we first make the simplifying assumption that X(7,) is supported on |7|+[¢| < 1.
Now suppose that PyQ;F' = F with j > C. If [|[F[|p27. < 223 and j < {, then y essentially does not
change the Fourier support of F. Thus, { =k + O(1) and

(7.42) 1PkQsc(XF) vy S 2727 2 IXF |l p2r2 S A||F||X71,7%.1
£

as desired. On the other hand, if j > £ and ||[F[| 272 < 26(3=€)27(1+¢) " then we need to distinguish the case
£ < C from ¢ > C. In the latter case, one argues as in (7.42). In the former case, the modulation of the
output is essentially 2/ and k < C which is excluded. It remains to consider the null-frame atoms. Thus,
F= Zmecm F,, where F,; = Py ;Q<¢yomF); and m < —100. Due to F' # Q<cF, one has {+m > {+2m > C
which implies that the Fourier support of x F); is essentially that of F,,. Therefore, xF' =, xF) can be
treated as a wave-packet atom satisfying the bounds

D IEelRepg S A% I Rep

K

Since k = ¢ + O(1) we are done. Next, suppose that X(7,&) is supported on |7| ~ 2™ with n > 10
and [£] < 1. Then |[x| e < 27" A. Start with a wave-packet atom F of the type we just considered. If
n < k+ 2m + 10, then xF; has essentially the same Fourier support as F,; whence

- H o P on
IXE v S 2 k(Z”XFRHIQ\TF[n]) S A2T"2 K(Z”FNHQNF[H]) S 27" A|F v

which is summable in n > 10. If n > k 4+ 2m + 10, then xF has modulation of size 2™. If &k > n, then

IXF v S IXFI 130 S 275 7 FIXF L2
k

3n 3n

SA2EF | e SAZTFTRUF|FY
4

SA27"||Fng
where we used (2.32) and ¢ = k + O(1). If k < n, then

27n(1+6)27k‘ i

IXFlinw) S IXF - g4e1cn S =9)|IXF| 22
X, 2 iz

k

< A2—'rz(2-‘,—5)2—k(%—5)HF”LfLi < A2_n(2+8)2k(1+8)||FHX*11*%YOO
¢
S A2 FlIng

Cq1
Now suppose that F'is a X, b2 atom with F = P,Q;F. If 5 > n+ 10, then xF is the same kind of
atom and one argues as before gaining a factor of 27". If j = n 4+ O(1), then

IXFllng <27 IXFllize S 27 x e poe 1 Fllp222
S2AZHF| oy, S27EA
X@

201~

Finally, if n > j + 10, then xF' has modulation of size 2". If n < £, then
IXEll v S IXEN 130 S 27 F X F |2, S27 A
k

2
whereas in case n > ¢, one checks similarly that

IXE g SIXEN - gpeaen $277A
k
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as desired. If F is a X;%+E’_1_E’2—atom with F' = P;Q;F, then analogous arguments lead to a bound of
IXF||njg S 275" A which is again summable in n > 0.

Finally, one needs to consider the case where (7, §) is supported on || ~ 2™ with n > 10, say. However,
this is easier due to the rapid decay of X in £&. We leave those details to the reader. O

Remark 7.24. Lemma 7.23 of course applies to any space-time Schwartz function x. Moreover, one can
check that the exact same conclusions of Lemma 7.23 hold for any Schwartz function y which only depends
on ¢t and x alone; the only difference is that CyA needs to be replaced by C(x).

It is now a simple matter to prove that the ¢} have uniformly controlled S norms on some time interval
(—To, T0> where TQ = To(V)

Corollary 7.25. Under the assumptions of Lemma 7.10 there exists a time Ty = To(V) > 0 such that

(7.43) Jmax [[9¢]ls (1o, 15)xr2) < C(V) <00

uniformly in large n.

Proof. Pick rg > 0 small enough and Ry large enough according to Lemmas 7.21 and 7.22, respectively.
In view of (7.24), Theorem 7.18, and finite propagation speed, patching up the local evolutions of (x},y?)
shows that the evolution of (x™,y™) exists on some time interval (—Tp, Tp) uniformly in large n; in fact, one
can take To = ro. Note that this part of the argument does not require (x%,y%). These functions are needed
to obtain uniform control over || || s((—7,,1,)xr2), to which we now turn. The ¢7, of the original sequence
agree with the ¢” obtained from (7.24) on the cone Ky, ,, := {(t,z) ||z —xo| < 70 —t, 0 < t < 70}
This follows from the construction of (xT,y?) and finite propagation speed. Note that the (;32 exist
globally in R'*2 but agree with ¢? only on K,,,,. A similar observation applies to (x%,y%) on the set
Kpy1y i={|z| > Ro+t,0 <t < Tp}. Cover R? by finitely many D; := D(x;,79) as well as the complement
of Dy := D(0, Ry). This can be done is such a fashion that there exists a smooth and finite partition of
unity 1 = Z'jjzl x; on [0,Tp] x R? such that each X; is entirely supported in either a cone K, ., or

within Kgr, 7,. Thus
U= Do = D g e e
J J

Here ng’j are the derivative components of the small energy wave maps which were constructed by means
of Lemmas 7.21 and 7.22, and 92/ are their gauged counterparts. If x; has compact support, we now

claim that

o~ A —1 in,j n

= AT ORe($™ T —¢™)
satisfies the hypotheses of Lemma 7.23 with a constant A that can be chosen uniformly in n. The compact
support assumption in time can of course be fulfilled. Since for each j and all n

Xi (@57 =) =0
it follows from the uniform L? bound on &g’j and ¢} that
_ Tn. 1 -y “ri
.44 A 1 ) HN t —_ _J n,g __ AN t d
(7.44) ORe(3n? — o) (t.a) = o= [ I R — )t dy
is a smooth function relative to x on the support of x; with uniform L> bounds on the derivatives (uniform
here means relative to large n). Indeed,
(7.45) Ix; Ve AT ORe(57 — 05)(t, @) | Lo < Call (@7 — 85)(t, )12 < Ca E

where E governs the energy uniformly in ¢. It turns out that we can also incorporate one time derivative
into these bounds (but not necessarily any higher regularity in time). This follows from the div-curl system
for ¢, see (1.6)—(1.9). Indeed, if « # 0 then plugging (1.6) into

O ORe(GD — 62)e) = 5 [ T v Re(dn — o)ty dy

|z -y
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leads to an expression which is of the schematic form

/| L 0uRe(3} )ty dy+/| [(69)2 — (6M)?] (t.) dy

Integrating by parts in the first integral moves the derivative from the ¢’s onto the kernel which allows for
the same estimate as in (7.45). As for the second integral on the right-hand side, one has

|2t [ =t 692 — @ Pl ]|, < Call™) = @0l < Cu B

as desired. If o = 0, then one uses (1.9) to arrive at the same conclusion. This establishes our claim
concerning the hypotheses of Lemma 7.23; in fact, we obtained stronger conclusions as far as the conditions
for large x or small ¢ are concerned. Now let us consider the cut-off function x; with unbounded support,
which we may assume is xo. We can arrange the partition of unity so that xo(¢,2) = xo0(z)xo01(t) with xo1
smooth and supported in (—1,1) and with 1—yqo smooth and compactly supported in R?. With x? defined
as above, we now claim that

Xo1(t) = X4 (t,2) = xo1(£) (1 — xoo(w) e OR@™I =0 (0:0))

satisfies the requirements of Lemma 7.23 with a constant A that is controlled uniformly in n. First,

Xo1(t)xo0(z) Re(¢h7 — ¢2)(t,2) =0
which shows as before that X{ (¢, 2) is smooth in x with derivatives that are uniformly bounded in LS°
relative to n. In addition, the same arguments involving the div-curl system allow us to place one 9; on
X§ (t, ) without destroying these conclusions. As for the asymptotic behavior in # — oo and & — 0, one
simply expands
r—y Z Y

St - o)

lz—yl* |z |z[?
inside the integral in (7.44) which is sufficient due to |y| < Rp. In conclusion, by Lemma 7.23 and
Remark 7.24

1925~ 7o 70) <Z||>?}‘¢””

|s(-10.10) < ZC )vn?

|5<ZC )Ceo

is finite uniformly in n. O

The preceding corollary concludes the proof of Lemma 7.10 up to the assertion about the frequency
envelope at the end. This will be proved in Section 9.5.

We close this section with an important strengthening of the bound on %y from Lemma 7.6. More
specifically, we prove that the intervals I; can be chosen in such a way that the estimate (7.5) only
depends on the energy of . This will play an important role later on. In order to achieve this property,
we require an improvement over Lemma 7.4. We begin with the following technical statements which allow
us to make a better choice of the intervals I in the proof of Lemma 7.6.

Lemma 7.26. Let ||¢|ls < Co and g9 > 0 be arbitrary, with ¢ defined on R**1. Then there exists a
partition of R into intervals {I; }Jj\il which depend on 1 but with M = M (g9, Cy) and which satisfy

1 2
<
xS IR TR, Ly <
kEZ
where V = V, and v |V|719? is schematic notation which stands for any one of the nonlinearities

appearing on the right-hand side of the div-curl system (1.12), (1.13).

Proof. It of course suffices to show that
3
—-1 2 2
(7.46) D IPeln IV W)l o pogy S Tl
keZ i=1
We begin with the case where ¥913 is replaced by s - 3. It is easy to see that

1P - )2 S 2% (1ol sllesls
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Then by the usual trichotomy,

D2 P [VIT Iz )l Ta . S D2 1P [V Pakos (I°02 - 03) 12

keZ kEZ
~ 2
+ 32 (Y Il P 19IPT - s)] 2z, )
keZ >k
3
+ > 27 I Pakoston [VIT P2 - )72 S T Ilwill?
keEZ =1

Hence, we may assume that the two inner inputs are both hyperbolic, i.e., ¥; = Q<y,v; for i = 2, 3.
Now implement the Hodge decomposition for the inputs of |V|~1(¢)?), i.e., write

'l/]oz = Ra¢+Xa

We begin by considering the resulting trilinear expressions, more specifically the one where the inner
null-form is hyperbolic: Suppressing the indices on % for simplicity,

(7.47) D NPV T T Qap (v, )1 < Cllells

L2(R;H™3)
kez e

where Q,; is the null-form from Definition 4.16. As usual, this splits into the high-low, high-high, and
low-high cases:

D 2PV T T Qap (¥, Wlzz . < D2 P Bt VT P51 Qap (4, 90)) 72

kEZ keZ

3 2—k(z | P (Pop Py V|11 Qu (1), W)HL%J)Z

keZ >k

+ 27| Pe(Pay 59 P V| T Qap (v, )72
kEZ ’
= A+B+C

Next, one writes A < A; + Ay + As reflecting the high-high, high-low, and low-high decomposition of the
Qqp-nullform. Thus, by Lemma 4.17,

~ 2
ESEREDY > PPV P Qas (Pt Pesth)llnz )
kEZ ko<k—5 k‘z:k3+o(1)>k§075
~ 2
SIS > 1Bl 2| P T Qas(Prath, Prt))lz, )
kez ko<k—5 ko=ks+O(1)>ko—5
kN k2 2
S 2 M Bl (Y > 2507 F || Pyt et | Pesll st ) S 019
kEZ ko<k—5 ko=ks+O(1)>ko—5

Similarly, by Lemma 4.23,

A D S BBV Py I Qup(Prsth. Pyt 1z )

keZ k2+0(1):k0<k75 ks<ko—5

Yo Y Y 1Bl P I Qus (P, Pz, )

kEZ ka+O(1)=ko<k—5 ka<ko—5

- L 2
SRS S° 24 Ieo o P gl Pl ) S 1S

kEZ ka+O(1)=ko<k—5 ksz<ko—5
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This concludes the bound on A since As is of course symmetric to Ay. Next, with B < By + By + B3 via
the same trichotomy,

~ 2
Bis Y 2 (Y 2Pl 2 > IRIQus(Pluth, Pt sz

keZ >k ko=ks+0O(1)>£—5

ko 2
SY 2 (X UPlez 27 Y 2 F Pl 1P tlisia) S IS
kczZ 0>k ko=ks+0O(1)>4—5

by Lemma 4.17, whereas

stxz—’“(zzknawum%24 > ||PeIQaﬁ(Pk2w7Pkgw))lum)z

kEZ >k l=ka+O(1)>k3—5
2
— — 1 ;
S (Pl 2 Y 2 Bt s P lse) S 1913
keZ >k l=ko+O(1)>k3—5

by Lemma 4.23. The low-high case of (7.47) is treated in an analogous fashion and we skip it.
Next, we treat the case where the inner null-form is elliptic. Then the desired bound reads

(7.48) D P [V I Qup (¥, )

4, < Cllvlls
kEZ

2
”Lf(R;H’é

As before, A < A; 4+ Ay + Ajs reflecting the high-high, high-low, and low-high decomposition of the
Qqp-nullform. We will first exclude the contributions by opposing high-high interactions in the null-form,
cf. Remark 4.20. Hence, by (4.55) without the (k; — k)? loss,

~ 2
Alszz—k( > > HPk(Pw\v|—1PkoQ>kUQag<Pk2w7Pkgw»HLg,x)
kEZ ko<k—5 k22k3+0(1)>k0—5
2
SZQ_k( > > HPWIILgOLg||PkoQ>koQa/3(szwaP/c;ﬂ/))lngJ
kEZ ko<k—5 k22k3+0(1)>k075
k 2
syt Y S IRl IPuvlispl Puvllsn) S 1413
kEZ ko<k—5 ky=ks+O(1)>ko—5

For As one proceeds similarly, using Lemma 4.24 instead. In fact, due to the hyperbolic nature of 11,13,

~ 2
ArsdH (Y > PP V17 Py I Qi (P, Prt))lnz )
ke ka+O(1)=ko<k—5 k3<ko—5
~ 2
< 22_k< > > ||Pk¢|\L§°LgHPkoQkoQoeﬁ(szwaPkslb)HLg,I)
kEZ k2+O(1):k0<k—5 ks3<ko—5
k 2
syt Y > IPlizer22 | Petllspall Pratlls ) S 1018
keZ k2+0(1):k20<k75 ks<ko—5

This concludes the high-low case A. In the high-high case we write B < By + By + Bj as before. Therefore,

~ 2
Bis Y 2 (Y 2Pl 27 Y 1RQueQup (Pt Pet)llsz )

kEZ 0>k ka=ks+O(1)>—5

k _ Y 2
SY (2t IPwlism 2 Y 2 IPuvlspalll Prtllsnn) S 1019

kEZ 1>k ko=ks+0O(1)>£—5
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by Lemma 4.19, whereas

B2 Y (L2 1BQule, 27 Y 1BQQus (Pt P)lizse )

= >k t=ko+O(1)>ks—5
® _ k3 2
S 2Pl 2 Y 2F Pl Petlsn) S 11
kezZ >k £=ks+O(1)>ks—5

by Lemma 4.24 which finishes the analysis of B. We again leave the low-high case to the reader.

It remains the bound the contributions by the opposing high-high waves in the inner null-form. Return-
ing to the 11,9, 13 notation, we may assume that ; = Q<y,?; for ¢ = 2,3 and that there is an angular
separation of the Fourier supports of 11 and 9, say (since the Fourier supports of 2,13 make a large
angle). Hence we may bound the missing contribution to A; as follows, where we ignore the nullform and
replace the outer |V|~! with a weight by the usual convolution logic:

) 2

Al S" Z 2_k< Z Z Q—ko[ Z ||Pc¢1Pk0(Pk2¢2 Pk:gwi’;)H%fJ

kEZ ko<k—5 k22k3+0(1)>k075 CeDk,kO—k

We now invoke (2.30) to conclude that
1
[ D> 1P Py (Pra2 Pegtps)ll72 12 S2%[ D PPyt Pyl o]

[

1
2

c€Dg,ky—k c€Dg,kg—k

<[ S PPl Pl e)

~ cP11L ks L, ks ¥llLeer2

c€Dyg,kg—k
2 2 3
S 2% (ko — )| > P 1Pyl E o) * 1 Pas ol Lo 22
c€Dk ko—k
<27 (ko — k HHPk Vill i)

=1

The loss of (kg — k) here is due to the usual issue of wave-packets which are too thick resulting in the need
for Lemma 2.4. Inserting this into the bound on A; yields

My (X2

k€Z ko<k

2 ) 3
>||Pk7/}1||5[k]) allBllvslld < T wsll?
i=1

as desired. The opposing high-high contributions to the other terms are similar and omitted. We still need
to control the contributions from the elliptic terms y, leading to higher order nonlinearities. This is again
done in the appendix. O

We can now state the refined version of Lemma 7.6 which gives better control over the linear wave ..

As in that lemma ¢ are the gauged components of an admissible wave map locally on some time interval
[—To, T1]-

Corollary 7.27. Let |[1||s < Co, with ¢ defined on R**1. Given gy > 0, there exist My = M;(Co,ep)
many intervals I; as in (7.2) with the following property: for each I; = (t;,t;41), there is a decomposition

,wl]j (J) + wNL’ Dwéﬂ) =0
which satisfies

(7.49) Z ||Pk1/11(\jr)L||2s[k](Ij xR2) < €0
kEZ
: _1
(7.50) IV ooy S0 (B +1)E

where the implied constant in the last inequality is universal and E = ||1)(t)||2 is the conserved energy. In
particular,

10, sty xzy [ Vaio @ |l oy < 1
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by choosing ¢ small enough depending on the energy.

Proof. We first prove (7.49) and (7.50) by following the strategy of the proof of Lemma 7.6; however, we
use Lemma 7.26 instead of Lemma 7.4 when the underlying time interval is small. More precisely, consider
the frequency component Pyt .

Case 1: The underlying time interval Iy := (—Tp, T ) satisfies |Iy| < 1 with an e; that is to be determined.
The main property of this parameter is that it can be chosen to be an absolute constant independently
of Cy. The v, satisty the system (1.12)—(1.14). Schematically, this system takes the form

O Poy; = 0;Potbo + Po[y V' (%)), j=1,2

2
0iPotpo = > 0; Porbs + PolpV " (4°)]

j=1
where the nonlinearity is written schematically. Now define the linear wave Py, to be

Potprj := S(t)(Pov;(0),0;Potko), j=1,2

2
Pobr o == S(t) (Potbo, Zpoaj%(o))

j=1
whereas PoY'nr,o := Potva — PoYr,o. Thus, for j =1,2,

t t
Poy0) = Pos (0)+ | Pods Rosn(s)ds + [ Povt@P)]Gs) ds
0 0
Potpp,j(t) = Pow;(0) + tPod;10(0,-) + Oz (%)
and similarly for 1, whence for all t € I,
t
1Foons(Olzz < BIRwO) 2z + ] [ Rl @205, ds

S IR (O) 2z + 1812 [PV @]

%

In other words,
1
[P0 Ll Lo (10:22) S €TI1Pov(0)l| 22 + eF | PolV ~ ()l 22 (1022
As in the proof of Lemma 7.6 one concludes from this that
1
1PNl so)(roxr?) S €31 Pot(0)ll Lz + 3 1Po[tV (0]l 22 (1012
Rescaling this bound to general 2* yields the following. Suppose |I| < £,27%. Then
1. _k _
I Peton Ll siyroxe?y S €l Peto(0) L2 + €227 2 | Po[vyV ()]l 2(10:12)

Now provided Iy C I; where {[;}}1,, I; = I;(0,%), M = M (&o,Cp) are the intervals constructed in

=1
Lemma 7.26, one concludes that
2 4 2 ~
(7.51) Z PN LI Sy xr2y S €11V(0)[[22 + Eoea
k:l[o|§€127k
1 3
where £¢ is a separate smallness parameter. We now pick 1 := ¢ (1 + E)~! and &, := ¢ where E =

l9(t)]| L2 is the conserved energy of ¢ (for this one needs to remain on the interval on which 1 equals the
gauged derivative components of a wave map). This renders the right-hand side of (7.51) less than &g.
As already explained in the proof of Lemma 7.6, we will use this analysis also in the case of large intervals
to which we now turn. However, in that case the estimates obtained here allow one to control the term
||1/”[_T07T0]Hs in (2.73) of Section 2.5.
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Case 2: The underlying time interval Iy = (=T, T}) satisfies |Iy| > &1 where ¢; is as in Case 1 (again
for the Py frequencies). Here the analysis of Case 2 of Lemma 7.6 applies verbatim, leading to intervals
{I'}] 1, with M’ = M'(g9, Cp) such that

2
| max > I PiFallm, xe2) < €0
kEZ

where F' =)  F, stands for the right-hand side of (1.14) as usual.

Now we take the intersections of the intervals I; and I; which appeared in Cases 1 and 2 above. Denote
this collection again by {I; } L, with M = M(&y, €0, Co). Fix such an I;. Given k € Z, we define Pkw(Lj)

to be the free evolution of (I)[ty] where tg € I; is the center of I, whereas Pkw(]) is everything else. By
our construction,

> Hpkibj(\jll)LH%[k](IijQ) < €o
k:‘Ij‘Sile_k

Combining this with (7.51) this bound implies (7.49). As for the linear wave w(Lj), we note that those k
which belong to Case 1 yield

1P spuacr; xiey S 1Pl
with an absolute implicit constant, whereas (2.73) from Section 2.5 yields the bound
1P| iy, xmzy S el Ptz
These estimates imply (7.50). O

Remark 7.28. Note that if we a priori work on a time interval I; of infinite length, the statement of the
Corollary may be strengthened to

IVarti ey S B

with universal implied constant. Indeed, in this case, the 'time averaging’ around the initial data does not
cost a large constant.

Later we shall need to following corollary which further specifies the Fourier support of vy,.

Corollary 7.29. Let ||¢]ls < Cy. Assume that ¢ = ¥ + 1 where for some b
191l + | oo ¥ lls < 61

for some small 1. Then there exist intervals {Ij}j.w:ll as in Corollary 7.27 so that on each I; one has a
decomposition

= ol o=
where furthermore w(Lj) = 1Z(Lj) + z/vJ(LJ) and @[J%)L = w + z/JNL where both wL and ¢L are free waves
satisfying (7.50) and both 7%\],2 and 151(\]& satisfy (7.49). Furthermore,
1 s + 1P oo g ?lls S 01
[R5 + 1 PoosiePfLlls < o
with an absolute implicit constant.

Proof. The proof of this statement follows the exact same lines as the proof of the previous Corollary
The only difference is that each nonlinearity needs to be split into the contributions made by 1/) and 1/),
respectively. O
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8. BMO, A,, AND WEIGHTED COMMUTATOR ESTIMATES

In this section we develop some auxiliary tools that will be needed in the implementation of the Bahouri-
Gerard theory for wave maps. More specifically, due to the lack of an imbedding from energy to L in
the critical case we need to invoke methods involving BMO and the closely related A,-classes in order to
carry out Steps 1 and 2 of the program delineated in Section 1. Lemma 7.19 will play a crucial role here.
Moreover, we require a weighted version of the Coifman-Meyer commutator theorem, with the weights
belonging to the A,-class. Although it does not seem to be widely known, it is an easy consequence of
the standard theory and we sketch the proof for the sake of completeness. The paper [38] contains a more
general form of this result. A Calderon-Zygmund kernel here is defined to be any linear operator 7" bounded
on L? with the additional property that for any f € L? with compact support and all z & supp(f),

Tf(z) = / K(z,9)1(y) dy

where |K(z,y)| < C|z — y|~¢ and for some 0 < v < 1,

|z — 2|
|I((£ay)_l(($/’y)|SC\(|x_y|d+,y \V/|$—y|>2|$—l‘/|
ly—y'I"

By the Calderon-Zygmund theorem, any such 7T is also bounded on LP(R?) provided 1 < p < co.

Lemma 8.1. Let 1 < p < oo. There exists 6 = §(p) > 0 with the following property: suppose ¢ = ¢g + ¢1
where |[gollpmorey < 0 and ||¢1|| o @wey < A. Then

(8.1) le™ [T, ble?||p—p < C(d, A, T, p) bl B7io
for any Calderon-Zygmund operator T' and b € BMO. Moreover, infye; §(p) > 0 and sup,¢; C(d, A, T,p) <
oo for any compact I C (1,00).

Proof. Since ¢; contributes at most e?4 to the estimate, we can assume that ¢ = ¢y with small BMO
norm. In particular, e®0 € Ap. We will require the following inequality involving the so-called sharp
maximal function M*f which is defined as

(M f)(x) = sup inf[Q]" / 1F(y) — ¢| dy
Q:zeQ © Q

where c is a constant. The optimal choice of cis ¢ = fg :=|Q|™" [, of (y) dy. The estimate then reads (see
Theorem 7.10 in [7])
(8.2) [ ar@ue@ds<c [ 0@ e d

R4 R4
for any w € Ao with a constant that only depends on the dimension and the constants in (7.26). To avoid
trivialities like f = const for which (8.2) fails, one needs to assume M f € LPo(R?) for some 1 < py < p.

The proof of (8.1) combines the standard proof of the unweighted Coifman-Meyer bound with the sharp
function estimate (8.2). More precisely, fix a cube @ and write

[T,0]f = —(b—bQ)Tf +T((b—bq)x2qf) +T((b—bg)xra2qf)
=:Ag+ Bg+Co

To bound M*([T,b]f), we simply note that for any = € Q, and any 1 < s < oo,

Q! /Q<|AQ<y>| +BoW))) dy < C(s,d, T)bllsaio (MIT 1) (@) + (MIf]°)* ()

1
s

Indeed, for A this follows from Hélder’s inequality and the definition of BMO, whereas for B we also invoke
the L9 boundedness of T for some 1 < ¢ < s. For Cg we let yg be the center of () and estimate for any
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yeQ,
Coly) = Colua)l < [ 1K)~ Klua. )6~ b)) (2] dz
RI\2Q
7|y—yQ|’Y — z z)| dz
<o, Rl @) d

< Clpllmmo inf (M|f]°)* (2)
where v > 0 is as above.
In conclusion,
MH(T,Blf) < O(s. d. T)bllesto (MITF19)F + (M]£1°)%)
The lemma follows from (8.2) and the weighted LP boundedness of M and T. O

We now apply this to prove the following lemma, which will be important in the implementation of
the Bahouri-Gerard decomposition for wave maps. Instead of a general Calderon-Zygmund operator, we
restrict ourselves to the subclass of Mikhlin multiplier operators which are of the form T'f = (mf)Y with
m € C3(R?\ {0}) and with

ID*m(€)| < C(a)lg]”*1 ¥ € € R*\ {0}

for all |a| < 3. For simplicity, we also limit ourselves to two dimensions.
Lemma 8.2. Suppose {pn}% 1, {0} lie in the unit-ball of L*. Furthermore, assume that
Supp(Pn), supp(9n) C {€ € R? : 2M <] <2M)
for arbitrary kg < k1 — 4 and let v, := e(_A)_%W. Then
1Py (03 T () 2 S min(25477, 2
provided either j < ko or j > ky.

i—ko
3

)

Proof. By Lemma 7.20, for any 1 < p < 0o one has sup,, sup|, <1 Ap(v},) < C(p). Set R = 2k and r = 2ko.
If j > kq, then

1P (05, ' T(dnva))l2 S 2771V (0, ' T(dnvn)) 2
S 27 ([|@nllallenlls + [Vonl2) S 277 R
On the other hand, if j < kg, then

1
IIPj(vEIT(%vn))HzS/O 1P (0 [T, (=) "2 0] (60 |2 dt

1
i _ 1
s2b [ 1B 2. (-8) Fpnl @ity de
0
S 28 (=8) "2 nllell9nll> < 2Fr7F
In the last line, one interpolates between [|(—=A) "2, [la < v~ and ||(=A) 2 @n|Bmo S 1. O

The following result allows us to strip away weights from T'(¢) provided they result from functions with
frequencies which are well-separated from the Fourier support of ¢. In what follows, we use the following
terminology from [1]: Given a bounded sequence f := {f,},>1 C L?, and sequence ¢ := {g,},>1 C RT,
we say that f is g-oscillatory iff

lim lim sup / |fa(©)2dE =0
R=00 n—oo Jllglen€(0,00)\(R-1,R)]
We say that f is e-singular iff

tim sup | Fal©)dg =0
[1€]en€(a,b)]

n—oo
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for all b > a > 0. In what follows, we shall freely use the scale selection algorithm from Section III.1
from [1], see in particular Lemma 3.1, Lemma 3.2 part (iii), and Proposition 3.4 in that section.

Lemma 8.3. Suppose both {0, }22; C L*(R?) and {¢,}°; C L*(R?) are 1-oscillatory, whereas {1y}, C
L?(R?) is 1-singular. Define
on = exp((—A) ¥ pn),  wn 1= exp((—A)7H )
Then
(8.3) (Unwn)_lT((bn VnWp) = 'UrtlT((bn vn) +or2(1)
as n — co. Moreover, v; YT (¢, v,) is 1-oscillatory'®

Proof. By assumption,

[@nll2 + llenllz + lYnlls < A < oo
for all n > 1. By Lemma 7.20 one has v, € A, and vy,w, € A, for all 1 < p < co with A, constants
depending only on A and p. Now fix € > 0 arbitrarily small. Then there is R > 1 so that

mswpy [ (O dg < £

n—oo

[lEI<R~1, [§I>R]
Fix an R = R(e) with this property. Define @1, := (x(r-1,5]%n)"s Y2n = ©n — P1n and ¢1, =
(X(r-1,R1%n)"; G20 := On — G1n. Then [|@on|l2 + [|¢2nll2 < € for large n whence
H(Unwn)ilT(QbZn Vpwy )2 + valT(d)Qn vp)2 < C(A,T)e

as well as ||(—A) "2 o |lBmo < Ce. Next, define

vjn = exp((=A)"2pjn)  j=1,2
By Lemmas 7.20 and 8.1,

Unwn (d)ln Unwn) - (Ulnwn)ilT((Zﬁln Ulnwn) H2
/ C1050) [T (~8)~E o) B10 wtanty, o dt

< C(A,T)(-A) 2 panllBMO < C(A, T)e

By the same argument,
[0 T (é10v0) = 01, T(S10 v1) |2 < C(A, T)e
Similarly, set
an = (X[p_l,p],lz:l)vv Y1n = VYn — tan
where p > 1 will be determined later. By assumption, [[1)2,]2 — 0 as n — oco. In particular,
1(=A) 242, [[BMo — 0
as n — oo. Applying Lemma 8.1 as before allows one to remove the weights wa,, from (8.3) where
win = oxp((—A) " 24hya) =12

Hence, we are reduced to establishing that
(8.4) [(V1nw1n) " T (P10 Vinw1n) = V1, T (D10 01n)[l2 < C(A, T)e
for sufficiently large n. For ease of notation, we shall now drop the subscript 1 from 1, etc. with the

understanding that ©,, and @ are supported on [R™!, R] and that 17); is supported off [p~1, p] where p > 1
is a large number depending on ¢ to be chosen later. Define

wn,low = (X(O,p*lﬂﬁn)va wn,high = (X[p,oo)¢n)v

19Note that neither (vnwn)*lT(wn UpWnp) NOT vﬁlT(wn vy ) are in general 1-singular.
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and write, correspondingly, w, = Wy lowWn, high- 1t is easy to remove w;, high:

|| (U7Lwn)_1T(¢n Unwn) - (Unwn,low)_lT(¢TL Unwn,low) ||2
1
— _1
< / ”(vnwn,lowwfz,high) I[Ta (—A) 729 nign] (dn Unwn,loww;,high)HQ dt
0

1
(8.5) < C(A, T)[[(=A) "2 nighllal|dn ll4
<C(AT,R)p % <e
provided p is sufficiently large. Here we used that Unwmlowwfz,high are As weights uniformly in 0 < ¢ <1
as well as an interpolation between L? and BMO to pass to the last line. For the final bound we need
p>e 2.
To remove wy, low We split
T'=Pc \T+ P_xc.cdT + P)\T

where 27 R < ¢ and P etc. denote Littlewood-Paley projections. Introducing an angular decomposition
into finitely many sectors, we may assume that |{1] > |£]/10 on the support of m. Then for large A, and
with p := 27,

|| (vnwn7low)_1P>AT(¢n Unwn,low)||2 S CH (vnwn7low)_161_1P>AT(81 [¢n 'Unwn,lowD ||2

S C(A)N(||81(¢n7)n)H2 + H(bnal(_A)_%wn,IOWHZ) S €

For the small frequencies P._,T we first recall the following standard fact: with ¢ a suitable Schwarz
function,

2 1
(P<-(fg) —gP<-xf)(z) = — Z/O /Rz 12 (py)y; f(x — y)0;9(x — sy) dyds

2

(8.6) =Y Lia(u'f,959)

j=1

where Lj 5 in the final line denotes a multi-linear expression of the form

(8.7 LJ.9)(w) = [ Flo = wiale =) vidu.do)
with a measure v of mass bounded by some constant (in this case uniformly in all parameters). Using this
notation, one has (since ||v,,!||oc < C(4, R))

||(Unwn,low)7lp<—)\T(¢n Unwn,low)||2 < C(AaR)”w;}owT(P<—>\(¢n vn)wn,low)||2
2
+ C(A7 R):u’_l Z ||wr:jowT(Lj’)\(¢’ﬂvnﬂ wn,lowaj (_A)_%d]n,low)) ||2
J=1

=I,+1I,

To bound I,,, note that since we may take yu < R~!, one has P-_»(¢,v,) = P<_x(¢n(v, —1)). Hence, by
the boundedness of T relative to the weight wy, 10w and Bernstein’s inequality,

[Lnll2 < [[P<—x(¢nvn)ll2 = [P<-A(¢n(vn — 1))z < Cul|P<—x(¢n(vn — 1)1
< Cullgnllzllve — 12 <€
for A > 1. Bounding 1], requires more care, as one cannot naively remove the weights as we did in the
bound for I,,. In fact, due to the translation by sy in (8.6) we are in a situation with two different weights,
namely Wy jow and wy 1ow(- — sy). This means that the usual A, weight theory applied to I, does not

simply cancel the operator T" and the two weights, but rather cancels the outer weight, the operator 7' and
the weight inside T is replaced by an expression of the form

wn,low(' - Sy)w;}ow(')
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Thus, in view of (8.6) and these considerations, I, is bounded by (using ||v,|lcc < C(4, R))

1
[ [ i) lanl]6n( = 9 ion = 5905 ko (VD) H s - = 50) . dyds
R2 JO
1
< R0V D) F bl [ [ i) 0 = 5907 b ()] s

88) <O RN [ bl ™ (1 o) dy < <

for some constant k(A) > 0 provided we choose p such that ;=271 < p. To pass to the bound in (8.8),

assume first that |y|pu < 1. Then with h,, := (_A)iéwn,low so that wy jow = el
Watow (& = y)w;, 1oy, (@) < exp (|yl[Vhnlloo) < exp (Cptp™h) <@ <2

n,low
where we used that .
IVhnlloo < IV(=2) 724 10wll0 < Cp
This implies that on scales < =1, the weight w,, 1o\ is essentially constant (up to multiplicative constants).
Next, observe that for all cubes
[(hn)q = (hn)aeql < CllhnllBmol < C(A) V=0

-1

Hence, partitioning R? into cubes of side-length ©~! one obtains that

(8.9) (hi(y) = ha(y')| < C(A)log(2 + |y — y'|n)
whence
SUP Wy, low (T — y)w;i)w(m) <CA)(1+ |y|/‘)k(A)

xr
as claimed.
Note that the previous estimates on P._,T and P~ )T also prove that

||U;1P<7AT(¢HUH)H2 + ||U721P>>\T(¢nvn)”2 <e

Therefore, it remains to prove that

H (vnwn,low)ilT)\((ybn vnwn,low) - 'U;ITA (¢n vn) ||2 § 3

where

(8.10) T)\ = P_)\<.<,\T

is the operator on intermediate frequencies. Since T'f = (mf)v with m € C3(R? \ {0}), we conclude that
P)\<<>\ 1Tf /KA r—Y )dy

with [Ky(z)| < C(A)(1 + |z])~3. Now, with h, —A)" 29, 10w as above, and M denoting the Hardy-

Littlewood maximal operator,
” (Unwn,low)ilT)\(an 'Unwn,low) - 'Ung)\ (¢n Un) HQ

1
< / 00ty o)~ [T o (60 Ol o) 2
0

1
< C(ANpT / (010}, 100 ) ™ M (B vy o] 2 dE < C(A, X)p™
0

Here we used that the kernel of [T, hy] is of the form Ky (x,y)(hn,(x) — hn(y)) and satisfies the bounds,
cf. (8.9),
[ KA (2,9) (ha(2) = ha(y))] < C(A,X) min(p~ o — yl, |z — y[ 7 log(2 + |z — y]))
whence
(T3, hal (@) < C(A,N)p™ % M f(x)
Taking p sufficiently large (depending on e, R, and A) finishes the proof of (8.3). Lemma 8.2 now implies
that v, 1T (¢,v,) is 1-oscillatory. O



168 JOACHIM KRIEGER, WILHELM SCHLAG

The following statement will be an essential technical tool for the Bahouri-Gerard method in the context
of wave maps into hyperbolic space. As before, T is a Mikhlin multiplier operator.

Corollary 8.4. Let {f,}p>, C L*(R?) satisfy sup,> [|fall2 < A < 00 and define y, = exp ((fA)*%fn).
Let Aj = {/\n,j}zozl be sequences of positive numbers for each 1 < j < J with the property that

(8.11) lim {M+M}—>oo

n—oo )\n,j’ )\’n,j

for any 1 < j # 43 < J. Assume further that

J
fn == Z Pn,j + wnp
j=1
where {pn ;52 C L*(R?) is Aj-oscillatory for each 1 < j < J, {w, }32, is Aj-singular for every 1 < j <
J, and sup,,>, ||wn||Bg < 0.

Then {y, ' T(¢n,; yn)}zo:l is Aj-oscillatory, {y,* T (wn yn)}:o:1 is Aj-singular for each 1 < j < J, and
(8.12) limsup ||y, * T(wnyn) ||Bg _ < C(A,T)d
n—oo ’

where the constant C(A,T) only depends on A and T.

Proof. Define
1 1
Un,j = exp((=A)"Z¢n;),  wn = exp((=A) Zwn)
so that y, := wy, H;‘le Un,j- By Lemma 8.3, both {v, } T'(¢n jvn )}, and {y, ' T(onjyn)}._, are Aj-
oscillatory. Now suppose {1, }72, is an arbitrary Aj-oscillatory sequence where 1 < j < J is fixed. Then
Wy =y L T(wnyy) satisfies
<C~Un7 ¢n> = <an ynT* (wny;1)>
By Lemma 8.3, {y,T* (¥ny;, *)}52, is Aj-oscillatory whence
lim (@, ¥,) =0

n—oo
o0

Therefore, {"T}”}nzl is Aj-singular for each 1 < 7 < J.
For the proof of (8.12), we first note that passing to a subsequence if necessary, (8.11) implies that we
may assume that
)\ml >>\n,2 > ... >>\n,J
for all large n whence for any 1 <j < J -1

A
(8.13) J oo
Anj+1
as n — oo. We also note that
J
S lengll3 + llwall3 < A2 + o(1)
j=1

as n — 0o. Now we let m > 10 and K > 10 be integers (to be determined later) and define

Pn.j = Pnj X2~ m <[V A, <2m]
J
- 1
Un = H exp ((—A) 2<pn7j)
=1

@n = Wp XRQ\szl[27Km§‘v|)‘n,j§2km]
~ _1.
Wy, = exp((—A) " 2w,)
where the multipliers involving V need to be interpreted on the Fourier side. As in the proof of Lemma 8.3,

(8.14) limsup ||y, ' T (wnyn) = G T(0n Gn)ll2 < C(A,T) 6
n— oo
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provided m is chosen large enough and irrespective of the choice of K > 1. We will now fix m so that (8.14)
holds. It therefore suffices to show that
(8.15) limsup sup || P; [g, ' T (0 §n)]l|2 < C(A,T) 6

n—oo  jEZ
provided K is chosen sufficiently large. The idea behind (8.15) is that w,, behaves like a lacunary series, i.e.,
each w, is the sum of functions whose Fourier supports consist of disjoint blocks which are very strongly
separated. In addition, the ¢, ; are Fourier supported on intervals which are well separated from the
Fourier support of w,,. It will turn out that for each j — up to negligible errors as K — oo — only one block
of frequencies from w,, (namely the one containing 27) contributes to P; g, 'T'(y, )] and, moreover, only
those @, ; with frequencies much smaller than 27 matter. In this way, we can then essentially pass P;
onto w,,.
To establish (8.15), we introduce some more notation: set

J

Yo=Y (D)5,
j=1
and define [T, 1,,](*) iteratively via
[T7 wn](l) = [T7 ¢n]7 [T7 wn](s-H) = HTv wn](S)ﬂwn]
Then
e - —~ 1 i
(5.16) G T nga) = 3 (7] it
£=0

1 1

(8.17) 5[ =0 Gt T, )Y (i, 3L, dt
0

Denote the remainder in (8.17) by R,, s. To bound it in L?, note that ||t [~ < CmJA with some absolute
constant C. Therefore, placing v, 9n, and 7, ! in L™ yields for all n > 1

AN s
C?T;J)

CmJA

(&
Rns S
[ Rn,sll2 I

which clearly goes to zero as s — oco. In particular, v, < 6 for large s. We now turn to the details of the
analysis of the main terms in (8.16). First, one has w,, = Zj:o Wy, ; where

(C«mJA)s+1H,LDnH2 < eCmJA( =,

W0 = Wy X[|V| Ap.,<2-Km]
fij = ’LZ}n X[QKT"S\VPW,J'SQ*K’"] V1 < j < J -1
Wn,J 1= Wy X[2Km <[V A ]

with n large. Then

J
(818) Zf'[ '(/)n e) wn ZZ([ T wn wn = Z %[ 1/) ¢(+)](£ U)n,j

=0 ¢=0 =0 £=0
where we have set, for each 0 < j < J,

)= N A G W) = (—A) 2 Fs

1<k<j j<k<J

We shall now show that for a given @, ; only the small frequency part of ¢, ;, ie., wn e contributes

significantly to the commutators in (8.18) (at least for very large K). To this end write
7,05 + 019 = 1,4 )1 +Z AT ), wSH, )

(8.19) = Knj,e + Rnje
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where the sum here runs over ¢-fold commutators with each €, = 4, the choice ¢, = — forall 1 < k < /¢
being excluded (as it is represented by the first — and main — term on the right-hand side). Next, observe
that for each

1
(8.20) 1<l0<s:=—2E-"m
one has, for each 1 < j < J and every k € Z,

P (K jen ;) = Puln j e Pe—2<.<kt2 Wn,j

In fact, this vanishes unless 25™~ 2)\_1 <2k < 9 Km+2 )\T_L 1. Writing
s 1 B
(8.:21) Py o all’ ] i, = P Z Z 1Kt Pe—2<<h+2 Wn,j
=0 j=0 £=0
J s
(822) Z n,j, ePr2<.<ki2 wn,j
j=0 ard

it follows from (8.13) that for all sufficiently large n > ng depending on K, m, at most one term in (8.21)

can be nonzero for any choice of k € Z. Applying the decomposition (8.16) and (8.17) with wf;j) instead
of 1, to (8.21) yields
.

J s
1 ~
sup HPk Z Z EK:n,j,ZPkf2<-<k+2 Wn,

kEZ =0 =0

S
1 —
‘ < sup sup HE E’Cn,j,épk72<-<k+2wn,j

kezo<j<J Il = ¢!

( (
SSUP sup H w]nT( w7"Pk: 2<- <k+2wn,J)H +’75
kezZ 0<5<J 2

< C(A7T)||wn||Bgoo + s < C(Aa T)6

To pass to the final bound, we note that v, < d provided K is chosen sufficiently large. We also used that

the weights 61/’5;3 € Ay with Ay constant < C'A uniformly in j,n, cf. Lemma 8.1. As for (8.22), we make
the following crude estimate for the ¢-fold commutator as in (8.19)

I (TS 0), w82, @l < O@)(CmT A WS al|@n 14

It arises by placing one 1/;“',) in L*, all other w(e‘ in L*°, and Wy, ; in L*. By Bernstein’s inequality,

n,j

[T illa < CETE™ N jg1) " F [Tl < CA2TKM2N] §+1

whereas by interpolation between the L? and BMO bounds,
16 )ls < CA2m20:

n,j+1
whence

I (TSR], 2], o E )@ 2 < O(T, A)(CmJ A)f 120 - K)m/2
Hence, the error resulting from (8.22) can be made as small as we wish by taking K large and we are
done. O

In what follows, we call sequences A; C R as in Lemma 8.4 pairwise orthogonal iff they satisfy (8.11).
The following auxiliary Lemma 8.5 strengthens the result of Lemma 8.3 by replacing L? with Bgl, but
under slightly different conditions. As before, T is a Mikhlin operator.

Lemma 8.5. Suppose {pn}o% 1, {dn}52 1, {00}, lie in the unit-ball of L. Furthermore, assume that

supp(@n), supp(dn) C {|€] <1}, supp(eh,) C {|¢] > 1}
Define

1

Un = exp((—A)"2¢,),  wy = exp((—A) 71h,)
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Then given € > 0 there exists § > 0 such that

(3.23) | enton) T (Bn vntwn) = 0 T(Sn )| gy, <
(8.24) [V [(Wnwn) T T (0 vnwn) — v ' T(dn va)] || o < €
for all sufficiently large n provided

(8.25) limsup || Py ¥nllpg <6

where ko = ko(T, €) is some positive integer.

Proof. Since (8.23) implies (8.24) it suffices to prove the former. As before,

1
(8.26) (Unwn)ilT(an UnWn) — UJIT(an Up) = /0 (1)an)71 T, (7A)7%7/’n](¢n vpwy,) dt

We now estimate the L?2- norm of this expression localized to frequency 27. First, we consider the case
j > 0. Then, with y, ¢ := v,w!,, and using Bernstein’s inequality, one has the bound

1P (4 £ [T ()72 0] (b o)) 12 S 273 | B3V (yp £ [T, (—2) ™2 4] (6 Ynt)) s

(8:27) S 2|V (g ) [T, (—A) 2] (6n yn)llz + 27 |y 1T, (—A) 72 4]V (6n Ynit)l 2

+27 5 |y [T,V (— )*%wn](fﬁnyn,t)llg
Since uniformly in 0 <t <1,

Yn i Vs = —(V(=A) 2, +tV(=A)"2¢,) = Opa(1)

we can further estimate

IV () [T, (=)~ 240 (¢ Ynt)lls S Ny T (=2)"24) (6 Ynt) 6

SI=A) 2 0nlhzlénlliz S 1

To pass to the final bound, the term involving 1, is estimated via an L2-BMO interpolation, whereas the
¢, term is controlled by Bernstein’s inequality. The other two terms on the right-hand side of (8.27) are
estimated similarly. As for the case j < 0, Bernstein’s inequality yields

1P; (4 417, (=) "3 46n) (0 m,)) 12 S 25115 (it [T (=) ™340 (0 ) |12
S 25|(=A) "Bl énll2 < 25
To obtain (8.23), it suffices to show that for every ¢ > 0
H(vnwn)_lT(¢n Vpwy) — v, T (dp Un)”z < e?
for large n. Indeed, combining this bound with the preceding then implies

H(vnwn)_lT(¢n Vpwy) — v, T (fn Un)HBg ) <e?loge

which is more than enough To this end, fix a large enough a, and let w, = Wy 1owWn high Where wy, 10w cor-
responds to F [y ‘§|<a]1/}n] and Wy high t0 F 1 [X[|¢|>a¥n] (With sharp cut-offs). By (8.28) and Lemma 8.1,

||(Unwn)7 T(¢n Unwn) - (Unwn,high)7 T((bn Unwn,high)Hg < C(T)||]:71[X[|g|ga]1/ﬁ;]||Bgm

whereas
1

sup valT(QZ)n Un) - (Unwn,high)_lT(¢n Unwn,high) H2 S O(T) a 2
by the same argument as in (8.5). Choosing a so that this final bound is < ¢ defines both ko (7, e) and 6. O

Clearly, one has the following limiting statement.
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Corollary 8.6. Suppose {©n %1, {dn 21, {tn }5° lie in the unit-ball of L?. Furthermore, assume that

supp(@n), supp(dn) C {[€] < 1}

and

(8.28) supp (i) € {I€] > 1}, [0 (€)]2dé =0

lim
70 Jig|<a

for each a > 1. Define

1

vn = exp((—A) " 2pn),  wy = exp((—A) 24h,)
Then

“(Unwn)_lT(¢n 'Unwn) - Ung(gbn Un)HBg L =0
Hv_l [(’Unwn)_lT((bn Unwn) - U;1T(¢n 'Unﬂ Hoo —0
as n — oQ.
9. THE BAHOURI-GERARD CONCENTRATION COMPACTNESS METHOD

In this section, we execute the scheme that was sketched in the introduction. We shall follow the five
individual steps which we outlined there.

9.1. The precise setup for the Bahouri-Gerard method. As far as the concentration compactness
method is concerned, our goal is to demonstrate the following main result.

Proposition 9.1. Let u = (x,y) : (=Tp,T1) x R? — H? be a Schwartz class wave map. Then denoting

its energy
@=0,1,2 (’

there is a an increasing function C(E) : RT — R with the property
1V s((=10,11)xR2) < C(E)

We refer to the derivative components of u with respect to the standard frame (ydx, ydy) as ¢%, i = 1,2,
a=0,1,2. We also use the complex notation ¢,, := ¢, +i¢?. We shall refer to a wave map as admissible,
provided its derivative components at time ¢t = 0, ¢%,(0,-) lie in the Schwartz class. Finally, for wave maps
of Schwartz class as before, we denote the Coulomb components by

Oax
y

2 Do,
+7]
L3 Yy

2
>:E<oo7
L3

Vo = Go e i k=12 Aoy,

The energy is then given by
B = 3 lgalZe = 3 Il
a=0,1,2 a=0,1,2
To prove Proposition 9.1, we proceed by contradiction, assuming that the set of energy levels E for which
it fails is nonempty. Then it has an infimum FE..;; > 0 by the small energy result. We can then find a
sequence of wave maps u” = (x",y") : (=Tg,T") x R? — H? with the properties
e lim, ,o F(u") = E;+ (these energies approach E..;; from above)
o limy, o0 [Y"[s((—1p,17) xR2) = 0.
We call such a sequence of wave maps essentially singular. It is now our goal to apply the Bahouri-Gerard
method to the derivative components of a sequence of essentially singular data ¢ (0, -).
e In subsection 9.2, we construct decompositions of the form
A
oh =) _a +uwi’
a=1
where the ¢* correspond to derivative components of admissible maps which are well-frequency
localized.
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e In subsection 9.3, we use these decompositions to approximate the data ¢} by lower-frequency
components. The goal is to inductively prove bounds on the Coulomb components of these lower-
frequency approximations and finally obtain bounds on the Coulomb components 97, unless there
is only one frequency atom of maximal energy F.,;; present.

e In subsection 9.4, the most involved, we obtain a priori bounds on the lowest frequency non-atomic
(0)
components \I/ZA" , by means of a careful induction on low-frequency approximations.

e In subsection 9.6, we construct the profile decomposition for the lowest frequency above-threshold
energy frequency atoms. Here a lot of work is involved in showing that the profiles, which are
obtained as weak limits of the linear covariant wave evolution associated with operators 04« , can
actually be interpreted as Coulomb derivative components of actual maps, up to constant phase
shifts.

e In subsection 9.7, we then complete the approximate solution which is given by the sum of the
profiles and the low-frequency term to an exact solution, via a perturbative argument. This
culminates in Proposition 9.30.

e Finally, in subsection 9.9 we explain how to add the remaining frequency atoms.

9.2. Step 1: frequency decomposition of initial data. We consider wave maps u : R?T! — H?, with
Schwartz initial data. Here H? stands for two-dimensional hyperbolic space which we identify with the
upper half-plane. More precisely, introducing coordinates (x,y) on H? in the standard model as upper half
plane, and expressing u in terms of these coordinates, we assume that x, y, 0;x, d;y are smooth, decay
toward infinity in the sense that

lim (x(z),y(z)) = (xo,y0) € H?

|z|—o00
and such that the derivative components

OuX 00y
¢i=f$w¢i=f%7a=QLZ

are Schwartz, all at fixed time ¢t = 0. We make the following

Definition 9.2. We call initial data {x,y,0;x,0ry} : R? — H? x TH? admissible, provided the derivative
components ¢¥ are Schwartz functions for any a = 0,1,2 and k = 1,2.

We note here that the property of admissibility is propagated along with the wave map flow on fixed
time slices, as long as the wave map persists and is smooth. This follows from finite propagation speed, as
well as the small-data well-posedness theory. We recall that the energy associated with given initial data
at time ¢ = 0 is given by

Bim [ 30 (00 + (62 drdes
R? ,=0,1,2

We now come to the first step in the Bahouri-Gerard decomposition of a sequence of initial data, cf. [1].
More precisely, we wish to obtain a decomposition of the derivative initial data which is analogous to
the one of [1]. An added feature for wave maps, which does not appear in [1], consists of the fact
that the decomposition has the be performed in such a way that the individual summands in it are
themselves derivatives of admissible maps. This requires some care, as the requisite condition is nonlinear,
see Lemma 9.3 below. In what follows we write ¢, := @., + i¢?, any additional superscript referring to
the index of a sequence.

Lemma 9.3. The complez-valued Schwartz functions ¢, o = 1,2, correspond to the derivative components
of admissible data u : R? — H? iff

(9-1) O — Ojbk = $18; — Prdj, k.j =1,2

are satisfied.

Proof. The “only if” part follows from (1.6), (1.7). For the “if” part, note first that we get
(9.2) 02 — 0,08 = 0
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for the imaginary parts of ¢; and ¢;. This implies that

for a suitable positive function y : R? — RT which is unique only up to a multiplicative positive constant.
We can rewrite (9.1) in the form

(9:3) O(y;) — 0j(ydr) =0, k.j=1,2
which in turn implies that
9%

y

for a suitable function x : R? — R. To understand the behavior of (x,y) at infinity, we observe the
following?’: from (9.2),

) =

(92/ (ZS%(Zl,xQ) dxl = O

which implies that the integral does not depend on x5 and therefore is, in fact, zero. Similarly,
o0
/ ¢3(r1,29)dra =0  Va; €R
—00

It follows that y tends to the same constant at infinity irrespective of the way in which we approach
infinity. Without loss of generality, we may set this constant equal to 1. From (9.3) one further sees that

/ Y¢%(171’552)d551=/ y ¢3(1,22) ds = 0

— 00 — 00

whence x approaches a constant xq at co. O

Now for the first step in the concentration compactness method, which is the Metivier-Schochet scale
selection process, see [31] and Section IIL.1 of [1]. As already explained above, the difficulty we face here
in contrast to [1] is that we need to make sure that the pieces we decompose the derivative components
into are geometric, i.e., they are themselves derivative components of maps R? — H?2. Section 8 provides
us with the tools required for this purpose.

Proposition 9.4. Let {x,,, ¥n, O:Xpn, O1¥n}n>1 be any sequence of admissible data with energy bounded
by E and with associated derivative sequence {¢0}n>1, a = 0,1,2. Then up to passing to a subsequence
the following holds: given 6 > 0, there exists a positive integer A = A(S, E) and a decomposition

A
A
o= o bl
a=1

for aa =0,1,2 and n > 1. Here the functions ¢_.%, 1 < a < A are derivative components of admissible
maps u? : R? — H?, and are \%-oscillatory for a sequence of pairwise orthogonal frequency scales {\%},>1

while the remainder wA™ is \%-singular for each 1 < a < A and satisfies the smallness condition

sup i gy <0
n>1 ’

Finally, given any sequence R,, — oo one has the frequency localization with pf = —log A%,
1 o
(9.4) sup ||Pjore||s < ERZ27sV-ml vjiez
a=0,1,2

forall1 <a < A and all large n.

20ffere the superscripts are not powers
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Proof. We omit the time dependence in the notation, keeping in mind that everything takes place at initial
time ¢t = 0. As in Section III.1 of [1] one obtains a decomposition

A

(9.5) gn = o +alt, a=0,1,2

a=1
where the functions 452“ € L%*(R?) are A\-oscillatory for suitable pairwise orthogonal frequency scales
{2} ,>1 for all 1 < a < A. Moreover, there is the smallness
~nA
iy <

We now restrict to Fourier supports of these functions. Pick a sequence R,, — oo growing sufficiently slowly
such that the intervals [(A2)"1R1 (A2)~1R,,] are mutually disjoint for n large enough and different values
of a. Then we replace w4 by

nA Tna
Pra & [pe—log Ry, pul+log Ry + 2 :Pﬂ“ 18’ —log Ry ,pug/ +log R,] ¢04
where pu2 := —log A%, while we replace each ¢ga, 1<a< A, by
A
~ ’
na e
P[u?flOg Ry ,p8 +log Ry Z oot + P[pg—log Ry,,,pe+log R, | Wy
a’=1

We need to make R,, increase sufficiently slowly so that the second term here remains A\%-oscillatory. Of
course the new éga now also depend on the cutoff A; in order to get rid of this dependence, we may replace
A by A, where A,, — oo suitably slowly. Then the new decomposition, which we again refer to as
A
on =Y one +apt
a=1

has the same properties as the original one with the added advantage of the sharp frequency localization
around the scales (A\%)~!. In particular, since the ¢7 are Schwartz functions, one concludes that the éga
have the same property which means that the components qb"a are admissible, and so is @W74.

In order to prove the proposition we need to show that we can replace the components ¢ga by components
#"* which actually belong to admissible maps u™® : R?> — H? up to a small error (which again can be
absorbed into w"4). Note that the a = 0 component does not present a problem here. For the a = 1,2
components, however, we need to ensure that the compatibility relations (9.1) hold. Continuing with the
proof of the Proposition 9.4, we notice that

= > ATk, = eZhma O
k=1,2

for the coordinate functions (x", y™); here we recall that we may impose the normalizations lim|;| . X(7) =
0, lim|z| oo y(z) = 1. In turn, these identities imply that

Qf)}n* Z A~ 1aak[¢1n n ¢2n7 Z A~ laak¢
k=1,2 k=1,2

These relations shall allow us to replace (9.5) by a “geometric decomposition”. Indeed, we simply substitute
the decomposition (9.5) to obtain

A
o7 =3 (") Y AT [0y + (v T Y AT 00k [0y

k=1,2 k=1,2

Z laka ¢2na+ Z A~ 18k6 ~2nA

k=1,2

)
Il
_

2
¢5"

Il
HMD>
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This suggests making the following choices:

E A~ 1ak T1lna na]7 yna = ezk:I,Q A—lakqgina

k=1,2
and then defining
¢]1na — ( Z A1, 8k[¢lna na), 2na o Z A719,0), Gana
k=1,2 k=1,2
w}”A = (y")! Z A7L0,0; [@1 Ay ", 2nA Z A~18,8, 52 A
k=1,2 k=1,2

as well as ¢™® 1= p1"* 42" w4 = w!™A +iw?*4. Clearly the components ¢}, 3" are now geometric
in the sense that they derive from a map into hyperbolic space; in fact, they are associated with the maps
given by the components (x*, y™®). The proof is now concluded by appealing to Lemma 8.2, Corollary 8.4,
and Lemma 8.3. For the final statement, note that by Lemma 8.2, the “geometric” components ¢..* are
also frequency localized to the interval [u% —log R, u + log R,] up to exponentially decaying errors. [

As an immediate consequence of Proposition 9.4 one obtains that gb?”“, wémA, k = 1,2, are asymptoti-
cally orthogonal (where ¢}"a = Re ¢}* and ¢§”a =Im ¢§“‘).
We now make some preparations for the second stage of the Bahouri-Gerard procedure. More specifically,
we shall have to pass to the Coulomb gauge components, v, and transfer the above decomposition to the
level of these components. One can split

A
P = ¢Ze—i ko2 AT 0L _ [Z¢Za + sz] et k=12 AT Ol
a=1
However, the components
(bgae*i Dk=1,2 AT o
are not the Coulomb gauge components of a suitable wave map, and should ideally be replaced by
d)nae—izk:lyz Ao
(03
Due to the lack of L*° control over the exponent, this cannot be done without further physical localizations.
Nevertheless, we can state the following fact.

Lemma 9.5. The components

na —i>,_, o AT nA _—iS, . o, AT p"
¢a e Zk_1,2 k, wye Ek-l,z k

are A% -oscillatory and A\ -singular, respectively, for each a and we have

HwZAe*i Phe12 AT O

S6

2,00

where § is as in Proposition 9.4.

Proof. We may assume \? = 1 by scaling invariance. Given any € > 0, we can choose ko large enough
such that
. —1 in
lim sup HP[—ko,ko]°¢Zaeil D=1, D7 Ok Lz < e
n—oo
Next, for k1 > kg + C, consider the expressions
. -1 in . -1 in
P<—k1 [P[fko,ko](bgae i he1,2 D7 Oy ]’ P>k1 [P[fkg,ko]d)gae 1D pe1,20 D7 Oy ]
Start with the first expression, which we write as

_ A1 1n
Pepy [P[—ko,ko]¢gae i3 k12 Ok by, ]

=Pe_p, [P[—kO,ko]¢ Z AT, i Pl ko, ko] Z AT 188 ¢1"] —i k=1 O Bm”)]
Jj=1,2 k=1,2
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Using Bernstein’s inequality, we can then estimate

||P< ke [P[ ko,k0]¢ Z A~ aP[ ko, kg] Z A~ 188 (bln} —i3 g1, 7 8k¢ln)}”L2

j=1.2 k=12
S 2R Py koy a2 6 |2 < €

provided we choose k; sufficiently large in relation to kg. The estimate for the second term is more of the
. —1 in

same. Next, consider the “tail term” nge_’Ek:lﬂ A7 That this is A¢-singular for each 1 <a < A
follows from the preceding via duality. It therefore remains to estimate its || - || g _-norm. We localize this
term to fixed dyadic frequency ~ 27 1

Py[wiAe ™ Xn=12 Aﬂa’“‘bi"] = P [l Pey_qge  2n=1.2 Aflaktﬁi"]

. -1 in : —1 in
+ Py [wi Py 0,g 100 22 S O] Py [wn A Py et Bemra & O]

and estimate the three terms on the right separately: first, we have

. —1 in . —1 In
1Py [wi Peg1pe™  Zn=12 27 % || 1o = || P [Ply— 10,4 10) (W) Pego1oe ™ Zk=12 27 60|

S Prg—10,g+10) (w wi||z2 S ||“LU"A||B0 I EY
Next,

. -1 in
HPq I:wnAP[q—lo q+10]e ZZk:l,2A ak¢k ]||L2

‘Zk:l,Z Ailak‘bllcn] ||L2

_ in
= ||P, [P<q+10w Z AT, i Prg—10,q+10)([ Z AT1Y; 6k¢1n} k1287 Ok )M|L2
j=1,2 1,2

k=
< 27 Pegrnonl o 61 22 S [0l g <6

= ||Py[P<gs10(wi™*) Py—10,g+10€

where Bernstein’s inequality was used in the last step. The third term in the above Littlewood-Paley
trichotomy corresponding to high-high interactions, is treated analogously and omitted. O

For later reference, it shall be important to construct “partial approximations” of the components ¢}
in terms of the ¢"*. Specifically, for I C {1,2,..., A}, we let

¢n1 Z ¢na
acl

Then reasoning exactly as in the preceding, and employing the same notation as there, one obtains the
following statement.

Corollary 9.6. Let
an = eZk:1,2 ZaEI A_lakd_’ina’ an = Z ZA—lak[(E)inaan]
k=1,2 a€l

Then fora € I
(b;na _ nI Z A~ 8 8 [¢1na nI] +0L2(1)

k=1,2

In particular, we have

1na jxnI 2na Jy
> ¢ —7+0L2(1), D e = +o072(1)

acl acl
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9.3. Step 2: frequency localized approximations to the data. Given an essentially singular sequence
u” with derivatives ¢, Proposition 9.4 yields a new essentially singular sequence ¢ with the following
property: for any A > 1 (recall the ¢”* are defined inductively)

A
A
o= o+l
a=1

Given §p > 0, there exists A > 1 so that ”sz”Bg < 6o for large n. In what follows, we will use smallness

parameters 1 > g9 > 61 > Jp > 0, each of which will eventually be chosen depending only on the energy
of the initial data.

FIGURE 5. Atoms and the Besov error

Ultimately we wish to show that there can only be a single frequency block, i.e., A = 1, and furthermore,
that the energy of this block converges to the critical energy F..; as n — oo. Thus we now use the
following dichotomy:

e We have A =1 and lim,,_, Za:0,1,2 ||¢Z“||%i = Ferit .

e The previous scenario does not occur. Thus, for a suitable subsequence

lim sup Z ||¢>ga||2Li < Ecrit — 02
oo ,—0,1,2
for some d, > 0, and all a.
If the first alternative occurs, then continue with Step 4 below. Hence we now assume that the second

alternative occurs, in which case we will show that the sequence u” cannot be essentially singular. We
may of course assume that for each 1 <a < A,

. na
liminf " [|¢4|z2 > 0,
@=0,1,2
as otherwise we may pass to a subsequence for which the ¢”® may be absorbed into the error w?4. We
may also assume that
liminf %" [|g5|72 =limsup > [[¢a7][72
n—oo x n—o00 x
a=0,1,2 a=0,1,2
by passing to a subsequence. The issue now becomes how to choose the cutoff A. Due to the asymptotic
orthogonality of the ¢2* as n — oo, and for each a = 0,1, 2,
li lim sup [|¢a*[|72 = 0
i S i sup 052

n— o0
a>Ao
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For some absolute €y > 0 which is small enough only depending on E..;;, in particular smaller than the
cutoff for the small energy global well-posedness theory, we choose Ay large enough such that

> limsup[|¢2*]72 < o,
a> Ao n—oo
and then put A = Ay. Thus we now arrive at the decomposition

Ap
A
¢ = ont+ it

a=1

We may further decompose

A
wid = 3 gme A,
a=Ag+1

S tmewp o < <o

a>Ao+1la=0,1,2 "7

with the smallness property

By adjusting A, we can further achieve

limsup [[w™*| 50 < do
n—oo 2,00
for any given d§y > 0.
Re-ordering the superscripts if necessary, we may assume that the frequency scales (A2)~1 of the ¢"* are
increasing with 1 < a < Ag. The error term w?4° may be written as a sum of constituents

nAl” nAg" Al
[}

whAo = twa 0 . Fwe O 4 or2(1)

which satisfy the property that

nA nAF
(9.6) wa =P g W C T+ 0r2(1) as n— oo
with u¢ := —log A% and a sequence L,, — oo which increases very slowly. This can be done since w4 is

()
A¢-singular for each 1 < a < Agy. Thus the frequency support of wZAO is contained in the annulus

(Ap)
() el < el < )Ttk 08) =0, ()T im0

Figure 5 above is a schematic depiction of the situation Ay = 1 with a unique large atom on the right, but

with two smaller atoms on the left which are too large to be included in the Besov error (the three bumpy

curves between the atoms). More precisely, w?“° consists of the four small curves between the atoms, and

AP

We is the sum of the three curves to the left of the big atom together with the two small atoms, and

(1)
nAg

We the one to the right of the big atom.
Note that if we refine the frequency decomposition, i.e., increase Ag to A*) > Ay, then the components
(*)

(0]

n. .
We are decomposed into

AR na® (k)
/UJZ o = g ¢o¢ / + wZA
J

for suitable a;? € [Ap + 1,A®]. In Figure 5 one has j = 1,2 for k = 0 corresponding to the two small
atoms to the left of the large one. We may again assume that the a? are increasing in j and have frequency
support with increasing value of |¢|, for each k. Furthermore, we have

k
Z Zlimsup e 1122 < €0
n—00 °

a=0,1,2 j
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by asymptotic orthogonality and the choice of Ay. Our first goal, to be dealt with in the following section,

(0)
is to control the nonlinear evolution of the minimum frequency components wZAO . The idea behind this
is as follows: due to the energy constraint

. WA
limsup ||lwa™° |2 < Ecrit
n—oo

crit

(0)
we may subdivide wZAO into finitely many pieces be means of frequency localizations?! {P T, W }1 <i<

1000E,
€0

such that the dyadic intervals J, are disjoint, with UsJp = (—oc, (AL)~te=%»), and furthermore
nAL)
Py <0

Recall that (AL)~! is the frequency scale of the first frequency atom ¢"!. In particular, this means that

0
the frequency localized pieces P, JZ'LUZAO should be treatable via a perturbative argument. More precisely,
we shall run an induction in ¢ on a sequence of approximating maps with Coulomb data essentially (up to
errors which can be made arbitrarily small depending on a parameter dy, see Lemma 9.8 below) given by

No ) . nal®
E PJij 0 eszeZkzl,za O Xici<e Pryjwy

1<j<e

As always, we face the issue at this point that these gauged components are not necessarily admissible, i.e.,
they are not given by derivative components of maps R? — H2. In order to apply the perturbative theory
we shall need to show that they are close to such admissible data. This in turn follows from Lemma 8.5
provided we chose the intervals J, carefully; for this it is essential that the endpoints of these intervals do
not fall onto one of the ’small’ atoms ¢”*. Otherwise, condition (8.25) would be violated. In detail, this
is done as follows. Recall that the J; are chosen to be disjoint and such that

nA

(0)
"AO —ZPJU/ o , sup||P We HL2N80

(0)
On the other hand, upon refining the Bahouri-Gerard frequency decomposition applied to wZAO , wWe can

also write

nA{” na (0)
(9.7) wo =" a w™A
jz1

Here A > A is chosen such that ||ng(0) ||Bg < 0 for some constant dy > 0 which is to be determined,

while the aéo) are certain indices in the interval [Ag, A(O)]. Our choice of Ag ensures that

hmsupZHqﬁ Hig <¢gp
7>1

(0
Now, to choose the J;, pick for each of the qbzaj (which are finite in number) a frequency interval

a(®)

(e RO)1 (s

a; \—1p(0)
" )R
with R§.O) large enough such that

(0)
. na;
(9.8) lim sup HP L RO ba ’ HL2 < b,
n—00 [log(Ap o )~1—log R;U) Jog(An? )~ l4log R;O)]c v

21y suppress the dependence on n of the intervals J,.
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©)
which is possible due to the frequency localization of the atoms ¢Zaj . Here §p > 0 is a sufficiently small

constant such that §g = do(Ecrit ,€0), to be determined later. Picking n large enough, we may assume that
the intervals © ©
[(}\Zj Rgo))fl’ ()\Zj )*1R§0)]
are disjoint. We can now exactly specify how to select the J;: inductively, assume that
Ji=la1,b1], ..., Jk—1 = [ak—1,br—1]

have been chosen. Then pick jk = [ak, lNJk] such that ar = br_; and such that the integer Bk is maximal

with the property that
()
S P pgwa™ Hig < €0

@=0,1,2
~ a<.0) (0) a(vo) (0)
Then if by, € [log(A’ )~ —log R, log(Ay/ )~ +log R} for some j, we let

a(.o) 1 (0)
b, = log(Aw’ )77 +log R;

Otherwise, we let by = b. The point of this construction is that if the endpoint of Ji, happens to fall on
a “small atom” which may still be too large in BS’OO for our later purposes, we simply absorb this atom
into Jy.

{0 1nA{»

We can now state the approximate admissibility fact alluded to above. Recall that Re wZAO = w,

Moreover, the constant dg controls the Besov norm of the tails and is kept fixed. We begin with a statement
which does not involve the J,.

(0)
Lemma 9.7. There is an admissible map R? — H? with derivative components @2“0 such that

© . - . _
HIUZAO e Shm12 A7 Oy — Ppto i T2 8T ION -0

1nal® 1nal®
) L2

(0) (0)
Ay _(I)ZAO )

as n — co. The same applies to the difference we

) A 1nA®  9p A
Proof. Recall the relation that defines w? ° :wjn ° zwjn o

1A —1 —1 _1nA® 2n AL —1 _2n A
w) 0 — (yn) 2 : A akaj [wk 0 yn]7 w [ E A 8k6jw]. 0
k=1,2 k=1,2

() ©)
We now claim that the components wjl-nAO , wJQ-nAO
of a map, when n — co. Moreover, the error satisfies V™1o72(1) = or~(1). First, observe that by
)
Corollary 8.6, the component w;nAO is close in the above sense to

.. 1,2nA®
are or2(1)- close to the derivative components @ j o

(0)
(0) (0) _ _2nA
o0 = ()T YT ATy AT,y i B 80T
J
k=12

(0)
nAg ,

. . ) .
Next, introduce the auxiliary map (x y"“‘g)0 ) : R? — H2, with components defined by

(0)
0 (0) 0 0 - ~2nA
XnA((J ) — j : A_lak [w}inAo ynAé )]’ ynA(() ) o eZk=1,2 A lak’wk 0

k=1,2

Furthermore, as before we have

1n A -1 -1 _1nA® Y 2nA® -1 _2nA®
w0 = (") YD ATyt ey = Y A0
k=1,2 k=1,2

_1,2nA"
= Wy

and we set ¢ . In view of the preceding,

2n A" A 1,2n407
. = w.
J : J » =0

lnA((JO)

(0)
1nA (0) . _
"o — Q)ZAU e ! Zk:l,Q A 1ak<1>k

A© -1
we 0 e Xr=1,2 BT Ty, +or2(1)
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as n — oQ. |

A similar result now applies to the frequency localized pieces. This time one has to use Lemma 8.5.

Lemma 9.8. Given any d; > 0 one can choose dy < 91 as above such that for all large n

O . 1nal®
Prawg 0 et Xkma B0 e Py (>1
J b -
<t
may be approrimated within §1 in the energy topology by Coulomb components

(0)
(9.9) P gl A ey A o
of actual maps from R? — H2, uniformly in £. The same statement holds for the functions without any
exponential phases.

0
Proof. This follows exactly along the lines of the proof of Lemma 9.7: for the components > <o P wZAO
we use the approximating maps

(0)
(© oy - _1n ALY () () 1 - anag
xZnAO — (yZnAO ) 1 E 2 :A 18}6 [PJjwkn 0 ylnAU }7 ylnAU — ezk:l,2A Ok D<o Wy,
k=1,2 j<t
However, this time, the smallness of the error is contingent on the || - || 50 -norm of the non-atomic part
2,00

of zDinAE’O), while the contribution of the atomic part can be made small by choosing n large enough. More
precisely, (8.25) holds for all large n due to the frequency separation properties which we have imposed
on the various components, see (9.8) and (9.6). These separations become effective for large n due to the
orthogonality of the scales involved. (Il

As a general comment, we would like to remind the reader that all constructions here are not unique;
moreover, they are subject to errors of the form orz(1) as n — co.

9.4. Step 3: Evolving the lowest-frequency nonatomic part. As far as the evolution of ng‘()O) is
concerned, we claim the following result. Note that we phrase it in terms of the derivative components
that we just constructed. Once we have evolved all constituents of the decomposition from Step 1, the
perturbative theory of Section 7 will then allow us to conclude that the representation that we obtain is

accurate up to a small energy error globally in time.

(0)
Proposition 9.9. Let <I>ZA° be as in Lemma 9.7 and set

©
© Oy . ina
\I/ZAO = @ZAO e i T k=12 87 020

Then provided €9 > d1 > 09 > 0 above are chosen sufficiently small, and provided n is large enough,

(0)
the @ZAO exist globally in time as derivative components of an admissible wave map. Moreover, there is

(0)
a constant C1(Ecrit ) such that the solution of the gauged counterparts of these components, i.e., \I/ZA‘)

satisfy the bound
no
sup [|U6a" ||s(—70,71]xR2) < C1(Eerit)
To,1>0

(0)
Finally, \I/ZAO has essential Fourier support contained in (0,(\L)™1). More precisely, for some sequence

{R,}22, going to oo sufficiently slowly, one has

(0) .
(9.10) |Pewa o s < Ry, temolkmal

for all k > ul = —log AL and some absolute constant o. As usual, all functions belong to the Schwartz
class on fized time slices.
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The proof of this result will occupy this entire section. The idea is to run an induction in ¢ on a sequence

of approximating maps with data \IlﬁnAéO), see (9.9). As we start from the low frequencies, it will turn out
that the differences between two consecutive such approximating components is of small energy (provided
01 > dp are both sufficiently small). This allows us to pass from one approximation to the next better
one by applying a perturbative argument, albeit with a linear operator involving a magnetic potential.
Moreover, we need to divide the time-axis into a number of intervals which is controlled by the total energy.
A key fact here which prevents energy build-up as we pass from one time interval to the next, is that the
differences between these approximating components essentially preserve their energy, see Corollary 9.13.
The approximate energy conservation, in turn, comes from the fact that the difference of consecutive
approximating Coulomb components is essentially supported at much larger frequencies than the lower
frequency approximating components. For the remainder of this section we drop the superscript A(()O) from
our notation since we will limit ourselves entirely to the low frequency part. We begin by showing that
(still at time ¢ = 0) the step from ¥ 1" to U4 amounts to adding on a term of much larger frequency,
up to small errors in energy.

Lemma 9.10. One has
¢ -1 ‘ ‘ ~t
\Ija,n_\:[/a 7n:€O‘,TL:PJZ€a,n+€a,n
with ||€§"||Lg < 61. Furthermore,

—1,n __ —1,n I l—1.n
v = B, A + v,

i<e—
with ||\ilg’1’"||Li < 01. Similar statements hold on the level of the ®-components.
Proof. In view of Lemma 9.8 we may switch from ¥*™ to the corresponding expressions involving w”. For
simplicity, write

> Py wpn e e Rk AT <o Pyl s et

Jj<L
with g, real-valued. Since the Fourier support of f; is contained in Uj<,J; = (—00, b¢], for any k > by + 10
one has

1Pe(fee)l2 S | fePrro) € 2 S 275 fell2lV Peso) e’ [loo
S 27 fell2l AT D folloo S 27 R fell2l|ATED? fell2 S 2% Flw™ |13
S Eepip 227F

n
(a2

where FE.,;; controls the total energy, and thus also the L2-norm of w™. By construction of w?, one has

for any L > 0

lim sup ||P[bg—L,bz]wZ||2 < Lo
n—oo

Together with the preceding bound this implies that
H Z PJj ,wz e*iRe Zk:1,2 A1y, stz PJJ'U)Z - PU7<EJj Z PJj wg eiiRe Zk:LQ Aoy stg P‘]jw;;
J<e <
5 log[(Ecrit + 1)50_1}60 < 51

2

for small dg. Next, observe that
E Py w? e e Xkn 2 AT <y Pajwit
J [0
i<t
3 —i ATV Y 2y Pryuf — ALY, Pyl
_ R]nge iRe3 41,2 Ok 2o <o Pyjwy _’_Rjewze iRed g0 O X j<p Py 0y,
j<e—1

The first assertion of the lemma therefore follows from the following claims:
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e The function
PJﬁwn e—iRe Dk=12 A1, Zjéﬂ Py, wy
2 «
has frequency support in J; = [ag, be] up to exponentially decaying errors, and we also have

limsup || Pre [Ps,w}: e Re i1 2 8710 T, PJij] }
n—oo

L2 <51

e Furthermore, we have

H P, whe R X ko1 AT Yy Prwl P, D D AT R Y oy Py
2 : i E  We

Jj<e-1 Jjse-1

L§<61

for n large enough.

As for the first claim, note that we have already dealt with the case of frequencies larger than by. Thus,
assume that j < a, — 10 and estimate

1P (Pryw™ €)|l2 < 25 || Prw™ €[5 < 25| Prw" (|2 Pr,roaye’® s

j—ag

S22 Prwtls Y 27HPVE |y S Boriy 2
keJ+0(1)

Furthermore, as before one can “fudge at the edges” meaning

limsup || Pla, a,+2jwh]|, < Ldo
n—oo

which concludes the first claim. For the second claim we need to show
. -1 ] W . -1 n
H z : PJij(i zReZkzle BkZ]SK_lPJka (1_ e zReZk=1y2A BkPszk)’

J<e-1

< &
L3

where the implied constant is absolute (not depending on any of the other parameters). However, this
follows easily from the frequency localization up to exponentially decaying errors of
J
j<e—-1
as well as the fact that
lim sup HP[ae,aerL]U[be*L,bz]PJtszHL?E S Lég
n—oo

and we are done. The claim of the lemma about ® is easier since it does not involve any phases,
cf. Lemma 9.8 and Lemma 9.7. O

Our strategy now is to inductively control the nonlinear evolution of the ¥%4™, the Coulomb components
of the approximation maps, starting with £ = 1 . At each induction step we add a term €% of energy less
than €9. The key then is the following perturbative result. Recall that €9 > 0 is a small constant which
determines the perturbative energy-cutoff (it depends on E¢.i ).

Proposition 9.11. Let U5, €47, be as before, with 1 < £ < Cy(Eerit ,€0). Also, let

o
—1 — _ _ 1
o = max (3 27 PR, g W)
rez

for some small enough constant o > 0 (an a priori constant). We now make the following induction
hypotheses, valid for all large n: there is a decomposition Wi~tm = Wi=1n 4 gyl=1ln 55 that

(9.11) max |PeTE " | sag =101 xm2) < Cachy V)
(9.12) B4 s < Oy 6y

for some positive number Cs.
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Then there exists a partition W5" = Whn 4 Wb 5o that

(9.13) In(iiX ||Pk\ijf;’n||S[k]([—TO,T1]><R2) < Cs C,(f)
(9.14) ||‘i]§n |S < Cs5d

provided 6, < 09 = 69(Co, Ecrit ), 6o < 61 with &y as in the discussion preceding Lemma 9.7, and provided
n is sufficiently large. Here C5 = C3(Ca, Ecrit ).

It is important to note that we iterate Proposition 9.11 O(C“E%Dt&‘)

induction start from the small data result of [22]. It is clear that there is some constant d1; > 0 (depending
only on E.;;) such that choosing §; < 411 in each step, this proposition can be applied. This d1;7 > 0
dictates our choice of A in the decomposition

) many times, obtaining the

(©
na; A(O)
wy = E bo ’ +wy
J

from before, see (9.7). Another essential feature of the construction is that

(9.15) 15" s < K(Eerit)

where K is some rapidly growing function of the energy. This follows immediately from the inductive
nature of the proof and the fact that the number of steps is controlled by the energy alone. However, it is
crucial to the argument that we do not have to make gy small depending on the function K(E..;;) as we
go through the inductive process. In other words, we have to make sure that one can fix g9 throughout.
The idea of the proof of Proposition 9.11 is as follows: under the assumptions (9.11) and (9.12) we can
find time intervals Iy, Io, ..., Ip;, My = Ml(ég) as in Section 7, such that locally on I},

—1n _ qpf—1,n l—1,n
v =", + Uy

Here 1, is a linear wave and 9y, is small in a suitable sense, see Lemma 7.6 and Corollary 7.27. In order
to control the evolution of W™ we need to control the evolution of

Ln _ qln l—1n
€a _\I’a _\Ila

This we do inductively, over each interval I;, starting with the one containing the initial time slice ¢ = 0.
At this point one encounters the danger that the energy of %" keeps growing as we move to later (or
earlier) intervals I}, thereby effectively leaving the perturbative regime. The idea here is that we have a
priori energy conservation for the components W¢=1"  Wh™ while at the same time, due to our assumptions
on the frequency distribution of energy for W=1m €4 there cannot be much energy transfer between the
latter two types of components; more precisely, we can enforce this by choosing §; small enough. This
means that we have effectively approzimate energy conservation for €™, whence the induction can be
continued to all the I;. We can now begin the proof in earnest.

Proof. (Proposition 9.11) We inductively control the nonlinear evolution of €™. For ease of notation, we
set €, := €™ and 1, := U 1" and for the most part we also ignore the a subscript. Note that while v
exists globally in time, € exists only locally in time but we will of course need to prove global existence and
bounds for €. But for now, any statement we make for € will be locally in time on some interval Iy around
t = 0. Applying the divisibility statements Lemma 7.6 and Corollary 7.27 to v generates a decomposition
of R into intervals {I;}}L, where M = M(eo, |[¢||s). We may of course intersect these intervals with I
which we will tacitly assume. Fix one of these intervals, say I, which contains ¢ = 0. It will of course
be necessary for us to pass to later intervals in the temporal sense until we have exhausted the entire
existence interval Iy. In other words, our induction has two direction, namely a temporal one (referring to
the interval I;), as well as a frequental one (referring to the interval J;). These two directions are indicated
as vertical and horizontal ones, respectively, in Figure 6.

By construction, there is a decomposition

(9.16) V=1L +¥NL
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FIGURE 6. The two directions of the induction

_1
where ||[¢r|ls < ey * B2, and such that |[¢Yn]|% < ez,

T

1
(9.17) lozllslvells <

Here &5 is small depending on F.,;; and with ¢p < €5 < 1. We note the following important improvement
over (9.15):

crit

_1
(9.18) max |V |,y S ey T B
J

Thus by restricting ourselves to one of the intervals I;, we have essentially much reduced the nonlinear
behavior of the W. Proposition 9.11 will follow from a bootstrap argument, which is based on the following
crucial result. Recall that J; is the Fourier support of €(0) up to errors which can be made arbitrarily
small in energy.

Proposition 9.12. Let ¥ satisfy the inductive assumptions (9.11) and (9.12) and let € be defined as above.
Suppose there is a decomposition € = €1 + €5 which satisfies the bounds

llealls(r, xr2)y < C2C4 b1

9.19
(19 | Puer || spey(nxrz) < Cady VEkEZ

where we define
di = (Y27 H P Py,e(0, )lI75)?
re’Z
for some Cy = Cy(Ecrit ) sufficiently large, and some small absolute constant o > 0. Then we can improve
this to a similar decomposition with

C C
(9.20) €2l 51, xr2) < 74 Cs 01, | Prerll s, xre) < 74dk

for all k € Z, provided we satisfy the smallness condition 5, < 01(Ca, Ecrit ) and 6o < 81 with &g as in the
discussion preceding Lemma 9.7.

This proposition is the key ingredient in the proof. It asserts that the frequency profile of € at time
t = 0 is essentially preserved under the evolution up to some frequency leakage, which however is controlled
by the size of the underlying Besov error. What allows us to prevent energy of ¢ moving from high
to low frequencies (which is the main difficulty here) are gains in the high-high-low interactions in the
nonlinearities. Without these gains, there could indeed be this kind of energy transfer and the argument
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would break down. It is essential in Proposition 9.12 that C} is a constant that does not change throughout
the induction, whereas C5 does change.

If we accept Proposition 9.12 for now, then it is an easy matter to derive the aforementioned approximate
energy conservation.

Corollary 9.13. Under the induction hypothesis of Proposition 9.11 and assuming the validity of Propo-
sition 9.12, one has the following: For sufficiently small 61 (depending on Cy and Cy) and large n, we
have
Z HGaH%,?CLg(leR?) <é&o
@=0,1,2

where 11 is as above.

Proof. (Corollary 9.13) Due to energy conservation for the evolution of ¢ + ¢, we have

Z |a + 604”%% = constant
a=0,1,2

Similarly, we have

Z ||¢aH%z = constant

a=0,1,2

The crucial observation now is that

o4l = W1, + el +2ReY [ PooPhede
kez /R

on fixed time slices t = tg € I, and we can split

> [ poPew= [ poBeds Y [ Poieds
R2 R2 R2

keZ k€Uj§171Jj keJ;

Both contributions on the right are < C4C36;, which can be made arbitrarily small by choosing §; small
enough. To obtain this bound, observe that the induction hypothesis and Proposition 9.12 allow one
to transfer Lemma 9.10 to all times in the interval I;. Cauchy-Schwarz then implies the bound of <
C,C26,. O

Corollary 9.13 allows us to keep the energy under control as we inductively pass from I3 to its successor I
and so forth by restarting the procedure. Indeed, since the number of the “divisibility” intervals is bounded
by M(eo, Ecrit ), we can make d7 in the corollary so small (depending on this number) and n so large that
even the energy of the final € is no bigger than 2¢q, say. Even though we will now work on I, all arguments
carried out below apply to any of the later intervals I, I3, ... as well.

Proof of Proposition 9.12. We may reduce ourselves to proving the statement for frequency 2°, i.e., k = 0,
by scaling invariance. Recall that we have chosen the intervals I; in such fashion that (9.16) holds with the
stated bounds. In order to obtain the desired estimates on €, we distinguish between two cases, depending
on the size of the underlying time interval. If it is short, we use the div-curl system. Otherwise we use the
wave equation.

Case 1: |I| < Ty where Ty > 0 is some absolute small constant (to be specified). We shall use the div-curl
system linearized around v, see (1.12), (1.13), which takes the schematic form

dre = Ve + eV 1 ?) + 9V (whe) + eV (1e) + VT H(e?) + eV (€2)

The first linear term Ve on the right-hand side is estimated by bootstrap, choosing 77 smaller than some
absolute constant. For each of the five nonlinear terms on the right-hand side one needs to consider two
cases, depending on whether € gets replaced by €; or €.
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In light of the first part of the proof of Lemma 7.6, it suffices to prove bounds of either the form (all on
the set I; x R? and F any one of the expressions on the right above)

/

1
(Z |:HPkF||L£4Hﬁ_2+LfH_%+Lt°°H—2:|2) 2 < 020451
kEZ

where the sum is over all those frequencies k such that |I;| < 7127%, i. e. such that the re-scaled solution
where k becomes 0 falls into Case 1, or else, we get

| P F| < Cydy,

L;‘”Hﬁ‘%L’;‘H‘%-s-LtOOH—?
We consider the frequency mode k = 0 and divide PyF' into pieces which get either substituted into the
first or second bound above.

(a) The term ¢;V~1(¢)?); we cannot just use Lemma 7.4 of Section 7, since smallness there can only be
enforced by choosing 77 very small, which is counter productive in Case 2, when we work on a larger
interval. Hence we have to exploit the divisibility of the expression, which forces us to exploit the hidden
null-structure. However, we can easily conclude from the proof of Lemma 7.4 that

[PolerV ™ Pe—c ()]l a2 < do
provided we pick C = C(E¢;; ) sufficiently large, and thence

t
| / Poler V™ Pe_c(¥?)] ds||pgorz < do
0

t
|| Rle¥ Pecu?)) dslizes < d
0

for t € [-T1,Th], and from there

| [ RV Pec sl < do
compare (7.10) (provided T} < 1, say). Similarly, one checks that the contribution of
Byler V! P (4?)]
is acceptable, and so we now need to force smallness for
Bole VT Pco)(¥?)],

which we do by subdivision into small time intervals (whose number depends on ||¢||s). First, we observe
that choosing C; large enough depending on C' and E.,;; , we can force that

[ Poles V' Pc,c1(Qscy V)lllzz, < do,

and from here one can again infer that

t
||/ Poler V' P 0)(Qscy )] ds||spo) < do
0
for t € [-T1,T1], T1 < 1, say. The same applies to

PolQsc,e1V T Pc o (¥?)]
Hence we may reduce to considering
Pyler V™ P o) (¥7)]
where we automatically assume that ¢ = Q<c, v, €1 = Q<c,€1. Now we implement the customary Hodge
decomposition

wu = Rlﬂ/) + Xv
First, substitute the gradient term for either factor v, which results in the expression

PO [leilp[_cvc] Quj ('ll), 1/))}
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Now due to Lemma 4.17 etc that in case of high-low or low-high interactions inside Q,;(v,%) we can
estimate

1P-0,01Qusi (W, )2, S 1915
and one may then pick time intervals I; with the property that
Y Ixs Prckra1Qui (. )|72 . < 1
kEZ

which ensures “divisibility”. Thus it remains to deal with the expression

P0[61v_1p[_c7c] Quj(P>C2f¢)7 P>C21/))]

and indeed in light of Lemma 4.17 etc only the case when v = 0 needs to be considered. We choose
Cy > max{C, C1}. Note that in this case the inner null-form may have very large modulation (comparable
to the frequency of the inputs), in which case we cannot take advantage of the null-structure. The idea
then is to use the smoothing effect of integration over time. Specifically, we write schematically

PolerV ' Pc,01Quj (Pscyth, Pscyth)]

= Pyl V' P10 (P>, |V ' Pso, Rj)]
— Py[eiV T P10 (P, [V W Pscy Roth))]
( )

(9.21) = Py [erV ' P_c o) (P>, |V W P, Rj))]
(9.22) — Py[0ye1 V' Pl_c,c) (P>, [V ' Psc, Rit))]
(9.23) — PolerV ' P 010 (P>, V| "W Psc, Rot)]

Now it is straightforward to analyze the contribution of each term, keeping in mind our assumptions about
hyperbolicity of each input. For the contribution of (9.21), note that we have

t
/ Pyds[eiV ' P_c o) (P>, |V W Psc, Rj)] ds
0

= Pyle1V " Pc, o) (Psc, [V T 0 Ps e, Rj)(t, +)
— PolerV ' Pc o) (P>, |V W Py, Ri)](0, )

and we can then crudely bound (assuming 77 < 1, say)

IX=71, 7 [Poler VT P_c,o(Psc, [V T 0 Psc, Rj)](E, -)
— Pylei V' P ) (P>, [V WPy Rj))(0, )] Irz, < do

This again suffices for the bootstrapping.
Next, for the expression (9.22), we estimate it by

X7, 1) Pol0eer VP o) (Poca | VI Pocy Ri)] 2
Sorerllige 2 IV Poc,o)(Pocy VI Py RiY) | Lo 12
< dy

Finally, expression (9.23) is more of the same (due to the hyperbolicity of the inputs) and omitted.
We next consider the contribution of the terms arising when the substitute an elliptic term y,, for v, inside
~1(4)?). This leads to an expression of the schematic form

Py VT HV T VT (@7)])]
However, as is easily verified, we have

1Py [Pryer VT Py (VT PV (@02)]0) ]2, S 27 Wl D200l B ey | g 1P [0V (002)]]

m\»—A

LZH
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for suitable o > 0, § > 0, whence we get

1P [Pryer VY oV @)]0) 2 (1 wre) S 277 1Py el s (O 1V (@)1 )

. 1
L2H ™2 (I; xR?
=~ BH (1)

W=

Using Lemma 7.26, we can then arrange that the right hand side is < dy, as desired.

The corresponding estimate for eoV~1(1)?) is essentially the same, the only difference being that one
square-sums over the frequencies at the end.
We recall here how one infers the desired bound on ¢ in the small-time case as in the proof of lemma 7.6
from the above considerations: letting n(t) € C§°(R) be a (potentially very sharp) cutoff localizing to a
sufficiently close dilate of the interval I;, and letting n;(¢) be a cutoff localizing to an interval of length
~ 1 centered at t = 0, we write

t

Poc(t, ) = m(t)[Poc(0,) + /0 0(5)Va Poi(s, ) ds + /0 n(s) PV (42)] ds + ... ]

where ¢ is a Schwartz extension of ¢ satisfying the bootstrap estimate; more precisely, we can split € = &;+&9
with each one satisfying suitable bootstrap estimates as in the Proposition. The estimate for the first time-
dependent term (%) fg n(s)VPoé(s, ) ds is immediate:

t
||771(15)/O n(8)VaPo(s, ) ds| sy, xr2) S 10ll2[|VaPolllpse 2 < [|Poél| 5o re+1)

Next, we can again crudely bound

t
Im (0 / n(s) PoleV " (42)] dsl o) xz)

< lm(0) / n(s)PolEY 1 (W3)] sz + 194 [m () / n($)PoleV =1 ()] ds] |2

The only difference of this compared to the estimates above is the inclusion of the cutoff 7(s), which may,
however, be very sharp. To deal with this, introduce a C' = C(FE.;;) sufficiently large, and split

t t t
mle) [ a@REV WA =m(t) [ Qecm@RE T Wds+m(®) [ Queln(RET (0] ds
The second term here leads to a contribution that is bounded by

SQzcllpz 1Po[EV T (W)l r2 < iug27U‘k|”Pk§HS[k](R2+1)
€

For the first term above, 7y (¢) fot Q<c(n)(8)Py[EV~1(¢p?)] ds, one implements the null-structure and per-
forms integrations by parts exactly as explained in the first part of case (a) above. Note that when we
hit the expression localized to modulation ~ 27, j > 1 with a time derivative, the definition of S[0] gives
us an extra weight of 2757, which gives the necessary gain in —ko in the bad high-high interaction case
(where j = ko + O(1)).

In the remaining cases (b) and (c), we shall omit this last step (i. e. writing the Schwartz extension of
elr, explicitly), as the details are always quite similar. However, we describe it again in detail in case (d),
which is slightly different.

(b) The term ¥V ~1(1pe;) as well as 1)V~ (1ez) both will be placed in the €5 component, meaning that we
will prove that they have small S-norm. We start with ¢;. We claim that

(9.24) || Po[bV ™ (Pryto Py )l prrz < 27250 Py ol s | Prs €1 [l s ka) sup 277l P, )| sk
1€

for some og > 0. This follows by inspecting the proof of Lemma 7.4. If |ko — k3| > B|logdy| where B is
large, one concludes from (9.24) that

> 1P [V~ (Pr, o Pgen)]l| ez S CadP 79| sllex (0|2 sup 27| Py, ) | gy
|k2—ks3|>C|log 61| ki1€7Z
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Replacing Py by P and square summing in k yields a bound of
Ca o7 [0[IZ]ler(0) 2 < CaCe 6y

for the contribution of this case. This can be done by choosing B large depending on Eg,;+ , see (9.18). On
the other hand, if |ks — k3| < B|log d1], then we exploit that the Fourier supports of ¢ and e are essentially
disjoint up to small errors (bounded by < §; in the S-norm) and exponentially decaying tails. Now we
sum (9.24) over this range to obtain

(9.25) > [1Po[oV ™ (P Prger)ll ez S > 1Py (o ¥~ (Peyth Pyl i 12
|k2—k3|<B|log 1] |ko—k3|<B|logd1|
(9.26) + > | Po[rV = (Py 0 Prger)ll e 2

‘kz*kgISBllog(;l‘

For (9.25) one obtains as above
(9:25) < [[@llsller(0) ]2 sup 277 || Py spn,
k1 EZ
with an absolute implicit constant. Replacing Py with P, and summing over all scales yields the bound
o 1
S Ielsldlsllen(0)l2 S e * By Cad1e0 < C2Ca 6
_1
provided we choose €, * B2 g9 < Cy. Next, by the definition of the frequency envelopes c¢j and dy,

(9.26) < sup 27| P )| sy > 27702 =k5 )| P, || s ko) | P €1 | s ka)
ki L |k2—k3|<B|log d1]

—oolk —oolko—k -1
< sup 2 ool 1|||Pk11/)||s[k1] Z 9—0olk2 3|C2 Cl(cZ )C4dk3
el ko —ks| <B| log 61

< C5Cy 8y sup 277 Py o sy
k1EZ

This follows from the fact that dy was chosen to control the Besov norm of wZA(O), as well as the fact that

(0
the intervals J; where chosen in such a way that any of the smaller atoms contained within wZAO are

arbitrarily far away from the endpoints of J; as n — co. Rescaling this bound to P}, from Py and square
summing yields a bound of C3CYy ||¢]|sd0 < C2C401 by taking dp small enough, cf. (9.18).

Next, we turn to ¥V ~!(¢pe3). Here the smallness comes from “divisibility” again as in case (a). More
precisely, reasoning as in (a), we may reduce this expression to the form

Po[yV ™ P o) (ver)]

where we moreover have ¥ = Q.c, ¥, €2 = Q<¢,€2. Again the argument from (a) shows that we may
assume both inputs of P_¢ ¢j(te2) to have frequency O(1) (implied constant depending on C,C}, and
E.rit ). Furthermore, it is straightforward to check that if the two factors ¢ have closely aligned Fourier
supports, we obtain the desired smallness via Bernstein’s inequality. But if the Fourier supports of the
two 1 have some angular separation, interpreting the operator V‘lP[,C,C] as convolution with a kernel
K (z) of bounded (although possibly large) L'-mass, we may write

R[yV T Pco)(ver)] = / B[, 2) K (y) (9 (@ = y)ea) (- — y)] dy

R2
and then

¢, 2) oz = y)lez, S 013,
which follows from our assumption about the Fourier supports, as well as the fact that both frequencies
here are < O(1). But then we can again force smallness by picking the I; suitably, such that

I, [ PulPerso vl ) KW Parsoqyblo =iyl ) <1
keZ t
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By replacing the output frequency 0 by k and square summing over all frequencies for which the Case 1
condition |I;| < Ty27F is satisfied, we have then achieved that

(Z IRy weal; ) < CaCity

(c) The term ¢;V~1(vpe;) is easy, since it inherits the frequency profile of €;. More precisely, using the
same type of trilinear estimates as in (a) and (b) one obtains

1 Pr(e1 V™ (e sy xr2) S Cadilltpll ooz lexll oo 2 < Cady,

using (9.18) and the fact that [|e;|[zor2 < 2e0 (taking 6; small). The other cases are easier due to the
presence of d; coming from es.

(d) The term %V ~1(e2) splits into the terms ¥V =1(e2), ¥V ~1(e1 €2), and yV~1(e32). The last two are
easier due to the smallness of €. The first one is harder, as it inherits the frequency profile of 1 and
therefore needs to be incorporated in e€;. This means that we need to gain the very small &g, which is
only possible if there are high-high gains in the inner term of 1V ~!(e?) resulting from e;. Of course, this
requires that we expand this inner expression into a null-form via the usual Hodge decomposition.

(i): High-High-Low interactions in V~*(¢?). This is the following (schematic) type of term:

> PP,V Pi(PryePiye)].
k,k1,23, k<ks

It is straightforward to see that we may assume |k| < o3ka for some o5 > 0 (absolute constant independent
of the other smallness parameters), and furthermore ky = k3 +O(1) > B|log 1|, since otherwise the desired
smallness follows as in the preceding Case (b). We may thus essentially assume k; = O(1), k = O(1), and
reduce to the simplified expression

Z Po[Pk11/1V71Pk(Pk2€Pk3€)]
1=0(1)=k, k2 >B|log d1|

Suppressing the frequency localizations for now, we use the schematic relation
Po[vV 1] =Py [vV  (Rye'Rje® — Rje' Ry e?) + vV H(V eV () Rye) +
+ VI VT ([eV D)) + ..

where we omit the remaining quintilinear and septilinear terms. More precisely, we shall use this provided
both inputs € have relatively small modulation, i.e., are of hyperbolic type. In the immediately following
we shall be a bit careless about the order in which we apply space-time frequency localizations and apply
the Hodge decomposition. Due to the fact that the functions € are a priori only defined locally in time,
this is a potential technical issue (which did not come up when we applied the Hodge decomposition to the
’s, as these are a priori defined globally in time). We shall explain how to del with this difficulty further
below, when we explain how to construct the contribution to the actual Schwartz extension of ¢ from the
present case. Thus for ko = ks + O(1) > B|log 1|, we write

(9.27) Py [Py, ¥V~ (Pry€Ppyy€)] =Po [Py ¥V ™ (Piy Q> 1, €Pps€)| + Po [Py ¥V ™ (Proy Q < € Py Q> kg )|
(9.28) + Po[Pey vV (Ry Py Q< iy € Ry Pry Q< iiy€ — RjProy Q< iy € Ry Py Q<€)
(9.29) + P, 0V N (V1 PoyQ oy (eVH(€2) Ry Pry Q <y

(9.30) + P,V (VT PeyQaky (V1 (€2) Ry Pry Q<€)

(9.31) + P,V N (VT Py Q o, (eV 1 (0€)) Ry Pry Q <€)

(9.32) + Pe, )V (VT Py Qaiy (V1 (40%) Ry Py Q <€)

(9.33) + P, VNV Py Q o, WV 1 (40€)) Ry Proy Q <€)

(9.34) + Py )V NV Py Qi [eVTH(E)]V T Py Qe [eV ()] + - -

where ... denotes the remaining septilinear terms containing mixed -e-interactions. Again we may sub-
stitute e; everywhere for ¢, the contributions from e, leading to much smaller contributions. The first two
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terms on the right are straightforward to estimate: using Bernstein’s inequality, one obtains for (9.27) the
bound

[1Po [Py V ™ (Pry Qs k€1 Prgen)] 22, S min{|| Py ¥l e 2. | Py ¥l e oo M Pra Qs ko€l o2 1 Prsenllnge 2

_ka

<277 min{|[Pey¥illzeenz s | Pey il nge oo I Pro €l sppea) | Prs €11l s(ks)
Keep in mind here we assume k1 = O(1). Then by an argument similar to the one used to estimate (9.26),
replacing the output frequency by 2% and square summing over k = k; 4+ O(1) while also summing over
|k1 — ko| > B|logdi|, one can bound this contribution by < CoC%e3dg, which is enough to incorporate
this term into e;. The second term in the expansion is of course handled identically, and so we now turn
to the third term (9.28), which is the most delicate one. The potential difficulty comes when v = 0, as

the @, ;-null-form allows us to pull out one derivative otherwise; indeed, assume first that {v,j} = {1, 2}.
Then using the identity (and omitting the subscript from e for simplicity)

R161R262 — R162R261 = 81 [v7161R262] — 82[v7161R162],
we can estimate (always under the assumption k1 = O(1) = k)

1Py [Py )V ™" Pr(R1 Piy Q <y €R2 Pioy Q <y € — R Proy Q< y €R1 Py Q< iz,
S Pyl g 22 | Pr[V ™ Pry Q <y €R1 2Py @<yl | 12 1o

In order to estimate the right-hand factor, we use the improved Strichartz estimates: we have

Pk[vilpkgQ<k2€R1,2Pk3Q<k3E] = Z Pk[v71PC1Q<k2€R1,2PC2Q<k36]

¢1,2€Dky, —ky
dist(c1,—c2)=0(1)

whence we get

1 1
1PV ! Py Qs €R1 2 Py Qg lllzree S277 (0 Y 1PuQaroelliare)* (Y. I1PQarselliape)?

€Dy, —ky c€Dgy,—k3

ks
S27 H | Pr; €ll 51,15
j=2.3

whence we now have

| Po[Piy vV ™ Py (Ry Pry Q< iy € Ro Py Q <oy € — Ry Py Q <y €R1 Pry Q€| 12

_k
S P llier2272 ] 1Pk ell sy
7=2,3

From here one can again conclude as in case (b).

Hence we now consider the more difficult case where v = 0. First, it is straightforward to check that we
may reduce the first input Py, v to modulation < 29¢%2 where for example we may put o4 = % Then we
use the schematic representation

Py [Pk1Q<%zwv_lpk(ROPk2Q<k2€Rlpk3Q<k36 = Ry Py Q <y €R0 Py Q <€)
= Ro0i[ P, Q_ 12 ¥V ' Pe[V ™ Py Q <k €R1 P, Q€] — Po[ Py Q12 00pV ™ PL[V ™ P, Qi €1 Py Qi ]
- Ryl Py, Q<%2¢V_1PkR1 [V Py, Q<iy € Ro Pry Q<€)
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If one then integrates the transport equation for €, the contribution from the above terms is
PO[Pk1Q<%2¢V71Pk[v71Pk2Q<k2€R1Pk3Q<k3€H(ta )
— Po[ Py, Q_ 2 ¥V Pe[V T P, Q <k, €1 P, Qs €])(0, )

1
- / Po[Pr, Q _ k2 0pV ' P [V Py Q <y € Ry Pry Q< €])(s, ) ds
0 2

- /Ot PO[Pk1Q<%21/)V_1PkR1 [V P, Q€ RoPr, Qs (s, ) ds
But under our current assumption k; = O(1), k = O(1), we have the estimate (using Bernstein’s inequality)
||PO[Pk1Q<%27/1v71Pk [V Py Qi €R1 Pry Q <yl (¢, )
- PO[Pk1Q<%27/JV71Pk [V Py Q<hy€R1 Pry Q<iy €] (0, )| oo 12

S 278 Pl 12 | Prael vz 1 Poel ez

and the remaining integral expressions on the right also easily lead to exponential gains in —ko due to

the extra V1 applied to Py,Q<p,e. Our assumption ky > B|logd;| then allows us to incorporate the

contribution of all these source terms into €5. Note that the cutoff @ _x, in front of 9yt allows us to control
2

the effect of the 0.

We explain here how to deal with the construction of the actual Schwartz extension of € for the contribution
of the preceding terms, since this is a bit more complicated than in case (a); thus as at the end of case (a)
consider

m(t) / 0(3) PoluiV (2] ds

where we have a high-high interaction inside V~!(g?) but all other frequencies are O(1), as discussed in
the preceding. In particular, we have ¢ = Py, ;e with ky = k3 + O(1) > Bllogd;|. We first observe that
we are done provided |I;| < 277*2 for some small v > 0, since then we get

t
||771(15)/0 1(s)PolyV 1 (e?)] dsl|spo)y xr2) S [llz2 1 Po[V 1 ()]l Lge 22

_a —c 3B -0
<2722 (sup 2 W Py spy) < 677" (sup 277 M| Py s7a9).
keZ keZ

which is more than enough for inclusion of this contribution into the eo-part. Next, fixing some 1> 7/ > v
and letting ¢; be a smooth cutoff localizing to I; and which equals 1 for all ¢ at distance > 2772 from
the endpoint of I;, we write

t t t
m (t)/ n(s)Po[y V1 (%) ds = 771(15)/ ¢11(s) PV~ (e?)] ds +m (t)/ G21)(5) PolpV 1 (e2)] ds,
0 0 0
with ¢o =1 — ¢1. Then as before we get
t 5
Hm(t)/ $on(s) PV 1 (€9)] dsl|sjo)(ry xrey S 077 (sup 277 Py )
0 keZ

which is again more than enough to include this term into 5. Next, we decompose for some 1 > 7" > ~/
t
m(@) [ omoRwT ) ds
0

—m(t) / Qi (617 (8) Po [V (£2)] s + 11 (1) / Qs (617) () Polt V1 (7)) ds

L”
The second term on the right is again small since [|@>~rk, (#11)[|r2 < 9, =

right, we note that

For the first term on the

Q <ty (6177) = Q <yrky (B17) + O(27 N2,
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whence up to errors which can again be immediately absorbed into €2, we can perform the Hodge-type
decomposition for the factors in V~1(¢2?) and continue the calculations as after (9.27). Note that the
localization due to the factor ¢;7m also allows us to reduce the high-frequency inputs Py, .e by their
hyperbolic reductions Py, ,Q <, ,€ and still be able to perform the Hodge decomposition up to negligible
errors. This is because

161 Pr, Q<ir& = 191 Pr, Q< (ne) + O(27VF2)

and we have ne = n(R,e + x,). Of course, inclusion of the cutoff n destroys the frequency localization
again, but we have

n¢1Pk2Q<k2 (an/{':) = 77¢1Pk2Q<k2 (Ryé‘) - 77¢1Pk2Q<k2([1 - n]RVE)
and 1¢1 P, Q<, ([ — n]Rue) = Ope m(2*Nk2). As at the end of case (a), we observe that if the expression

at modulation ~ 27, j > 1, is hit by a time derivative d;, the definition of S[0] gives us a gain of 27/,
which translates into a gain of 27¢%2.

The remaining terms (9.29)-(9.34) no longer require an integration by parts trick and can be directly
placed into L7, with the requisite gain in k;. We treat here the term (9.30) given by

P,V H VT Py Qe (V1 (€%)) Ry Py Q<€)
where we always keep in mind the localizations k1 = O(1) = k, ko = k3 + O(1) > B|logd;|. The key here
is as before the improved Strichartz estimates. Write
Pk2Q<k2 (wvfl(EQ)) = Pk2Q<k2 (wvflp<0(€2)) + Z Pk2Q<k2 (,l/)vflps(EQ))
s>0

We treat here the contribution of the second term on the right, the first being treated in the same vein.
Now if s < ky — 10, we get

_ 1 Bky s—ky o
(D> IPQai WV P Fap)? S2 72770 270 Py | k) llll 7o 12

c€EDky,s—kq

Thus in the case s < ko — 10 from Bernstein’s inequality we get

||Pk1wv_1(v_1pk2Q<k2 (wv_1P8(62))RVPk3Q<k36)||L%YI
= Z HPlﬁwv_l(V_qu Q<ks (wv_lps(€2))RVP02Q<k3E)Hwa

€1,2€Dgy,s—ky
dist(cq,—c2)<2°

- 3 1
SIPtlizrz (S 1PaQe @V PN E) (Y IR P Qe
Cc€Dky,s—ky c€Dky,s—ky

s—ko

< 9—k20252 53( Yo—s 2
S 27027 2027 | Pyl s k) | Pro ¥l sika €l 2o 2

Summing over 0 < s < kg results in the bound

Y
S 277 | Pry | iy 1 Pro ¥ L spra) €l 2 oo 1.2

On the other hand, when s > ko — 10, we simply bound

_ _m
1P, Qcia (WY ' Po(€2))ll 3z S 27 7 [0 sllellfee

and from here one estimates the Lfﬁz—norm of the output as before but without using the improved
Strichartz, just the standard L} LS°-bound. The remaining terms (9.31) are handled similarly.

(ii) : High-Low/ Low-High interactions within V~1(e?) In this case one gains exponentially in the maxi-
mum frequency occurring among the two factors €, provided this is much larger than 1. In this case one
can argue as in case (b) to include this contribution into ;.

(e) The cubic term eV ~!(€?) is easy, and can be treated as in (a) and (b) above. Here the smallness comes
simply from the size of e.
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The bootstrap argument for € in the small time case is now completed as in the proof of Lemma 7.6,
cf. (7.10).

Case 2: |I;| > Ty, where Ty > 0 is a small constant depending on E.,.;; . Here we have to work with the
wave equation satisfied by Pye. We start by recording this equation schematically in its original trilinear
form, to which we apply various Hodge type decompositions as well as localizations in frequency space.
The goal is to write the equation in the form of a nonlinear wave equation with a low-frequency magnetic
potential term, which we will treat as part of the linear operator. To begin with, we have the schematic
equation (here we suppress the fact that e really stands for the system of variables {e,},a =0,1,2)

(9.35)
OPye = Vo Po[(¥ + )V ([Y + )] = Vo Po[(¥) VT (47)]
= PyV [V ()] 4+ PoVa [0V (e)] + PoV ot [eV T (¥€)] + PoVa [0V H€?)] 4+ PoVa i [eV ' (€%)]

More precisely, the terms on the right-hand side of (9.35) are exactly those given by (1.14). It is precisely
the first term on the last line which causes technical difficulties for the bootstrap argument, and we shall
have to include parts of it into the linear operator. However, this will only be made specific once we have
localized the terms suitably in frequency space. To begin with, note that we will implement a bootstrap
argument in order to deduce bounds on €. For this we substitute Schwartz extensions €, for each €, on the
right-hand side (these extensions agreeing with €, on the time interval I; x R? we are working on), and
then solve the inhomogeneous wave equation for €, improving the bounds we used for €,. Denoting the
right-hand source term above — with €, instead of €, — by F,, what we really do is solving the problem

\:\P0€a = P()Fa
In order to deduce the S-bounds on Pye,, we split this variable into two parts
Pyeo = PoQ>pea + PyQ<pea

Here the parameter D is chosen sufficiently large depending on 73 from Case 1 and thus depends on F,;t
(but is independent of the induction stage). Then we solve the preceding wave equation by setting

PyQspéa =0 'QspPyF,

t
PyQ<péa = S(t)(PoQ<péq)|0] +/ U(t —s)PoQ<pFa(s)ds
0
In other words, PyQ<pe, solves the following inhomogeneous wave equation:
(9.36) OPyQ<pe = PoQcpVat[eVTH1h?) + 9V H(ye) + eV Hye) + YV H(e%) + eV H(e?)]

First, we identify the terms which can be included in the right-hand side as source terms since they gain
smallness, which is achieved in part by introducing suitable Fourier localizations. To begin with, recall
that the basic version of the wave maps equation at the level of the Coulomb gauge is of the schematic
form

Do = i0°[PaAp] — i0°[YypAal + i0alt)” A)]
The estimates of Section 5 will be seen to imply that the middle term here can be included entirely in the

right-hand side, and the immediately ensuing discussion is only applied to the first and third terms. Split
the first term on the right in (9.36) (which is understood to be of the first or third type) into

PoQ<pVari[EV (%)) = PoQ<pVar[EV ' Pe_p,(¥?)] + PoQ<pVauy [V Ps_p, (1?)]

Here D, is a large constant depending like D on the energy in a “mild” way, i.e., independently of the stage
of the induction we are at, as will be seen shortly. Recalling that on I; x R? we have the decomposition

Y=L +¥NL,
we further decompose (schematically)
PyQ<pVa [€V71P<—D1 ("/’2)}
= PyQ<pVut[EV ' Pep, (¥7)] + PoQ<DVar [EV T Pep, (VX)) + PoQ<D Vot [EV ™ Pep, (b10n1)]
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Due to the smallness of ¢z, and (9.17), it is only the first term on the right which we need to incorporate
in part into the linear operator. Of course this requires replacing € by €, which requires some care due to

the non-local operator () p interfering with our aim. First, write

PyQ<pVat[EV ' Pe_p,(V7)] = PoVa [V ' Pe_p, (¥7)] — PoQ>p Vi [EV ' Pe_p, (¥])]

Since we only need to solve the equation on I; x R2, where € and € agree, we may replace the right-hand

side by
BV, [€V71P<—D1 (77[1%)} — PQ>pVay [€V71P<—D1(¢%)]

= PVt [QepeV ' Pe_p,(¥1)] + PoVat [Q>peV ' P_p, (¥7)] — PoQ>p V4t [V P<_p, (¥7)]

Now we introduce null-structure by performing Hodge decompositions as in Section 3, for all the trilinear

terms. In particular, the preceding discussion yields that we replace the schematic term

PoQ<pVa [V ' Pe_p, (¥3)]

by
> F¥(PyQ<pe; P<_p,; ¥, ¥r) + PoQ<pF3(& P<_p,; ¥r,v1)
j=1,3
+[ Y PF¥(Qep&; Pe_pitbr,or) — Y F¥(PoQep€ Pe_p,;tor, ¥r)]
Jj=13 j=1,3
+[ Y PFY(Qsp€& P<pyivhn,tr) — Y PoQspFal (& P<_p,;tbr, vr)]
Jj=13 j=1,3

5

+>  PoQenF* (& Pepyitbn, dr)
k=2

We can now write the wave equation that we use to solve for PyQ« pe as follows:

O(PQ<pe) = Y, FY(PoQ<p€; P<_p,;vr,¥r) + PoQ<pF2*(& P<_p,;¥r, ¥1)

i=1,3

+[ Y PF¥(Qepe&; Pe_pyitbr,or) — Y F/(PoQ<p€ Pe_p,;thr, ¥r)]
j=1,3 i=13

+[ > PFY(Qep€ Pep,;itr,dn) — Y PoQxpFY (& P _p,stbr, vr)]
j=1,3 i=13

(9.37) 5
+ D [PQepFIF (W +& ¥ +8), (¢ +8) — PIQepFa (v, 9, 0)]

=2

+ PyQ<pF2(& Pe_p,;nL,¥L) + PoQ<pF3(& Pc_p i, ¥nL)
+ PoQ<pF2 (&, N, ¥NL) + PoQ<pF2 (& P>_py;¢r, Y1)
(

+ PoQ<pF3 (¥, &) + PoQepF2(¢,1,€) + PoQ<pF2(€,&,v) + PyQ<pF2 (1, ¢,€)

+ PyQ<pF3(E,E€)

The significance of the first term on the right, i.e., the expression

Z FSJ (P0Q<D€7 ’(/}L7 wL)7

7=1,3

is that it implicitly contains a magnetic potential interaction term, see the discussion at the end of Section 3.
In order to deduce estimates, we shall re-arrange terms and move the magnetic interaction term contained

in the above term

(9.38) 2i0°(PoQ<p€)Ap, A= —P<_p,0; ' 1Qp;(vr, L)
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to the left, thereby obtaining an equation of the schematic type

(9.39) O(PoQ<pe) + 2i0° (PyQpe)Ag = F
The next issue occupying us is the derivation of a priori estimates for this type of equation, at first treating
F as a function with good Fourier localization properties and bounded with respect to || - || n-

9.4.1. Solving the wave equation with a magnetic potential in the Coulomb gauge. For simplicity’s sake,
replace (Py@Q<pe) at the end of the preceding section by e for this subsection. The key fact that is proven
here is the following:

Proposition 9.14. Assume that F is a function at frequency ~ 1, and ||Yr|| S Ecrir . Also, assume the
solution to (9.39) with data (€(0,-),0t€(0,-)) = (f,g), all supported at frequency ~ 1, to be supported at
frequency ~ 1 and modulation < 1. Finally, assume that

Dy > D1(Ecrit).

Then € satisfies the bound
lellsio) < 1 oy + 11CF 9 2 w1

with implied constant only depending on E..;; . Furthermore, there is approximate energy conservation:
10ee(t, )72 + I Vae(t, )z = 10ee(0,) |22 + Ve, )llzz + e(Dr) + O(|F || wpoyllells)

with ¢(D1) — 0 as D1 — oo, independently of t.

Proof. Recall that 0 < g < 2,

Ag=—=A0"" " 9;P_p,I[Rgtb Rjtb} — Retbi Ry

=12

and observe that these functions are real-valued and Schwartz for fixed times. The key difficulty comes
from the fact that there appears no obvious way to obtain smallness for the linear interaction term 2i9°eAg,
even when restricting to small time intervals. The easiest way out of this impasse is to use an approximate
a priori bound resulting from energy conservation. This will allow us to split the bad interaction term
into two, one of which is small due to angular alignment of the inputs, the other of which is controlled
due to the a priori bound. Moreover, we note that we may always move parts of the expression 2i9”? cAg
with additional smallness properties, such as extreme frequency discrepancies inside Ag or special angular
alignments, to the right-hand side, since we gain smallness for them as shown in Section 5. More precisely,
let us pick a cap size |k| = |k|(E¢), and write the underlying equation (9.39) in localized form as

(9.40) OP.e + 2i0° PoeAg = Py F,  Prel0] = (Pyf, Peg)

Here we also assume that D; above is large enough in relation to |k|(F¢). We next pick a cap size
|k1| = |k1(Ec)| < |k(Ec), but such that Dy > |k1]71%, say. Note that a computation similar to (8.19)
reveals that

| Po ' — PoF|| njo) < ol Prellsqo)

where ¢g = ¢(D1, E¢) can be made arbitrarily small in relation to |k|(E¢). Now make the following

Apriori Bound Assumption: There exist constants ¢; = c7(Ec, |k[), C7 = C7(Ec)|[||F||njo)+11 fll 2 +
llgll 711, such that

sup ||Pan<E210g|m€||L§;L§W < crllellso + Cr
w2k

We first show that this assumption, together with a standard bootstrap procedure, implies the bound
of the proposition. Then we establish the a priori bound. Observe that the localization to caps of size
|| is important in the first step, while we need to pass to finer caps & in order to establish the a priori
bound. Thus return to the original equation, which we write in the form

(9.41) ODe=F— Y 2i0°Peds, 0] =(f,9)
|5l =Ix| (Eo)
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Decompose the term on the right hand side into

. _ . + i : + T
F— Y 20°Peds=F— Y 200°PQ%, s — Y, 200°P.QL, . AL
Iw|=Isl(Ec) Iw|=Irl (Bc ).+ Iw|=Irl (Bc ).+
= D Q210000 Pacds
Ik |=Isl(Ec)

Here we define

AL = — Z

£1,2€ Klog |(Bopgy ) »AiSt(ER,81,2)<10[K|(Ecrir )  max{ki,2,3}<min{kyi,2,3}+Cs(Ecrit )

k1<—D
IA_l Z aij1+O(1)[R,B-sz,lﬂdjiRijs,lﬂzd}% - RﬂPk3,N2w%Rij2,N1wi]
j=1,2
- Z Nt Z 0 Pr,[RpPry01 R Pry)7 — RpPiy 07 R Prytbp ]
max{ki 2 3}>min{ki 2,3}t+Cs(Ecrit ) j=12

k1<—D1

and furthermore flﬁ = Ag — A;g. By choosing |x|(E¢) small enough in relation to E¢, and further using
Corollary 5.2 as well as Lemma 5.5 as well as their improvements in the small angle case, see section 5.3,
we infer that

1D 2i0° PoQ%, 1oy ey (AL I vio) S 1617 || Prell o),
+

and furthermore, exploiting the alignment of the inputs in the definition of AL as well as Cauchy-Schwarz,
we get

I Y 2i0° PaQEs 10 ey ANl S 161 lellsp0)
|kl=lxl(Ec),+

where the implied constant is universal. Next, consider

D Qsoiogie 0 PeeAp

ls|=|xl(Ec)

Here, we estimate

1Q<0(1) [@>2108 v110” PreAp] [ ni0] < 1Q0(1)> 52108 11 10° Prell 2121 Agl 212 < cs(Ec, |K])|| Prellsio)
provided Dj is large enough, where we pick cg(E¢, |k|) small enough in relation to the indicated quantities.
Similarly, we get

1Q>0(1) [@>2108 n1| PreAs] lInj0) < 1Q0(1)>->210g [x1 | PrellLz L2 |45l g, < cs(Ec, k)| Prellspo)

t,x

Finally, consider the most delicate term above, Z‘K|:|K‘(EC)7:|Z 2i8f8PHQ§210g |H1‘6AB. By definition of flg,
at least one input (both inputs being free waves) has some angular separation from =+« for its Fourier
support. On the other hand, the frequencies of the inputs are approximately equal to the frequency of the
output flg. Now using the “a priori bound assumption” from above, we obtain (with implied constants
only depending on E¢)

I Y 20°PQT g Aslva S DD [ sup 1P, 00 llri 22 ]

tw Ty

‘le‘ﬁ‘(EC)ﬁt |H|:‘K|(Ec),:|: w¢:ﬁ:2n
< Y erllells + €]
ls|=|kl(Ec), %

By picking ¢; small enough in relation to ||, we can bound the preceding by

< csllel[spo) + Co
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with Cy = C~'9(EC)H|F||N[0] + | flle2 + ||lgll -1]. Recalling (9.41) as well as picking cg small enough, it is
now straightforward to deduce the bound

lellsio) S N Nvioy + I 9 2 iz

We now turn to the proof of the aforementioned a priori bound: in effect, we will first prove a conceptually
somewhat simpler standard energy bound where we replace the null-frame energy by the standard energy;
this, together with the a priori bound, will in particular imply approximate energy conservation as Dy — oo,
as specified in the proposition.

To begin with, pick localizers Py, |k| = |k|(Ec, D1) with || — 0 sufficiently slowly as D; — oo, such that
if x (&) is the corresponding cutoff on the Fourier side, we have

PP AGES!
K
Consider the inhomogeneous problem

Oe + 2i0%eA, = F, €[0] = (f,9);

Under the assumptions of the proposition, we intend to show approximate energy conservation as in the
statement of the proposition. We localize this equation as before

(9.42) OPye + 2i0" PreA, = —2i0" Pre Al — P [2i0" €A, ] + [2i0" PeeA,] + P F, =: F,

where Al is defined as above but with Cg = Cg(FE¢, D;) and Cg — oo sufficiently slowly as D; — oc.
Note that we may arrange that

> (—log|s)!l| = PawFy + Fillno) — 0

K

as D1 — oo, for any . Finally, we shall also assume that ¢ = PyQ<p,€, where Dy = Do(D1) — oo as
Dy — o0. Indeed, one may apply such an operator to the equation and move the errors on the right-hand
side, as they can be iterated away. We leave these technical details to the reader. Now consider the
covariant energy density

1 ~ -
(9.43) > S0P + iAgPel> + > |0z, Pue +iA; Puel?]
K j=1,2
Compute
1 .7 2 1 -1 2
8t[§|8tPﬂe+onPﬁe| + Z §|8sz,€e+zAjP,.ie| ]
§=1,2

= Re[(0y Pue + iAo Puc)(0s + i40)*Pac + > (0, Pe + iA;Pr€)0y(Ou, Pre + iA; Pye)|

j=1,2

The second term on the right satisfies

Re[(0, Poe + i A; Pu€) 0y (0, P + iA; Pye)] = Re[(y, Pue + i A; Pue) (0, + i A;) (0 +iAg) Puel
+ Re[(0y, Pue + A;P€)i(0,Aj — 0, Ag) Pre]
— 0, Re|(Qs, Poc + iA; Pye) (9, + iAo) Pre]
— Re[(Dy, +i4;)? Pe (9, +iAo) Pre]
+ Re[(9y, Pue + iA; Pye)i(0;Aj — 0y, Ag) Pre]
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In summary, one obtains the following local form of energy conservation:
(9.44)

2 _
oy [%@PHE +idoPec? + > %\amj P.e+ z‘fljpﬂﬂ = > 02, Re[(0a, Pue + iA; Pee)(0; + iAg) Pre]

K j=1,2 Kk j=1

= [Re[[(0 +i40)* = Y (O, +iA;)?]| Pre (01Pue + iAgPuc)| + Re[(Oy, Pue + iA; Pre)i(01A; — On, Ag) Pre]]

j=1,2
We furthermore observe that any solution of Oe 4 2iA® 0, = F satisfies
(0 +i40)* = Y (0, +i4))*]e = F +i(0 Ao — Y Ou, Aj)e+ (Y A — Ad)e
j=12 j=1.2 j=12
We now integrate the above relation over a time slice [0, ] x R?, which gives

Z/ Lot idoPu Y 100, Puc +iA,Pocl?] (to, 2) do

312

_Z/ ~|0y Pre + iAg Peel? +Z |3x]Pe+zAPe|](0 x) dz

j=1 2
+Z/{O - Re[(Fy + (Ao — Y 02, Aj)Puc+ (> A2 — A3)) Pue (01 Pue + iAg Pue)| dtda
to] xR2 j=1,2 j=1,2

+ / Re[(0y, Pue +i4; Pye)i(0,Aj — 0y, Ag) Pue| dtda
[0,t0] X R2 ’ '

+Z/{0t] . Re[[(0: +i40)* = Y (On, +iA;)?, Pu](0y Pre + iAgPre)] dtda
o] xR2

j=1,2
We now estimate the three last integrals,

> / Re[ (9 Pue + iAo Pue) (Fy + (0 Ao — Y | 0u, Aj)Puc+ (Y A2 — A3)Pye)] dtda
[0 to]XR2

Jj=1,2 j=1,2

+Z~/[Ot] . Re[(Dy, Pue + 14, Pre)i(0yA; — 0y, Ag) Pue] dtda
0] XR2

+ Z/ [(0; +iAg)* — Z (O, + iAj)2, P.le(0y Pge + iAOPHe)] dtdzx
0

to XRQ j:1,2
One can classify four types of terms.

(1) The term ), f[o to] xR Re[(0, P, e+iAgPye)F, ] dtdz. Here one uses the duality of N and S, Lemma 2.19,
as well as the space- tlme frequency localization of e:

’Z/[Ot] N Re[(0: P €+iAygP, e) dtdx‘ < Z”F o) llell s
o] XxR2

Application of Lemma 2.19 is justified due to our assumptions on the modulation of €, which in turn
restrict the modulation of F' to the hyperbolic regime via the equation.

(2) The terms of the form ) f[o to] xR mel P.eVy 1 Peedtdz. These are controlled due to the angular
separation inherent in the definition of Az. Note the schematic identity

Vairdsg =Y VaiV ' Py [PrytorPryiL]
k12<—D1

Here our reductions for Ag imply k; = ky + O(1) = k3 + O(1) (where the implied constant may be quite
large depending on Ec.; , D1) and furthermore the inputs Py, ;41 have some angular separation between
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their Fourier supports and +x. But from this one infers that
‘ / Vot P<rA PreVy Peedtda| < 28| Pre| g
[O,to]XRZ

since one may pair each factor ¥, against a factor Pe.
(3) The terms

/ A2 P.eVy 1 P.edtdr
[O,to] xR2

are easier to handle. Here, one may use that

k
IIPAR] 5, S B2,

crit
t
which follows from the usual Strichartz estimates, cf. Lemma 2.17:

— — 3
IV Pl s S2 ’“II%H%LS S 25wl

HLgL
t

One may then use the L L%-control for € to get
Z’/ P, A? PV, Predtdz| < 25 e,
o J[0to] xR?

this bound of course being sub-optimal.

(4) The terms f[o,to]lez[(VW +iA)?, P,]eV; zedtdz. Here, using the observation that P.(fg) = gP.f +
A(f,Vg) provided f is supported at frequency ~ 1, while g is supported at frequency < log |«|, and further
A represents a convolution operator of bounded L!-mass, we reduce this case to either case (2) or (3) in
the immediately preceding.

Summation over small k¥ < —D; in (2), (3), (4) now yields the desired smallness provided D is large.
In view of the preceding, we may conclude that
(9.45) IVaee(t, )Lz = V€0, )2 + OO llelfg + I Fllniollellspop):

where v may be made arbitrarily small by choosing D;(FE.,;; ) in the statement of the proposition large
enough. Note that we eliminated the magnetic potential here from the covariant energy by means of the
estimate ||Ag||Leer S v < 1. Almost energy conservation claimed in the proposition follows from this if
we assume a priori control over ||e[|spo-

To achieve the latter, all that remains is to establish the “a priori bound” above over one of the null-frame
ingredients of [ - ||gjo;. This will follows by a very slight modification of the above argument; indeed, the
only difference will be that now we are integrating (9.44) over a region Ay, := [0,] x R* N {t,, > ¢} for
arbitrary ¢, with w € S! being a fixed direction. Recall equation (9.41). Also, recall that we introduced
a smaller scale |k;| immediately before the “a priori bound assumption” above. This extra scale now
becomes important: we may localize (9.41) further to obtain

(9.46) OPye= P.F — > P, (200" Py €A,

‘W1|:|Hl‘(ECa|H|)7N1C%N
provided Dy is chosen large enough. We further localize this to scale |x1| to obtain for k1 C 3k

+ : + i ot
Dpﬁl <210g\m|6 + 27'8VP’€1Q<210g\m|6A’/ - P2N1Fm7
where we construct A, as in the first part of the proof, but with inputs of angular separation from +x; now
comparable to |k1|, as well as the quotient of all frequencies involved in this definition. On the other hand,
Py, Fy, incorporates all errors generated, in particular those involving Af. In the sequel, we shall omit
the additional localizer leoglml but keep in mind that Py, e has this additional localization property.
Now we integrate the corresponding divergence identity (9.44) over Ay, for fixed ¢ and w ¢ +2x.
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This yields (for fixed k1)

/ Re[(0; Py e + iAo P, €)[(0r +i40)2 — Z (s, +1A;)2] Py, €]

§=1,2

+ Re[(0y, Py € + iA; Py €)i(0yAj — Oy, Ag) Py €] dtd

- 1 -
/ |atpme+¢Aopme|2 + Yy 5100, Prye + 1A, Py ef] dida
R2NAY j=1,2

(9.47)
/tR2 » |atPK1€+ZA0 ,ﬂe| + E |81]PK16+ZA Py €l ]dtdx
xR2NAY

]12

+ / |8tP,ﬂe + ifloPme\Q
{tw=ctnAay,

1 ~ ~ B S—
+ Z (5\8xjpme +iA; Py e* — w;Re[(0y, Py € + iA; Py €)(0; +iAg) Pu,€])| dx,
j=1,2

It is the latter integral expression that gives us the additional information we need: Indeed, use the
decomposition

= I 2 Ll 2
Z |0z, P € + zAije|2 = { Z (wjOs,; Pey €+ zijije” + | Z (wj‘(?ijme + zwj‘Aije)|
j=1,2 j=1,2 j=1,2
Recalling that w ¢ 2k, we can conclude that

_ 2
sup sup/ ' Z (wj‘@wj P e+ iwj‘Aije)
{tw=c}nA

et fe j=1,2

2 1Pl 2

since the magnetic potential is small in L L3°. Here the implicit constant depends on |x|, but not |x1]
(which we recall was chosen < |x|); this will be important since we can compensate a loss in this implicit
constant by picking |«1| small enough. Next, observe that

1 ~ 2 1 - - _
5\ > (wjOn, Py, etiw; A; Py, €) +§|5the—|—iA0Pme|2— > wRe[(0a, Pr, e+iA; Py, €) (0 + iAo) Pa€] > 0,
j=1,2 j=1,2

and also that, due to the additional localization coming from the (suppressed) Q
we have

<2log |11 | applied to P, €,

2 2
Z ||PN1€||NF[K]* 2 HPHGHNF[N]*
/ﬂC%ﬁ
In order to derive the desired “a priori bound assumption”, we need to estimate the first three integral
expressions in (9.47). To begin with, the argument given above for the standard energy conservation
implies that

> / [ |8, Py € + iAo P, e|> + Z \8I]PH16+ZA Py, ¢?] dtdzx
0xRZ2NAY

k1C3k j= 12

1 ~ 1 ~
—/ (|04 Py €+ iAo Paye|” + Z =|0x, Pey€ + iA; Py, €|?] dtda]
xgenag, 2 2900

(9.48)

S IVe,€(0, %0 + 1 F 1 310) + (D) llellZo) + I Fllvioyllellspoy

where we have v(D;) — 0 as D; — oo, and the implicit constant is absolute.
It remains to control

Z / Re|( 8tP,ﬂe+on r € )[(8t+zA0) Z(8$_7.+i[1j)2}Pme]
kicdr” Aie j=1.2

+ Re[(0y, Pr, € + iA; Py, €)i(0; A — 0y, Ag) Py ] dtda,
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which we do by essentially following the steps in (1), (2), (3) of the standard energy estimate above:
proceeding by exact analogy, we need to estimate the following expressions:
(1’): The terms

> Re[(8y Py, € + iAo Py, €) Py, Fit; | dtda
Aw
k1Cir " e

Here we recall that we suppress the additional localization operator Q= in front of e. To estimate

<2log |k1]
this term, write it as

Re[ > /R zﬂ(athe+iAoPHIe)XA;C(t,x)P2HIF,}1 dtda]

mlcgn

=Re[ Y /R M(atpme+z‘A0Pme)XAh(t,x)P2mF,$ dtda]

chgn

= Re[ Z /Rz+1(atpm€ + izZloPme)Png log |1 (XAZ’,C(t7 x)Pgml},i) dtdm]

nlcgm

where we again exploited the suppressed localization of € close to the light cone. Now we use Lemma 2.20,
together with Lemma 2.11, as well as Cauchy-Schwarz and the suppressed localization of € to bound the
preceding by

(01 Py, € + izﬁioPKle)Pﬁ1 Qinog I (XA;{U(t, JJ)PQ,.“F,{il) dtdx] |

S Pz el so VI Pz el sio) + 1Pz o F'll o]

where again v = v(D1, |r1]) can be made small as Dy, |r1]|~! — co. Note that the implicit constant in the
preceding inequality is depending on |&]|.
(27), (3), (47): The terms

> Vi APy, €V, P e dadt,
A

chgﬁ €

> A%P,, eV, P, edxdt
Ay

nlcgn €

> (Vi +iA)?, P eV pe dide
Ay

ch%ﬁ ¢

These are estimated exactly as in (2), (3), (4), exploiting the angular separation of the inherent factors,
as well as the fact that we may let D; — oo independently of |k;|. The “a priori bound assumption”
now follows from (1°)-(3’) by picking D; and |k1|~! large enough such that all terms in the above bounds
involving |[€|sjo) come with a factor of at most size c7(Ec,|x[), the latter as in the “a priori bound
assumption” above. This completes the proof of Proposition 9.14. |

Due to frequency leakage coming from the magnetic term we shall also require energy estimates that
take N — S, or alternatively, preservation of frequency envelope. For the following lemma, we allow more
general frequency support of A,. Hence consider the following equation??

(9.49) Ou + 2i0%udy] = F, ul0]=(f,9)
1

where F' has the property that F' = F; + Fy where ||Fi||n = (Zkez ”FH?V[k]) * is finite and with F
controlled by a frequency envelope, i.e., || P, Fa||nje) < cx and {ck }rez is sufficiently flat (as defined above).
22Note that here we have to take the derivative outside the product, since otherwise we cannot control high-high interac-

tions. In step 4 we will revert to the original form of the operator as before, without making a priori modulation or frequency
restrictions; this does not lead to problems there since we work with a function u instead of € with a different scaling.
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Furthermore, (f,g) = (f1,91) + (f2,92) with |[(f1,91)|/ ;2 z-1 finite and || Pe(f2, 92)|| 2y 7-1 < di where
dy, is again a sufficiently flat envelope. Finally,

Ay = A7 > 95[Rep Rjv} — Rptbi Ry
j=1,2
is more general than in the previous proposition. Here ¥} and 12 are finite energy free waves (with energy
bounded by Eci; ). Now one has the following result.

Lemma 9.15. Let u be a solution of (9.49) with F and f,g as above. Then u = uj + us + us where

luills < 1Fullnv + 1(frs90) 12w ig—1s and ||Pruzlsp S ck [[Peuslispg S de. The implied constants only
1,2

depend on the energy of ¥ ”.

Proof. We restrict ourselves to Pju. By scaling j = 0. Now split A, = Z§:1 Ag) where

(9.50) AL = Z PoA,, AP = Z P, A,
k<—-C —C<k<C

The constant C' in (9.50) is chosen such that the proof of Proposition 9.14 applies to the low frequency
part of A,. Then we write

OPyu + 2i0%Pou AL = PoF — 2iPy[0%u AP + 9%u AP)] + L(9%u, VAD)
Poul0] = Po(f,9)

Here L(-,-) stands for the commutator in Py(uv) = vPyu + L(u, Vv). We now divide R = Ue]\i1 1, into
disjoint intervals with the property that

max || Po[0%u AD + 0%u AP oy xr) < 7 [0llE D 277 M| Prull spig
keZ

where v > 0 can be made arbitrarily small, and M = M (E..;,7). To see this, one argues as in several
previous instances. First consider A1), In case of angular alignment of the Fourier supports of any two
of the inputs, one obtains a gain as shown in Section 5. On the other hand, in case of angular separation
the desired smallness is achieved by a careful choice of the I, see Section 7. Finally, for A®) one uses the
high-high-low gains in the trilinear estimates (see the form of the weights w(j1, j2, j3) in Section 5 when
max(ja,73) > C). The commutator terms satisfies the bound

IL(0%u, VAD) | vpo) S 27 welld D 27| Peull sy
kEZ

since VA(O}) gains a factor of 27¢. We now apply the covariant energy bound of Proposition 9.14 to
conclude that (with P; instead of Pp)

IPjullsgy) < C(Berit ) I1P;(f,9)l 2w + (v +279) D> 27730 Pea|| sy + 1P Fllvps))
keZ

The lemma now follows from this estimate provided the frequency envelopes are flat enough compared
to oyp. |

9.4.2. Controlling the error terms. In this section, we complete the proof of Proposition 9.12. This amounts
to bounding each of the terms on the right-hand side of (9.37) one by one using the covariant energy
estimate of the previous section.

We begin with the first term in (9.37), i.e.,, 35, 5 F31(PyQ<pe€; P<_p,;1, %) from which we which
we have subtracted the magnetic potential term. Thus, we claim that we can decompose, with Ag as in
(9.38),

> F¥(PyQ<p€& Pe_p,itpr,¥r) — 2i0° PoQ<pe Ay
j=1,3
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into the sum of two terms, one of which has controlled frequency envelope and the other small S-norm as
in (9.20). By (3.14), this difference equals

i1PoQ<p€q 1868;1P<7D1 Qs (Vr,vr) +iPyQ<pR e 351[P<7D18agﬁj(wL>wL)
+iPyQ<pd” [ea IC@;1P<—D1 Qp;i(vr,vr)] +iPoQ<pa €’ 163;1P<—Dl Qp;(Yr,vr)]

Denoting these terms by termi; - termy4, respectively, we now proceed to estimate them by means of
Section 5.2. Let us now assume that € is of the envelope type, see €; in (9.19). Then by (5.88)

[terman|ino) S 2777 | PoeallsiopllvcIE < Cado

for D; large depending on E..;; . The contribution of €5 is estimated similarly. For termi, one uses that
by Lemma 5.7

|1PoQ<pR%e 07 1 P00 Qs (Wi, i)l njo) S 27% | Poell sio 1o 1%

which is sufficient for both € 2 since k < —D;.
For termis, we use the last part of Corollary 5.4; thus if we choose the implicit constant in the definition
of I¢ sufficiently large (depending only on E.,;: ), we get

1iPyQ<p0” [ea I°0; " P<_p, Qp; (¥, vr)]lInpo) < | Pocallsio YLl

which is again enough for both the contribution of €; 2. The last term termiy4 is of course handled analo-
gously.

The second term in (9.37) is bounded by (see (3.16))
(9.51)  [0°PoQ<p[€0; " Pe_p, I°Qu;(thr, ¥r)lInpo) + | PoQ<p [RpE 05 ' Pe_p, 10° Qu (W1, 1) | vio)
We can bound the first by
10° PoQ<p (€05 Pe_p, I°Qaj (¥, %1 I vo) < |1 Poéllspo Izl
using Corollary 5.4 as well as choosing the constant in I¢ large enough, while we can bound
1PoQ<p [R3é 05 Pe_p, 10° Qo (Y1, 1) o) S 2777 IEl sior LIl

having used Lemma 5.7.

The third term in (9.37) is the commutator

> RFY(Qep€; P pyitr,vr) — Y F¥(PoQ<p€ P« p,;tr,vr)

j=13 j=1,3
= Py0°[Q<pea VAg] + Py0*[Q<pe’ VAg]

where the second line is schematic. Hence, the smallness for this term is obtained just as in the preceding
term via Lemma 5.7.

Next, as the fourth term we face the commutator

> PoFY(Qsp€ Pepyithr,vr) — Y PoQspFal (& Pe p,itbr, vr)

j=1,3 j=1,3

(9.52) = > PR F¥(Qsp& P pithr,br) — Y PoQ>pFy (6 Pe_p,itor, ¥r)
j=1,3 j=1,3

(9.53) + Y PoQxpF¥ (6 P<_p,;tr,vn) — Y, PoQxpFY (& P<_p,;tbr,vr)
j=1,3 j=1,3

First, (9.52) is bounded by
2771 || Poel | spo 19113
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by the same commutator logic as before and Lemma 5.1. Second, since € = € on I, the length of which is
bounded below by an absolute constant by Case 1 above, one obtains that, upon letting x; be a smooth

cutoff localizing to an interval containing I; obtained by adding an interval of length 2% to the top of I

|| Z P()QZDFSj(E — & P<*D1;wL’wL)HN[O](leRz)

j=1,3
5 H Z POQZD [Xle(:;)](e — € P<7D1;¢L7¢L):| HL%(Il;Lg)
j=1.3
+ H Z POQZD [(1 - Xf1>F§j(€ — & P<7D1 YL, wL)] HN[O](leRz)
j=1,3

S 27| Po(e = O)llee 2 1Pa—p, V7 (W)L e + 27 VP Po(e — &)l spolleoLll
S PP 27V Po(e — )l ez WL llE

where we used Bernstein’s inequality in the last line.
The fifth term is a collection of quintilinear and higher order terms, and we deal with it in the appendix.
The terms six through eight are easy by Lemma 5.1, Lemma 5.5, Lemma 5.7 and (9.17). More precisely,

1
they inherit the frequency profile of € times a factor of €4 ; this is good enough to bootstrap both €; and es.
The ninth term in (9.37) is split as follows, see (3.14):

PoQ<pF3(& P>—p,;vr,vr)

= i0° PoQ<plEa 10} ' P>_p, Qp;(¢r,¥1)] — iPoQ<p[PoRgé 9; ' 10° P_p,< <« 5Qa; (¥r, ¥L)]

—i0° PyQ<p[P>0Rgé0; ' I P50 Qa;j(tr, ¥1)] — i0° PoQ e p[Pes5RpE 0 1Py Qo (thr, L))
+iPyQ<p[Po0°E0 0y 'IP_p, <.« _5Qp;(tbr, 1)) + iPoQ<p[PoRE 8, ' 100 P p, <.< _5Qp;(vr, L))
+ 00 PoQ<p[P>oR €0 TP=0Qp; (11, 11)] + i0a PoQ<p[P< 5 RP€D; TPy Qi (vr, 1))

+i0°[eq 107 ' P> p, Qp; (Y1, 91)] — i0°[é5 1°0; ' P> p, Quj (Y1, Y1)

Denote these terms in this order by termg; through termigg. First, we rewrite termg; in terms of the usual
trichotomy:

i0° PoQ<pléa 105 ' Ps_p, Qp;(tr, ¥1)] = i0° PoQ<p[Pofa 105 ' P_p, <.« —5Q3; (41, ¥L)]
+i0° PoQ<p[P<—5éa 107 PoQp; (Y1, Y1) + i0° PoQ < p[Ps0a 107 ' P Qs (V1,91 )]
The first term in (9.54) is rewritten as the sum

0P PoQ<plPoéa 107" Pp,<.c—5Qp; (b1, 1)) + 0° PyQ < p[Poéa 10 P_p, <.« —5Qp; (¥, Y1)
+ 0P PyQ<p[Poéa 18;1P7D1§~<75Q3j(7;L7'(/;L)} + 0°PyQ<p[Poéa Ia;1P7D1§-<75Qﬁj(1Z)La15L)]

(9.54)

where we followed the notation of Corollary 7.29. Each of the terms containing 1/v) is bootstrapped easily,
using the smallness of €, and Lemma 5.5. Rescaling and square-summing these contributions are placed
in ey; alternatively, one can recover the frequency envelope using the smallness of §; for the bootstrap.
For the first term, we proceed as in (b) of Case 1. More precisely, using the smallness of dy (and the fact

that the Besov smallness of ¢ at the edges of the intervals J, inherits itself to 1) as well as the frequency
evacuation property for large n, one obtains that

10° PoQ<p[Poéa 105 P_p,<.c _5Q3;(thr, ¥r)]llnjo) S C3C360 Z |1 Prbr | s
r€[—D1,—5]

As usual, replacing the output frequency 0 by k and square summing, this gets turned into an .S bound,
leading to an €5 contribution. If € = €5, then it again suffices to consider . In this case, one needs to gain
extra smallness by partitioning I; further; however, the number of intervals needed for this partition only
depends on the energy in an absolute way (i.e., not on the stage of the induction). First, we may assume
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that there is angular separation between the Fourier supports of the two @L inputs due to the bound

> 10° PoQ < p[Poéa 105 ' P_p, <.« _5Qp; (P, V1, Pryr)]l v jo) < || Poélls(o)
K1,k2€C_m
dist(k1,k2)S27 M0
see Section 5.3. Here we used that |[11||% is bounded by the energy in an absolute way, which allows us
to chose my in the same fashion. On the other hand, the remaining term

Z 10° PoQ < p[Poéa Iaj_lP—Dlg-<—5 Qp;j(Pu, 1, PKJZJL)]HN[O]
K1,62€C_mg
diSt(K17R2)>27m0

is estimated by placing Q[Bj(P,ﬂ?;L7PH21;L) into L7, see the reasoning leading up to (7.16), followed by
a decomposition of the interval of integration. Here is important to note that D; only depends on the
energy.

For the second term in (9.54) consider first é;; then the frequency envelope of € is inherited by this
expression. More precisely, for P, one gains a weight 277 from Lemma 5.5 which is sufficient for the
bootstrap provided k is sufficiently large and negative; if not, then one applies the same divisibility as for
the previous terms. the same reasoning applies to €.

Finally, for the third term in (9.54) consider first the contribution by €;. In that case one has
955) 192 PoQ<n Poo R0, I Po0 Qs (br i)l S sup 277 =42l Pry ll s | Peatic st

1,~2
which can be made < C4C5 §; by choosing §p small and n large. On the other hand, if € = €5, then one
gains smallness in two ways: if any one of €, or the two ¢ inputs has large frequency, then ones gains
smallness from the weight w in Lemma 5.5. If the three inputs have frequency of size O(1), then one gains
smallness by divisibility as before.

Next, we note that termgs is treated in the same fashion as the first term on the right-hand side of (9.54).

The terms termgs and termgr are of the high-high type and are estimated exactly as in (9.55), and
termoy, termog are essentially the same as the low-high term on the righ-hand side of (9.54). To bound termgs
and termgg one applies the same divisibility considerations as in the high-low case of termg;. Finally, the
terms termgg and termqgg can be handled similarly, first reducing

I°07 P> _p, Qu; (Vr, Y1), I°07 ' P> _p, Quj (Y1, 9L

to frequency O(1) via Lemma 5.1, and then using the divisibility property for ||168]71P0(1) Qp; (YL, Y1) ||X8,75,2
etc.

The tenth and eleventh terms in (9.37) are essentially the same so it suffices to estimate the former.
Since the details are quite similar to the preceding arguments, we will proceed schematically. Beginning
with € = €1, we split
PoQ<pF3(¥,%,8) = PoQ<pFa (Y1, ¥r,€) + PoQ<pFa (Y1, ¥nL, )

+ PoQ<nF3 (N1, YL, &) + PoQ<pFa(nL, YL, €)

and furthermore, using Corollary 7.29,
PoQ<pF2(Wr,¥r,€) = PoQ<pFa(tr,¥r, &) + PoQepFi(Pr,vr,é)
+ PoQu<pFy (e, 1. &) + PoQuep Fi(tr, U1, &)

All terms here are going to be placed into the S error €, since they inherit the frequency envelope of ¥. The
trilinear estimates of Lemma 5.5 allows for this, with the required smallness for the terms containing vy,
is gained by the smallness of |4z ||s|[¢nz|ls. Furthermore, the terms containing ¢ are easy due to the
smallness [|[¢]|s < Cyd; and the bootstrap assumption on é (one then chooses £y small enough). The most
interesting term here is PyQ« DF(;‘S(@/;L, L, €). To place it in €3 one uses the same small Besov/frequency
evacuation logic that we have used several times before.

(9.56)

(9.57)
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The twelfth term in (9.37) is easy since it inherits the frequency envelope of ¢ and basically bootstraps
itself.

The thirteenth term has to be placed entirely into the S-error es. This can be done using the high-high
gain in Lemma 5.5 and in (5.41) as demonstrated several times before.

Finally, the fourteenth term is the cubic one which is again easy. This concludes obtaining the bootstrap
for Q<pe. We now need to do the same thing for

Q>pe

Since this is a technical repetition of similar reasoning, we again defer this to the appendix.

Finally, to complete the bootstrap, we of course also need to take into account the contribution of the
linear evolution of the data for PyQ<pe, corresponding to the first term on the right in the parametrix
(2.72) (with It corresponding to PyQ<pe). But according to the considerations following (2.72), we can
write

PyQ<pe=PQ<p (X[—Tl,Tl]E) + P0Q<D((1 - X[—Tl,Tl])G)
where 77 is as in Case 1 above, and x smoothly truncates to this interval and equals 1 on a smaller
sub-interval of length > D~!. Then using the bootstrap already accomplished in Case 1, we can split

PoQ<p (X[—TI,T1]€) [0] = fo + g0

where we have || fol| ;2 ;51 < Cado while for go, replacing 0 by general k € Z, we get >, Hngisz’I <
C4C561. On the other hand, we get

1PoQ<p (1 = x[=1,7:))€) [0]]] L2y 71 < Il s0)

by choosing D large enough, and so this also leads to an acceptable contribution This concludes the proof
of Proposition 9.12. (]

It is now easy to conclude the proof of 9.11. More precisely, as indicated in Figure 6, one proceeds in
the direction of increasing time by passing from I; to Is and so on. Writing Io = [ag, bs], one introduces
the frequency envelope

- . 1
dp = (D271 M| Pler(az, ) ]172)
reZ
and by the preceding argument, using the fact that ||e(az2,0)||r < €0, we obtain

elr, =e1+e2
with
le2llsraxrzy S 61, [1Prcall S di
with implied constant only depending on E,;; . But by the preceding step, we also have

dy < dy,

and we can then again conclude via Corollary 9.13 that the energy of €|, < € provided n and 67 ! are
sufficiently large. Even though e is initially only defined locally, Proposition 7.2 and the || - | s-norm bound
of Proposition 9.12 imply that e exists globally with the bounds stated in Proposition 9.11, see (9.13)
and (9.14). |

Proof of Proposition 9.9. This follows simply by iterating Proposition 9.12, i.e., by passing from J; to J
and so forth in Figure 6. Even though the constant Cs increases with ¢, in the end one obtains a bound
of the form (9.15). The final statement (9.10) is a consequence of our proof of Proposition 9.12 due to the
frequency evacuation of the first Besov error from the atom ¢¢. In fact, our estimates are based on control
of the frequency envelope which therefore implies (9.10) at all stages of the induction. O

We include here two Corollaries of the proof just given: note from the proof of Proposition 9.12 that
even if the perturbation €[0] at time zero is controlled by a frequency envelope ¢, which is concentrated
at much higher frequencies than ¥, nonetheless the evolution of € will also involve a component that is no
longer well frequency-localized (which forces us to implement the splitting € = €; + €3). The reason for
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this are interactions of the schematic form such as V; [V ~!(e?)], which ’inherit’ the frequency envelope
of 1. This issue is moot provided there is no distinction between 1) and e:

Corollary 9.16. Assume that 1, are the Coulomb components of an admissible wave map from (—Tp,T1) X
R? into H?, and that we have ||Pytba|r2 < ¢ for a frequency envelope with ¢;2~ =1 < ¢ < ¢ 2011
Vi, k, with o > 0 small enough. Then assuming a bound
%1l 5(1=70,11)xR2) < Co,
we can conclude
| Pt || s (=10, 111 xR2) < M(Co)cy
Proof. One proceeds just as in the preceding proof, but with 1 taking the role of €; thus write schematically

0Py = Vi o Po[buV (0?) L] + Via PV (W) i) + Vi Po[vr V™ () gl
where we set

fagr = PefPex—c.9, fugn = Puf Ph—cyk+cnd
keZ keZ

with C; a constant depending on Cy above. Then arguing exactly as in the preceding proof (in particular,
one has to implement the null-form expansion in the nonlinearity) one finds a collection of time intervals

I, j=1,2,...,N(Cp) such that
IVeoPolr V() el vz, xr2) + Ve Polr VT (0% Hll Njoj1, xr2) < sup 27K~ P | spayr, <)
S

provided Cy, N(Cy) is chosen large enough in relation to Cy. But then using Proposition 9.14, one obtains
inductively in j bounds of the form

| Petd |l spag 1, xr2y < M;j(Co)e

via a bootstrap argument on I; x R?. O

Corollary 9.17. Let 1o be as in the preceding corollary, with ||| s—7,m]xr2) < Co. Then there erists
01 = 01(Co) > 0 such that if 1o + €4 are Coulomb components of an admissible map wave map with

[€(0, )Lz < 1,
then the wave maps evolution of data Vo + €4 exists on [~Ty, T1] x R?, and we have
lells(=mv, 1) xr2) S 01
with implied constant depending on Cy.
Proof. This is exactly as in the proof of Proposition 9.12, with €y = 0, and €2 = €. ]

9.5. Completion of the proofs of Lemma 7.10 and Proposition 7.11. We commence by proving
the final assertion of Lemma 7.10. This follows immediately from Corollary 9.16.
Next, the proof of Proposition 7.11 follows from Corollary 9.17.

9.6. Step 4: Adding the first large atomic component; preparing the second stage of Bahouri
Gerard. Recall from Section 9.2 that we wrote the data ¢ of the essentially singular sequence (at time
t =0) in the form

Ao
da = 0R" +wil,
a=1
where Ag was chosen such that the sum

limsup D [|607]7; < <o

n— 00 a>Ag+1
As before g¢(Eeri¢) > 0 is an absolute constant that depends only on the energy. Then recall from

(i)
Section 9.3 that the atoms ¢7® “split” the error term w?“¢ into finitely many pieces wi , 0 <0< A,
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ordered by the size of |£| in their Fourier support. Of course our eventual goal is to describe the evolution
of the Coulomb components (with ¢? = ¢"! + i¢"?)

Y = gre i Dnm12 A7 k!

Our strategy then is to construct “intermediate wave maps” bootstrapping the bounds from one to the
next, starting with the low frequency ones to the higher frequency ones. In the previous section, we have
shown that we can derive an a priori bound

nal®1

(0 o . -
H\I/ZAO ||S = H(I)ZAO et Dk=1,28 10, ||S < CIO(ECrit)

provided we choose Ay above large enough and also pick n large enough. Moreover, we can then prove
frequency localized bounds of the form
na®
||Pk [(I)ZAEO) et 2k=1,2 Ailak‘i’kAo 1]

||S[k](]R2+1) < Cui1(Eerit )k

for a suitable frequency envelope ¢, with ), c2 < 1, say, and ¢, rapidly decaying for k ¢ (—o0,log(AL) 1),
where the frequency scales of the ¢"® are given by (\%)~1.
We now pass to the next approximating map, with data given by

nAf” 17,—i NYo) naf”1 nAl® _; A-19 na®1
[wao + ¢rl]e™ 2k=1,2 e [wy, +o5 ]+0L2(1) — i el 2k=1,2 e [wy, +oi]

nal®

. - )1 n
+¢316_1Zk:1«2A POkl +¢’“1]+0L2(1)

Here the first component satisfies

(0) (0)
(0) . _ nat®1 (0) . _ nAt0)1
D D L I P D DS or2(1)
. nA® . . nA®1 . . .
as n — oo since wq ° is singular with respect to the scale of ¢,” © ~. Technically speaking, this follows
by means of the usual trichotomy considerations. We now need to understand the lack of compactness of

the large added term
(0)
Do = i gl Timp 87 0k o]
[e3 (0% * « k)

which is where the second phase of Bahouri-Gerard needs to come in. 3
We now normalize via re-scaling to AL, = 1. This means now that the frequency support of "* with
a = 1 is uniformly concentrated around frequency || ~ 1. Observe that here we cannot get rid of the phase
(0)
et k=12 A oy 1, which may indeed “twist” the Coulomb components additionally. This will have
a negligible effect, however, since the i-system (1.12)—(1.14) is invariant with respect to the modulation
symmetry v — 1.

For technical reasons??

, we now apply a Hodge type decomposition to the components 174 (here 1,2 refer
to the derivatives on R? with respect to the two coordinate directions), as well as for 1;71“3 Thus write

(9.58) 1= 010" + Dho
(9.59) B = 0,0 — 019
(9.60) Jpt = 01" + Oan™
(9.61) PR = 0™ — O™

More precisely, we define the components &"“,({)"“, (" n™* using the preceding relations, imposing a
vanishing condition at spatial infinity. All of this is at time ¢ = 0, of course. Now following the procedure
of the preceding section, using the bound

4O
||\I]Z 0 HS < CIO(Ecrit)7

23This has to do with the fact that the energy of the free wave equation involves a derivative.
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we can select finitely many intervals I; (whose number depends on Cio(Ecrit )) such that

(0) nAl® nA©
(9.62) Aot = WO WY

for each interval j, see Corollary 7.27. Moreover, it is straightforward to verify that our normalization
AL =1 implies that |I;| — oo as n — oo; indeed, this follows from L°°-bounds.

Next, pick the interval I; containing the initial time slice ¢ = 0. Consider the magnetic potential (note
that we do not use the Hodge decomposition here)

(0) (0) (0) (0)
1 lrLA 2rLA0 InAy 2nAg
E AT W -V, v, ]
7j=1,2
Here we restrict everything to a non-resonant situation, i.e., we shall replace the above by
n __
4= >

K1‘2€K—An |k—k‘1|<1\n,‘k1—k2|<An
. >o—An
(9.63) dist(r1,2)22

> AT RIMP, ., Ty
j=1,2

1nA®

1nAL
0 PkQ,lw vy

2n A
0 sz,lm\:[l 0

2nA(O)
i ]

= Py, V5

)

where we have introduced the modulation cutoff

1M = Z PrQ<kta,

kez

Here we shall let A,, — oo as n — oo sufficiently slowly. The errors thereby generated shall be treatable
as perturbative errors. This time we use the full U, and not just the free wave part. Our notation is

0)

somewhat inconsistent, since we do not include A( . Since we keep this parameter fixed throughout this

(0)
section, this omission will be inconsequential. From now on we shall denote \I!MA = Wl" etc. to simplify

the notation. We shall tacitly assume that the U], allow the usual Hodge type decompositions as in the
preceding.

Definition 9.18. The covariant wave operator Oan is defined via
Oanu := Ou + 2i0"uAj,

The fundamental fact about this operator is that solutions obeying O »u = 0 preserve the energy in
the limit n — oco. This will allow us to modify the second stage of the Bahouri-Gerard method to the
covariant d’Alembertian instead of the “flat” d’Alembertian. We state this rigorously as follows.

Lemma 9.19. Assume that u is essentially supported at frequency 1, and that A, is essentially supported
at frequencies < 1. By this we mean that

(9.64) lim [|[P_g gjeul0]]|zz =0
R—oo

as well as

(9.65) lim ||[Ps_p¥""|ls =0

for any R > 0. If u solves
Oanu = 0, u[0] = (Osu, Vou) = (ug,u;) € L? x L?
then one obtains a global bound (uniformly in the implicit A,,)
||U||§(R2+1) S ||U[O]HL§

with implied constant depending on Ecriz as well as sup,, ||¥"||s (which control A™), and we can conclude
that

0eu(t, V72 + I Voult, Mzz = luo(t, )72 + lus(t,)ll7z + or2(1)
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as n — oo, uniformly in t € R, provided A,, — oo sufficiently slowly. We have introduced the slightly
altered norm

1
HU||§(R2+1) = HVmUHS(R?H) + ( Z Vz,thQZku“i'(O,%.eo) ?
kez

We also have

li P_p peull s =

A | P—r,rjeull g1y = 0
Proof. This follows by the same argument that we used to prove Proposition 9.14. In the latter proof,
we assumed that the Coulomb potential was defined in terms of free waves. In order to get the present
conclusion, one needs to invoke the decomposition from Corollary 7.27 on suitable time intervals. The
additional contributions can be handled just as in the proof of Proposition 9.14. We have modified the
norm to || - || to accommodate the different scaling and to strengthen it in the large modulation regime.
This is possible since we don’t have a time derivative hitting the term 2i0"uA}, see e. g. the estimates in
[56] in the simple case of large modulation for the output. These considerations easily furnish a bound of
the form

l[ullg < [[ul0]]| 2
with implicit constant depending on ||¥||s. Similarly, one obtains the frequency localized bounds
[1Prulls S cx

where we put

o= (X 2 Pafo]3)

IEZ

with o > 0 sufficiently small, just as in the proof of Proposition 9.12. In order to get the asymptotic (in
n) energy conservation, one writes

(9.66) OP_gr,rQ<2ru + 210" P_g gjQ<2ruP<_10rA,

= —P_p r)Q<2r[2i0"uA}] + 2i0" P_p pQ<2ruP<_10r A}

= —P_p,g) (200" Q>2ruA}| + P_g rjQ>2r 210" uA])

+ [2i0" P_ g rQ<2ruAy] — P_g p)[2i0"Q<aruA}] =: Fp
But then for fixed R > 1 we have

T [|FRlly =0,

where [|Fllz = (Xez ||VkaF||?V1[k])%, and || - ||n,x) is defined as in Definition 2.9 but with || -
||Xk_%+51_1_5)2 replaced by || - ”X;L_%’l. The latter modification is again a consequence of the fact that
in the large modulation case, one gets a better estimate for the expressions 2iP_g gjuA} as there is no
outer time derivative, and simple modifications of the proofs in section 2.3 (see also the proof of the energy

estimate in the high modulation case in [56]) yield that this modifcation of || - || 5 suffices to recover || - || 5.
Similarly, we have

OP_p,rQ>2rU + P_p rQ>2r [0"uA}] =0
and one checks readily that
lim ||P[fR,R]Q22R [8”1@42] ||1\"/v =0
n—oo

But then the argument of the proof of Proposition 9.14 yields that
IVioP-r R Q<2ru(t, )|z = |VioP-p r1Q<2ru(0, )| 22 4 o(1)

and further V¢ (where o(1) indicates the behavior as n — o)

IViaP-rrQ<2ru(t, )|z = IVizult, )| r2 +o(1)

lim
R—o0

which gives the desired asymptotic energy conservation. O
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In our applications of Lemma 9.19, (9.64) will hold due to the frequency localization inherent in our
construction of the atoms; in other words, u will be 1-oscillatory after rescaling. The other condition (9.65)
will hold due to (9.10), at least at the first stage of the construction (i.e., when adding the first atom as
we are doing here). For a = 2 etc. we will use the exact same frequency evacuation property which gave
rise to (9.10) in the first place.

9.6.1. Dispersion for the covariant wave equation. In this section we prove a weak form of dispersion for
the initial value problem

(9.67) Oanu =0, ul0] :=(f,g)

where Oy4n is as in Definition 9.18. For simplicity, we first consider the case where A7 is defined as
in (9.63) but with free waves U7 . We shall assume that (f, g), whence also u by Lemma 9.15, are essentially
supported at frequency 1, see Lemma 9.19. Generally speaking, u depends on n away from the time ¢y = 0,
but the above limit is uniform in n and holds on any time-slice. We assume that the free waves ¢} satisfy

(9.68) Jim [P gy7 2 =0

for any R > 0. We now claim the following main result of this subsection for the covariant wave equa-
tion (9.67). For simplicity, we drop n as a superscript.

Proposition 9.20. Let u be a solution of (9.67), with (f,g) € H' x L?. Given v > 0, there eists a
decomposition
U = Uy + Uz

with the following properties:

o uj o satisfy the same a priori estimates which were proved for u in Lemma 9.19

o Jluallg <~

e there exists to = to(7y, f, g, Ecrit ) (but to does not depend otherwise on r,) such that for |t| > to

one has that

(9.69) Jur(t,)llzee <,

uniformly for large enough n.

The proof of this result will be split into several pieces. The idea is to first obtain a “parametrix” for
u, which is established by restricting to suitable time intervals (this is done via “divisibility”). Once we
have such a parametrix (more precisely, a representation of u as a sum of Volterra iterates starting with
the free wave), we can use the dispersion of the wave equation to prove the desired result. First, we follow

Tao to establish the following divisibility lemma?* .

Lemma 9.21. For any e, > 0 there exist a partition of R into intervals {I;}}L, where M < (Ecpit eThHe

for some absolute constant C' with the property® that for any u

énjaéw [0%u AavalN([ijZ) < exlfulls

Note that the intervals depend on 1, (but not on u), but their number does not (other than through the
energy).

Proof. According to the trilinear estimates of Section 5, we may assume that there is angular separation
between @ and the waves in A,. Otherwise there is the desired gain. The amount of angular separation is
very small and depends on E..;; and ;. We shall now implicitly assume that 0%u A, respects this type
of angular separation. Note that we may restrict ourselves to the case of high-low interactions between u
and A,, since for the other cases, the divisibility follows by using the same argument as in the proof of
Lemma 9.15. Also, since by the preceding lemma we have that u is concentrated along frequency ~ 1, we
may reduce to considering the zero frequency mode Pyu.

24714 appears likely that an alternative approach to the pointwise decay is to use commuting vector fields. This would
force us to strengthen the norm assumptions on ¥}' even more, however, and so we opted for the present approach
25\We define IFllg-1y = IVaFln
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By (2.29),
k
0% Pou AavalN < C(Eerit €1) Z 2% | Pou Pkle”Lf,z | Protbr|ls
ki<—-C
1
(.70) < CFein,en)( X 27 1P Povnls ) loells
ki<—-C

Next, by Theorem 1.11 of [50], assuming u to be a free wave, for each k € Z there exists a collection Ty,
of tubes 7} of size 0o x 2% x 2% centered along a light-ray and aligned with the Fourier support of u such
that #75 < (Ecrit e 1)¢ and so that, where ¢ > 0 is small and will be determined,

k
(9.71) 1Pou P, il 22 e, < €27 |[ull2]| Prytbrl2

where Q== U, o7,
1
Remark 6.6 in conjunction with Lemma 2.22, we conclude that we can write

7. In our case u is of course not a free wave; however, by Remark 5.12 as well as

U = Uy + uz

where
uzllg < e2llullg

while
Uy :/faua v(da)

is a superposition of free waves u, with the same frequency support properties as v and
[ lataliz vida) < Celluls, fu€ 1% Wall, <€
Thus for v in the original sense, choosing € in (9.71) of the form C(Ei ,c2) ‘2, we get
| Pou Peyell iz e, < 227 [lullsiolll Py ozl
Inserting this bound in (9.70) yields

1
107 Pou Aallg;1n < CBerinen) (Y 27" 1Pu P vnl3s g, ) el
ki<—-C

1
B 3
+C<Ecrit751)( ooy ||XT;POUP1@1¢L||%3’I) lvcls
ki<—=C €T
< C(Eorit ,51)52||u||s[0]”¢L||2S
1
i 3
F CBie)( 2 Y [Pl ers g Ptnl e ) Il
ki<-C TileTh

By picking €2 small enough in relation to €1, we can achieve the desired smallness gain for the first
expression on the right. Next, by a standard TT* estimate, and for all k; € 7Z,

k1
X Prtorllzzre S22 (1P vrll

whence

|

— 2 —
(D27 3 Mo Puvelers)” S (Beriee™)C N le

ki1€Z 'r,il GTkl

Therefore, the exist intervals {Ij}jj‘il as claimed. Since the constants C(e2) and C(E¢p+,1) depend
polynomially on the parameters, we are done. O

We can now prove Proposition 9.20. We will assume that the energy of the data (f, g) is also controlled
by E.-i: although this is only a notational convenience.
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Proof of Proposition 9.20. With {I;}1<j<as as in the lemma, we relabel them as follows: with initial time
0 € I;,, we set Jo := I;,. At the next step, we define J; = I, and J_; := I}, where I}, is the successor of
I, (with respect to positive orientation of time), whereas I, is the predecessor. In this fashion one obtains
a sequence J; with 0 < i < M’" and M’ < (E¢pit Efl)c as in Lemma 9.21 where &7 is small depending only
on E..;; . Next, let u be the solution of

Ou + 2i0%u Ay =0, ul[0] = (f,9)
We claim that u(®) := u’ J, can be written as an infinite Duhamel expansion in the form

oo
uw® = Zu(JU’e), u(70:0) (t) := S(t)ul0],
=0

t
yJot) ,21-/ Ut — 5)0%u 4=V A, (s) ds
0

where S(t) = (U, V)(t) is the free wave evolution, and U(t) = %, V(t) = cos(t|V|]). Of course, t € Jy

in this equation. Due to the energy estimate of Section 2.3 and Lemma 9.21, this series converges with
respect to the S-norm. In a similar fashion, we can pass to later times: u(?) := u|J’v satisfies

(oo}
u® = Zu(Ji’Z), w0 () = S(t — t)ul [t
=0

t
(9.72) ue) = —2; / Ut — 5)d%ul+*=1 A, (s) ds
t.

i

where t € J; and t; := max .J;_1 = min J; for i > 1 and tg := 0. Observe that
U(Ji’o) (t) = S(t — ti_l)u(iil)[ti_l]

(9.73) -2 Z/ Ut —s)xs._, (s)0%ui-19(s) Ay (s) ds
e=1"7ti—1

for all t € J;. If i > 2, we expand further to obtain
S(t - ti_l)u(iil)[ti_l] = S(t - ti_z)u(iim [ti_g]

This procedure can be continued all the way back to ty = 0 and yields

(9.74) WIO() = S(1)(fr0) S 2 [ U (a0 (s) Aus) ds
k=0 (=17t

for all t € J;. Inductively, one passes from this term to u(/i¥) for all £ > 0 by means of (9.72). We next
claim that for each 4, the functions u(/i"Y) become small with respect to | - |5 provided ¢ is large enough.
This is a direct consequence of applying Lemma 9.21 to the above iterative definition of u(/*) as well as
the basic energy estimate.

Now fix a number v > 0. We will show that there exist ty = ¢o(7y) and no(y) with the property that if
[t| > to(7y) and n > ng(7y), then we can write

U = uy + Uz
where
luallg <~
and
lur (8, )| <
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for [t| > to, uniformly in n > ng(y). We start by reducing ourselves to a double light cone. Indeed, pick a
large enough disc D, in the time slice {0} x R? with the property that

IxDeu[0][[2 < vy
Here xpe is a smooth cutoff localizing to a large dilate of D.. If we denote the covariant propagation of
X D;u[O] by 2, then we can achieve that
la2]lg <
by means of Lemma 9.15. We are thus reduced to estimating 4; = w — Ug, which by construction is

supported in a (large) double cone whose base depends only on v. We can then expand @; in terms of
Volterra iterates just as before, and there exists £, with the property that

(9.75) S s <4

i >0,

Furthermore, note that all the iterates ﬂ'lji’g are supported in the same double light cone with base D.,.
We now show that @iy = uy + ub where [|ul| g < v and u; has the desired dispersive property. Setting

Uy := @iy + ud then concludes the argument. First, in view of (9.75) and the fact that the total number of

J; is controlled by the energy, we may include the contributions of £ > £, in ug

By Huyghens principle, @; = x(¢, z)u; where for the remainder of the proof x(t, z) is a smooth cut-off to
the region |z| < [t| 4+ p with p being the radius of D.,. Then we can write

t
(9.76) "0 (1) = —2ix(t,x) / Ut = 8) Py [09057 7Y Aa(s)] ds
ti
t
—2ix(t, ) | Ut = 8)Pr_pycocngle [0°0 7 Ag(s)] ds

t;
We now show that the second integral splits into a term of small Lg°L2°-norm, and one of small S norm.
First, consider Pj«_,). Then by Bernstein’s inequality, and the energy estimate

Hx(t, ) /t t U(t — 5) Pl gy [07087 70 Ao (5)] dsHLgo

t
(9.77) < gho / Ut 5)Peig [0 Ao ds|
ti t T
(9.78) S 270 B 0777V 5 < O(Berie )27
whereas for Py, one can essentially (up to tails which are handled by Lemma 7.23, for example) remove

g‘]’”e_l) obeys that very localization. In conclusion, the resulting term

the exterior x since the interior 0%
is placed in ug Now consider the main term (9.76). Decompose S! into caps x of size ¢(Eei;,y) which
is a small constant. Denote the corresponding decomposition of the double light-cone {|z| < |t| + p} into
angular sectors by {S.}.. Associated with the S, there is a smooth partition of unity >, x. = x. Write

(9.76) as the sum

t
. o~ (Jil—1
(9.79) 23" Xt 2) /t Ut = 5)P_ty<-<ho) Peaang [0°0077D Aa(s)] ds
t
; o~ (Jit—
(9.80) +20Y valt2) /t U(t = )P ko< <ot Pigaam 07870 Aa(s)] ds
Here é = I%I and the sign is selected according to the decomposition into incoming and outgoing propagator:
1 . .
U(t) = it|V| _ —it|V|
(1) = g™ =]

By Bernstein’s inequality the first term (9.79) satisfies
1(9.79) ||L§°L};o < C(Eerit )‘}4}|% ”ag(]mf—l) s
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which can be made small for small x. Also note that
_ &
€]

where the choice of £ depends on whether the propagator U is incoming or outgoing. Now we make the
inductive assumption (relative to ¢ and 4) that

981) e Pregag@ IOz + X —taizi @™ (6 2) | e < On (i€ Berie , IH Y
where the + sign is according to whether the function has space-time Fourier support in the upper or lower
half-spaces, i.e., whether 7 > 0 or 7 < 0. Strictly speaking, the cap size here depends on (i,¢) with the
size ¢(Eecrit ,7y) from above being the size at the end of the induction (recall that there are only finitely
many choices for these parameters). But for simplicity of notation, we suppress this dependence from
the notation. Note that we only have finitely many values of £,7. Now to estimate the second integral
term (9.80), we distinguish between a number of cases: first if |s| < |¢| (where the implicit small constant
depends on ||), due to the a priori support conditions satisfied by ﬂg‘]i’efl) which forces |y| < |s| + p, we
obtain the desired gain in ¢ by integrating by parts with respect to || in the Fourier integral representation
of U.. Next, assume that |s| ~ [t| (where the implicit small constant again depends on || - this will be
tacitly understood for the remainder of the proof). Then we first reduce to ||s| — |y|| < |s|. For this
consider the term

t
. a~(Jib—1
QZZXn(t,a?)/ U(t = 8) P kg<- <ol Piegpon X011 - 1210 05 Aa(s)] ds
K 123

[t £z -& 2 |t] V¥ (¢, ) such that x. (¢ z) # 0, 2 ko €] < 2k0, é ¢ F2k

Since we assume |s| ~ [t|, the desired gain t~¥ here follows by using the induction hypothesis. Hence we
now reduce to estimating

t
. o~ (Ji =1
2ZZX»@(W)/ U (t = $)P-ky<<kol Piegran [X01s -l <1075 7" Aa(s)] ds
K ti
Here we apply a further decomposition
a~(Jil—1) a~(Ji,0—1)
Xills|—lyll<s]0 Ty = X{lls-ull<lsh Y Xw (5:9)°Ty

o ~(Ji,£71)
= Xlllsl=lylI<lsl) Z Xt (8, y)P[iée—Qﬁ’]aaul

_(Ji 1)
+ X[lIs|-lylI<s]) Z X (8, y>P{i$€7(2ﬁ’)“]aau1

The contribution of the second term here is again rapidly decaying due to the induction assumption. Hence
we have now reduced to estimating

t
23 () /t Ut = 8)Poro<-<kol Plégran [Xllsl-tyll <o)
a~(Ji,l—1
ZXH’(& Z/)P[iéefzn/]a Ug )Aa(s)} ds

Now writing out the free wave parametrix, we see that on the support of the resulting integral in the
variables &, y, s, we have that
| £[&ls+y- &l <L),
and choosing £’ as well as the implied constant in ||s| — |y|| < |s| suitably small, we can ensure that
| £tle] +a- & ~ [t > [£[¢]s +y- ¢

on the support of the integrand. Integrations by parts in || yield the desired rapid decay with respect
to |t|. This recovers the first part of the inductive assumption, and the second follows identically, since if
[lt] = |x|| = |¢|, then we necessarily have

|l +a-€l 21
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The inductive procedure is now completed by means of (9.74) which takes account of the changes in the
level 3. ]

Recall that we restricted ¥ to be a free wave in (9.63). In order to treat the general case, we apply the
usual decomposition (9.62). As usual, the smallness of the ¥, allows one to iterate these terms away.
Furthermore, the proof of Proposition 9.20 applies to these terms equally well since we do not rely on any
specific structure of the ugJi’z_l) other than the inductive assumption (9.81), and the formalism of the
Volterra iteration by which we represented these solutions. In this way, the same dispersive property may

be proved globally, i. e. not just on I; where (9.62) holds.

9.6.2. The second stage of Bahouri Gerard, applied to the first large atomic component. Recall that we are
considering only a = 1. Nevertheless, we keep the parameter “a” in our notation general. We now need to
quantify the lack of compactness for the functions ¢™, (Z"“, ¢, " all at time ¢ = 0. We evolve each of
these using the covariant wave flow from before and select a number of concentration profiles. The method
for this follows exactly the Bahouri-Gerard template, but using Lemma 9.19 instead of standard energy
conservation for the free wave flow. In order to define the temporal flow for each component, we need to
impose time derivatives at time ¢ = 0. We do this by defining

6t¢~5na(0> ) = ¢pe(0, ), 615(;5(0’ =0
8tcna(07 ) — ~6m7 6t77na(07 ) 0

Introduce the following terminology:

Definition 9.22. Given data u[0] = (ug,u1) at time t = 0, we denote by
San () (u[0])

the solution of On(u) = 0 with the given data, evaluated at time t.

We now describe the important process of extraction of concentration profiles: Consider San(("*[0]),
with ¢"*[0] = (¢¢*,¢™*). Following [1] introduce the family V4~ ((®), consisting of all functions on
Ve(t,x) € L2, .HL N C'L? such that

t,loc
(San(C™[ON) (t + tn, x + 20) = Ve(t,2)

as n — oo for some sequence {(tn,zn)}p2; € R x R®. Here, the weak limit is in the sense of L7, H,.

Observe that such a function V¢ (¢,z) solves OV, = 0 in the sense of distributions. Thus it makes sense to
introduce the quantity

nan(¢?) i= sup{ E(Ve), Ve € Van (¢},

where
B(Ve) = [ VauVePda
]RZ

We can now state the following lemma that is at the core of the second stage of the Bahouri-Gerard process
for wave maps. Recall that a = 1 here.

Lemma 9.23. There exists a collection of sequences {(t%, x3%)} C R x R2, b > 1, as well as a family
of concentration profiles VC‘“’[O} = (Vc%b(x),vgb(x)) € L*(R?) x HY(R?), with the following properties:
introducing the shifted gauge potentials

(9.82) Al = ATt 4120 2 4 2P,

one has

e For any B > 1, one can write

B
(San (€ [0D) (t,2) = > (S snan (VEPIOD) (t = £37, 00 — 25) + WP (8, )
b=1
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Here each function (SAmb(VC“b[O]))(t —tab x — b)), WQTL“B(t,J;), solves the equation Oganu = 0,
and we have

(9.83) lim [limsupna. (W*?)] =0

—00 n—oo

e One has the divergence relations

. / ’
T [Je2? — 120" 4 a2 — ¥ ] = oo

forb £V,

e There is the asymptotic orthogonality relation
B
BC0)) = S BVE[0) + B(WEB (¢, ) + o(1)
b=1

Here E refers to the standard (flat) energy and the o-term satisfies limp_, o limsup,,_, ., o(1) = 0.
o All Vc‘lb[O], as well as their evolutions SAnab(Vcab[O]) and the W2 are 1-oscillatory.

Proof. We follow [1]: There is nothing to do provided 74~ (¢*) = 0. Hence assume this quantity is > 0.
Then pick a profile V'(t,x) € L}, H; N C' L3 and associated sequence { (¢3!, z:')},>1 such that

t,loc n 1 Tn
(SAn (C”“[O]))(t + 0 x4 20l) — Vgal(t, x)
with
B(VEY) > Jnan(c?)
Using the notation of the lemma, consider then
(San(C™[OD) (t + t3h 2+ aph) = [San (S gaa (VEOD(O0 — 3, — 2Z)) [ (E + 87}, 2 + 2h)
= (S (CMOD) (¢ + 1582 4 281 — (S g0 (VO] (1, 2)

But by our construction, this expression converges weakly to 0.
Furthermore, due to Lemma 9.19, we have that

B(S s (VEL[O))(0 — 121, - — 291)) = B(VEL(0)) + oz2(1)
Now we repeat the preceding step, but replace ("*[0] by
¢"0) = S gnar (VEHOD (0 — t31,- — 2})

Thus select a sequence {(t%%,22?)},,>1 and a concentration profile V<“2(t, z) such that

n n

B(VE?) 2 on(¢" = S gaa (VEOD(0 — £, — 231))

N —

and furthermore
[San (€™ = S g0 (VEHOD)(0 — 31, - — 2f1)) [ (E + t77, 2 + 23?) = VE2(t, @)
We obtain that necessarily

Jim [t — #2243t - 23] = o0

Furthermore, we claim that
E(VEHO0]) + B(¢"10] = S goar (VEOD[0 — £51]) = E(¢"[0]) + 0r2(1)
This follows again just as in the free case, using Lemma 9.19: We need to show that

/R s (V0D (0 = £51,1) - T [C10) = S gas (V00 — #57,)] v = o1 (1)

Due to Lemma 9.19, up to orz2(1), the left-hand side equals

1
| TS (S (VE0DI0 221} e 121, 4 )
0 JR2?
TS (6710 = 8 s (VOO = 21 1+ 52, 4220 o
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But here we can again use that
San (S jnar (VEHODIO — £31]) (8 + 231, - + 2t) = VEL(E, ) + 0r2(1)

provided t € [0, 1], while by construction

San ([C™[0] = S goar (VEODIO — 31 ) (E + 531, + 2') — 0
The conclusion is that

1
/ VS (S (VETODIO — £51]) 1+ 151, + 251
o JRr

+VaaSan ([¢"[0] = 8 g (VEODIO0 — £ ) (E + 157, - + 27))) dv

= 01,2 (1),
from which the asymptotic orthogonality follows. All assertions of the lemma now follow by applying the
preceding considerations inductively B times. O

F1GURE 7. The dependence domains of various concentration profiles

Figure 7 depicts various concentration profiles. More precisely, one should view these profiles as being
well-localized in physical space centered at their cores in space-time. The figure then shows the approximate
support of the wave evolutions of these profiles.

Generally speaking, a will always refer to a frequency atom, whereas b refers to the concentration profile
generated by a frequency atom. We shall now apply Lemma 9.23 to the covariant evolution of ¢("*[0], as
well as the remaining components n™%, zZNJ”a, 1/01”“.

9.6.3. Selecting geometric concentration profiles. At this stage, we face the same issue as in Step 1 above:
we have a sequence of component functions V,%® associated with the essentially singular sequence ¢7, but
in order to apply the “energy induction hypothesis”, i.e., the assumption that E.,;; is the minimal energy
for which uniform control fails, we need to show that the V2 can be assembled to form the Coulomb
components of actual maps from R? — H2. We now address this task. To begin with, we may assume

() . . (0) . .
that UnA # or2(1) since otherwise Ay s a perturbative error.
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To summarize our construction of the concentration profiles: we started with the Hodge decomposition
(all at time ¢t = 0)

PI = 019" + Dad™, D" 1= 93, 0" =0
= 0y — D"
a _ algna + 62,’777,(1’ até"ﬂa = ~6La7 atnna — 0
— 9y — Gy

From here it is immediate that
2 2 B 2 2 2
") = 36 = Y1040 3 + 3 106" s = D 10672 + D 002
a=0 a=0 a=0 a=0 a=0

Now, we evolve each of the ¢™® etc. in time using the covariant flow, and apply Lemma 9.23. Changing
the notation from that lemma, one obtains the decompositions (with A as in (9.82))

B
Vm,t¢na — Z Vx,t [SAﬂ,ab (f/lab[o])] (0 o tnab, T — xnab) + v% WnaB

B
Vm,t¢na = Z Vi [SAmb(VQab[O])] (0— tnaba T — xmb) + Vg, thaB

B

thCna _ Z th I:SA'nub (Vlab [0])] (0 _ tnab7 T — nab) + vw . naB
b=1

a: t77 Z Vz; ' Anab [0])] (O _ imab7 T — xnab) + v twnaB

where the W errors are small in the 7-sense when B is large, see (9.83). Here we use the same sequences
tneb gnab for all decompositions, which of course we can by passing to suitable subsequences. Note that
we are working with both the ¢ and ¥ components here, which is needed for the following result.

Proposition 9.24. For any 1 < b < B, and any d3 > 0, there exists an admissible (derivative components

are Schwartz) map from R? into H2, wzth derivative components "“b, j=1,2, and a number Ysynap € R,

such that
[ 9118 e (VP 1OD] 0 = £, 2) + 518 1 (VEV[OD] (0 — 17, ), B[S e (VE[O)] (0 — 17, )

-0 [SAnab(Vz [OD} (0— tnab’ x)) — e"s2nab (¢’%12be—i2k=1,2 Afl@fc(ﬁg;’ (bgg:e_iz":l»? A’lak(ﬂgg)

12 < b

for large n.

Proof. Due to the asymptotic orthogonality relation of Lemma 9.23, given d5 there exists By so that for all
b > By one can simply take the derivative components to equal zero. In other words, it suffices to consider
1<b< Bqy.

Fix a b, we shall pick B larger, if necessary, and also pick n large enough later. For simplicity introduce
the notation

V3 = 918 s (VEP10]) + 928 fna (V5210))

Vi = 358 10 (VP[0]) — D1S fmas (V3[0])
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and similarly for nggb. Note that we here introduce dependence on n again.
Thus at time ¢ = 0, we have the identities

400 B
nA o ! nal
¢1 —i 3 pm 0 A7 Lok [w, +or ] E ‘/'B,nab(o _ tnab7l, _ xnab) ”rnaB

b=1

(0) B
. -1 nAG L | natl
¢§Lae i3 gm0 O Ok[wy, +or®] = E V4nab<0 _ tnab7 T — xnab) + ”ZzaB

where the WW’s satisfy the smallness property (9.83). Then we distinguish between the following two cases:
(A): ”ab( tnab g — 2" s of temporally bounded type. By this we mean that

lim inf [t"?| < oo
n—o0

By passing to a subsequence, we may then assume that

lim sup |t"*| < oo
n—o0

or in fact, that lim,_, . " exists.

(B): ”ab( tnab x — ") of temporally unbounded type. By this we mean that

lim
n—oo

|tnab‘ = 00
Observe that in this latter case, due to Proposition 9.20, we can conclude that
Vil (- — "z — ") = o (1) + or2(1)
as n — 00.
We treat these cases separately, commencing with the temporally bounded Case A. We need to show

that V”“b( —tnab 1 —2"%) can be approximated arbitrarily well by the Coulomb components of admissible
maps. We shall do this by physical localization: Note that for b’ # b, we have either

lim [t = oo
n—oo
or else
lim |27 — 2| = oo
n—oo

We conclude that if X"“b is a smooth spatial cutoff localizing to a disc of radius R, R < oo, centered at
2™ then we have

hm Hxnab nab (0 _ tnab’,x _ xnab/)HLi =0,
using Proposition 9.20. We also claim
Lemma 9.25. Choosing B = B(d2, R) large enough, we get (here d2 > 0 can be prescribed arbitrarily)

hm 1 Sup IXE WGP | L2 < bs

forall1 <b < By.

Proof. Recall that
WnaB al 5 :|: 82 1 ’naB7

(0)
where W37 solve the covariant wave equation DOgnu = 0 (where as before A™ is defined using U™ ).

But then it is straightforward to check that the space-time Fourier support of w is contained in a small
neighborhood of the light cone intersected with the set |£| ~ 1, up to arbitrarily small errors. One can
then reason exactly as in [1], see Lemma 3.8 in that paper. ]
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Therefore, given 5 > 0, we can pick R = R(da, Vflg) with the property that

40) 40)
0 na [) 1na
thllp nab(¢na =i 12 &7 ak[w +or ]’ ¢’£Lll =131 7 Bk[w +oy ])

n—oo

_ (‘éab(o _ tnab,x _ nab) V (O _ tnab7x _ xnab))HLQ < b

We now need to show that the components
b s A 00w 46170 nab Sy Ao w0y gina)
na na_—1 — w,, na na_—1t _ w,, .
(XR ¢1 e k=1,2 kW k JXR ¢2 e k=1,2 kW k )

are close to the Coulomb components of an admissible map, up to a constant phase shift. To achieve this,
we insert the profile decomposition we obtained above for ¢1'%, i.e., write

XTIL%ab(lem _ nab Z Z 8 Anab/ Va [ ])(O B tnab"aj N xnab') + anaB)]

b'=1j=1,2

Xr]L{ab g,a _ nab Z Z J+1 (SAnab’ (Vjab' [O])(O B tnab'7 T xnab') + W;mB)]
b'=1j=1,2
where 0,41 has to be interpreted modulo 2. Now if we choose B large enough (depending on R, chosen
further above), and then choose n large enough, we can ensure that

X =2 D 05 (S anea (VIPIO)(0 = 170 2 — a™) |2 <
7j=1,2
IXEDE" = X Y (=1)F10;51 (S gnan (VP[0 (0 — 7%, 2 — 27®)|| 12 < 6
j=1,2

We continue by approximating the truncated components X"“bqb"a by the derivative components of an
admissible map (X", y"?) : R?2 — H2.
For this purpose we recall the identity

(b;na: Z A~ 1aka [¢1na na] j:1,2
k=1,2

Inserting the above decomposmon for the (bl"a we obtain

¢1na : na Z A~ 181 Z Z a~ ReSAnab/( ab’ [0])(0 _ tnab/’x _ nab ) + Re WnaB)] ]

k=1,2 b'=1j5=1,2
B ~
-1 Z AilaQaj[[Z Z (—1 j+18§+1 (ReSAnab’(Vjab [0])(0 — gnab T — pnab’ )+ RewnaB)] o]
k=1,2 b'=135=1,2

Using the frequency localization of all functions involved, and increasing R if necessary (independently of
B), we can then achieve that for n large enough

Hxnab lna _ Z Z A~ 81 nab Z a ReSAnab/ ( ~~, ab’ [0])(0 . tnab/’ — nab ) + RewnaB)] ]
k=12 b G=12
+( Z Z A~ 82 nab[ Z (— )J+183+1 (ReSAnab/ (Vjab/ [0])(0 — tnab/,  — pnabt’ )+ ReWnaB) Iy"™] HL2 < 6y
k=1,2 b j=1,2

From here we infer that

hmsup ||Xnab¢1na _ Z A~ 8;49 [Xnab 1na na HL2 < 62
k=1,2

Now modify y to a function "% by picking numbers R”, R’ with
R< R'< R,
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to be specified shortly, and setting

>nab — ezk:m XZ‘}*’A”@;CP[,R”’RN] 4)?“1

y
whence
a y"eb b 1 b 12
W = 6 Z Xna AN 8kP[ R R”]¢k 7%(11 ¢J'n,a -+ error,
k=12

where we can achieve that |lerror||z2 < d2 by choosing R large enough depending on 03 and the localization
of ™ in frequency space, and then R’ large enough in relation to R”. Increasing B if necessary and then
choosing n large enough, we can then also achieve that

Hxnab na X%/lb Z (*]—)j+laj+lsjnab (‘%ab[o])(o o tnab, T — xnab)HLZ < 52
Jj=12 ®
and then
er}g}b ga nab¢na”L2 < 52
We next show that the expression
Z A~ aka [Xnab ]lcnayna}
k=1,2

is well approximated by
( nab Z A~ 18k6 [Xnab 1naynab]
k=1,2
To see this, write

Z A~ laka [Xnab lnayna] — e e 12X7mbA_18 p2na Z A~ 1aka [Xnab 1na Zk:1,2XZ/ 18k¢2na]

k=1,2 k=1,2

where we can achieve |lerror||z2 < 02 by choosing R’ large enough in relation to R and the intrinsic Fourier
localization properties of ¢™®.

Split the phase into the product
Zk 1 2X"ab8 ¢2na — 6Zk 1 2XR’ 8 P R/, RNP Zk 1 2Xn akilP[fR”,R”]Cgﬁina
na —1 na
We need to show that we can eliminate the factor e2=+=1.2 XR’bak Piprr, mme 3™ Using similar arguments as
in Step 1, choosing R” large enough in relation to R, it is straightforward to show that, with (’)k_l = AT10y,

He k=12 Xar ’9 tpne E a 1{9 X"ab 1na Zk 1,2 XR/ P( 0o, RO ¢2m( Zk:l,2xg’lb61:1P>R“¢ina _ 1)]
k=1,2

2

< 09

H(e_ k=12 X711?7b81;1P>R”¢ina — 1)6_ 2p=1,2 X?ﬁb@{lpeoo,n” k" E 8 18 "ab 1"“ Zk 1,2 XR! 'AT P( oo R”]8k¢k }

k=1,2
< 09

.. nabg—1 2na . .
We next show that we can also eliminate eXr=1.2Xr" % P<—rr ™ Indeed, proceeding as in the first
section, write

e*Zk:1,2X;§;bak_1P<’R”¢in nab E 8 16 Xnab lnaynab Dk=1,2 X o, P, R”(bin"']
k=1,2

_E XlR _ l 1)R} — > e 12)("‘“’8 P__ R//(ﬁzna(ynab E a 18 nab¢1na ~nab Zk 12)("‘”’0 'p__ R//(bi"”]

1>2 k=1,2
nab 2n 2na
+X%ab€ >k 1.2 XR "0, P _pr o nab § a 18 Xnab lnaynab > ke 12XR’ 8 P _prdn ]
k=1,2

—+error,

2
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Here the cutoff X”“b localizes to a disc of radius [R around z"*®. Then pick a point pjnqp in this disc, for
each [, and write for fixed [ > 2

e—Zk:1,2x§7baE1P<—R“¢i nab § :a 18 Xnab 1lnag, nab Ek 1.2 Xpt Lo TP _ R,,¢2na]

k=1,2
Zk L2 X” ba 1P R”(z)ina - nab 1 nab ;1na, nab Zk L2 X7 ba 1P R”(bina
- (ezk:m X}?‘/‘baE P _ g ¢ (Pinab) ) kzl:z a 6 X k k=12 X}?‘/‘bf’; P _ ¢ (Pinab)
But then we can estimate
nab nab eZkZI’Q X%‘}bi);lP<7R,,¢i”a lR
ir” — X(l_l)R} (eZk:1,2 X300 P _ i 637 (pimab) B 1) - O(ﬁ),

and then using the machinery from Step 1 (which yields a =% gain), and choosing R” >> R, we can achieve
that

vab 5—1 vab 5—1 s
H[ eZk:l,zx?{/’bak P _Rr Rt eZk:l,zx?{/’bak P<—R”¢iﬂa

-1 nab a 18 nab ;1nag nab
— - E X —
62k=1,2 X;ch/bbak 1P<7R”¢ﬁna(1’lnab) ) k—1.2 k 62k=1,2 chlbbak 1P<7R”¢ﬁna(plnab)

< Sl N
Similarly, one can eliminate the second instance of
e X k=12 X710 Pe g 87"
ekt ,2 Xt P05 Pe g 27 (Pinab)
Hence we have now shown that for B and then n large enough, we have that the functions

~ 0
T1lnab . nab 1 nab 1na nab 2nab ._ ]y
(bJ ' Z a a X ]’ (b.? : ynab
k=1,2

Snab

)

which of course are the derivative components of admissible maps, satisfy the inequalities
||¢}nab nab¢1na||L2 < 52, ||¢?nab nab¢2na”L2 < 8y
Our next task is to approximate the Coulomb components. For this consider
~ . - naf” na ~ ~ ~
¢;_mbefz >k=1,29% l[wk 0 +or }, d);_mb _ ¢}nab + i(b?nab
From the preceding, we can arrange that
~ . —1 "A(()O) ina . —1 "Ag)m ina
”(ﬁ;mbefz k1,29 [wy +or" Xréab(b;;aefz k1,29 [wy + ¢y, ]”Li < 65
We need to show that we can also arrange (i.e., upon choosing B, n large enough) that

~ . —_ A<0) na nab N
Hgb?abe_ZZk:l,zakl[wZ O Herte] _ ¢nab =13 h=1,20) ok 1’szb||L§ < 99

for a suitable constant 7, qp.

(0)
. _1 nA

We first get rid of the phase e k=12 0 w0 simply pick a point ppe in the support of X”“b nd

BNC) NC)
replace e k=12% fu by e =i k=129 kao (Pnab)
Next, we need to show that ¢§“‘b6_12k=172 9" s close to ¢”“b RO A e , up to a constant phase
shift. First, pick Ry > R such that

[ Gyebe Dnmna %O b gee T Rimna OO | 1y < 5

Next, pick R’ > R; such that
b @abe ™ Bz 0 0™ — inanynabgnabe=i Dimr 2 O Fom w987 | Ly < 6y
for suitable Y1,45. Next, we claim that picking Ry > R’, we can arrange that

nab nab —1 Lo p Ina nab Inab _—1 SO P o X”ahagl."ab
”X d) Zk,71,2 k [ R/,R/]@c _XRl ¢j e Zk71,2 k [ R,R][ Ry Pk ]”Lg < 52
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This is a consequence of the fact that (for R large and then n sufficiently large)
nab 71nab lna
||X7z?b[ i he1 2 08 TP R R IXRE B — ™) _ 1]HLg° <
Finally, we claim that
nab nab D DTN 6;1P[ R/, R/][Xnab¢1"“b]

Ry

is very close to &?“befi Ci12 00 4 , which is what we need to finish case (A). To see this, note that by
choosing Rs large enough in relation to R’, we get from Bernstein’s inequality

- b T1nab - 71nab
[ Z O P m IXED 0] — Z O Pp r 0%l < 62
k=1,2 k=1,2
This immediately implies
||Xnab¢nab =i im0 On Pl gy m XREP ALY Xré?bq;?abefizk:m 3, ' P_pr r® ”L2 < by

To conclude, picking R’ large enough in relation to R; allows us to find a phase e?¥2me such that

|| R1b¢nab —1 Zk 1 26 P _R/, R’]¢k - X%aibé?abe_i Zk:l,fz 3’:1$inab6i,y2nab”[‘i < 62
Since we also have, as mentioned before, that

Hxnab Jnab é;mb”Lg < 05

Combining all of the preceding steps, we infer the existence of a phase e?’ms such that

” nab¢na —i> 28 (bl’m ¢nab - 28 d)hm l"/nab”Lz < 52
We then get for suitable 7/, .,
lei7nes Gabe ™! Eumna O " gitman _ yiab(g — gnab g — gnab)|| Ly < 6,
This finally concludes case (A), i.e., the temporally bounded case.

(B): temporally unbounded case. Here we have lim,, . |¢"?*| = 0o, whence using Proposition 9.20, we
get that

Vnab( tnab7 T — xnab) = 0p (1) + 0L2(1),
where we recall the notation

V5 = 018 o (VI?[0]) + 028 f0as (V3[0])
Vi = 028 gan (Vi 0]) — 015 goan (V5[0])

We now make the following

Claim: Choosing n large enough, we have
V2,65 e (V3 [0]) | 22 < 0
for any given 83 > 0. In particular, V{*[0] = 0 for all b of temporally unbounded type.

Thus in Case (B), the components V3§ (0 — ¢"*, 2 — 2™") are approximately given by the gradient of
a suitable (complex valued) function. Once the Claim is established, Case (B) will be straightforward to
conclude.

In order to prove the Claim, we shall use the curl equations satisfied by the components ¢7“. To begin
with, pick R large enough such that

B
||P[7R’R](¢§La)e—izk=1,z o tepe Z(Vﬁ&b( tnab, r— xnab) Jn_’z_z2B)||L2 L6y, j=1,2
b=1
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Then using the Littlewood-Paley trichotomy, and choosing R larger if necessary, we can arrange that

B
—i —Lgne na na na Wna .
||P[—10R,10R] (P[—R,R]W?a)e Loi=1,2 0 K ) - (V b( —t bax - b) J+QB)||L2 <y, j=1,2
b=1

Now fix a cutoff x"*® which localizes to a large annulus of radius [t"%®| around ™®* and thickness R,, large
enough, such that

lim sup ”Xnabvg,z:lzb(o _ tnab, T — nab) Vnab(o _ tnab7 T — xnab) HLi < 52

n—oo

By removing finitely many ’holes’ from this annulus and adjusting " correspondingly, we can ensure
that

Hm [PV (0 — "z — 2")|| 2 =0, b#V, 1<V <B
n— 00 ’ x
for all ' of temporally bounded type. We cannot simply arrange that
lim ”Xnabw/gﬁB”Lg — O, lim ”Xnabvgj,zb'(o B tnab’7 r— Inab/)” -0
n—oo n—oo
where V”“b (0 — gnab’ g x”“bl) is of unbounded type, and it will be more complicated to disentangle

W"“B and temporally unbounded V"“b (0— gnab’ g — gnab’ ) from V”ab From the preceding, choosing R

and then n large enough, we can arrange that (here the sum 3" is over temporally unbounded profiles)
i —1,na
HXnabP[flOR,IOR] (P—R.R] (7%)e k=120 9k )

_ Xnab[vj+2(0 _ tnab’x _ nab _|_ Z jerb tnab’,m _ nab’) + I/VnaB]”L2 <6y j=1,2
bAb!
Here R only depends on the frequency concentration of ¢"*. We now analyze the curl expression
y aep q y Y p
. -1 _ na

vo [Xnabp[me,mR] (P[fR,R]Wga)e_lZ'“:l‘z O 0k )]
) -1 na

. v—182 [XnabP[—IOR,IOR] (P[—R,R] (qs?a)e i3 e1,20, Pk )]

We shall show that this expression becomes arbitrarily small when n is sufficiently large. Decompose the
above expression into

v [aanabP[floR 10R] (P[,R R (¢g“)e—i2k=1,2 a;lqaga)]
-V [aZXnabP[ 10R,10R] (P[ R, (07%)e —i3 k=12 8;1¢ga)]
P[_loR,mR] (P[—R,R] (0195 — 82(257;/0,)671'2’“:112 6;1¢g“)]

X"
X" P_vora0m) (Por,r) (65%) 01 (e  Zx=12 8’:1%"’))]
[ —i Zk=1,2 3;314’2“))]

nab

P_10r,10R] (Pl=r,r) (#7%)02(e
For the first two terms, choosing the cutoff Y™ suitably, it is clear that for n large enough we have
) -1 _na
V01X ™ P10, 10m) (Pi— R, (65%)e P Xke2 O Ok )]

- —1 na
— V02X P_10R,10R] (P[—R,R](Qﬁ?a)@_zzk:l'zak i N2
< 0y

For the third term, we use the schematic curl relation 9y ¢4 — 9207¢ = 7 (¢"*)2”. Note that by including
a suitable cutoff Y% having similar characteristics as Y™, we get

X -1 na
IV X" P 1or,10r) (Por,r (0105 — Oag@)e ™  2un=r2 O 917 ]
X —1 na
_ V_ [Xna P[ 10R,107] (P[ R R]( nab”<¢na)2”)e—1 > k=120, Pk )] HL328 < 62
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Now we insert the decomposition

na nab nab’ nab naB .
¢j j+2 —t y L — )+W+2, ]:1,2
b =1

For any chosen B, by picking n large enough, we can achieve that for all temporally bounded b’

Jx ;

B
~nab Z Vz_agb(o _ tnmb73j _ mnab)HLQ < 527
b=1, b'#£b e
and hence we reduce to estimating (where now the sum Z/ only involves temporally unbounded profiles)

Hvil[xnabp[—IOR,IOR] (P[ RR] nab Vnab Z nab naB}2)e—i Dke12 3,:1¢Za)] ||LJ2C
b £b

Now recall from Proposition 9.20 that for all temporally unbounded b’
VRS = o (1) + or2(1)
Hence we obtain

V=[x P[ 10r,10R] (Pl—r,r) (X nab[VnabJrZVnab )B_izkzl’za’;%zu)m%
b b

+ Hv—l [Xnabp[iloRwa] (P[fR,R] ~nab Vnab Z nab naB et Skt e (')kfltz);cm)] ||L3 < by
b'#b
for n large enough. Finally, consider the term
V71 [Xnabp[—loR,loR] (P[ R R]( nab[WnaB] )efz'Z:k:L2 o ¢2a)}
Here we split
WP = P_g, g W37 + Piopy rgW3'"
Then if B is chosen large enough in relation to R;, we obtain both
1P ry m e WP L2 < 02, 1P py WP e < 0o

Here the first inequality holds of course uniformly in n, B due to the frequency localization. From here we
infer that for B and then n large enough, we get

”v—l [Xnabp[—loR,loR] (P[—R,R] (>~<nab [WgﬁB]?)efi 2k=1,204 Cf’;cm)] HLE < s
The argument for showing
- —1 na
[v—! [Xnabp[—loR,loR] (P—r.R) (¢5)01 (e" Lw=1,2 90 9k )]
—i —1_ na
- Vﬁl[xnabp[—w}%,lozz] (PR, g (¢7")02(e Loi=1,2 9 K Nz < 62

of course proceeds in identical fashion.

Summarizing what we have achieved thus far in Case (B), we have shown that for n large enough, we
get

IV~—1o, [Xnabp[—loR,loR] (P[—R,R]wga)@fiz’ﬂ:l’r‘)a’; %aﬂ
. —1 ;na
— V1o, [Xnabp[—loR,loR] (P[—R,R]( 71“1)6712'“:1’2 O ok )} ||L§ < 0y

In light of the fact pointed out earlier that (j = 1,2)

(X" Plrort0m) (Plpm (97%)e ™ Zemra O 910
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is well approximated by?2°

I+ 3 Vi W)
b/ #£b
we then infer that (recalling the definition of V3 4, W3 4)

197101 [X"0((S 50 (VETO)) (0 — 72, = 27%) 37 g (¥ [O)(0 — £, — &) 1 W2
b/ #£b

/
_ 31[(54”“ (‘/2(111[0]))(0 _ tnab’ T — xnab) + Z ngb/ (V2a1/ [O]))(O . tna(/7 — mnab’) + W;aB]]
b/ £b

_ v7182 [Xnabal[(( Anab(v [OD)(O _ tnab7 z— mnab) + Z SAnab’ (Vlab' [0]))(0 _ tnab” r— l,nab ) WnaB)]
b’ #£b

/
+ 0a[(S e (VS [0)) (0 — 79 2 — 2™) + > 8 oy (V' [0))(0 — 7Y, — 2”9y + WP || 2
b £b
< by

But then choosing the cutoff " as above and picking n large enough, we conclude (noting cancelations
in the preceding expression) that

||V—1A[(SA7Lab(‘éab[o]))(o_tnab’x nab nab Z SAnab’ v D)(O_tnab/,t,L,_‘,'Enab/)_’_XmleVQnaB]||L?C < 52
b #b

This inequality, together with the approximate orthogonality of the two summands involved, then gives

the smallness of either summand separately: recall from Lemma 9.23 and its proof that we have (for

sufficiently large n)

[ TS s (VOO — £, — 27%) - T V70, ) ] < 5
R2

\ / Vet (S gnan (V3 [01)) (0 — "% 2 — 2™%) - V4 4 (S g (V5 [0])) (0 — 7’ — grma”) dx‘ Kby, W FD
R2

Now recall the vanishing condition at time ¢t = 0

B
> 008 g (VP IOD) (0 = 7% 2 — ™) 4 0,3 P = 0
b'=1

which we used to define the linear covariant evolution of ™. Applying the cutoff "%, and choosing n
large enough, we get that

||8t Anab(V [ D)(O—tnab,l‘ nab nab Z 9,9 Anab/ [ ]))(O_tnabl,Z‘—.ﬁnab,)—i—XnabatW;aBHLi < 65
b #b
However, this inequality, together with the two preceding ones, implies that
V2,608 s (VS [0]) (0 — £7° 2 — &™) | 12 + [IX" "V W5 P | 2
) IV 0 (S e (VS [O)) (0 — 7 20 — 279 ) | L2 < 6
b #b

Summarizing the state of affairs in Case (B), we have shown thus far that the Claim holds. But this

then says that the ’diluted concentration profile’ given by

V30 = (005 ga (V[0]) + 025 e (V5 [O))(0 — 7%, & — &™)
Vnab [azsAmb( [ ]) o 81512;71(117(‘/2 [OD](O o tnab, T — xnab)

26Here S again only involves temporally unbounded profiles
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is given, up to an L2-error of size &2, by the pure gradient term
Vnab 81 inas (V [O])](O _ tnab’ T — xnab)
Vi = 008 e (ViU [OD)(O = £7%, 2 — 27)
We shall now use this to construct a map from R? — H? whose Coulomb derivative components are close

to Vi'gh.

Indeed, picking R large enough and then n sufficiently large depending on R, it is straightforward to
check that

;P g, ) (S jinan (VI [O])] (0 — 179, — 277))
=0; P[ R,R] (SA"Lab( ab[OD](O — t"ab, T — xnab))e—i Dkei12 0, 'Ok P_R R (SAnab(Vlab[0])](0—t"“b7w_wnab)) + eror

where we have [lerror|| 2 < d2. Then we define a map (x,y) : R — H? (here we abuse notation heavily,
this map of course depends on n,a,b) via

X = ReP[,R A (SA7Lab(V1ab[0])](0 o tnab7 Tz xnab))7 y = M PR, R (SAnab(Vl blop](0—tmb z— a:"’lb))7

These then satisfy

ax a a na na
Hﬂ? + zﬂ?y 0,y (S e (VEIOD) (0 — 7 — b))HL2 < by,
and the associated Coulomb derivative components are the desired approximations. This concludes the
proof of Proposition 9.24. |

Summary thus far, for both (A), (B): we have shown that we have the “covariant Bahouri Gerard
decompositions”

(0) B
. —17, nAg ina
¢{Lae 13m0 0 (W +¢i"] — E V'?)nab(o _ tnab7 T — nab) Wnab
b=1
. —1 "A((JO) ina 5
¢;me—z Dke1,29 [wy +o" ] E V4nab(0 _ tnab’ T — mnab) V[/nab7
b=1

where we have
V3 i= 018 guar (VIP[0]) + 028 e (V5°[0])

Vi = 028 1 (Vi[0]) = 01 e (V5™'[0])

and similarly for Ws 4. Furthermore, for n large enough and any given d; > 0, we can find maps
(x02nab yoanaby . R2 s M2 with the property that their (spatial) Coulomb derivative components are
8y close (within the L?- metmc} to constant phase shifts of the "ab(O —tnab g — grab),

We shall now refine the information we have by proving the following
Lemma 9.26. Given 65 > 0, we can pick B and then n large enough such that
IV s W3 Pl L2 < 8o
Remark 9.27. Recalling the identities
WwneB = g, WneB  §,WpeB
WwpeB = g,WneB _ g, WwpeB
We see that this says that W"“B are essentially pure gradient terms, like in Case (B).
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Proof. (Lemma 9.26) The proof is quite similar to the Case (B) above. Given 3 > 0, first choose an index
By such that we have

lim sup || Z Vaiab( — ¢nab g — x”ab)HLi < b,

n— 0o b=B,

for any B > By. Further, pick R = R(d2) with the property that

A<>

lim sup ”P[—RvR]C(d)?a)eiiZk:l’Z ooy ||L2 <2, j=12
n—oo

Increasing R if necessary, we can then also achieve that (for n large enough)
. —11.1na
P~ 10R,10R) [P[—R,R](¢;L,az)€_zz’“:1’2 ook " . ] Z V"ab — " — ™) — W:?,ZBHL;‘; < 02

Here we will choose B sufficiently large in relation to By, 52. Now pick a cutoff x which localizes to the
union of large discs covering most of the support (in the L?-sense) of the atoms V3'¢?(0 — "%,z — am?)
of bounded type, i.e., for which limsup [t"%*| < co, 1 < b < B;y. Of course x then depends on a, By, n
but we suppress this dependence here. Picking x suitably and then choosing n large enough, we can then
ensure that
'B,
Z nab tnab’x _ nab Z nab tnab’w _ xnab)]HLz < 62,

where 2;511 indicates that we only sum over the atoms of “unbounded type”. Summarizing the above
steps, we now have

"By
o ] Zvnab 0 fnab x_xnab) (1— ) naBHL2 < &y
b=1

177,A

i lna g
(1 X)P[ 10R,10R] [P[ RR](¢ %e Sz 0 0k

By picking B large enough (recall that we can do so independently of B;), we may also assume that
1= WP — WysP |l < 6

Here we use Lemma 9.25.
Next, we calculate the curl of the Coulomb components, localized as above, and with an extra cutoff
(1 — x). Thus we want to estimate the expression

1na I"A( )
02((1 = X)Pi_10m,10R) [Pl r,Ry (97" )e ™" 2ok=1.2 %% How N

lnA(

—01((1 = X)P—10r,10m) [P-r,r) (¢5%)e T EL N L ]])

This we can estimate as in Case (B): Of course the case when a derivative falls on (1 — x) is negligible.
Then repeating the arguments in Case (B) above, we need to estimate the schematic expression

lnA( )

- 1na
(1 = X)P—10R,10R) [P[—R,R]([¢na}2)€ﬂz’“:1 20 103"+ }])

Here we use the Bahouri Gerard decomposition of the ¢™%, i.e.,
1 2 _ Z V3 4 tnab7 T — Inab) WnaB

It is clear that we then reduce to estimating

!
B 1nal0

~ na na na —1 —ligplna
(1 = x)P—10r,10m) [P—r,r) (1 — X)[Z Va,4(0 — "0z — 2"*) + VV3,4B]2)e Xm0 O by ]])

But the contribution of the terms V3 4(0 — t"® 2 — 2"%), 1 < b < B; can be made arbitrarily small by
choosing n large enough, while the contribution of W"“B is handled by placing one factor into L2 and the
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other into L3°.

Summarizing, we have now shown that
'B, "By
val(?Q[Z V‘3nab(0 _ tnab7 T — xnab) + WgnaB] _ vflaQ[Z ‘/4nab(0 _ imab7 T — xnab) + WIGB] ”L2 < 6
b=1 b=1 T

But then recalling the defining relations for V}f}jb, WgﬁB , we can repeat the argument from part (B) in the
preceding proof to conclude that for B and then n large enough, we have

IV, WP |12 < 2,
as desired. 0

Proposition 9.24 together with Lemma 9.26 are key technical tools we shall use in the next section when
bounding the wave maps with data

0
,wnAO ¢na’
where a = 1.

9.7. Step 4: Adding the first large atomic component and invoking the induction hypothesis.
In Step 3, we constructed a wave map with data corresponding to the lowest frequency “non-atomic” part,
whose Coulomb components are

nal® na®
(I’ZAéO)e_iZhw aTtope T wZAEJO)e_i AN A +or2(1)

Our next step now is to prove bounds for the wave map whose Coulomb components are given by

nA

0)
1PZ(<1) = [wZAéO) + ¢Zl}€*izk:1,z AT ORIy 0 o] + or2(1),

provided we make the following key
Energy Assumption: All concentration profiles have energy < FEepiy . Thus

(9.84) E(V®) < Eepis Vb

As before, in order to avoid confusion, we shall denote the superscript 1 here instead by a, it being
understood that @ = 1. Thus we now intend to prove global bounds for the evolution of the Coulomb data

)
() ) _ nA
nA — ALy, 0 ne
Pl = [wa ™0 4 ghtle Znmr2 & Okl T HOT o5 (1)
4O C1p A : T X
= i 6_1Ek:1,2A Okwy, +¢Za€_zzk:1*2A O wy, +ok ]+0L2(1)

- (03

(From the preceding section, we obtain a decomposition of the added term
a(®
G0 i gt St a A7 Oklw "0 4ol

as a sum of concentration profiles at time t = 0. Note that this time in principle plays no distinguished
role, other than that we are guaranteed existence of the evolution of the wave maps with above data on
some small time interval centered at ¢t = 0. Recall the decompositions (for any B > 1)

(0) B
. -1 ndg na
(;5711(16 03 ey 0 A7 Ok[wy +or"l — E V}’nab(o _ tnab’x _ xnab) + WSnaB
b=1

) . G e B
¢ga672 Dhe1,2 &7 Oklw, O +or° — Z V;lnab(o o tnab’ T — xnab) + Wiw,B
b=1
where
V5 := 018 fan (Vi [0]) + 025 s (V3 [0)])

VI = 5.8 1as (VE[0]) — 018 1000 (VEP[0])
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and similarly for W3 4, while we also have

) B a0 e B
¢6u1671 =120 Loglw, 0 +op®] — Z 8tSATnab(V1ab[0D(0 _ tnab7 T — xnab) + 5tW1naB,
b=1

B
S 008 s (VS I0) (0 — 7%, — 27%) 4 W5 = 0
b=1

These decompositions are understood to hold at time t = 0, of course. Now the fact that for B large enough
(and then n large enough) we can arrange that ||V, W3*?|| 2 < d; implies that

B
1D~ 068 z0an (VS 0])(0 = 7, 2 = 2"%) | 2 << 6.
b=1

Recall that we have temporally bounded concentration profiles, as well as temporally unbounded ones.
Then it is intuitively clear that the evolution of 4" (this is not well-defined strictly speaking, we can only
evolve Coulomb components of actual maps; however, we can think of ¥™* as the difference between the
components of maps) will be dominated for a large time interval around ¢ = 0 by the evolution of the
temporally bounded concentration profiles, which will exhibit nonlinear behavior, while the temporally
unbounded ones will behave like free waves for a long time. In order to make things precise, we introduce
a hierarchy of temporal scales, which means we order the times t"* according to whether they are positive
or negative and then whether

tnab _ tnab’)

lim ( =+o00

n—oo

Assume that this way, we arrive at the list of representative time scales, M = M (B),

0= tnabl , tnab27 L 7tnabM

where we have t"%% > 0, say, and

lim (¢"ebi — ¢nabi-1) = oo,
n—oo

and furthermore for each b € {1,2,..., B}, we have t"® = ¢"%; for some j as above. Note that we
have chosen to equate those times here that do not diverge from each other. This can of course be done
by passing to a subsequence such that the difference of these times converges, and the redefining the
concentration profiles accordingly.

We then implement an inductive procedure, controlling the evolution of 1/)3(<a) on the interval [0, t"%%2 —
C] for some huge C (such that we are guaranteed that all the concentration profiles focussing at times
"% j > 2 will not display any nonlinear behavior there yet), while the temporally bounded ones start to
disperse and behave linearly around time %2 — C, for sufficiently large n. This then guarantees that there
is essentially no monlinear interactions going on between evolutions of concentration profiles at different
time scales.

n(<a) .

9.7.1. Proving a priori bounds for the evolution of Y ; the lowest time scale. Here we prove a priori
bounds on the (wave map) evolution of the Coulomb components w2(<a). Recall that at time t = 0, we

have the decomposition

)

(0) B
(0) . _ nA
n(<a) _ . nA —1 1o AT w0 nab nab nab naB
P15 (0,)) = wi'y° e k=12 e W +§ V3o (0 ="z — a") + WE" + o0r2(1)
b=1

nA® _ nal® B
wg(<a) (0) ) = wy Ay et 2k=1,2D Lopw, © + Z 8tSAnab (Vvlab[o])(o _ tnab, T — xnab) + 8tW1naB
b=1

The “tail ends” W;ZB , 0, W B here satisfy the smallness condition

W;ZB, OWB = 012(1) + op (1)
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where o(-) here is meant in case B,n — co. Observe from Lemma 9.26 that we actually have
W"“B o1 2WB 1 error, [|error|[: < d2,

provided we choose B and then n large enough. Furthermore, the proof of Proposition 9.24, case (B),
reveals that for concentration profiles which are temporally unbounded, we have

Vnab( tnab’ T — nab) al QSAnab( ab [0])(0 o tnab’ T — l,nab)

We shall now build the evolution of 1/)3 <9 as the sum of well-known pieces, namely the evolutions of the
atomic profiles, plus an error term, which we will show will remain small. To make things precise, we now
use the following construction: We shall use do > 0 as a smallness parameter which will ultimately hinge
on intrinsic properties of the concentration profiles as well as the S-bound on the already constructed low

(
frequency part \I'ZAOO), and be specified at the end of the construction. Thinking of 5 > 0 as fixed for
now, we first pick a large cutoff By with the property that
lim sup > Vs e +10 Y S a0 (VIPIOD 22 + [0aWT Pl e, 4 15 12] < 62
B>b>B; B>b>B;
for any B > Bj. Then we evolve the concentration profiles corresponding to a b € {1,2,..., By} as follows:
(I): Evolution of temporally bounded concentration profile.

Here, by passing to a subsequence, we may assume that t"*® converges as n — 0o, and we may then set
t"eb = ( by time translation. Also, it is apparent that then

V5 = 1V1(0, ) + 82V5(0,-) + or2(1)
V4"‘“’ = 9,V{(0,-)) = V3 (0,) + 0r2(1), 84S g (V°[0])
— V(0,) + 012(1)
are all essentially independent of n. Now according to Proposition 9.24, we can find, for each d3 > 0, a
constant phase 75,45 and an admissible map from R? — H? whose Coulomb components 12?2 satisfy
lleaer D2 — Vgbl| e < 05, [l€P2erhi 2 — 0 V(0 -) || L2 < 63,

For the sake of simplicity, we now refer to the Coulomb components of such a map, which we choose for
83 extremely small (depending on B etc. and to be specified later), simply as 1/2°.

First, we evolve the components of 9/2° on a large time interval 1%° centered at t = 0, using the wave maps
flow for the Coulomb components. This yields an a priori bound

1|5 < Cap

due to our energy assumption (9.84). Furthermore, due to Corollary 7.27 as well as Remark 7.28, given
d2 > 0, one can then choose time intervals

117[27 .. 7IMab(52)a

where the final one is of the form [t“b‘sz, 00), say, such that
Y =95+ i
with??
15 llscr, xe2) < 02, (1 Vaat§2ll o s S Berin

Here of course Dwﬁ = 0. Note that the intervals I; here only depend on a,b as well as the smallness
parameter do. By the Huyghen’s principle, one may assume that the support of @[J?Z is contained in the

set |x| < |t| + Dap(d2) for some (possibly very large number D,;(d2)). But then by choosing a much larger
time 7?92 we can arrange that

4.
1442, L (7%, 00), Ml Lo, 4 Lo 12 < 62

27The implied constant in the second inequality here is universal, independent of 2.
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These considerations reveal that pursuing the wave maps evolution of the components % long enough,
we eventually find that
wab(t7 ) =or2(1) + or=(1),
where o(+) is in the sense as |t| — oc.
This conclusion is of critical importance: note that thus far we have not taken the low frequency contri-

. (0) . . .
bution from w4’ (from Step 3) into account, which starts to play an important role for extremely large
times. The above asymptotic description allows us to incorporate this low-frequency effect by adjusting
the linear evolution of wﬁgab ;, from flat to covariant. In more precise terms, we now make the following

choice of an extension 1/;(‘;1’ of the data 20:
e On the interval [0, 79%], we let 1) = 1),
e On the interval [T“béz,oo), we let 1)® be the covariant extension of ) [T“b‘sz], i.e., we have
DA"'(Z)ab =0

(0)
. 1 ) _; 19, ¢ "0 .
on [T o0), where A" is defined with inputs ®"4o e k=128 Py . More precisely, we

apply a Hodge decomposition to the data 1/;(‘;" as in (9.60), (9.61), and evolve these components as
in Step 3. In order to avoid a “kink” at the juncture of these two regimes, we define

(9.85) B = X(caoiranis 110y (D™ F (1= X (oo g +10)) (1) Sar [T
where the notation for the second term is schematic, and X (_ o pevsz 1 10)(t) smoothly localizes to
the indicated interval and satisfies
X(foo,Tab‘52+10)|[0,T“b52] =1

With these definitions, one can prove the following bound.
Proposition 9.28. We have a bound of the form
19%lls < C(Ca),

where we recall the assumption ||°||s < Cqp from above. Furthermore, denoting by cy, k € Z, a frequency
envelope controlling the data at time t = 0, i.e.,

Coli— a 1
ar = Q27 M Py (0,-)]172) 2
leZ

for sufficiently small a priori constant o > 0, one has
[Pt si < C(Cap)er
Proof. The proof of this follows from Proposition 9.14, as well as Lemma 7.23 and its proof. |

The idea now in Case (I) is to use ¥ as approximate evolution of the data 1% globally in time, for
n large enough. Thus ’(/;abho’Taszz] is the actual wave maps flow, while beyond time T we use the
covariant linear evolution.

(II): Evolution of temporally unbounded concentration profile.

Here we have lim,,_, o |t”“b\ = o0, and as before, 1 < b < Bj, where we have chosen B; above. In this
case, using the argument from Case (B) in the proof of Proposition 9.24 and arguing as at the beginning
of the preceding Case (I) (we again write ¢ instead of ¢"%%2),

P = 908 nar (VIP10]) (0 — P 2 — 2™) + error, o =0,1,2,

o =
with [lerror||z > < do. In this case we set
V6" = 0o g (VP IO))(t = #7902 — 2"0),

the covariant linear evolution. Of course this becomes inaccurate when ¢t — t"%® and the nonlinear effects
start to become relevant, but we recall that we are on the lowest time scale in this subsection, i.e., t < %2,
Then we have the following bound.
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Proposition 9.29. There is a bound of the form
1" ls < C(Eerir ),

Furthermore, denoting by ci, k € Z, a frequency envelope controlling the data at time t =0, i.e.,
e = (Y 27K Pyt (0,)[32)2
€7
for sufficiently small a priori constant o > 0,

||Pk7;ab|‘8[k] < O(Eerit )er

(III): Evolution of the weakly small error.
These are the components W;ZB, O,WB | From Lemma 9.26, we know that

W"aB o1 2WMB + error,

where we can force [lerror|pz < d2 by choosing B and then n large enough. We then evolve WpeB using
the covariant linear evolutlon ie.,

DAn WnaB( ) _ 0, WnaB[ ] (V[/'lnaB7 atWinaB)’
and then define W335 (t,2) = 01 2, W B (¢, z).

We have now defined the evolutions of all the ingredients of z/jg“. We claim that by choosing do small
enough and then B and n large enough, the sum of all these constituents gives the correct evolution of
Yo up to a small error. This is clarified the following Core Proposition for Bahouri Gerard II which ties
it all together.

Proposition 9.30. There is a cutoff 2 > 0 sufficiently small, depending on the profiles Vlag [0],1<b< By,
as well as the a priori bound we have established for \IJ"ASO), such that the following holds: picking By and
then n large enough, we can write (with By chosen as above) on [0,t"%2 — C] x R? for C sufficiently large
and depending on the ¥ of unbounded type, b=1,2,..., By,

A(O) ) . A (0 By
Y (t ) = 00 e Xrm2 TR () 4 N gnb(t a) + 0. WP (1, 7) + €a(t,7), o =0,1,2

b=1

where the components 10 (t, ), D, WP (t,x), are constructed as in (I)~(III) above, and with

H€||S([O,t"ab2_c]><]1§2) < b9
Moreover, || Prel|g((0,mab2 —cxr2) 15 exponentially decaying for frequencies k > —log(Ay,) Thus the inequal-
ity above implies uniform smallness of €(t,x) fort € [07tnab2 —q).

Remark 9.31. There appears to be circular reasoning in the statement of this result: we need to choose
02,3 > 0 extremely small depending on the profiles Vl‘f}z’ [0], 1 < b < By, but here By itself was defined based
on do. This is clarified by noting that all the profiles Vfg [0] are small (more precisely, the square sum of
their energies is small) for b sufficiently large, and this implies that enlarging B; past a certain cutoff will
not affect the condition on ds; for more clarification see the “important technical observation” below.

Proof. (Proposition 9.30) We will prove the inequality for Pye using a bootstrap argument. The challenge
consists in careful book-keeping of all the possible interactions. The idea is to essentially replicate the
proof of Proposition 9.12 with € = €5. The main novel feature here is that we now have to deal with a large
number of additional source terms stemming from the nonlinear interactions of the various constituents in
the decomposition of 7<%
many intervals

. To begin with, we split the (large) time interval [0,#"%*2 — C] into finitely

[0, — C] = UMY I,

1nal®

A(O) A(O) . 1
where we have a decomposition (with W50 = &, e i2h=12 87 Ok Py

(0) (0)
P | = 0w
jNL
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with, see Corollary 7.27,

A(O) A(O) 1
”\I/;lN(i HS(Ij xR2) < €9, ||VI,t ;LLO HLtOOH—l § Eo 2 ECQrit

We then run a bootstrap argument inductively on each of these intervals, where of course My = M (Eepit )
is not too large. We shall now work on the interval I;, say. This enables us to use the covariant energy
estimate from Step 3.

Clearly, the evolved concentration profiles also interact with ¢; we then further subdivide the intervals
I; into smaller ones, which by abuse of notation we again label as I}, such that

(2 9= > Wi+ ) UL

be{1,2,...B1} be{1,2,...B1} be{1,2,...B1}
Note that now the number of intervals is of the form M; = My (Eerit , {V%5[0]}veq1,2,..., 5,})- Furthermore,
one has .
H( Z wnab)jNLHS(IjX]R2) <€2
be{1,2,...B1}
while also

~ 1
I( Z Vz,twmb)jLHLgozilﬂ S ey Bl
be{1,2,...B1}

where €5 is a universal constant depending only on E..;; . The fact that we get the last inequality with
universal implied constant hinges on the approximate orthogonality of the 7,/?"‘”’ for n large enough. One
may object at this point that the choice of By was dictated by &2, and hence may be extremely large,
which in turn means that the number M; of intervals above depends on Js and may also become extremely
large. The following observation, however, shows that M; only depends on a fized number of concentration
profiles independent of Jo:

Important technical observation:

Here we note that M; really only depends on {Vﬁg [0]}beq1,2,....Bo}> for some By with the property that
ST IVESO)I2: < o
b>By

where ¢ is the small-energy global well-posedness cutoff. Thus we can make d5 small without increasing
M concurrently. To see this, write

(V%5101 be B, Bot 1,31y = {VIS[0]}ben, U{VIS[0]}ben,s A1 UAy ={Bo,Bo+1,...,Bi},

so that {ngb(vltjg [0)(0 — " 2 — gmab)} .y, is the collection of temporally bounded concentration
profiles with b € {Bo, By + 1,...,B1}. Then the argument that was used for Case (A) in the proof of
Proposition 9.24 reveals that we can approximate

2 Vgrjilb(o . tnab’ T — xnab)
beAo

up to a constant phase shift arbitrarily well by the Coulomb components of an admissible map, and then
Proposition 9.14 allows us to evolve the data

S VIO - 17— 1)+ 0s(1)
beEAs

using the covariant linear flow on [0, ¢"%1]. This leads to bounds that are uniform in By, n only involving
€p. Handling the contribution of

Z V},’ffb(() — "9 g — ") 400 (1)
beA;

i.e., the “tail” of bounded concentration profiles, is more complicated since we may no longer necessarily
approximate this sum by Coulomb components of admissible maps, but only the individual summands
v;g%o — tmeb x — ") Thus the correct evolution of this term has to consist of the evolution of the
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individual ingredients, and one then needs to bound the S-norm of this (very large) sum in terms of an a
priori bound, provided n is large enough. In this regard we have the following result.

Lemma 9.32. For eachb € Ay and t € [0,"""], denote by V3'4*(t—t"*, 2 —2"*")+ 02 (1) the (nonlinear)
wave maps evolution of the Coulomb components of an admissible sufficiently good approximation to the
data V"“b( —tnab x — ™) as in the preceding discussion. Then for n large enough, we have

|| Z nab tnal)’aj _ nab) + 0L2( )”S[O mav1] S < gp
beA;
for a suitable universal implied constant.
Proof. (Lemma 9.32) For each V3'¢?(t — ",z — 2™%*) 4+ 0;2(1), pick an interval [0,7%°] with the property
that we can write
[Vnab( tnab7 l,_l,nab)+0L2 (1)] |[07{a,b] [Vnab( tnab’ r— nab)+0L2( )] [Vnab( tnab’ r— nab)_|_0L2 (1)] NI
where we impose the condition

IV [V35° (¢ = 179 & = 2"%) +op2(1)] e g S IVEE0(0 — 179, & — 2"%) | 2
by b b €0
IIVEE (¢ = 8702 = 2™) + 0r2(D)] o, oge ey < -
where the implied constant in the first inequality is universal. That this is possible follows from Corol-
lary 7.27 and Remark 7.28. Choosing n large enough and exploiting essential disjointness of the supports
at time t"*1 we can arrange that

Nl

Z ||V1: . nab tnab1 tnab,l' o nab) + 0L2( )}L”il_l) ,S €0
beA; 4
which then implies (for large enough n)
bt b b
I Z Vaid?(t =", — 2"*°) + or2 (1 )]L”S([O,maxbe,\l fable xR2) S €0

beAq
In order to complete the proof of the lemma, we need to also control
b b b
I Z [ Va2t — ",z — ™) + or2(1 )M|S([O,maxh@\l fab] x R2)

beA,
Here we exploit the fact that for n large, the functions [V"“b( —tnab g — gnab) 4 o0 (1 )} are supported
on disjoint light cones up to small errors with respect to S. One then concludes that ZbeAl [V}fﬁb(t —
tnab g — gnab) 4 oLz(l)] are the spatial Coulomb components of a solution to the wave maps problem up
to arbitrarily small error (as n — c0), with energy < & at time ¢ = 0. The small energy well-posedness
then implies

” Z nab tnab, Tz — nab) + oLz( )] ”S’([O,f“b]xRQ) <eg

beA,

where the implied constant is universal. |

Now assume the bound?®
| Prells < Cs62

We show that provided we choose C5 = C5(E.,i; ) large enough, we can bootstrap C5 to %, whence we
get the bound on all of I;. Then we continue the argument to I etc. Note that by choosing do small
enough in relation to M; as well as the other a priori data Ec.;t , Vf‘g [0], b=1,2,..., By, the error term

will then remain small.

By scaling invariance, it suffices to bootstrap the estimate for Pye. We now bootstrap the bound for
Pye. Here we essentially proceed as in step (3), the a priori bound for the first non-atomic component

[
(0) ) _; “1, o0 P .
Ao’ = @nAo e Xrma & 9% Thug we distinguish as there between the small time case, when

28Here ¢ stands for the vector with components eq, @« = 0,1,2
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the div-curl system suffices, and the large time case, when the wave equations are important: we shall
work here on the interval I; containing the initial time slice ¢t = 0.

(i): small time case |I1| < Ty. Here T; is a sufficiently small absolute constant. Write the equation for
€, using the div-curl system, schematically as follows:

Bo
9, Poc =V, Poe + Po[eV 1 ([ +3 gneb 4 fe(>Bo) 1 jymeB2)]
b=1

Bo
& 7 5 ©
+ Py HwnAo + Z wnab + wa(>Bo WnaB] ( [wnA + Z wnab ¢a(>Bg) + WnaB])]
b=1 b=1

B[) BO
(0) ~ ~ (0) ~ ~
TP [6V71(€[wn,400 n Z wnab + wna(>Bg) + WnaB])] + P, [[¢nA00 i Z¢nab + wa(>Bo) + WnaB]v71(€2)]
b=1 b=1

+ Py[eV ™1 (¢?)] + interactions terms

“Interactions terms” here refers to all possible expressions which do not involve the radiation term e such
as
Pyl " v (0]

Indeed, the complete list of the error terms included under this heading is complicated, due to our con-
struction of the evolutions ¢ in (I)-(I11) above. Recall that for the temporally bounded type components,
we use the nonlinear wave maps flow on a large time interval T%%2  but we then use the covariant lin-
ear evolution past that time. This means that on [0, 7%%%], we generate error interaction terms like the
preceding one coming from the interactions with the low frequency part 1/)”‘4(00), while on the interval
[Tebd2 tnabz _ (] generate errors due to the nonlinear self-interactions of z/NJ”“b.

On the other hand, for the temporally unbounded type components, we use the linear covariant evolution
on [0, "2 — O], which means that we generate errors due to the nonlinear self-interactions.

In addition to all these, we generate errors due to different concentration profiles interacting with each
other, as well with the small frequency component w"Aéo, or the weakly small error, and the latter also
generates nonlinear errors due to interactions with itself. We will deal with this rather large collection of
errors later, showing that we can make its N[0]-norm arbitrarily small by choosing B; large enough, and
then n large enough.

We also use the notation 1/*>5) for the evolution of

Z nab t"ab7.’);‘ nab + 0L2 Z at A”ab ab[ ])(0 _ tnab“%, nab) + OL2( )
beA1UA, beAluAQ

as explained in the “important technical observation” above.
We first deal with the terms involving e. Our task is to gain a smallness constant that allows us to
improve the a priori bound we are assuming about €.

(i.1): Terms involving €. These can be handled exactly as Case 1 in the proof of Proposition 9.12; in
light of the bound

Bo
(0) ~ ~ (0)
H[wnAO + anab + wa(>Bo) + WnaB]H < C wnA {wnab}b » Crit)
b=1

Thus for example paralleling Case 1 (a) in the proof of Proposition 9.12, one obtains a bound

— n ( na a
D N, Pe[ev ! ([pno +Zw b4 ga(>Bo)l >||2 Ly < lelE

ke b=1
provided we choose the time cutoffs suitably (such that the number M; of such time intervals is as above).

. . ) . ~ (0)
(i.2) Errors due to nonlinear (self Jinteractions of the )", ¢"A00 , WneB _ Note that these errors serve
as source terms for €, and hence we need to show that they are extremely small (of order controlled by d2).
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The mechanism for this is first choosing B; sufficiently large (for the contributions involving W"¢B)  and
then choosing n large enough. As these estimates are analogous to those in Case 1 of Proposition 9.12, we
explain here only the mechanism for generating arbitrary smallness (as n — 00).

(i.2.a) Errors generated by the temporally bounded type z/;”“b. If 7]1"“1’ is the evolution of a temporally
bounded concentration profile, then recall that we let 1;”‘”’ be the wave maps evolution on the interval
[0, T%2], provided 1[)”“1’ is supported at frequency scale ~ 1. Now we want to track the evolution of an
arbitrary frequency mode Pye, which we have scaled to £k = 0. But then we have also re-scaled all the
source terms. Now the source terms generated by 1/;’“”’ itself come from a number of sources: first, the
“gluing definition” of (9.85) implies that we generate errors of the form (before frequency localization)

Xz_oojab% +10) (t)d)ab - X/(_oc,Tab% +10) (t)SA" 7/}ab [Tab&z]

The only way for this term to contribute in the Case (i) for a fixed frequency (which we assume equals
one after scaling) is when the original frequency (which gets scaled to one) is extremely large. But this

contribution is then easily seen to be very small in L L2, say, due to the frequency localization of 1[)“”.

Next, the self-interaction errors generated from the usual div-curl system are (schematically)
Py [aﬁ,&nab _ V$,L/~)nab _ &nabv—l[(,&nab)ﬂ]’

which vanishes provided the I; fits into the re-scaled interval [0, T*"°2]. Otherwise, one obtains a contri-
bution of the above form on the complement of the re-scaled interval [0, T?%2] inside I;, and which is of
the above form. We need to show that picking n large enough, this can be made arbitrarily small. For
this purpose we use the following observation.

Lemma 9.33. Let 15"“” be the evolved Coulomb components of a temporally bounded type concentration
profile, concentrated at frequency ~ 1. Then letting T be the time indicating transition from nonlinear
to linear evolution (as explained in the preceding discussion), we have

et (T ) = 0 (T™%2,) + ervor,
where
||er1"or||L5 —0
as 62 — 0, and furthermore
1;nab — Z A—lak,&gab
k=1,2
The proof of this lemma follows exactly as in the proof of Case (B) of Proposition 9.24. It then follows

that in case we are on the complement of the re-scaled interval [0, 7%%%2] inside I;, we generate errors of
the form

PO W}nabv—l[(,&nab)ﬂ] + error
with error as in the preceding lemma, in addition to errors stemming from interactions of z/?"ab with the

(0) . . . . ~
other components 1/)”‘400 ete. to be considered later. But then, using the L{ -dispersion for the Pma(t, )
as |t| — oo, it is seen that

[ Po [@Znabvil[(J)nab)z]]”Lf"Li(hﬂ[O,T‘lb%]chZ) < 02

if we choose T2 large enough in relation to d>. Next, we need to analyze the errors generated by rab

through interaction with the other ingredients ’(/)nA(()O), 1;“(>B°), and WneB_ We begin with the interactions
between two distinct terms "%, b =1,2,..., B;. Thus we are considering

PO W}nabl V_l (,(Z}nabg J}nabg )]

where b; # b; for some ¢, j. By the frequency localization of all these factors, we may assume that, up to
negligible errors, each of them satisfies z/?"abj = P[_Cmcs]i/;”abj where Cg is a potentially extremely large
constant depending on the frequency localizations (i.e., how well-localized the factors are in frequency
space), as well as 65 and By, and that log [(A2)~!] € [~Cg, Cg]. Now assume first that I; C [0, 7%°2] for
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all j, i.e., our time interval is such that we are in the “nonlinear regime” for each of these factors. But
then choosing n large enough, we can force

||P0 [q[)nabl V71 (J}nabz 77Z}nabs )] ||L?°Lu2r < 52@
6

by the essential disjointness of the supports of the factors, and this suffices to handle Case 1, see the proof

of Proposition 9.12. Indeed, the expression

[,(Z}nabl v—l (,&nabg ,(/;nabg )]

is essentially supported in a frequency interval [—=10Cs, 10Cs], and repeating the above estimate for each
of these frequencies and square summing easily yields the bound

Z ”X[*Tl,Tl] (2kt)Pk [,(Z}nabl v—l(,&nabz,&nabs)] ||LfH7% < 09
k

If, on the other hand, at least one of the factors %%/ is in the “linear regime” (i.e., satisfies the covariant
wave equation), then smallness follows from the L*-decay.
Next we consider the term

~ (0)
Po[g" etV (g 4)?]]
Here of course it is essential that we are in Case (i) and so it suffices to estimate the L{°L? or also L7,
norm of this term, see Case 1 of the proof of Proposition 9.12. Due to the essential disjointness of the

Fourier supports of ¢ and w”At(JO), see Proposition 9.9, we may assume that the first input "% has
frequency of size one, while the second input has extremely small frequency (controlled by picking n large

enough). But then we may estimate this contribution by placing Vﬁl[(@ZJ”AéO))Q] into Lg%, and re-scaling
and square-summing over the output frequencies results in the desired small bound.

Finally, the interactions of temporally bounded 1/?"“6 with the remaining weakly small errors W51 are
handled similarly by exploiting the smallness of the latter with respect to Lg{%,. Here the “Important
Technical Observation” from before becomes important again.

(i.2.b) Errors generated by temporally unbounded pnab, Again the errors generated are of the form
P [at,lz)nab . Vmi,Z)nab o Jjnabvfl[(,‘/}nab)ﬂ]’

as well as terms involving interactions of "% with ™45, §*(>Bo)  as well as W"*B. From Part (B) of
the proof of Proposition 9.24, we know that 1™ is of gradient form up to an error which can be made
arbitrarily small. Hence the above simplifies, up to a negligible error, to the nonlinear term

— P[PV (")),

To estimate this, we can first reduce this to

7P0[1Z)nabvflp[_06706] [(P[—CG,CG]dN)nab)z]]a

arguing as in Case 1 of the proof of Proposition 9.12, and then by using the Ly, -dispersion, i.e., Lemma 9.20,
to write

P[*Cs,Cg]’(/’}nab(()? ) = OLoo(l)
from which the desired smallness follows easily. The interaction terms of temporally unbounded 7])”‘“’ with
the remaining components w"Af()O), pa(>Bo) JnmaB are handled as before and are omitted.

(i.2.c) Errors generated by the weakly small remainder W™*5. Again recalling Part (B) of the proof of
Proposition 9.24, and Lemma 9.26, we know that W48 is of pure gradient form up to a negligible error
(provided B and n are large enough). The conclusion is that the error of the form

PO [@W”“B _ vmwnaB _ Wnan—l([wnaB]2)
reduces up to a negligible error to the nonlinear self-interaction term
]Do[_I/V'nanfl([I/VnaBP)]7
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which can be estimated as in the preceding case, using the smallness of |[W"*5|| ~ after reducing to
frequencies of size O(1).

(ii) |I1] > T1, Ty as in Case 1. Proceeding as in Case 2 of the proof of Proposition 9.12, we decompose
Pye into
Pye = PoQ<pe+ Py@Q>pe,
where D = D(E..; ) is a sufficiently large constant. Then arguing as in the proof of Proposition 9.12, we
obtain two equations

04PyQ<pea = F),
DPOQZDG = FO%

Here the magnetic potential A in the first equation is defined as in the proof of Proposition 9.12 but with
11, replaced by

wnA((jo) + i q/;zab + WnaB
b=1
The source terms F! are obtained as in Section 3, and here we of course linearize around the above
expression. Then we re-iterate the estimates in the proof of Proposition 9.12, with € replacing e; and
€1 = 0. As in Case 1 above, the only new feature are the source terms coming from nonlinear interactions
between the various ¢, WneB1  Fortunately, the fact that each of these functions is essentially frequency
localized to the same interval, the mechanisms that force smallness reduce as before to either physical

separation or dispersive decay. We explain here how to obtain smallness for the trilinear null-form source
terms, which we write schematically in the form V, :[p1V~™1Q,;(pa, p3)], were p represents one of the

. 0) By . .
functions 140 ", Yool prab, WneB  We consider the following cases:

(ii.0) Errors due to the gluing construction (9.85). These errors are of the form
Xl(/foo,Tabéz +10) (t)¢ab - X/(Loo,Tabéz +10)(t)SA“ 1/}‘“’ [Tabéz]

Xzfoo,Tabéz +10) (t)at’(/}ab - Xl(foo,T“b‘SZ +10) (t)atSAnwab[Tabéz]
To show the smallness of these, note that 1% solves the schematic div-curl system
Vith = Vo) = V1 (%)

Now since we have 9% = or(1) + or2(1), choosing T2 large enough, we see that (with o(1) in case
T — )

X710 [Vey™ — Vo™ = Opafr-G-3p) (1)
Similarly, by construction, the extensions S [T%%2] also satisfy the (schematic) relations
X7, 7+10] [0 (San 0P [T2]) — Vo (Santp® [T*%2])] = orsrz(1),
see Lemma 9.33. But then it easily follows that
||X/(,—OO,Tab52 +1o)(t)¢ab - XE/_OO,TGMQ +10) (t)SA“/)ab [Tab(;ﬂ HN < 02
||X/(_00,Ta552 +10) (t)aﬂ/’ab - XE_OO,TaMz +10) (t)atSA"wab [Tab[sz]”N < 02

(ii.1) Self-interactions of temporally bounded 1)™*. These only occur provided Iy N[0, T%%2])¢ £ (). Thus
assume the latter is the case, and consider

V%t[,&nabv—l Qyj (,&nab7 &nab)]
Now the estimates of Section 5.3 imply that we obtain
Vet [PV Qs (7, 77/~1nab)]||N(11 xR2) K 02

provided at least two of the inputs have Fourier support with very close angular alignment, depending
on |||, d2. Thus we may assume that these inputs have Fourier supports with some amount (albeit



244 JOACHIM KRIEGER, WILHELM SCHLAG

very small) of angular separation. Similarly, localizing the Fourier support to frequency ~ 1, say, we may
reduce to the expression

Z Vx,tpo [Pk1 Jjnabv—l Qyj (‘szqznab7 Pk31/;nab)],
k1,2,3=0(1)

where the implied constant O(1) is of course potentially extremely large, depending on [|1)"%||s, 6. We
may similarly assume that all the modulations present are of size O(1) at most (which may again be quite
large, depending on |[1)"||s, §2). But then the assumed angular separation between all factors allows us
to bound this expression (for fixed frequencies) by

V2,6 Po [Py "V 1 Qo (Pry 7%, Pyt )] w10y S NP 0™ k] IV~ Qg (Pry 0™, Prog ™) 2
But then the desired smallness follows by interpolating the improved bilinear Strichartz type bound
IV Qo (Pryt™®, Preytd™ ez, < TT 1P, 0" sty
Jj=1,2

for some p < 2 following from a result due to Bourgain®® [2] as well as Lemma 2.22, and the smallness
bound R R
||V*1 Quj (szwnab’ Pkswnab)”ng <1

which we obtain by letting 7%%%2 be large enough in relation to d». Replacing 0 by k and square summing
over the output frequencies, the desired bound follows easily.

(ii.2):  Interactions of two different temporally bounded 1&”“”. Here the mechanism at work is the
physical separation of the centers of mass for n large. Thus consider

va‘:,tPO [Pkl J)nabl vfl Qyj (Pk21/;nab2 , Pks,l/;nabg )]

where we have b; # b; for at least one pair 4, j. Now if we have I C [0, T4%:%] for both 4, j, then pnabi;
are essentially supported in disjoint light cones for n large enough. Specifically, due to Lemma 7.22 as well
as Lemma 7.23, given d3 > 0, we may write

Tnab; __  Tnab; Tnab;
1/1 — Y¥cone + wconé‘
Tnab; __  Tnab; Tnab;
w 7= Yeond + wconec

where we have
|| nabz i

cone® ||S < 62
while the functions @[J?ffé’j are supported in disjoint double cones while still satisfying
Tnab; Tnab
[Yeome s S C("7)
It is then straightforward to conclude that by choosing n large enough, we may force
”th [anabl v—l Quj (J)nabg ’ J}nabg)] HN < 52

If on the other hand we have I{ N[0, 7] £ () for at least one j, then we use L dispersion on this
intersection to get smallness as before.

(ii.3) Interactions of temporally bounded ¥"** and 1/)"‘4(()0). We distinguish between I; C [0, 7] and
I, N[0, 79%%2]¢ £ (). In the former case, where ¥ is given by the actual wave map propagation, we
generate error terms of the form

7 - nA©® 40
Vo t[p OV 1Q,; (pm o g o]

As in case (i.2.a) above, localizing the output to frequency ~ 1, we may reduce to the case when

QV]‘(’(/J7LA((JO) , w”A(()m) has extremely small frequency. But then one obtains

na nA© 40
IV o[V Qi (940" )| 11 g1 < (|1 Pros g [0 e 2

290f course one also has the optimal results due to Wolff and Tao, but those are not really needed here.
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and re-scaling and square summing over the output frequencies, we can force an upper bound < d5 by
choosing n large enough. We further generate interaction terms of the form

vm,t["/)nAE)O) v! Qu; (,l;nab’ wnAf)O) ), th[wnAgm vl Q; (@nab’ &nab)]’

However, the trilinear estimates in Section 5 in addition to the frequency support properties of these inputs
reveal that choosing n large enough, we can force

(0) ~ (0) (0) - -
Vi[04 V1 Q,, (9, "0 ]| v < G2, (| Ve[t 40 VT, (4™, 4™ )] || v < 62

Note that in the second situation above, i.e., I3 N [0, T%%2]¢ £ (), we essentially no longer generate errors
of the form

- B (0) (0)
(9.86) Va0V Qy (g, g AT,
as well as similar higher order terms arising from the Hodge expansion of the potential term
(0) (0) (0) (0)
. Z Aflaj [\IllljnAo \IlinAO . \If?;nAO \II;nAO ]
j=1,2
within I; N [0, 7%%2]¢ since now 15”“1’ is given by the linear covariant evolution. This is made precise as
follows: by construction, on the latter intersection, we can write
q;?ab — 81<nab + aznnab7 ~gab — (Q)zcnab _ 8177nab7 ,L/;gab _ atcnab’

where the functions ¢"e?, ynaeb

solve the covariant wave equations
Opn Cnab _ DAnnnab -0
Here the potential term A™ is defined as in (9.63), which is to be contrasted with the ’true potential’
. -1 1n AL ~2pA0 2n A _ 104"
AL == Y AT [ w e e g e
j=12

Consider the terms 9,¢("* =: 0,(, a = 0,1,2. We make the Claim that the expression
(9.87) 00aC + 10° [0aCAB] + 100 [0°CT°AR] 41 Py [0°06(Pek 51 A}]
k

is negligible in that its || - || y-norm converges to zero as n — oco. In light of the decompositions of the
nonlinearity in section 3, one then easily concludes that terms of the form (9.86) as well as similar higher
order terms are indeed accounted for by the covariant wave evolution O 4n.

To see the above Claim, we use the notation

J9="Tfugu + fugr + fLgn
where we put

fagu =Y PefPi-spis9 fugr = Y PefPer—sg, frgm = »_ PefPsrysg
k k K

Then write
i0°[0aC AR = i0°(0aCu (Af) 1] + 10°[0aCL(AR) 1] +i10°[DaCr (Af) 1]
Then the trilinear estimates of section 5 as well as our assumptions on the frequency localization of (,
zb"AéO) imply that
1i0° [0aCrr (AB) ) llv — 0, [1i0°[BaCL(AR) allly — 0
as n — oo, and so it suffices to replace i@ﬁ[aa(:Ag] by i0°[0alu(A%)L]. Due to Corollary 5.4, Re-

mark 5.6 and Lemma 5.7 we can pick a sequence A,, — oo sufficiently slowly and such that if we put
I" =% PuQcrin,, I" =3, PuQ>kyn,, then we have

1:0° [0aC I (AB) L] Iv — 0, [l [0aCa IO (AG) L]y — 0, [[i[0°Cada(I" AG)L]|N — O
110607 Crr (I AB) L) | v — 0
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We then replace i0° [0aCH(AB) L] by i0°[0aCH (I™A%)L], up to asymptotically vanishing error. Then write

i07[0aCr (1" AR) ] = i[0° 0alu(I" AR) ] + i[0aCrd” (1" Af) L]
=010 C(I"AB) L] +i[0aln0° (I" A})L]
— i[0° ¢y 0a (I"A}) L]
= i0]0°Cu(A})L] + on (1)

Proceeding similarly for the remaining terms of (9.87), it then follows that

00aC + 107 [0aCABL] + 10, [0°CI°A}] + i Z Py, [0°0a( Pay—s1 AT

= 0 [0C + 2i0°Cu(AR)L] + on(1) = [DC +2i0°((AR)] + on (1)

where in the last step we have again used (a slight variation®® of) Lemma 5.7. The Claim above follows
from this.

(ii.4) The remaining interactions the 1[1”“17 of bounded or unbounded type, 1/1”’45)0), as well as O, WnB1,
These offer nothing new: note that both the components Jjnab of unbounded type as well as the covariant
linear waves W51 have extremely small L -norm, but enjoy the same frequency localization properties
as 1" indeed, for unbounded type 1/1"’“’, this follows by choosing the C in the interval we work on
[0,¢"e2 — O] sufficiently large. Thus any trilinear interactions involving them can be handled as in case

oo . . . . . (0) .
(ii.1) in the asymptotic regime. Also, not that interactions of 9, W™t with w”AOO are of schematic type

V;c,t [¢nAgO) v71 Ql/j (aaWnaBl ) ¢nA§)O) )]
Vot [0"4” V1Q, 5 (0, WaBL 9, WnaB1)]

(0)
vm,t [aa Wna31 vfl Qyj (¢nAO , aa Wna31 )]’

and hence can be made arbitrarily small with respect to || - | v by choosing n large enough.

We omit the treatment of the higher order interactions between the 1/;"“” as this offers nothing quali-
tatively new. Applying the arguments from the proof of Proposition 9.12, we now conclude the proof of
Proposition 9.30. ([l

Proposition 9.30 allows us to extend the Coulomb components wZKG) to the interval [0, — (.
But now the profiles 1;"“” which were temporally bounded with respect to t = 0 become temporally
unbounded with respect to the new starting time ¢"?*2 — C' as n — co. Now by repeating the arguments in
Section 9.6.3, we see that for those concentration profiles 1" for which (see the discussion in Section 9.6.3)
limsup,,_, ., [t"**2 — t"%| < oo, i.e., they concentrate at time t"%%2 or alternatively time ¢z — C | the
exact same arguments as in that subsection imply that they can be approximated arbitrarily well in the
L?-sense by Coulomb components of admissible maps (but for this we have to know that the Components
z/;ZKa) and the associated wave maps actually extend to time ¢"**2 — (). But then we have an exact
analogue for Proposition 9.30 on the interval [t"eb2 — O, tnabs — é} Repeating this process finitely many

times, we extend wa(<a) to R2*! and obtain an a priori bound
[¥a<Vls < Ca

as well as exponential decay of the ||Pk¢3(<a) | sk for k> log[(A%)~].

30Recall that we have stronger estimates for ¢ in the regime of large modulations, viz. Lemma 9.19
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9.8. Completion of the proof of Proposition 7.15 as well as of Corollary 7.16. Both of these can
be deduced by a simpler version of the proof of Proposition 9.30. For Proposition 7.15, one makes the
ansatz
Yo = 00 (S(0 —t0)(3:V, V) + €a

and performs a bootstrap argument for ||ea||s((—oc,0/xr2) for to large enough. This is as in the proof of
Proposition 9.30 where the free linear evolution of J, (S (0 — t0)(0:V, V)) replaces one of the temporally
unbounded (imb, say, while all the other components é”ab, w”AEJO), O W™eB1 vanish. If we pick to large
enough, all the error terms due to nonlinear self-interactions of 9, (S(t — t0)(0;V,V)) become arbitrarily
small due to the reasoning in case (ii.1) of the proof of Proposition 9.30. As there, one then obtains the
estimates for € via the technique used in the proof of Proposition 9.12. We conclude that for given d3 > 0,
if to is chosen large enough, we obtain the a priori bound

Hfa HS((—oo,O]xRZ) < 03

and from here the smoothness of the solution follows, see Proposition 7.3.

Next, we prove Corollary 7.16: from Proposition 7.15, we know that we can construct admissible
Coulomb components of the form

Yr =0, (St — ) (0 V. V) + €a
for t € (—oo,t, — C] for some large enough absolute constant C, with

lim sup ||€(X||S((foo,tnfC]><R2) < 1.
n— o0

Now we claim that the functions 9" (t,, — 10C, ) form a Cauchy sequence in the L2-sense. To see this,
note that for n > m

Vo (tn —tm, ) = ¥y (0,+) +or2(1)
as n, m — oo, whence by Proposition 7.11 one has
(b — 10C, ) = 2t — 10C,) + 012 (1)
But then also
Yot +tn, ) =o' (t +tm, ) +0r2(1), te (—o0,—10C)
again by Proposition 7.11 , and furthermore, due to the uniform bounds

lim sup ||¢Z||S((—oo,tn—c]x1R2) <M <
n— o0

for suitable M € R, we conclude upon denoting

\Ijgo(tv )= 1171111 ¢Z(t +tn, )
that

||‘I’ZO||S((—OO,—C‘]xR2) <M
for any C' > 10C, as desired.

9.9. Step 5 of the Bahouri Gerard process; adding all atoms. In the preceding subsection we
derived a priori bounds for the wave maps evolution of the (admissible) Coulomb components

(0)
© ) 1 nA nl
(U}ZAO + ¢Zl)€_’ Dh=1,2 87 Olwy 0 o) +or2(1)

under the assumption that either

liminf [[w™ |12 > 0
n—o00 x

or else, applying the second stage Bahouri Gerard decomposition to the large atom ¢!, that all the
concentration profiles have energy < E..;s . We shall henceforth make this assumption. Now we continue
the process by extending the data at time ¢t = 0 for the Coulomb components to

(0) (1)
A© AL Lo (wp 0 4wy O
e I A I S I Co
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where we recall that the error term or2(1) is necessary in order to ensure that the data correspond to
exact Coulomb components of an admissible map. Denote the wave maps evolution of

nA©® 1 nAM . A-lp nal® 1 nal
(’LU 0 +¢Z 4+ wg © )6_1Zk:1,2 ke (wy, +or )4,01‘2(1)7

[e3%

which is defined at time ¢t = 0, by the same symbol. We state the result:

Proposition 9.34. Under the preceding assumptions, the evolution of the preceding Coulomb components
exists globally in time. For n large enough, we have an a priori bound

nl

A© AW -1 nal® nall
[(wa™ + gpt +wa™0 e nmra & Oklw T AGEHWT ) o5 (1)]| grarr) < 00

The bound here depends on Ec.;; as well as the a priori bounds for the evolution of the concentration
profiles extracted by adding ¢™. Furthermore, we have the same bounds as in Proposition 9.11 (applied
to the union of all J;), where the implied constants depend on Ecryy as well as the a priori bounds for the
evolution of the concentration profiles extracted by adding ¢™'.

The proof of this is a precise replica of the one given in Step 3. The difference consists in the fact that
in the decomposition (see Step 2)

wnAél) _ E d)na? +wnA(1)
J

nA®

we now need to ensure that ||w I g _ s small enough depending on both Eiy as well as the a priori

bounds for the concentration profiles from Step 4.
Next, one extends the data at time ¢ = 0 to

nA© 1 nAD 5 ) A-lp nal® o wa®
(wa 0 _|_¢Z + we, 0 +¢Z )6—12k=1,2 e (W), +oi tw, +o5 )+0L2(1)

Repeating the procedure of Step 4 but with magnetic potential defined in terms of the 1-evolution of

(0) (1)
(0) (1) . _ nA nA
nA n nA /A 1 0 nl 0
(wa™ ° + ¢01 +wa ° e I Ok (wy, Ot ) +or2(1),

one again derives the same types of bounds as in Proposition 9.30 and the process continues Ay many
times, as we recall from the discussion at the beginning of Step 2. We have finally arrived at the following
grand conclusion to this section.

Theorem 9.35. Let ¥™ be a sequence of gauged derivative components of admissible wave maps u™ :
-1, T7] x R? — H2. The hypothesis

(9-88) nlggo ”wn”S([—TO",Tl"]XJRZ) = o0, nlggo 1VnllE = Ecrit
implies that two possible cases occur: up to rescaling and spatial translations, either we have
Va0, -) = Va + 01 (1)
for some fixed L?-pmﬁle Va, or else we have for some sequence t™ — oo (or t" — —o0) and suitable
(0,V,V) e L? x HY,
Va0, 2) = 0a (S0 =) [0V, V]) + 01 (1),

where S(t) refers to the standard free wave propagator. In the former case

2
Do WVallie = Eerie,
a=0

while in the latter case, one has

2
(9.89) > 10V Iie = Eerir
a=0
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Note that due to Lemma 7.10, in the first case, there exist Ty > 0, 77 > 0 with the property that
sup [|9" | s((—10,1] xR2) < 00,
n

and we can then define
(9.90) li_>m Yo (t,x) = U (t, x)

> ([~ To, T1]; L*(R?)). Similarly, in the second case, due to Corollary 7.16,
we have the corresponding statements on some semi-infinite interval I = (—o0, Tp) respectively (Tp, 00).
We call the maximal such open interval (—Tp,T3) (respectively (—oo,Tp) or (Tp,o0)) the lifespan of the
asymptotic object ¥U°(¢,z). Finally, in order to apply the Kenig-Merle type argument, we need the
following essential compactness property:

where the limit is in the sense of L°

Corollary 9.36. There exist continuous functions T : I — R? and X : I — R% so that the family of
functions {\(t)"1 U (¢, (- — Z(t))A(t) ") }rer C L2 is pre-compact.

Proof. We may assume that

(9.91) sup || W[5 (jo,13) xr2) = 00
0<To<T

see Lemma 7.17. The proof follows [13], [14] and amounts to an argument by contradiction. More precisely,
we begin by showing that one can find functions A(¢), Z(¢) not necessarily continuous with the desired
compactness property. Suppose this fails. Then there exists ¢ > 0 and a sequence of times {t,} C I so
that
(9.92) inf  IATEOC(t,, (- — 2)ATH) = U (t, )|[2 > €

A>0,2€R2
for any n # m. Necessarily ¢, — T;. Now apply Theorem 9.35 to the sequence {U2(¢,,-)}52,, which
satisfies (9.88), but on a shifted time-interval. Note that ¥S°(t,,-) are not admissible in the sense that
they are not necessarily given as the Coulomb derivative components of admissible wave maps. However,

by approximation by the original sequence ¥? (up to symmetries) one concludes that either for some
V, € L*(R?),

(9.93) U (t, ) = A\ Vo (2 — 20) N, 1) 4 0% (1)
for some sequence A, x,, or that for some s™ — oo or s, — —00,
(9.94) U (tn, ) = A, 100 (S(=5™) [0V, V]) (& — )AL ) + 07 (1),

where V is as in (9.89). Clearly, (9.93) contradicts (9.92). For (9.94), we first show that {s,}22; has to be
bounded. Assume that s, — —oo. Then Proposition 7.15 implies for large n that ¥S° exists on [0, 00) x R?
and
a7l ([0,00) xR2) < 00
which contradicts our assumption (9.91). If on the other hand s,, — oo, then this implies by the same
proposition that
Sup [|WE7[| s((—oo,t.])xr2) < 00

This again contradicts our assumption (9.91) and we are done. As in [13] one proves by approximation
that A\ and Z can be taken to be continuous. O

10. THE PROOF OF THE MAIN THEOREM

For the purposes of this section, it is sometimes preferable pass to the extrinsic point of view. Specifically,
let S be a compact Riemann surface of the hyperbolic type, i.e., it is uniformized by the hyperbolic plane.
Given a covering map 7 : H? — S, we obtain a Riemannian structure on S which makes 7 a local isometry.
By Nash’s theorem, we may isometrically embed S < RY into an ambient Euclidean space. Now denote
the compositions

Ut:=7mou" : IxR*> =S
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defined on I xR?, see the above discussion. We can express these maps in terms of the ambient coordinates.
Our first task is to identify an actual map U from I x R? into S <+ R” which in some sense corresponds to
the limiting object WS (¢, x). The fact that this can be done follows again from the compactness property
of the ¥°(t,z). We have the following

Proposition 10.1. Under the above assumptions, there exists a subsequence of {U™, ¢™, "™} which we
denote in the same fashion as well as a function U(t,-) € C°(I; H*) N CY(I; L?) , such that

lim U™(¢t,z) =:U(t,z), lim V, , U"(t,z)= V..Ut z)
n—oo n—oQ

where the former limit is the a.e. pointwise sense and the latter limit is in the L2-sense on fized time
intervals. The map U is a weak wave map (in the distributional sense). Also, the second limit is uniform
on compact intervals J C I. Finally, the family of functions

{Ve, U, ) }eer C Li
is compact up to rescaling and translational symmetries (which may depend on time).

Proof. We may assume that for times t € I we have
Yot ) =W (t, )+ or2(1)
But then it follows that for each such ¢ € I, there is a subsequence (depending on ¢) such that also ¢2 (¢, -)
converges in the L2-sense. To see this, note that
Galt,) = (U(t, ) +opa(1)e! " Zim ¥

(0%

inherits both the physical L2-localization coming from W2°(t,-) as well as the Fourier localization of this
profile3! whence it is compact and a subsequence converges as claimed. Picking a dense subset of times
{t;}$2, C I and using the Cantor diagonal argument, one obtains a subsequence which we again denote
by %™ etc. such that ¢™(t;, -) converges for each i in the L? sense. By Corollary 9.36, it then follows that
@™ (t, -) converges in the L? sense, uniformly on compact sub-intervals of I. In particular, the limit ¢>
satisfies > € CO(I; L?(R?)). We now use this to infer the existence of U(t,z). First, introduce a global
frame {e; 2} on the pull-back bundle of T'S under the wave map U™ by projecting down the standard
frame {e1, ez}, i.e., ;(t,z) := m.(e;)(u"(t,x)). Thus

(10.1) 0aU"(tix) = > ep(t,x)s" (¢, @)
k=1,2

Fix some I’ C I which is compactly contained in I. We now use that the pull-back frame is bounded. By
the preceding, given € > 0 there exists R so large that

lim sup [ Voo U X{fal> Rl 1o (1122 (015 ) < €

On the other hand, it is clear that
lim sup HV,:,IU"HLOOU,;LQ) < 00
n—oo

By Rellich’s theorem we now conclude that up to passing to a subsequence, 9,U" — X, in L*>°(I'; L?)
(in the weak-* sense), as well as U™ — U in L{® (I; L?) strongly. Necessarily then U € L>(I', H'(R?)),

loc

see (10.1) as well as X, = 9,U. One immediately obtains the stronger statement that U € C°(I, L?) by
integrating in time. One in fact has stronger convergence: first note that

Oner (t,z) = d(m,)(dej)(u" (L, x))0au"™ (t, x)

which implies that {ep}5%, is compact in H'(R?). It now follows from (10.1) and Rellich’s theorem as
before that up to a subsequence one has

&lUn(ti, ) — aaU(ti7 )

31This follows as usual from a Littlewood-Paley trichotomy argument and the energy conservation of the ¢™.
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strongly in L2. By compactness, one therefore also has strongly in L2
aaUn(tv ) — aaU(tv )

uniformly on compact subsets of I. This implies all the convergence and regularity statements of the
proposition. The fact that U is a weak wave map follows from this, as well as from [9)]. O

Note that we do not claim that we have uniqueness for the limiting object U, and indeed we only have
a well-posedness theory at the level of the v,. Thus we cannot purely work at the level of wave maps with
compact target S. Nevertheless, the latter will play an important role when ruling out certain pathological
behaviors, or also to formulate the conservation laws.

For example, we have the following

Corollary 10.2. Let U be the weak wave map as in Proposition 10.1. Then one has the following conser-
vation laws: with | -|?> = (-,-) being the metric on S,

o 4300 Jer 10Ut @) da = 0

o L [(0Ut2),0U(t,x))de =0 i=1,2

o &30 o (@) RYOU (t, ), 0,U (t, @) dx = = [ |0:U(¢,2)|* d + O(r(R))

o 452 o furxid(x/R)L0.U(t, x)2 dx = — [,,(9;U,8,U) dz + O(r(R))

where ¢ is a fixzed bump function which is equal to one on |x| < 1 and

r(R) := i 10U (t, ) |* dz
[

z|>R]

Proof. These are standard calculations for smooth wave maps. By Proposition 10.1 one can then pass to
the limit. ]

Note that one could alternatively express these in terms of US°. We will now closely follow the arguments
in [13].

10.0.1. Some preliminary properties of the limiting profiles. We begin with the following consequence of
finite propagation speed. Let I1 := I N [0,00) where I is the life span of U°.

Lemma 10.3. Let M > 0 have the property that

2
(10.2) / > U (0,2)dr <&
‘$‘>% a=0
Then
2

(10.3) / St )P de < Ce
|| >2M+t a—0

for allt € IT. Here C is an absolute constant.

Proof. By definition, there exist u" = (x",y") : I — H? which are admissible wave maps such that (9.90)
holds. Now define ;
X0 ) 2 X5 Xiers el 0)

Yo
where X[z~ i @ smooth cutoff to the set {|z| > M} which equals one on {|z| > 2M}, say, and

(5, ¥5)(0,) = (Xt

n

X( ::][ x"(x) dz1dzs, y{ = exp (]/ logy™(x) d:ﬂld:cg)
[M<|z|<2M)] (M <|z|<EM)]

The construction here is such that y5 = —i: on the set {Vx(z/>a # 0}. Let @ be the wave map evolution
0
of the data

39("(0,-) 8ty”(0,)))
yo o yg

(s, 38)(0,), (
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By construction, the energy of " does not exceed Ce. This requires the use of Poincaré’s inequality as
in the proof of Lemma 7.22. One now concludes by means of finite propagation speed for classical wave
maps, and by passing to the limit n — oc. O

Next, one has the following lower bound on A(t) in Corollary 9.36.

Lemma 10.4. Assume IT is finite. After rescaling, we may assume that IT™ = [0,1). There exists a
constant Co(K) depending on the compact set K in Corollary 9.36, such that

Co(K
(10.4) 0< %t) < A(t)

forall0 <t <1.

Proof. Take any sequence t; — 1. Consider the limiting profile {\I/Z"] 2_, with data A(t;) 710 (L, (- —
Z(t;)A(t;) ") }2_,. By the well-posedness theory of the limiting profiles in Section 7.2, one infers that
the {ﬁlgf’] 2 _, have a fixed life span independent of j which depends only on the compact set K. By the
uniqueness property of the solutions and rescaling, (1 —t;)A(t;) > Co(K) as claimed. O

Next, combining this with Lemma 10.3 one concludes the following support property of the ¥5° with
finite life span.

Lemma 10.5. Let US° be as in the previous lemma. Then there exists zo € R? such that
supp(Wg’(,-)) € B(zo, 1 — 1)
forall0<t<1,a=0,1,2.

Proof. This follows the exact same reasoning as in Lemma 4.8 of [13]. One uses Lemma 10.3 instead of
their Lemma 2.17 and Lemma 10.4 instead of their Lemma 4.7. ]

Next, we turn to the vanishing moment condition of Propositions 4.10 and 4.11 in [13].

Proposition 10.6. Let Y be as above and assume that I is finite. Then fori=1,2,
/ (6:;U,0,U) dx = Re/ VXU dr =0

R2 R2
for all times in IT.
Proof. Assume that

Re/ UXPUE dr > v >0
R2

This implies that the approximating sequence u' satisfies

/ (1", 0™y dz > >0
R2

for large n. Following [13] we apply a Lorentz transformation
t— dl’l T, — dt )

Ld(t71'> = (m, W71‘2
to the u™. Note that for any £ > 0 one has from Lemma 10.5 that
2
Z/ 00" (t,2)|* dx < e
a—=0 |z|>1—t
for all t € I'™ = [0,1) and sufficiently large n. Then the argument in [13] implies that there exists d small
with the property that
limsup E(u” o Lgq) < Ecrit

n—oo
By our induction hypothesis, [[¢)™%||gr+xr2) < M < oo for all sufficiently large n. Here )™ are the
Coulomb components of the admissible wave maps u™ o Lg. Note that the Coulomb components )™ do
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not obey a simple transformation law relative to the Coulomb components ™ of u™. Nonetheless, it is
possible to conclude from this that

limsup [|9" |57+ xr2) < M1 < 00

n—oo

via Remark 7.8 which gives us the desired contradiction. Thus, we need to prove that for each ki > ko

—k
(105) Z 2 2Pk1,f€1¢npk2»527/)n = fk'hkz + ks ko
£1,2€ECm
dist(k1, k2)227 ™0

where my is a large depending on E¢, where we have the bounds (7.20) for fi, x, and gi, k,. Furthermore,
we need to show that

PLQsi¥™ = hy, + iy,

with the bounds stated in Remark 7.8. We establish this for the bilinear expression, the corresponding
computations for P,Q+,1" being similar. First, we claim the following bound for ™%

(10.6) > Yo 2Py " Py ™

k1>ko m,ze(lmo
dist(k1, ko)227 ™0

\%g,m <A

This, however, is immediate from the angular separation and (2.30) with a constant A’ which depends
on M and FE..;; . In fact, we need something slightly stronger due to the usual tail issues:

(10.7) sup > 2Py 0y Py e <
Y ki>ko K1,2€Cm, ’
dist(k1, ko) 2270

where 7, is a translation by y € R2. Next, we claim the following estimate:

(108) Z Z 2_k2”Pkl,N1¢n,dpk2,ﬁz¢n7dl|%f’m <A

k1>k2 K1,2€Cm
dist(k1, ke)227 "0

where ¢ are the derivative components of the u” o Ly. This is the same as

Z Z 2*’92 Hpkl,m (w”,defiaild’n’d) . Pkg,/w (wmdeiiaild)n’d) ||%§z < A/

k1>ko K1,2€Cm
dist(k1, ko) 2270

where we wrote the phase —id~'¢™? = —iRe 2321(—A)*1aj¢nxd schematically. This follows from (10.6)
and the Strichartz estimate

N|=

(10.9) (2t sup 3 202 pgmd)2,, ) S M
keZ jZlOCGDk,j
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To prove (10.9), one uses the corresponding bound on ™9 (which is part of the S-norm), energy conser-
vation, and a simple Littlewood-Paley trichotomy. To prove (10.8), one argues as follows. Split

S 2P (e ) Py (e ) 2

k1>ko £1,2€Cm
dist(k1, ko) 2270

_ _io—1,n,d _io— L™\ (2
10 10 Z Z 2 kZHPkl’Iﬂ (¢n,dp<k1*moe 078 ) . Pk2’1€2 (wn’dp<k2*7m)e 0T )HL;"’L
k1>kz  Kk1,2€Cm
dist(k1, ko)227 ™0

=1 n,d _io—1,n.d
10 11 + Z Z 2_k2||Pk1,n1 (z/}n7dp<k1*m06_zd ¢ ) : Pk:z,lw (’(/}n7dp>k2*moe e )Hifl
k1>ks  Kk1,2€Cm,
dist(k1, kp)227 "0

_ _sa—1,n,d _s9—1, n,d 9
10 12 + Z Z 2 szP]ﬂ;fﬂ (andP>k1*moe 074 ) : Pk:z,mz (andP<k2*mOe e )HL?z
ki>ka  K1,2€Cm,
dist(k1, kp)227 "0

_ _ =1, n,d _i9—1,n,d
(10.13)  + Z Z 2 kQHP]fl,Nl (¢n7dP>k1—moe e ) * Prey iy (¢n7dp>k2—moe 0o )”%fI
k1>ka K1 2€Cm0
dist(k1, k2)227 "0

In (10.10) one reduces matters to (10.7) by placing the exponential in L L3°. Next, to bound (10.11) one
notes that

i 2_*M

—ig " tgpmd
lzszee S

HP>I<?27m06

where the implicit constant depends on E.,.;; . Therefore,

Z Z 27k (¢n,dP<kl_mU€7i3*1¢"‘d) - Prys (wn,dpﬁz_moefia*‘wd)||%%I

k1>ks  K1,2€Cnm,
dist(k1, k2)227 "0

<S> 2B B (DD Y NBP™ e | P Prvomey (e = D))’

k1>ko K1,2€Cm0 £>ko C,CIE'DL)Q_(
dist(k1, k2) 2270 dist(c,c’)<2%2

< M°

using the Strichartz estimate from above. The remaining terms are the same. This concludes the proof
of (10.8). By the same logic, one also obtains

—k d d
Z Z 2 2||Pk1,51Q§k1+Cz¢n, sz,ﬁzQSkz-‘rCz(bm ”i%m <N

k1>ko K1,2€Cm
dist(k1, k2)227 "0

where C5 is a large constant depending only on the energy which will be determined later. This then
implies the following version without the Lorentz transforms

) > 2752 || Py, s, Qi+ 0 0" Py s Qb4 08" 12, < A

k1>k2 N1,2€Cm6
dist(k1, k) >2" "0

provided d is chosen small enough, but depending only on E..;; (so that m( is close to mg). Finally we
claim that

(10.14) P, Qs+, 9" Pr, 0"

(1015) Pk1 ¢nPk2Q>k2+C2¢n
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can both be included in g, ,. To see this, one first expands

i 1en
Pk1Q>k1+C2¢n = Pkl Q>k1+02 [q/}”e ! ¢ ]

(10.16) = Y PuQskio [P P ]
L>k1+C2—10
a—1 n
(10.17) + > Py Qs s 10y [Py Pre™ ™ 0"
k1 <<k1+C>—10
(10.18) + Py, Qs k405 [Paky—59" Prye ™9 9"
ca—1 n
(10.19) + Py Qo k40, [Py " Pegy —5e™0 "]

and then inserts these decompositions into (10.14). For (10.16) one places Py,¢" into L{LS°, and its
contribution to

Py, Q>k1+02¢n
into L}L? followed by an application of (10.9) with caps of size 2*'; more precisely, Pge*ia_lw goes
into L{L° as before, and Pyy™ gets placed into L{°L2 (see Lemma 2.18 for the issue of square-summing

the L$°L2-norm of ¢™ over caps of size 2%1). Note that one gains a smallness factor of the form 2= due
to the improved Strichartz bounds. Next, we consider (10.19) and the remaining terms (10.17) and (10.18)
will follow similar arguments. Now we decompose further:

Pr,Qskyv0, [Pk1¢"P<k175€_wil¢"]
(10.20) = P, Q> 40, [Q>k1+02710Pk1¢"P<k1756_i071¢n]
(10.21) + Pry Q>+ [QSkﬂngflOPkl¢np<k175Q>k1+C27106_i671¢n}
For the contribution of (10.20) to (10.14) one estimates
| Pry Q> k140 [Q>k1+02—IOPk1¢nP<k1—5e_i871¢n] P, |12,

k140
S 2% Qs kit 0am10Pe " |12 1 Prod ez S 2%227 7% [ Pry |l 1 Pea @™ [l 1o 12

which is sufficient since it gains the smallness 2-Z. Finally, we use (1.6) for the case when we substitute
(10.21) for Py, Q>k,+c,¢™; one can then write

Pk1Q>k1+C2¢nPk2¢)n
ca—1 n
= P, Q=11 +C5 [Q<ty+C2—10Pi ¥"0; " Py —5Q 51y +Ca—10((¢" + V1@ 0™))e @ ¢ Py, o™

where we have written (1.6) schematically in the form

atafl¢n _ ¢n 4 vfl(gbnd)n)
The contribution of ¢ is easy, it is placed again in L} L (of course after applying the usual trichotomy
to gb"e‘iafl‘bn). On the other hand, due to the determinant structure of V=!(¢"¢") we have

VHge") = VT Hy ")
By using a further Hodge decomposition of the inputs on the right, we have for each k € Z
12T @)y S 7,
and from here we get
a—1 n k1
(10.22) 107" Pk, —5Qs k05 -10(V (@™ ) 2 < 27 2 (03
and from here we get
_ _ _i9—1,n
1Pr Q> k405 [@<b 0510 Py " 05 Pk ~5 Q5 k15 -10(V (6" 0™)e ™ 7" Pyl 2

ok2=51 P g 2
< | Py @™ | Loe 2 191 s
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This concludes the proof that (10.14) may be included into gg, x,. For (10.15) one argues similarly. By
following the same Littlewood-Paley trichotomies, one is eventually lead to the most difficult case

Py " Py Q> ke r 0y 0"
_ _ _ia—1,n
= Pioy¢" Pry Q513 [Q<hiatC2—10 P 0" 0y ' Pty —5Q5kpt0o—10((¢" + V1 (9"9™))e ™0 ¢7)]

where we again used the curl equation (1.6). The ¢™ term is again easier, whereas for the nonlinear term
we again use

“Hpme") = V(")

Then as before we use (10.22), in order to infer that
| Pry @™ Prey Q> kpt-Cs [ngﬁcrwpkg¢n3flp<k275Q>k2+cr1o(V71(¢”¢n))€7i671¢n)] iz,
P 0™ 2 22 Qs+ a—10Pes " | 52 107 Py 5@kt ca—10(V H(076™)e ™ 9" )|| 2 e
< 2F I3 P 6" |2,

which justifies us in including it into g, x,. In conclusion, we have now shown that we can write

(10'23) Z Pkl#”vl ¢nPI€27K2¢n = fkl,kz + gkhkz

n1,2€(3m6
A
dist(k1, k2) 2270

with bounds as in (7.20). The goal is now to deduce (10.5) from this estimate. For this purpose, fix
k1 > ko + C1 and caps K1, ko € Cm6 as above. We now describe how to break up

—i0 " _ia—1,n
Pkl’nlq’bn'Pk?’K?wn:Pklyﬁl((bne 0o )'sz,nz(¢n6 0 )

into various pieces which then constitute fi, r, and gg, i,, respectively when summed over the caps. First,
write

_i9—1.n _ i1 n
P’f17'€1(¢ne 07 )'szﬁz( e e )

3
(10.24) = 3 P (0" A e ) Py ey (" Biye 0"

41,i0=1
where
A1 =Pogymy—10, A2= P/ 10<<ky+0yy Az = Popyt0,
and similarly for B;. Here C5 is large depending on E,.;; . If i = 3, then one estimates

cn—1 n cag—1_n
||P7‘017N1 ((bnAile_la ¢ )'sz,ﬁz(¢nBi e 0 )HL%L
_ _ia—14m
<Z2 e VL PP > 27Pa e 1Pe (6" pare

£>ka+C2 c1,c2€D0 kg2
dlst(c1,c2)<2k2

2
T% L Z —olk1—m)| HPmd)nHL?"L?I ( Z TU“‘“”WM”IIS[@])
m >ko

with an implicit constant which is allowed to depend on the energy. Therefore, this is placed in g, &,-
The case where ¢; = 3 is similar. Next, suppose that ;1 = 1 and i = 1. Then the cap localization passes
on to the ¢" and due to (10.23) one places the resulting expression into fi, k, + gk, ko We are left with
three cases: 11 = 1,19 = 2, and i1 = 2,42 = 1, and i; = i3 = 2. Next, observe that we may assume that

Ca—1m ig—lgn
Pkl,m((bnAile e ):Pk11H1(P>k1702¢nAile e )

and
ca—1.n co—1 n
sz,m (d)nBZéeiZa ¢ ) = PkQ,H2 <P>k2fcz¢nBizeila ¢ )
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for otherwise one obtains smallness from Bernstein’s inequality. For example, consider now iy = 1, is = 2
which is

n —id " n —id 7"
Pry sy (Pt 020" P<ky —my —10€ ") Prg g (Poka—Ca®"™ Pry—ml)—10<. <kt Cs € ")

—30 1pm 1 —ioTen
= Py (Poky— 050" Py —my—106 ")+ Pay iy (Poky— 000" Pry iy —10<. <kt 0,0 0777 27))

Now we distinguish two more cases: either the exponential in the second factor has frequency < 2F2=m0=20
or not. In the former case, one obtains
_io—len _1 _io—lem
Py i (P>k17C2¢nP<k17m6*106 e ) Py i (P>k2*02¢nPk2*m6*10S'<k2+C2a [¢"e™ ¢ )
7A6_1 n 1 7»6—1 n
= Piy s (Poky~ 000" Pty —my—10€ 0 ?") - Pry ey (Poky— 000" Pry—mi —10< <kat- 00 8" Petoy—my —20¢0 7))

Now perform a cap decomposition of the first and second ¢™ factors inside the Py, ., term. Observe that
due to the fact that the frequencies of these factors are approximately 2¥2 at least one of them has to
have angular separation with the cap x; from the first factor by an amount comparable to 2-m0. We may
therefore place this expression into fi, k, + gk, .k, i view of (10.23). If, on the other hand, the exponential

in the second factor has frequency > 2k27m§)720’ then one writes
= Py oy (Pory—co ¢np<k1—m6—1oe*i8‘1¢>w) “ Pry iy (Psky—cy ¢npk2—m6_1o§.<k2+02 91 [(anPZkg—mé—Qoeiia_ld)nD
= Pkl,m(P>k1—02¢nP<kl_mé_m@*ia_lcﬁ"),

Pras (Pt 038" Py 102y 0,07 0" Pty 200 977" )

The idea here is to place the entire expression into Lf’z by putting the first factor into LY L2 i.e., estimating

_s9— 1 n
[Py i (P ks — 20" Py —mi—106 0 ) lnzer2 S 11 Pry @[l Loo 2
followed by the estimate
_ _ _s9—1 n
Hsz,Hz(P>k2fc'2¢nPk2*m6*10S'<k2+Cza 1[¢nPZk2*m6*208 1[¢ne 0o DHL?L;O
_ _ _ia—1,n
< 22| Pay ey (Poky 02 0" Pry iy~ 10<-<ks 4020 (8" Py 200 0" e ") 1212
(10.25)
_ _ _ia—1,n
S 2| Pay ey (Poky— 00" Py —miy—10<- <ka+o 0 [Pyt -2 " Potg—my—200" [0 ") 1212
(10.26)

_ _ ia—1

+ 2k > 1 Pi s (P k0o 8™ Pry—mpy—10<-<ko 00 [Prt" P08 e 2 ]| 1212
Ik |<mb +Cs
k>ko—mg—Cy

Note that we may reduce (10.26) to (with possibly very large O(1) but only depending on the energy)
— n — n _—i0"te"
(10.27) 27| Py ey (Pry10(1)0™ 0 Py o(1)[Prat0(1) 0™ Pear0(1)0 ™ [Pryroy@™ €7 " Il z22

since the extremely large frequencies give a gain of a smallness factor whence that case can be place entirely
into the bootstrap term g, x,- We chose Cy here so large that the entire expression (10.25) is placed in
the bootstrap term g, x,. To see this, one estimates

(10.25) S 27| P,y 01y " | 28 | Peks—my 4@ Lore | Proroy[@"e ™ ¥ Il o1e

_ _io-1,m
S22 Poromd™le, D, 1P lzsrellPeromle™e ™™ oL
Z<k2—m()—C4

_ a _sa—1,n
S278 | Poromd™le, D 22 1P lsigl Pesroyl@Te ")

€<k:27m67C'4

1 3
S2mF2F (Yo 2tk Pyt s )
L

LSLS
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Second, with each Sy := 3, PiQ<jtc, and S1 := >, PjQs ¢, where Cs is a large constant depending
only on the energy,

1027) S > 27| PyromSi @l 1Py S8 | Lsre | Proto(1)Sis "l Lo ze

i1,12,13=0,1

Now note the following:

Z27k||PkQ§k+cs¢n||igm S Z Q*kHPngkJrcg(ﬁn’deLgm S z 27k||Pk¢n’d||2Lgm

kez kez keZ
SO NPy = ™IS S MP
kEZ

see above. On the other hand, the elliptic piece satisfies
_C3 k& _Llyp_
1PeQskrcsd”llzs . S 271022 Y 273K Py g
LEL
via the same arguments we used in the elliptic case earlier in this proof. The remaining cases i; = 2,15 = 1,

i1,2 = 2, are treated similarly. This now concludes the proof of (10.5), and therefore of the proposition. [

Next, we formulate the analogue of Proposition 4.11 in our context.

Proposition 10.7. Let It = [0,00) and assume that A(t) > X\g > 0 for all t > 0. Then fori=1,2,
/ (0;U,0:U) dax = Re/ UXUF dr =0
R2 R2
for all times in IT.

Proof. In view of Proposition 10.6 we may also assume that I~ = (—o0,0]. For a contradiction, assume
that

Re/ UXPUEdr =~ >0
R2

As in [13] one now obtains the following statements, cf. (4.10) and (4.11) in [13]:
e Given € > 0 there exists Ry(e) > 0 so that for all ¢ > 0 one has

(10.28) / ) U (t,2)|* de < e
|45 200

IOl <4 M

e There exists M > 0 so that for all ¢ > 0, one has )

These are a consequence of the compactness in Corollary 9.36 and Lemma 10.3. Recall from the proof
of Proposition 10.1 that upon passing to a suitable subsequence of the approximating maps u”, we may
extract an L2-limit for the standard derivative components ¢7; denote this by ®2° (which, in contrast to
P, we do not claim to be canonical). Now define for each d > 0, R > 0,

wr(t—dr:y z —dt
ZER(t 1) == B2 ﬂ(ﬁ’ \/11_7,,@2)

where
o> (s,y) := RO (Rs, Ry)

These rescaled limiting profiles again have energy FE..;;. Now define # to be a smooth cutoff function
supported on |z| < 2 and # =1 on |z| < 1. The main calculation in the proof of Proposition 4.11 of [13]
now reveals that, see (4.20) there, uniformly in ¢y € [1, 2],

2
(10.29) > / 02(2)| Z%E (to, 7)|2 dx = Eeriy — ~d + dy(R, d) + (R, d) + O(d?)
a=0 R2
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with n(R,d) and 7j(R,d) — 0 as R — oo, uniformly in 0 < d < dy and with O(d?) uniform in R.
Furthermore, the argument in [13] yields that for fixed ¢ > 0, R > 0, d > 0 as above, one may find
to € [1,2] such that

[< |<2 125" (to, )P do < €
2T

We shall later pick €, R depending on v,d and d depending on ~, E..;; . Now for fixed choices of these
parameters, pick n large enough such that for u™ = (x”,y™) an element of the approximating sequence of
wave maps from R+ — H?2, denoting by 1™%% the Coulomb components of u”o L, dilated by factor R as
above, and similarly by ¢"%% the standard derivative components, an averaging argument over different
time-like foliations yields that we may also assume

/ G R (10 ) — ZR(ty ) di < <.
RZ

Note that now ty may depend on n, but this does not affect the argument. The idea now is to truncate
the data

(u" o Ly(Rty, Rx), ROyu™ o Ly(Rto, Rx))
solve the Cauchy problem backwards, and undo the Lorentz transform. We thereby obtain a good approx-

imation to the original essentially singular sequence 7, but which satisfies good S-estimates, which gives
us the desired contradiction. Thus, write u” o Ly(Rt, Rx) = (x™%f y®4R) To do this, we consider data

,d,R n,d,R

hn,d,R(t ) - x" (th ) — Xy e><[\m\<1] log[
0,°) = \X[lz|<3] n,d,R )

Yo

yZ:Z,:ﬁ(to,-)])
Yo ,
where X[jz|>n] i @ smooth cutoff to the set {|z| > M} which equals one on {|z| > 5M}, say, and
X[jz|<M] = 1 — X[je|>n)- Moreover,

xg’d’R = f x"’d"R(x) dxidzo, yg’d’R ‘= exp (][ log y"’d’R(x) dl‘1d]}2)
[1<lz|<3] [3<lz|<1]

Also, denote by h™® (¢ -) the above expressions with ¢y replaced by ¢. As in the proof of Lemma 10.3,
one then checks that for these data we have
vd

/ (W) t0,) dr < Eerit —

where e is the energy density, provided we choose R large enough, ¢ and d small enough, and then n large
enough. Now consider the wave maps evolution of the data

H™ B (tg, ) := (W (to,-), O h™(to, "))

Our energy induction hypothesis implies that this evolution is defined globally in time, and upon denoting
the corresponding Coulomb derivative components by

n,d,R
X,

we obtain a global bound
||¢ZI§’R||S(R2+1) < A(Eerit, d, y) < 00

Denote the time evolution of the data H™%%(ty,-) by H™%(¢,.), and the corresponding derivative com-

ponents (not in the Coulomb Gauge) by
n,d,R
X0

We now undo the Lorentz transformation Ly, i.e., consider
R AR () = BB () 0 Ly

The argument in the proof of the preceding proposition then yields that we also can conclude that the
Coulomb derivative components of h™%~%% (¢ .) which we denote by w;:g’_d’R7 also satisfy a bound of
the form

H¢Z:iﬁd7RHS(R2+1) < N (Eerir, d, ) < 00
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Furthermore, denoting the standard derivative components of A% ~%E(¢ .) by (b;f;_d’R, by finite propa-
gation speed we have

nd=dRQ z) = g 0,2), a=0,1,2,

provided |z| < 1—10, say, where ¢™(0,-) are the standard derivative components of u"(Rt, Rx) at time
t = 0. To conclude the proof of the proposition, we note that by the convergence of the ¥7 at time ¢t = 0
in the L2-sense, picking R large enough and then also n large enough, we may arrange that (for suitable
constants vy, € R)

Hw;tziﬁd,R(O’ ) N e”""’%/}?(& )”Li <&, m>n

where €1 is as in Proposition 7.11, with A = A’(E¢s, d, ). But this then yields the contradiction
lim sup [[17'[| g(r2+1) < 00
m—»o0
and we are done. O

10.0.2. Rigidity I: harmonic maps and reduction to the self-similar case. As in [13] one now has the
following rigidity theorem.

Proposition 10.8. With {U°}2_ as above, and with life span (—Ty,T1) one cannot have Ty or Ty finite.
Moreover, if A(t) > Xg > 0 for allt € R, one necessarily has ¥ =0 for « =0,1,2.

The proof of it will follow from a sequence of lemmas, and only be completed after Proposition 10.17.
We begin with the case where T3 = oo and A(t) > Ao > 0 on [0,00). Assuming that U2 do not all
vanish, the logic then is to extract a nonconstant harmonic map of finite energy into the compact Riemann
surface S, leading to a contradiction. The following lemma is the analogue of Lemma 5.4 in [13]. While
the statement is identical with that in [13], its proof is slightly different and invokes in a crucial way the
geometry of the target. In the statement, we use a function e — Rq(€), defined as follows: by compactness,
for every e > 0 there exists Ry(g) > 0 such that for all ¢ > 0 one has

/ 10U (t,z)|> dx < e
|x+ﬂ|2R0(6)

NG

81

since A\(t) > Ao > 0 for all ¢ > 0.

Lemma 10.9. There exists €1 > 0, C' > 0 such that if € € (0,e1) there exists Ry(e) so that if R > 2Ry(e)
then there exists to = to(R,€), 0 < to < CR with the property that for all 0 < t < ty one has

z(to) ’

=R - R
Mto) o(e)
Proof. As a preliminary argument, we show that there exists @ € R with

(10.30) // (4, 7) dadt > o > 0
I JR2

for all intervals I of length one. If not, there exists a sequence of intervals J,, := [t,,t, + 1] with the
property that t,, — oo and

(10.31) //|\I/8°|2(t,m)dxdt§
Jn JR2

Then there exist times s, € J, with the property that || U5 (sy,
one has that

‘9;8’<R—Ro(a), |

SRS

~—

|2 — 0 as n — oco. By Corollary 9.36

[(30) 0 (50 (= 2(s)A ) ) )

n=0

forms a compact set for o = 0,1, 2. Passing to a subsequence, we may assume that strongly in L?
A(50) MO (50, (- = Z(50))A(80) 1) = WA ()
By Lemma 7.10 there exists some nonempty time interval I* around zero such that

A(sp) TS (80 + tA(s,) 75 (- — ff(sn)))\(sn)’l) — Wk (t,-)



CONCENTRATION COMPACTNESS FOR CRITICAL WAVE MAPS 261

in L (I*; L2(R?)). Distinguish two cases: {\(s,)} is bounded or not. In the former case, note that

loc

A(t) > Ao > 0 implies that there exists a nonempty It C I* such that s, + A(s,)~*IT C J, for each n.

Therefore, (10.31) implies that
/ / W22t @) dadt = 0
17 JR2

This implies that W¥(,-) = 0 for all ¢ € IT. On the other hand, if {\(s,,)} is unbounded for every sequence
{sn} with s, € J,, we invoke the covering argument from [48]. Thus write for each n

In = U [s — A71(s), s + A71(s)]
s€Jn

By the Vitali covering lemma, we may pick a disjoint subcollection of intervals {Is}sean, Is := [s —
A71(s), 5+ A71(s)] for some subset A™ C J,, with the property that

1

sEAn

But then the defining property of the J, implies that for each J,, we may pick times s, € J, with the
property that

[ I i de= o)
I, NJn

Alternatively, this implies that as n — oo
1

[ 160,95 007 50), I dt = o(1)
Now pick a converging subsequence of

A(5n) T UG (50 + AT (50), (- = F(50))A(50) 1)
to again obtain a limiting object U}, with the property that

Ui(t,)=0

provided t € I*, the latter its lifespan interval.

We now deduce the desired contradiction from this situation: as in Proposition 10.1, we can associate a
weak wave map U* from R?T! — & with the limiting object ¥, and this wave map has the property that

aU* =0, tel”
Moreover, we have
2

DUz = D IWElz: #0

a=1 a=1,2
We have thus obtained a nonvanishing finite energy harmonic map U* : R? — &, which is impossible, see
[37].

We therefore conclude that (10.30) holds. The remainder of the argument is essentially the same as

that in Lemma 5.4 of [13]: by Corollary 10.2,

d 2
0s2) 4 ; /]R (/RO (1), 00 (1)) d = — /R e s+ Ofr(R)
where

r(R) := /[ > 10aU(t, )| da

[>R] ,—o
Furthermore, by definition of Ry(¢) > 0, for all ¢ > 0 one has

/ . 10U (t,z)|>dx < e
|LE+M|ZR0(E)

NO)
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Therefore, if the lemma were to fail, then (assuming Z(0) = 0 as we may) one would have
Z(t)
<R-R
| () < o)

for all 0 < ¢t < CR. In view of the preceding, one concludes that r(R) < Cse for some absolute constant Cs.
Now choose € > 0 so small that

/ (— / |0:U (t, x)|? do + O(r(R))) dt < -2
I R2 2
for all I of unit length. In view of the a priori bound
sup | / v () B) DU (1, 2), OU (1, ) de| < Oy REeri
t | JR2
one obtains a contradiction by integrating (10.32) over a sufficiently large time interval. ]

Next, we obtain a contradiction to Lemma 10.9 by means of Proposition 10.7. This is completely
analogous to Lemma 5.5 in [13].

Lemma 10.10. There exists €2 > 0, Ry(g) > 0, Cy > 0 such that if R > Ry(g), to = to(R,€) are as in
Lemma 10.9, then for 0 < e < g9 one has

CoR
to(R, €) > %

Proof. This follows from Proposition 10.7 by the same argument as in [13]. ]

Proof of Proposition 10.8 for T1 = co. Choosing € small in Lemma 10.9 and Lemma 10.10 leads to a con-
tradiction. (]

It remains to prove Proposition 10.8 in case 77 < co. This will be lead to a contradiction as in [13], by
a reduction to the case of a self-similar blow-up scenario. More precisely, recall from Lemma 10.4 above

that

At) > CIO(_I?, 0<t<l1

where we assumed that 77 = 1 as we may. Recall also that in this case
supp(Po°(t,-)) € B(0,1 —1t), 0<t<1
see Lemma 10.5. Next, we prove an upper bound on A(t) which places us in the self-similar context.
Lemma 10.11. Assuming that Ty = 1 there exists a constant Cy(K) such that
%}? > A1), 0<t<1
Proof. Suppose this fails. Let

[~}

z(t) == Z/lell‘;o(t,x)\i!go(t,x) dx, 0<t<l
j=1
Note that z(t) — 0 as t — 1. Moreover, by Corollary 9.36 one has

() = - / W (1, )2 da

z(t):/tl/\IISO(s,x)Zda:ds

We now distinguish two cases: either there exists a > 0 such that

Hence,

1
(10.33) / /|‘118°(8,x)|2d33d8 >a(l—t), O0<t<l1
t
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or not, i.e., there exists a sequence J,, = (t,, 1) with ¢, — 1 such that
(10.34) |Jn|71/ /|‘118°(5,:1:)|2dxds —0 asmn— o0
Tn

If the first alternative (10.33) holds, then one is lead to a contradiction as in [13]. On the other hand, we
will now reduce the second alternative (10.34) to the existence of a nontrivial harmonic map into S by a
similar argument as in the proof of Lemma 10.9, see also Struwe [48]. By the Vitali argument from above,
one selects intervals J/, := (s, — A(s,) 71, 85 + A(sn)™1) with s,, € J,, such that

|J7'L|_1/ /|\I/8°(s,x)|2dxds—>0 as n — 0o
7,

Now one uses compactness as in the proof of Lemma 10.9 to conclude that there exists a limiting wave
map U} on some nonempty interval I* with ¥§ = 0 on I*. Therefore, ¥* leads to a a harmonic map U*
of energy FE..;; into S, which gives the desired contradiction. O

This now allows us to reduce to the exactly self-similar case.
Corollary 10.12. If T} =1, then the set
{(1 ST, (1—t)z) c 0<t<1, a= 0,1,2}
is compact in L.
Proof. This is as in Proposition 5.7 of [13]. O

10.0.3. Rugidity I1: the self-similar case. We now turn to the last step in the Kenig-Merle program (modulo
the issue of removing the assumption A(t) > Ag for infinite times) which consists of excluding the possibility
of self-similar blow-up. As in [29], [30] we set
x
1—t

Yy = s=—log(l—1t), 0<t<l1

and

W(y,s,0) :=U(z,t) =U(e °y,1 —e™°), 0<s<o0
where U is a weak wave map as constructed in Proposition 10.1. By construction, V, ,W is supported in
{ly] < 1}. Next, for 6 > 0, introduce

x
= — = —log(1 — 1
V=115 ° og(l—t+90), 0<t<
(10.35) W(y,s,0):=U(e y, 1+ —e"%)

Then we have that W(y, s,6) is defined for 0 < s < —logd and
supp(daW(-,6)) C {[y| <1 -6}

The W solve the equation in the distributional sense
1
(10386) D2 = _div(pTW — ply- VIV)y) — 2y - VO — 0. — AW)((0, +y- V)W, T, 7)

where the nonlinearity stands for the second fundamental form on the Riemann surface S relative to its
embedding into RY.

We now state the following properties of W. Henceforth, | - | when applied to derivatives of W will
denote the metric on & and W = W (-, §).

Lemma 10.13. For § > 0 fized,
o supp(0W(-,9)) C{ly|<1-46} a=0,1,2
o [(IV,W]+|0.W[*)dy <C
o 32 o [10aW(s.y)? |log(1 —[y[?)| dy < C|log |
o 0 o [10aW(s.y)P(1—|yl?) 2 dy < Co%
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Proof. By direct calculation. |

As in [13] one now introduces a Lyapunov functional
~ 1 —
BOV(s) 1= 5 [ (0.0 + (9, WF ~ Iy ¥, W) (1 o)
This quantity satisfies
Proposition 10.14. For 0 < s1 < s9 < log(l) the following identities hold:

(1) E(W(32)) E f f]D) 1\6|yV\V|3/2 dyds
(2) 11i1n(l)E(W( )) S Ecmt-

Proof. This is proved as in [29], see Lemma 2.1 there. The difference is of course that we have a different
equation, namely (10.36). However, the point is that the second fundamental form is perpendicular to
0sW and V,W whence it drops out of the calculation needed for the first identity.

The second property is verified as in [13]. |

As a corollary, one now has the following:

Lemma 10.15. For each § > 0 there ezists 55 € (%, |log d|) such that

1
Ss+]|logd|2 9. W2 E...
/ / |s | dedsg crzt1
5 p (1—y[*)2 | log 6|2

| log 8| W |2
/ / | | dyds < Ecrzt
(1 —lyl?)

whence the claim. O

Proof. By Proposition 10.14,

The goal is now to obtain a limit W* as 6 — 0 and to show that W* is a stationary solution of (10.36).
To this end, select J; — 0 such that for each oo =0, 1,2,

(1 —15,) W (Lo, (1 = t5,)w) = W (2)
strongly in L2, see Corollary 10.12. In fact, we may arrange also that
(10.37) (1405 —t5,)0 (ts;, (1 + 05 — ts,)x) — V7 (2)
in L?. Now consider the evolution on the level of the ¥ with data given by the left-hand side of (10.37),

see Section 7.2. By our perturbation theory of Section 7.2 we conclude from (10.37) that these evolutions
UI*(t,x) exist on some fixed lifespan, and moreover,

U (t,x) = (1+6; — ts, ) U (Es, + (1465 — 5,)t, (L + 05 — £5,)x)
on that lifespan [0,7*) where we may assume that T* < 1. Note that on account of this identity,
) 1-— 1?5
e (P
supp(W7'(,-)) C qly| < [ ——

for each « = 0,1,2 and 0 < ¢t < T*. Now note that by the construction in the proof of Proposition 10.1
we may arrange that the weak wave maps U7* associated with ¥Z* and U associated with ¥S° satisfy

U (t,z) = Ults, + (1 4+ 6; —t5,)t, (1 + 05 — ts,))
Note that for fixed times ¢ € (0,7*) one has that {9,U?*(¢,-)} form a compact set in L? whence the
argument in the proof of Proposition 10.1 implies that up to passing to a subsequence
U7 (t,+) — 0, U*(t,-)
strongly in L? uniformly on compact subintervals of time. Moreover, U* is a weak wave map and satisfies
the conservation laws. Next, we switch to the (s,y) variables. Define

Wiy, s) = Ults, + (14 8; — t5,)t, (1 + 65 — 5,)x)

—t<1—t}
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with the same relation between (s,y) and (¢, z) as above. Similarly, define
W*(y,s) = U*(t,x)
Then by the preceding, uniformly in 0 < s < —log(1 — T%*/2) =: T and for o = 0, 1,2,
0aW (-, 5) = 0aW™ (-, )
in the strong L? sense. Moreover, with W as in (10.35), one has with 55, = —log(1 + &; — ¢5,),
Wiy, s) = W(y,3s; +5,6;)
and therefore also
(10.38) O W (y, Ss; +5,0;) = 0 W™(-,5)
strongly in L? uniformly in 0 < s < T. Moreover, W* is a solution of (10.36) and
supp(aW*(s,-)) < {lyl <1}
as well as
trace(W*(s,-)) = const
where trace is the L2-trace.
Lemma 10.16. Let W* be as above. Then,
W*(y,s) = W*(y) and W* # const.
Proof. With S = —log(1 — T) and j large one has
D W™ ( oW (y,35, + s,6;)|?
//' y’32dds<hm ‘ W50, £ 5,01 44
(1= [yl2)* j—roo (1= [y2)%
by (10.38). The right-hand side is bounded by

S+5s; |0sW (y, s,6;)?
. ) < T '—1/2:
. L dvde % i g7 <o

by Lemma 10.15. This shows that W*(y,s) = W*(y) as claimed. The fact that W* £ const follows as
n [13]. 0

In other words, we have now obtained a stationary, nonconstant, distributional solution to (10.36) with
finite energy (relative to the y variable) (as well as finite E(W*)). The following proposition now leads to
the desired contradiction.

Proposition 10.17. Let W* be a distributional stationary solution to (10.36) of finite energy

[ww @y <o
D
Then W* = const. This thus contradicts the preceding construction of W* and completes the proof of

Proposition 10.8.

Proof. We follow the argument of Shatah-Struwe, see [40]: first, W* is a weakly harmonic map from D — S
where D is equipped with the hyperbolic metric
d 2
4 i P
(=2 T
where (p,w) are polar coordinates on D). This means that

A W
—(p/1=p2 W), + ——— 1 Tw-S
(p p p)P pm w

dw?
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Note that by Helein’s theorem, this holds in the classical sense in the interior. Integrating by parts against
p\/1 — p? W, implies that
d 2 2 2 / 2
1-— W>|* dw — W2 d ) =0
(L ra—mawipa— [ wzpa

|- AW [ WP de=Co
St St

Setting p = 0 one concludes that Cy = 0 and sending p — 1 along a suitable subsequence p; implies that

and thus

lim W2 (pjw)|? dw — 0

pi—1 Jg1
On the other hand, by the trace theorem, sup1,«, ||W*(pw)||H%(Sl) < C|[W*|| 1 py. Since clearly also
sup1 .1 [|[W*(pw)||z2(s1) < oo, one concludes via interpolation that trace(W™) = const as the L? trace
on S'. The change of variables

a<p>:exp(—/plwf%2)

provides a conformal equivalence between the hyperbolic disk and the disk D with the Euclidean metric.

In fact,
2

2 27 2 A% 2 dp P’ 2
do* + o*dw” = (p) (1-p )((1—;)2)2 + T dw )
By the conformal invariance of the Dirichlet energy in two dimensions, it follows that v(o,w) = W*(p,w)
is a weakly harmonic map D — S with the Euclidean disk . Moreover, one checks that v has finite H*
energy relative to the (o, w)-coordinates and that trace(v) = const in this setting as well. By a result of
Qing [35], it follows that v is C°° on D. And then the result of Lemaire [26] gives the desired conclusion
that W* = const. ]

The only remaining case is to show that A(¢) does not approach zero along some subsequence. This
case is handled as in [13] or [28]. We follow the argument [13] essential verbatim.

Lemma 10.18. Let ¥ be the limiting object as above and suppose that Ty = oo. Then A(t) > Ao > 0 for
allt > 0.

Proof. Suppose this fails. Then there exist ¢, — oo so that A(¢,) — 0; in fact, one may assume even that

Mt,) < inf A(2).
()—tel[fitn] (t)

(From Corollary 9.36 one has
U= At) T (b, (- — Z(E0))A () 1) — WL

strongly in L?. Then E(¥') = E..; and we may assume that the lifespan (—TJ,TlT) of W} has the
property that TJ < 00. Otherwise one obtains a contradiction from Proposition 10.8. Now define U7 (7, x)
and U] (7, z) to be the evolutions of U and ¥!. By the perturbation theory of Section 7.2 we conclude
that lim inf,, . To(¥%) = oo and
W (r,) - W (7,2)
in L2 ((—o0,0] x L?). By uniqueness of the W-evolutions
W r,2) = Albn) O (b + A T (2~ E(1)A ) )

forall 0 <, + ﬁ We claim that 7,, := —t, \(t,,) satisfies

lim(—7,) = oo

n
T

so that for all 7 € (—o0, 0], for n large, 0 < t,, + sy St In fact, if —7,, — —79 < 00, then

x —x(tn)

(2, —7n) = A7) T W ( ) ,0)
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would converge to Ul (z, —79) in L2, with A(t,) — 0, which contradicts W], # 0.
We now make the further claim that ||¥],|ls(—c,0) = +00. Otherwise, by the perturbation theory
of Section 7.2 for n large, To(¥}) = oo and ||V7 ||g(—sc,0) < M, uniformly in n, which contradicts our
assumption that [[¥3°||5(0,+00) = +00. This is on account of Corollary 7.14, since for every interval [0, 7],
one may find [—71,0] with the property that the map 7 — ¢, + ﬁ takes the latter interval into the
former.
Now fix 7 € (—00,0]. Then for n sufficiently large, t,, + 5y = 0 and Aty Nt

) is defined. Let

T -1 z(tn + ﬁ) T Y —1yn — Ty (1)
Mtn + 555) 712 ( e L A(tn)) = A ()" ton ( SRR
with
- Atn + 577 N . 2(t,
) (7= W =L () =l 3G 5) - X(th))

Now, since A Lf (M> —— f strongly in L? with either A\, — 0 or 400, or |z,| — oo implies that
n—oo

f =0, we see that we can assume, after passing to a subsequence, that A, (7) — A(7), 1 < A(7) < 0o and
Tn(T) — Z(7) € R%. This implies that

N Lot x —2(7) . N7
A(T) qj&(X(r) ,)eK.

Hence, by Proposition 10.7 and 10.8, ¥! = 0, which is a contradiction. O

Proof of Theorem 1.1. We first address global existence and regularity and the global control of the S-
norms. In fact, instead of (1.2) we of course require the stronger

H\IIDLHS S K(Ecrit)

from which (1.2) then follows by standard Littlewood-Paley calculus and the Strichartz component of the S-
norm. Assume that this strengthened assertion of the theorem fails. Recall that F..;; was defined as the
smallest energy with the property that there exists an essentially singular sequence of admissible maps at
energy Ee.;; . In other words, there exists a sequence {u"}>° ; of admissible wave maps (=73, T7") x R? —
H? with associated gauged derivative components {17}, and such that

e E(u") = Ecpit

® maxa—0,1,2 ¥4 ls(—1p mr)xR2) = 0
as n — 0o. The Bahouri-Gerard decomposition of Section 9 together with the Kenig-Merle argument of
this section now lead to a contradiction whence such an essentially singular sequence cannot exist. This
now gives the result, at least up to the scattering statement. As for the latter, we argue as follows. It
suffices to carry this out for H?. Then by applying Lemma 7.6 we may represent the gauged derivative
components ¢ for any § > 0 in the form

5 5
b= Uy
on a time interval of the form (7p,00) where ||¢](§3;HL$0L§ < ¢ and w(Lé) is a free wave. The scattering for

the free wave is automatic, and the 1/11(32 error can be iterated away. ([l

11. APPENDIX

11.1. Completing the proof of Lemma 7.6. We need to show, see (7.13), that there exist time intervals
I;, j=1,2,..., M, with M; only depending on ||¢||s, €0, with the property that

(11.1) e, Z ([ PeFoa () ||N[e I;xR2) < e0Co

Here we need to verify this for F,, of at least quintic degree. In fact, the verification of this is more or less
the same for all the higher order terms, and we explain it in detail for a quintic term of first type. From
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the discussion at the end of Section 6 we see that we may assume the expression to be reduced. Thus
consider for example the expression

Ve t[ProoV ™ Pry (Pry 01V Py (Pryt2V ™ Pry Qui (Prs 3, Proy )]

From Lemma 6.1 we infer that

IVt Pi[Prog 0V ™" Pry (Pay 1V Py (Pry 02V ™ Pry Quic(Piy 3, Proyt0a) v S 27 %01 Prg ol s ko)

It then follows upon square summing over all k € Z that the contribution from those expressions with
ko > k in the sense that ko — k > C(||¢||s,€0) may be bounded by < egl|tho||s. In fact, similar reasoning
allows us to reduce to the case when 1 < ko + O(1), k = ko + O(1), where the implied constant O(1) may
of course be quite large depending on ||¢||s and €g, and furthermore we may assume that k; = r; + O(1),
i =1,2,3,4, j = 1,2,3. The proof of Lemma 6.1 also implies that we may assume all inputs other
than the ones of the null-form Q,(Pi;%3, Pr,%4) to be essentially in the hyperbolic regime, i.e., we may
replace Py, 1 by P, Q<p,+o1)¥j, J = 1,2,3, with O(1) as before. Now assume at least one of the inputs of
Quk(Prytbs, Pr,14) is of elliptic type, in the sense that the difference between its modulation and frequency
is large enough. W. 1. o. g. write this as

vi,tpk [Pkowov_lpﬁ (Pk1¢1v_1PT2 (szw2v_1PT3QVk(Pk3Q>k3+C’(/}3a Pk4w4)))]

where the implied constant C' is large enough, depending on ||¢||s, 0. Then if we write

Pry Qs kg +c¥3 = Pry Qs +-C ko +10103 + Prs @>ko+10Y3,

the contribution of the first term on the right is seen to be very small, by placing the output into either

11 .
X kol’ > or L{H~'. On the other hand, consider now the contribution of the second term on the right.

+e,—1—¢,

L1
Here one places the output into X * 2 provided the output is in the elliptic regime, or else into

L%H ~1. In either case, one verifies that provided r; < —C' is sufficiently negative, the contribution is
small in the above sense. Hence assume now that v = O(1) (which again means an interval depending on
l||s as well as g¢), and as before Py 13 = PiyQ@>ko+10%3. Then we may replace Py, 14 by Pk4Q<k4+%w4,
as otherwise it is again straightforward to see that we gain smallness. Hence we have now reduced to
estimating

vx,th [Pkowov_lp’l"l (Pklwlv_lp’l“z (Pk2¢2v_1prgQuk(Pk3Q>k3+Cw37 Pk4Q<k4+%¢4)))]7

but where now k; = r;+0O(1) for all ¢, j, and the output inherits the modulation from the large modulation
term Py, Qs k., +cts, provided we dyadically localize the latter. But then a straightforward argument using
the “divisibility” of L? , reveals that we may pick intervals {I; }jwzll with My = My (||9||s, €0) such that

t,x
Z IV e,ex1; (Pe[ProgtoV ™ Pry (Pry 1 V71 Pry (Pry 02V ™ Pry Quie(Pig @ g+ %35 Py Q <y 2 ¥a))]) 1) < €0
ko€Z
Hence we have now reduced to establishing “divisibility” for the space-time frequency reduced expression
(with k; = r; + O(1) for all ¢, 5)
Vot Pi[Pro oV ™' Pry (P, 1V 7 Pry (Pry 02V ™ Py Quic(Pry Q <y +- 035 Proy Q<o +c¥4)))]
But since we may estimate this by
[V, P [ Prog 0V " Pry (Pey 01V ™ Pry (Proy 02V ™ Pry Quic(Pry Q <y 00035 Proy Q< togt-c0a)))]| N ko]
S 1 Pro %ol st 1Py 1| Lo | Pra o2l Lt e 1V ™ Pry Quit (Pry @<y + 0035 Pry @yt o)l L2 Lo
Then use the bound
IV Py Qui (Pry Qs+ 03, Pry Qaiys o) || 2 oo
S 1Prs Qui(Pry @<z +c V35 Proy Q<iyrctha) || 212

r3
S27 H | Pe; 5l sk
j=3.4
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which follows from Lemma 4. 16, as well as Bernstein’s inequality and our assumptions on the frequen-

cies/modulations. But then again using the “divisibility” of the space Lix, we may pick time intervals

{I;} as before such that

Z 1V a,eX1, Pic[Prg oV~ Pry (Pey 1V Pry (Pry 02V ™ Pry Quic(Pry Q< iy Y3, Pk4Q<k4+Cw4)))]||?v[k0] < &g
koEZ

for all I;. This furnishes the proof of claim (11.1) for the first type of quintilinear null-form. The remaining
short error terms of either first or second type are treated similarly. For the higher order errors of long
type (see the discussion at the end of Section 6 for the terminology), the claim follows from Proposition 6.5
as well as the divisibility of L§ ,.

11.2. Completing the proof of Lemma 7.9. Recall the setup in the proof of Lemma 7.9: we have a
frequency envelope cj controlling the data 1 at time ¢;. We then make the bootstrapping assumption

| P\l sz, xr2)y < A(Co)ey,

The time intervals I; have been chosen such that we have a clean separation

vl = + vy
where we

> ||Pk¢§\j/)LH§[k](1ij2) < o
keZ
) 3_—r
Va0 e -1 S 191580
for large M, say M = 100. We need to check that by refining each I; if necessary into finitely many
subintervals J;; such that we have

1P S (@) vk (7 xR2) < e
where now [ = 2,3,4,5. We outline the argument for the quintic errors of first type, the remaining ones
following a similar pattern. Thus consider the expression

> Vi Pl PoothV Py (Pry V™ Pry (Pry oV~ Py Quic(Pry ), Py )]
kj,ri

By picking M large enough, it is clear that the only contribution that matters is when we replace each
factor Py;v, j = 1,2,3,4, by Py;1r. However, we note here in passing that one can also handle interactions
of ¥y, and ¥ L terms with at least factors ¢y, present by means of the type of “divisibility” argument to
follow. Hence consider now

> VarPePrgthV ' Pry (Piy 01V " Py (Peypr.V ™' PryQui(Piytbr, Peyor)))]

kj,ri
Due to Proposition 6.1, it is clear that we obtain the desired bound

1D Vet Pu[ProthV ™ Py (Piy V™ Pry (Piy bV ™ Pry Qui (Pry s Py i) ey < i
kj,n

provided either |ky — k| > 1, and similarly we may assume that k; = r; +O(1) for j =1,2,3,4,i=1,2,3.
Thus we now reduce to estimating the expression where the summation is reduced to ko = k+ O(1),k; =
r; +O(1) for j =1,2,3,4,4=1,2,3. But in this case, the same type of divisibility argument used in the
immediately preceding proof reveals that we may pick intervals J;; whose number depends only on E;
and which are independent of k such that

Z Hprng/k(Pkgd)L,P]me)

ra=k3z+0(1)=ks+0(1)

2
”LfH*% <1

and then the same estimates as in the preceding proof reveal that

|| Z Vm,th[Pkul//V*le (Pklev71PT2 (szva71PT3QDk(Pk31/)La Pk'4wL)))]||N[k:] < ¢,

kjri
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as desired. The argument for the remaining error terms is similar.

11.3. Completion of the proof of Lemma 7.26. To complete the proof, we need to show that the
contributions of the y-factors when implementing the Hodge decomposition for the factors of |[V|~1(?) in

DN P A C]

L2H2
kez
is also controllable in terms of ||7||s. Using the schematic relation
X = VT VT ),

we need to bound

D NPV IV IV 2)]) 2

. 1
L2H™2
kez

D NPV VI IV @IV IV D)

keZ Lph~
We deal with the first prression, the second being treated along similar lines. Thus consider
P VITHIVIT RIVITHWA)]9)) =Pi(Pr—10,p110% VI TH(VITHRIVITH@)]Y)
+ Pi(Por109| VITHIVIT RV T @7)]0)
+ Pu(Pei—109 [V THIVIT RIVITHW)]0)

Start with the first term on the right, the high-low interactions, which we further express as
Pr(Pr—10k+100 VI (VI 0V (92)])
= D PulPrrospo@ VI PV IV )W)

r<k+15

Now assume the most delicate case, in which we have a high-high-low scenario inside the expression
IVIT P (IVIT IV (@2)]Y)
with respect to the factors |V|~1[1)|V|~1(¢)?)], ¥. Thus in this case we can write
VIRV RV @%)]w)

= > V|7 (V) P [V L (42 Pryt)
r1=r2+0(1)>r+0(1)

= > V| P (V7 Py, [V Py (902)] Py )
r1=r2+0(1)>r+0(1)

- > V|7 P (VP [0V P (02)] Pyt))

r1=r2+0(1)>r+0(1)

Now observe that for the first factor on the right we have the estimate

[ > VT P (VP [V Py ()] Pyt | 2 oo
ri1=ro+0(1)>r+0(1)
= > > VT PV Py [V T Py (7)] Peyth) | 12 oo

r1=r2+0(1)>r+0(1) c1,2€Dyr ,r—r dist(c1,—c2) <27
< 27207 | P | g | Pro ¥ | spray | P (8%)] [ e,
< 2079025 | B bl sy | Pro ¥l sy 011
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Hence we obtain the bound

1 Pr(Pik—10,k-+101% > VIV P [V Par (O] P a3
r1=ry+0(1)>r+0(1) ¢
r1—k r
S > 277 20723 | Py 1o k100¥ oo 22 1Py ¥ s | Pra®ll 1) 111

ri=ro+0(1)>r+0(1)

If we now square this expression and sum over k € Z, it is straightforward to check that we get the upper
bound

S elEvlE
Next, consider the contribution of the expression
> VI PV P [V Por(907)] Pry))

ri1=r2+0(1)>r+0(1)

= Z Z|v‘_1PT(|V|_1PT1[w|v‘_1pf(w2)]Przw)

ri=r24+0(1)>r4+0(1) F>r

= Z Z Z |v|_1PT(‘V‘_1Pcl[Wvl_lpf(if)]P@l/})

r1=ra2+0(1)>r+0(1) 727 c1,2€Dyy 7 ry dist(c1,—c2) <27

Now for fixed r, 7,71 2, we can estimate, using as before the improved Strichartz estimates as well as
Bernstein’s inequality

[ > IV PV Py [0V Pr (02 Pyl 2 e

c1,2€Dy 7—r  dist(c1,—c2) <27

<200 > (V] Py 019 P ()] Pey) | 2 1+

€1,2€Dry 7—rydist(cy,—c2) 27

< 27207909~ (=9" TT P, || g, 1015 < 222G 700 TT 1P, wllspe 1413,
j=12 j=1,2

and from here the estimate continues as before. The remaining frequency interactions inside
VTRV IV )]Y)

are handled similarly and omitted.
Next, consider the case of high-high interactions, i.e.,

Pie(Ps 100 VITHIVIT IV @2)]9)
= > Py(Pey [V PV [V (0%)])

ky=r+0(1)>k+10

We shall again consider the most delicate case when there are high-high interactions within
VITIP (VI IV W))Y)
= > VT B (VTP VT ()] Py )

ri=ro+0(1)>r+0(1)

But then arguing just as above one obtains the bound

IV BV Py [V ) Pra ) S 272G T 1Py by Il
§j=1,2



272 JOACHIM KRIEGER, WILHELM SCHLAG

and from here one obtains

| > Pe(P IV PV VI @) oy

k1=r+O0(1)>k+10

l*é‘ -Tr l*&' T—T
S Z 222G == || P 4| gy H 1P, 1l sy 10115
k1=r+0(1)>k+10 j=1,2
Squaring and summing over k again results in the same bound as before.
The case of low-high interactions, i.e.,

Pi(P<r—10¥ |V (VT RV (@07)]0),

is more of the same and omitted.

11.4. Completion of the proof of Proposition 9.12, part I. Here we show how to deal with the
higher order terms encountered in the decomposition (9.37), i.e., the fifth term there. We shall again
explain the method for the quintilinear terms of first type, the remaining higher order terms being treated
similarly. Thus consider the expression

vz,tpk [PkopOV71Pr1 (Pklplvilpra (Pk2P2V71Pr3Quk(Pk3P3a Pk4p4)))]

We use the letter p here to imply either a t-factor or one of €; 2, the the setup in the proof of Proposi-
tion 9.12. Now we distinguish between a number of cases:

(1) At least one factor of both €; and €5 is present. In this case, the entire expression contributes to €,
as follows from Proposition 6.1. Indeed, we can sum over all k;,r; and then square sum over k € Z and
bound the entire expression by

S lleallsllenlls
where the implied constant only depends on E.,;;. By choosing €y, which controls ||e;||s, small enough,
we can bootstrap.

(2) Only € factors in addition to y-factors. First, assume that there are at least two €; factors. If one
of them is pg, then the output inherits the frequency envelope of ¢; from Proposition 6.1, and the smallness
follows from the presence of the extra factor €;. If the first factor pg is a v, then we need to show that the
expression contributes to e;. But this again follows from Proposition 6.1, essentially as in Case (1) (d) of
the proof of Proposition 9.12.

Next, assume that there is only one €; factor present. If this factor is not pg, then the expression contributes
to eg, following the same reasoning as in Case (1), (b). Thus assume now that we have py = €1, which is
the expression

VI,th [Pkoelv_lpﬁ (Pknwv_lprz (PkQ/(/)V_lPTgQVk(Pkswa Pk4w))}

Recall from the proof of Proposition 6.1 that here 3 really stands for ¢ or ¥ L, but we suppress
this here. What matters is that ||¢||s depends on FE.;; in a universal way independent of the stage of
the iteration in the proof. As usual we may reduce to k; = r; + O(1), j = 1,2,3,4, i = 1,2,3, and
ko = k+O(1) > r1 +O(1). Furthermore, all inputs may be assumed to be in the hyperbolic regime (up to
large constants only depending on Eg,;; ). But then the smallness can be forced by shrinking I; suitably
and forcing that

1 < 1,

> lxr, QuePr(Prso) s Pr+0(1)¢)||igH7

rez
see the proof of Proposition 6.1. For the higher order errors of long type (recall the discussion in Section 6),
the smallness is achieved by exploiting the “divisibility” of the norms Lgm.

(3) Only e, factors present in addition to factors . All of these terms contribute to es. If at least two
factors e; are present, we clearly obtain the desired smallness from Proposition 6.1. Hence now assume
that only one such factor is present. If this factor is in the position of pg, then we obtain smallness via
“divisibility” or LtzT as in Case (2). If this factor is in the position of some p; with j = 1,2,3,4, one
obtains smallness via a slightly different divisibility argument: first, reduce to the case when pg and one of
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the p; which represents a 1) have angular separation between their Fourier supports: to do this, consider
for example

VZ7th [Pkowv_lp’l‘l (Pk1¢v_1PT2 (Pk262v_1PT3QVkJ(P]C3w) Pk?4’l/)))]
Again we may assume that k; = 7, + O(1) for j = 1,2,3,4, ¢ =1,2,3, and ko = £+ O(1) > r + O(1).
Here we can use the divisibility of Lix by placing P, Qux(Prsv, Pr,t) into LfH*%, see the proof of
Proposition 6.1. On the other hand, for the expression

Vot P[Py V™ Pry (P, pV ™ Py (P oV Py Qui(Prg €2, Pry ),
one obtains smallness from the divisibility of L} L3°, more precisely, that of

S IPIl

kEZ

11.5. Completion of the proof of Proposition 9.12, part II. . Here we show how to obtain the
bootstrap for the elliptic part of €, i.e., @>pe. Recall that we solve for Q> pe via the equation

5 5
0Q>pe=Q>p[>_ F2 (¢ +6)] — Qxp>_ F2H ()]
1=1

i=1

where the F2°+1 are obtained as described in Section 3. In particular, F3(¢)) constitutes the trilinear null-
forms. Of course the proper interpretation of the right-hand side is that we substitute suitable Schwartz
extensions for ¢ and e but which agree with the actual dynamic variables on the time interval that we
work on. We start by considering the trilinear null-forms, which with the appropriate localizations we
schematically write as

VaeiPoQsp[( + )V Qi (¥ + 6,9 + €)] — Vi1 PoQsp [V 1 Quj (1, 1))]

We need to show that we can write the above expression as the sum of two terms, which, when evaluated
with respect to || - ||x[], improve the bootstrap assumption (9.19). Now we distinguish between various
cases:

(1) Here we consider the trilinear terms which are schematically of the form

Vet PoQ>pleV 0, (¥, )]

We decompose this into two further terms according to the type of e:

(la): This is the expression V, :PoQ>ple1V™1Q,;(1,v)]. Recalling the fine structure of the trilinear
terms described in Section 3, we see that this can be decomposed into two types of terms

Vm’tPOQZD[le_lguj (1/}7 1/J>]
(11.2) = Vo PoQ>p[erV Qi I°(1h, 1))
(11.3) + Vi PoQ>p[(R)e1V Qi1 (1, 1))]

where in the last term an operator R, may be present or not. Start with the first term on the right, which
we write as

vx,tPOQZD[Elvil Quj-[c(wv 1/1)]
= > VaiPoQsplPr etV PrQuiI(Pryth, Pry )]

k1,2,3,7

Now the fundamental trilinear estimates in Section 5, see in particular (5.41), imply that under the
bootstrap assumption

[ Prerllsiry < Cady
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with some C4 = Cy(Ee¢rit ), we have
I > VeiPoQsp[Pr etV PrQyiI¢(Pryth, Peyth)l| o) < Cado,
|k1‘>>1,k213,7“
which is as desired. In fact, the proof of (5.41) cited above implies that one also obtains
I Y VerPoQep[Pia V' BrQuI(Pryt, Piyd)]llvpo) < Cado,
k1,2,3,|r[>1

and finally, again the trilinear estimates from Section 5 imply that we may also assume ks 3 = O(1) (implied
constant depending on Eg.;; ). Hence we may assume for the present term that all frequencies are O(1).
Thus we may now reduce to considering

> VatPoQ>p[Pr, etV PrQuiI°(Pryt), Pryt))]
k1,2,3+0(1)=r=0(1)

Now if one of the inputs of the null-form Q,;I°(Py,1, Pk, ) is of elliptic type, either at least one of e; and
the other input has at least comparable modulation, or else the output inherits the modulation from the
large modulation input. In the former case, it is straightforward to obtain smallness: indeed, consider for
example

> > VaiPoQxp [P, Qei—106V " PrQuiI°(Pr, Quib, Pr, Quioy V)]

ki1.2.3+0(1)=r=0(1) I>1

We can estimate this by (using Bernstein’s inequality)
Vet PoQ>p[Pr, Q<i—1061V ' P Qi I(Pry Quib, Py Qryoy¥)]| Nio)
= Vet PoQp,1+0(1)) [Prs Q<i-1061V " PrQu; I (P, Qut, Py Qi o1y¥)] [l w0
S ) el Ry Pro Qudll 2 Py QuroyVllz 1Pr Q<i—10€1ll g2
D<j<I+0(1)
< C4d0
The case when €; has comparable modulation is of course similar. Hence we may assume that if one of the

inputs Py, ;v is of elliptic type, the output inherits its modulation. In order to obtain smallness in this
case, we can form example use divisibility of Lix by applying suitable cutoffs x;, for which

> I, B Pty <1
ko€Z '

Next, assume that both inputs Py, 31 of the null-form are of hyperbolic type. Then using the bilinear
estimates of Section 4, we can estimate

[ > Vit PoQ> [Py €1V ™" Py QuiI*(Pry Q<izr0(1)¥s PraQ<ks+oy )] I vpo)
k1,2,3+0(1)=r=0(1)
<| Z V.t PoQ>p[Pr, 61V ™ PrQyiI°(PryQryro(1) ¥, P’€3Q<ks+0(1)¢)]H)(%H«*l*fv2
k‘17213+0(1):7’20(1) ¢

S Pri €|l nge 2 [1Qui I (Pry @<y +0(1) Vs Py Q<ies o1y ¥) Il 2,
In this case, smallness is again forced by subdividing into suitable time intervals I; with the property that
X1, Qui I (Pry Q<kzto) ¥ Prs Qg romy¥)llrz, <1

This completes treatment of (11.2). Next we turn to (11.3). The same reasoning as for (11.2) shows that
we may assume all frequencies k1 23,7 (which we introduce in the same fashion as before) to be of size
O(1). Now a technical issue arises when the operator R, = Ry. Indeed, in this case, it may happen that
the output inherits the modulation of the first input Py, R, €1, and the remaining inputs necessarily need
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to be placed into the energy space which is “not divisible”. However, this problem is somewhat artificial,
since of course the Hodge decomposition for the temporal components becomes counterproductive for in
the large modulation (elliptic) case. Thus for the expression

> Vet PoQxp[RoPr, @161V " PrQu I (P, Piy ),
k1,2,3+0(1)=r=0(1)

it is best to re-combine it with the term

> Vet PoQ>p[RoPiy @162V P Qui I (Pry ), Pry b)),
k1,2,3+0(1)=r=0(1)

as well as the “elliptic” error xo coming from
€0 = Roe + Xo

and replace it by Py, Qs1€ = Pr, Qs1€1 + P, Qs1€2. Unfortunately, we encounter here the technical issue
that the inputs €12, ¥ on the right-hand side are really Schwartz extensions of the actual components
beyond the time interval I we work on, and hence do not exactly satisfy the div-curl system. The way
around this is to work on a slightly smaller time interval I obtained by removing small intervals I 1,2 from
the endpoints of I with I; » of length ~ 77 with T as in case 1 of the roof of Proposition 9.12. When we
restrict the source terms to I, we may invoke the div-curl system for extremely elliptic (i.e., difference of
modulation and frequency very large) terms up to negligible errors. This allows us to obtain bootstrapped
bounds for €; 3 on I , and at the endpoints, we can re-iterate the argument of Case 1. Then the €; 2 on the
full interval I can be re-assembled from these pieces via partition of unity with respect to time.

The preceding discussion reveals that we may as well suppress the operator R,,. But once this is done, the
divisibility argument used for (11.2) may be repeated to give the desired smallness upon suitably restricting
the time intervals.

(1b): The argument for V,;PyQ>ple1V1Q,,(1,1)] is exactly the same, one square sums over the
output frequencies instead.

(2): Next we consider the schematically written terms of type V, ;PoQ>p[yV~1Q,,(e,1)]. Again these
split into two sub-types:

(2a): Terms of type V. :PoQ>p[yV 19, ;(e1,7)]. These contribute to €z, and indeed apart from the
fact that one uses trilinear estimates from Section 5 for elliptic outputs, the smallness follows formally just
as in Case 1 (b) (of the proof of Proposition 9.12).

(2b): Terms of type V,:PoQ>p[YyV 19, (€2, v)]. Here one encounters again the issue with the terms
containing Rpes and of extremely large modulation. As in (1a) above this is handled by undoing the Hodge
decomposition for these terms by restricting to a smaller time interval, up to negligible errors. This, as
well as arguments as in (1) above, allow one to reduce to an expression of the form

Vi PoQ>p[Pr, ¥V~ Qyj (Pry €2, Piyh)]

where all inputs are of hyperbolic type (up to large constants depending on the energy alone). But then the
smallness can be forced by reducing to frequency-separated inputs Py, ,1 (via the estimates of Section 5.3.
But then divisibility is obtained by grouping the inputs Py, ,9 together and placing their product into sz

(3) The remaining trilinear null-forms with elliptic output are easier to handle, since they contain at
least two factors of type €; 2, and hence the smallness follows simply by the smallness assumptions on these
factors (bootstrap assumptions), as well as the trilinear estimates of Section 5. We omit the details.
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The higher order contributions from the

are

5 5
Q=p[Y_ F2M (W + 6] = Qsp>_ Fat ()]
3 1=2

=2

estimated in a similar vein and omitted.
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TABLE 2. Table of notations

Notation Meaning Instance
u wave map from R**! into H? (1.1)

X,y components of u in standard co- || (1.4)

ordinates
e1, ez standard orthonormal frame for || before (1.4)
TH?
@7, derivative components of u with || (1.5), (1.6)-
respect to ej 2 (1.9)
Yoy W, Coulomb derivative components || (1.10)
o, on, x™, y" || Components of an essentially sin- || After Propo-
gular sequence of wave maps sition 9.1

X3 elliptic term in the Hodge decom- || (1.16)
position of 13

Eerit minimal blow up energy (1.23)

tw, Ty null-frame coordinates (2.5)
I Nlsik,m) null-frame component of the fre- || (2.12)
quency localized norm || - || gz
|- s Norm used to control the fre- || (2.17)
quency localized Coulomb com-
ponents Py
Il - ”X};‘l homogeneous Besov X*’-type || (2.1)
norm
- v null-frame component of the || (2.11)
norms || - || xx) used to control the
nonlinear source terms
I I Norm used to control the nonlin- || Definition 2.9
ear source terms
Pk,Qj,jS Frequency and modulation cut- || Before (2.1)
offs

R . Rectangular slabs in Fourier || (2.1)
space

one Frequency atoms of the Bahouri- || Lemma 9.5
Gerard frequency decomposition
of the ¢2

wnA weakly small error in Bahouri- | Lemma 9.5
Gerard frequency decomposition

ZA‘()O) Lowest frequency nonatomic de- || Lemma 9.7
rivative components

ZA‘(F) Lowest frequency nonatomic de- || Prop. 9.9
rivative Coulomb components

cg), dg, various frequency envelopes Prop. 9.11,
Prop. 9.12

Ag various versions of the Coulomb || After
potential Prop. 9.14

Ogn Covariant wave operator Def. 9.18

Spn (u[O]) Covariant wave propagation as- || Def. 9.22
sociated with Ox» applied to
data u[0]

Vcab Concentration profiles obtained || Lemma 9.23
in second stage of covariant
Bahouri-Gerard

WC"“B Weakly small error of profile de- || Lemma 9.23

composition in second stage of
covariant Bahouri-Gerard




