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Abstract A time-dependent model corresponding to an Oldroyd-B viscoelastic fluid
is considered, the convective terms being disregarded. Global existence in time is
proved in Banach spaces provided the data are small enough, using the implicit func-
tion theorem and a maximum regularity property for a three fields Stokes problem.
A finite element discretization in space is then proposed. Existence of the numerical
solution is proved for small data, so as a priori error estimates, using again an implicit
function theorem.
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1 Introduction

Numerical modeling of viscoelastic flows is of great importance for complex engi-
neering applications involving foodstuff, blood, paints or adhesives. When considering
viscoelastic flows, the velocity, pressure and stress must satisfy the mass and momen-
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tum equation, supplemented with a constitutive equation involving the velocity and
stress. The simplest model is the so-called Oldroyd-B constitutive relation which can
be derived from the kinetic theory of polymer dilute solutions, see for instance [6,40].
The unknowns of the Oldroyd-B model are the velocity u, the pressure p, the extra-
stress σ (the non Newtonian part of the stress due to polymer chains for instance)
which must satisfy :

ρ
∂u

∂t
+ ρ(u · ∇)u − 2ηs div ε(u) + ∇ p − div σ = f,

div u = 0,

σ + λ
(∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T

)
− 2ηpε(u) = 0.

Here ρ is the density, f a force term, ηs and ηp are the solvent and polymer viscosities,
λ the relaxation time, ε(u) = 1

2 (∇u + ∇uT ) the strain rate tensor, (∇u)σ denotes the
matrix-matrix product between ∇u and σ .

Obviously, when λ = 0, the Oldroyd-B model reduces to the incompressible
Navier–Stokes equations, for which we refer to [33].

Although the Oldroyd-B model is too simple to describe complex experiments such
as shear thinning for instance, it already contains some mathematical and numerical
difficulties. Indeed, when solving numerically Oldroyd-B fluids, one is faced to the
“high Deborah (or Weissenberg) number problem”, that is to say a breakdown in
convergence of algorithms when the Deborah number (the relaxation time λ times
a characteristic velocity divided by a characteristic length) increases. The sources of
this problem are due to :

(i) the presence of the quadratic term (∇u)σ + σ(∇u)T which prevents a priori
estimates to be obtained and therefore existence to be proved for any data;

(ii) the presence of a convective term (u · ∇)σ which requires the use of numerical
schemes suited to transport dominated problems;

(iii) the case ηs = 0 which requires either a compatibility condition between the
finite element spaces for u and σ or the use of adequate stabilization procedures
such as EVSS for instance.

For a description of numerical procedures used for solving viscoelastic flows in the
engineering community, we refer for instance to [3,41].

Concerning mathematical analysis, the existence of slow steady viscoelastic flow
has been proved in [45]. For the time-dependent case, existence of solutions locally
in time and, for small data, globally in time has been proved in [34] in Hilbert spaces.
Extensions to Banach spaces and a review can be found in [25]. Finally, existence for
any data has been proved in [36] for a corotational Oldroyd model only.

From the numerical analysis viewpoint, convergence of finite element methods for
the linear three fields Stokes problem have been studied for instance in [11,26,27,46].
Convergence of continuous and discontinuous finite element methods for steady state
viscoelastic fluids have been presented in [4,24,39,47], provided the solution of the
continuous problem is smooth and small enough. Extension to time-dependent prob-
lems have been proposed in [5,22,23,38].
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A simplified time-dependent viscoelastic flow 215

In this paper, the mathematical and numerical analysis is proposed for a simpli-
fied time-dependent Oldroyd-B problem. More precisely, we focus on item i) above,
thus remove the convective terms and assume ηs > 0. The reason for considering the
time-dependent Oldroyd-B problem without convection is motivated by the fact that
this simplified problem corresponds to the correction step in the splitting algorithm
described in [10] for solving 3D viscoelastic flows with complex free surfaces. The
consequence when removing convective terms is that the implicit function theorem
can be used to prove an existence result, whenever the data are small enough, in accor-
dance with the results of [25]. Our existence result is obtained using the semi-group
framework and a maximum regularity property for the three fields Stokes problem.
Moreover, the regularity of the solution is sufficient to prove convergence of a finite
element discretization in space. Finally, it should be noted that the analysis remains
valid for more realistic fluids such as Giesekus or Phan-Thien-Tanner.

Throughout the paper, implicit function theorems are used to prove mathemati-
cal existence and also numerical convergence of the finite element method, thus the
techniques presented in [43] are extended to the time-dependent framework. Finally,
we would like to mention that the technics presented here has also been success-
fully extended to the simplest kinetic model, namely the so-called Hookean dumb-
bells model for dilute polymer liquids [7–9]. In the latter, the constitutive equation
is replaced by a stochastic differential equation for the dumbbells elongation. We
refer to [35] for a review concerning numerical methods for kinetic theories of liquid
polymers.

The outline of the paper is as follows. The simplified Oldroyd-B problem and its
finite element approximation in space are introduced in the next section. Then, in
Sect. 3, mathematical existence of a solution is proved in Banach spaces. Finally, exis-
tence and a priori error estimates are proposed for the finite element approximation in
Sect. 4.

2 The simplified Oldroyd-B problem and its finite element approximation
in space

Let Ω be a bounded, connected open set of R
d , d ≥ 2 with boundary ∂Ω of class C2,

and let T > 0. We consider the following problem. Given initial conditions u0 : Ω →
R

d , σ0 : Ω → R
d×d
sym , a force term f , constant solvent and polymer viscosities ηs > 0,

ηp > 0, a constant relaxation time λ > 0, find the velocity u : Ω × (0, T ) → R
d ,

pressure p : Ω × (0, T ) → R and extra-stress σ : Ω × (0, T ) → R
d×d
sym such that

ρ
∂u

∂t
− 2ηs div ε(u) + ∇ p − div σ = f in Ω × (0, T ), (1)

div u = 0 in Ω × (0, T ), (2)
1

2ηp
σ + λ

2ηp

(∂σ

∂t
− (∇u)σ − σ(∇u)T

)

− ε(u) = 0 in Ω × (0, T ), (3)

u(·, 0) = u0 in Ω, (4)
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216 A. Bonito et al.

σ(·, 0) = σ0 in Ω, (5)

u = 0 on ∂Ω × (0, T ). (6)

For simplicity, the notation will be abridged as follow whenever there is no pos-
sible confusion. For 1 < r < +∞, the space Lr denotes Lr (Ω; R), Lr (Ω; R

d)

or Lr (Ω; R
d×d
sym ). Also, for 1 < q < +∞, 1 < r < +∞, Lq(Lr ) stands for

Lq(0, T ; Lr (Ω; R)), Lq(0, T ; Lr (Ω; R
d)) or Lq(0, T ; Lr (D; R

d×d
sym )) and, for 0 <

µ < 1, 1 < r < +∞, Cµ(Lr ) stands for the classical Hölder space Cµ([0, T ]; Lr

(D; R)). Similarly, hµ(Lr ) stands for the little Hölder space hµ([0, T ]; Lr (D; R)).
Here, the little Hölder space hµ([0, T ]; B) is defined for all Banach space B and for
all 0 < µ < 1 by

hµ([0, T ]; B) :=
{

f ∈ Cµ([0, T ]; B);

lim
δ→0

sup
t,s∈[0,T ],|t−s |<δ

‖ f (t) − f (s)‖B

|t − s |µ = 0
}
.

Assuming B is a separable Banach space, the space hk([0, T ]; B) provided with the
norm of Cµ(0, T ; B) is a separable Banach space and for all 0 < µ < µ′ < 1 we
have Cµ′ ⊂ hµ, see for instance [37]. We also denote by hµ

0 ([0, T ]; B) the restriction
of functions of hµ([0, T ]; B) vanishing at the origin. The above notations apply for
higher order spaces such as W 1,q(W 1,r ) and h1+µ(W 1,r ).

The implicit function theorem will be used to prove that (1)–(6) admits a unique
solution

u ∈ W 1,q(Lr ) ∩ Lq(W 2,r ∩ H1
0 ), p ∈ Lq(W 1,r ∩ L2

0),

σ ∈ W 1,q(W 1,r ), (7)

or

u ∈ h1+µ(Lr ) ∩ hµ(W 2,r ∩ H1
0 ), p ∈ hµ(W 1,r ∩ L2

0),

σ ∈ h1+µ(W 1,r ), (8)

with 1 < q < ∞, d < r < ∞ and 0 < µ < 1 for any data f , u0, σ0 small enough
in appropriate spaces. Moreover, assuming more regularity on the data, we will also
prove that

u ∈ W 2,q(Lr ) ∩ W 1,q(W 2,r ∩ H1
0 ), p ∈ W 1,q(W 1,r ∩ L2

0),

σ ∈ W 2,q(W 1,r ), (9)

or

u ∈ h2+µ(Lr ) ∩ h1+µ(W 2,r ∩ H1
0 ), p ∈ h1+µ(W 1,r ∩ L2

0),

σ ∈ h2+µ(W 1,r ), (10)
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A simplified time-dependent viscoelastic flow 217

for any data f , u0, σ0 again small enough in appropriate spaces. The regularity (7) is
sufficient to prove convergence of a finite element discretization in space, see Sect. 4.
On the other hand, the regularity (9) will be needed to prove convergence of a space
and time discretization, this being the subject of a forthcoming paper. Finally, the reg-
ularities (8) and (10) will be used when considering the Hookean dumbbells model,
which is formally equivalent to the Oldroyd-B model, see for instance [40]. Analysis
and numerical analysis of this stochastic model will be considered elsewhere [7].

Alternatively, local existence in time is proved for arbitrarily large data, using an
abstract theorem for fully nonlinear parabolic equations, namely Theorem 8.1.1 of
[37]. More precisely, we will prove that there exists 0 < T∗ ≤ T such that (1)–(6)
admits a solution

u ∈ C1([0, T∗], Lr ) ∩ C0([0, T∗], W 2,r ∩ H1
0 ),

σ ∈ C1([0, T∗], W 1,r ),

p ∈ C0([0, T∗]; W 1,r ∩ L2
0), (11)

with d < r < ∞ and for any data f , u0 and σ0 in appropriate spaces.
The finite element approximation in space is now introduced. For any h > 0, let Th

be a decomposition of Ω into triangles K with diameter hK less than h, regular in the
sense of [17]. We consider Vh , Mh and Qh the finite element spaces for the velocity,
extra-stress and pressure, respectively defined by :

Vh := {vh ∈ C0(Ω; R
d); vh |K ∈ (P1)

d ,∀K ∈ Th} ∩ H1
0 (Ω; R

d),

Mh := {τh ∈ C0(Ω; R
d×d
sym ); τh |K ∈ (P1)

d×d
sym ,∀K ∈ Th},

Qh := {qh ∈ C0(Ω; R); qh |K ∈ P1,∀K ∈ Th} ∩ L2
0(Ω; R).

We denote ih the L2(Ω) projection onto Vh , Mh or Qh and introduce the following
stabilized finite element discretization in space of (1)–(6). Given f , u0, σ0 find

(uh, σh, ph) : t → (uh(t), σh(t), ph(t)) ∈ Vh × Mh × Qh

such that uh(0) = ihu0, σh(0) = ihσ0 and such that the following weak formulation
holds in ]0, T [ :

ρ
(∂uh

∂t
, vh

)
+ 2ηs

(
ε(uh), ε(vh)

)
−

(
ph, div vh

)
+

(
σh, ε(vh)

)

−
(

f, vh

)
+

(
div uh, qh

)
+

∑
K∈Th

αh2
K

2ηp

(
∇ ph,∇qh

)
K

+ 1

2ηp

(
σh, τh

)
+ λ

2ηp

(∂σh

∂t
− (∇uh)σh − σh(∇uh)T , τh

)

−
(
ε(uh), τh

)
= 0, (12)
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218 A. Bonito et al.

for all (vh, τh, qh) ∈ Vh × Mh × Qh . Here α > 0 is a dimensionless stabilization
parameter and (·, ·) (respectively (·, ·)K ) denotes the L2(Ω) (resp. L2(K )) scalar
product for scalars, vectors and tensors.

The above nonlinear finite element scheme has already being studied in the station-
ary case [43]. Indeed, using the convergence result of [11] for the linear three fields
Stokes problem and an implicit function theorem taken from [12,13,15], existence
and convergence could be proved for small λ, the difficulty being again due to the
fact that no a priori estimates can be obtained because of the presence of the quadratic
terms (∇uh)σh + σh(∇uh)T .

We will proceed in an analogous manner for the time dependent case and prove
existence and convergence of a solution to (12) for a given λ but for small data f , u0,
σ0. It should be noted that in this paper the case ηs = 0 is not considered, therefore
some of the stabilization terms present in [11,43] are not included in the finite element
formulation (12).

3 Existence of a solution to the simplified Oldroyd-B problem

We introduce, as in [25], the Helmholtz–Weyl projector [28–30] defined by

Pr : Lr (Ω; R
d) → Hr 1 < r < ∞,

where Hr is the completion of the divergence free C∞
0 (Ω) vector fields with respect

to the Lr norm. The space Hr can be characterized as follows (again see for instance
[29])

Hr =
{
v ∈ Lr (Ω; R

d) ; div v = 0, v · n = 0 on ∂Ω
}

.

Since Ω is of class C2, there exists a constant C such that for all f ∈ Lr

‖Pr f ‖Lr ≤ C‖ f ‖Lr .

We define Ar := −Pr∆ : DAr → Hr the Stokes operator, where

DAr :=
{
v ∈ W 2,r (Ω; R

d) ∩ W 1,r
0 (Ω; R

d) | div v = 0
}

.

It is well known (see [32] for instance) that, for Ω of class C2, the operator Ar equipped
with the usual norm of Lr (Ω; R

d) is closed and densely defined in Hr . Moreover, the
graph norm of Ar is equivalent to the W 2,r norm.

With the above operators, (u, σ ) is said to be a solution of (1)–(6) if

u ∈ W 1,q(Hr ) ∩ Lq(DAr ), σ ∈ W 1,q(W 1,r ),
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A simplified time-dependent viscoelastic flow 219

with 1 < q < ∞, d < r < ∞ and satisfies

ρ
∂u

∂t
+ ηs Ar u − Pr div σ = Pr f, (13)

1

2ηp
σ + λ

2ηp

(∂σ

∂t
− (∇u)σ − σ(∇u)T

)
− ε(u) = 0, (14)

u(·, 0) = u0, (15)

σ(·, 0) = σ0. (16)

We will assume that the source term is f ∈ Lq(Lr ), the initial data are u0 ∈ E1−1/q,q

and σ0 ∈ W 1,r . Here E1−1/q,q := (
Hr ,DAr

)
1−1/q,q is a real interpolation space

which can be defined as

E1−1/q,q :=
⎧⎨
⎩v ∈ Hr ;

+∞∫

0

‖Ar e−t Ar v‖q
Lr

< ∞
⎫⎬
⎭

and is a Banach space with norm

‖v‖E1−1/q,q := ‖v‖Lr +
⎛
⎝

+∞∫

0

‖Ar e−t Ar v‖q
Lr

⎞
⎠

1/q

.

Moreover, when considering the little Hölder spaces hµ(Lr ) - see the regularities (8)
and (10) - the space Eµ,∞ := (

Hr ,DAr

)
µ,∞ will also be needed. The space Eµ,∞

can be defined as

Eµ,∞ =
{
v ∈ Hr ; sup

t>0
‖t1−µ Ar e−t Ar v‖Lr < +∞

}

and is a Banach space endowed with the norm

‖v‖Eµ,∞ := ‖v‖Lr + sup
t>0

‖t1−µ Ar e−t Ar v‖Lr .

We refer to [18,19,49] for more details.

Remark 1 For 1 < q < +∞, d < r < +∞, we have

W 1,q(Hr ) ∩ Lq(DAr ) ⊂ L2(W 1,r
0 ),

(see [21,32,51]). Thus a solution of (13)–(16) satisfies

‖u(T )‖2
L2 + ‖∇u‖2

L2(L2)
< ∞.
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Uniqueness of a solution to problem (13)–(16) can be obtained proceeding as in
[25], that is to say by proving an a priori estimate for the difference of two solutions
when q ≥ 2.

Lemma 1 Let d ≥ 2, let Ω ⊂ R
d be a bounded, connected open set with bound-

ary of class C2, let T > 0 and assume 2 ≤ q < ∞, d < r < ∞. Then, for any
f ∈ Lq(Lr ), u0 ∈ E1−1/q,q , σ0 ∈ W 1,r , there exists at most one solution (u, σ ) of
problem (13)–(16).

Proof Let us start by noticing that for 1 ≤ q < ∞, d < r < ∞, v ∈ Lq(W 2,r ) and
τ ∈ W 1,q(W 1,r ) the nonlinearity (∇v)τ + τ(∇v)T ∈ Lq(W 1,r ). Indeed, W 1,r is an
algebra for d < r and there exists C > 0 independent of v and τ such that

‖(∇v)τ + τ(∇v)T ‖W 1,r ≤ C‖τ‖W 1,r ‖v‖W 1,r ,

see for instance Theorem 5.23 of [1]. Moreover, using the same arguments as in [1],
we have that W 1,q(B) ⊂> L∞(B) for all Banach space B, thus

‖(∇v)τ‖q
Lq (W 1,r )

=
T∫

0

‖(∇v)τ‖q
W 1,r ≤ C

T∫

0

‖∇v‖q
W 1,r ‖τ‖q

W 1,r (17)

≤ C‖τ‖q
L∞(W 1,r )

T∫

0

‖∇v‖q
W 1,r (18)

≤ C̃‖τ‖q
W 1,q (W 1,r )

‖v‖q
Lq (W 2,r )

, (19)

where C̃ is independent of v and τ . Therefore, we can define the mapping S :
Lq(W 2,r ) × W 1,q(W 1,r ) → Lq(W 1,r ) by

S(v, τ ) := λ

2ηp

(
(∇v)τ + τ(∇v)T

)
.

Let now (ui , σi ) ∈ W 1,q(Hr ) ∩ Lq(DAr ) × W 1,q(W 1,r ) i = 1, 2, be two solutions
of problem (13)–(16) and let u = u1 − u2, σ = σ1 − σ2. Using the well known
properties of the Helmholtz-Weyl projector [28–30], there exists a unique pressure
pi ∈ Lq(W 1,r ∩L2

0), i = 1, 2, corresponding to each pair (ui , σi ) such that (ui , σi , pi )

satisfies (1)–(6). When 2 ≤ q < +∞, we can then take the weak formulation to obtain

ρ

t∫

0

(
∂ui

∂t
, u

)
+ λ

2ηp

t∫

0

(
∂σi

∂t
, σ

)
+ ηs

t∫

0

(∇ui ,∇u)

+
t∫

0

(σi , ε(u)) + 1

2ηp

t∫

0

(σi , σ ) −
t∫

0

(ε(ui ), σ ) =
t∫

0

(S(ui , σi ), σ ) , (20)
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A simplified time-dependent viscoelastic flow 221

for i = 1, 2. Hereabove we have used the fact that, since div ui = 0, we have

2div ε(ui ) = ∆ui .

All the terms in the previous equation are well defined because of the regularity of ui

and σi and since u(0) = σ(0) = 0 we have

ρ

t∫

0

(
∂ui

∂t
, u

)
+ λ

2ηp

t∫

0

(
∂σi

∂t
, σ

)
= ρ

2
‖u(t)‖2

L2 + λ

4ηp
‖σ(t)‖2

L2 ,

for i = 1, 2 and t ∈ (0, T ). Subtracting the two equalities (20), it follows that

(
ρ

2
‖u(t)‖2

L2 + λ

4ηp
‖σ(t)‖2

L2

)
+ ηs‖∇u‖2

L2(L2)
+ 1

2ηp
‖σ‖2

L2(L2)

=
t∫

0

(S(u, σ1), σ ) +
t∫

0

(S(u2, σ ), σ ) . (21)

Then, using Cauchy–Schwarz and Young inequalities, we have for t ∈ (0, T )

t∫

0

(S(u, σ1), σ ) ≤ 2λ

2ηp

t∫

0

‖σ1‖L∞‖∇u‖L2‖σ‖L2

≤ λ2

2ηsη2
p

t∫

0

‖σ1‖2
L∞‖σ‖2

L2 + ηs

2

t∫

0

‖∇u‖2
L2

and
t∫

0

(S(u2, σ ), σ ) ≤ λ

2ηp

t∫

0

‖∇u2‖L∞‖σ‖2
L2 .

Hence, with (21) and the continuous injection W 1,r ⊂> L∞ it follows that

ρ

2
‖u(t)‖2

L2 + λ

4ηp
‖σ(t)‖2

L2 ≤ C

t∫

0

(
‖u2‖W 2,r + ‖σ1‖2

W 1,r

)
‖σ‖2

L2 ,

for t ∈ (0, T ). Here C is a constant independent of u1, u2, σ1 and σ2. Gronwall’s
Lemma is used to obtain for all t ∈ (0, T )

ρ‖u(t)‖2
L2 + λ

2ηp
‖σ(t)‖2

L2 = 0,

so that u ∈ W 1,q(Hr ) ∩ Lq(DAr ) and σ ∈ W 1,q(W 1,r ) vanish.

We can now state the main results of this section.
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Theorem 1 Let d ≥ 2, let Ω ⊂ R
d be a bounded, connected open set with boundary

of class C2, let T > 0 and assume d < r < ∞, 1 < q < ∞, 0 < µ < 1. Then, there
exists δ0 > 0 such that the following holds.

(i) If f ∈ Lq(Lr ), u0 ∈ E1−1/q,q , σ0 ∈ W 1,r satisfy

‖Pr f ‖Lq (Lr ) + ‖u0‖E1−1/q,q + ‖σ0‖W 1,r ≤ δ0,

then there exists a solution of (13)–(16).
(ii) If f ∈ W 1,q(Lr ), u0 ∈ DAr , σ0 ∈ W 1,r satisfy the compatibility condition

−ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ E1−1/q,q

and are such that

‖Pr f ‖W 1,q (Lr ) + ‖u0‖W 2,r + ‖σ0‖W 1,r

+‖ − ηs Ar u0 + Pr f (0) + Pr div σ0‖E1−1/q,q ≤ δ0,

then there exists a solution of (13)–(16) with

u ∈ W 2,q(Hr ) ∩ W 1,q(DAr ), σ ∈ W 2,q(W 1,r ).

(iii) If f ∈ hµ(Lr ), u0 ∈ DAr , σ0 ∈ W 1,r satisfying the compatibility condition

−ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ DAr

Eµ,∞

and are such that

‖Pr ( f − f (0))‖hµ(Lr ) + ‖u0‖W 2,r + ‖σ0‖W 1,r

+‖ − ηs Ar u0 + Pr f (0) + Pr div σ0‖DAr
Eµ,∞ ≤ δ0,

then there exists a solution of (13)–(16) with

u ∈ h1+µ(Hr ) ∩ hµ(DAr ), σ ∈ h1+µ(W 1,r ).

(iv) If f ∈ h1+µ(Lr ), u0 ∈ DAr , σ0 ∈ W 1,r satisfying the compatibility conditions

−ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ D(Ar ),

−ηs Ar (−ηs Ar u0 + Pr f (0) + Pr div σ0) + ∂ f

∂t
(0) ∈ DAr

Eµ,∞
,
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A simplified time-dependent viscoelastic flow 223

and are such that

‖Pr ( f − f (0))‖hµ(Lr ) + ‖Pr

(
∂ f

∂t
− ∂ f

∂t
(0)

)
‖hµ(Lr ) + ‖u0‖W 2,r + ‖σ0‖W 1,r

+‖ − ηs Ar u0 + Pr f (0) + Pr div σ0‖W 2,r

+‖ − ηs Ar (−ηs Ar u0 + Pr f (0) + Pr div σ0) + ∂ f

∂t
(0)‖DAr

Eµ,∞ ≤ δ0,

then there exists a solution of (13)–(16) with

u ∈ h2+µ(Hr ) ∩ h1+µ(DAr ), σ ∈ h2+µ(W 1,r ).

Moreover, in all cases, the mappings

(Pr f, u0, σ0) 
→
(

u(Pr f, u0, σ0), σ (Pr f, u0, σ0)
)

are analytic in their respective spaces.

Using the well known properties of the Helmholtz–Weyl projector [28–30], we can
then obtain the following result.

Corollary 1 Under the assumptions of the above Theorem, there exists a unique p
satisfying

(i) p ∈ Lq(W 1,r ∩ L2
0),

(ii) p ∈ W 1,q(W 1,r ∩ L2
0),

(iii) p ∈ hµ(W 1,r ∩ L2
0),

(iv) p ∈ h1+µ(W 1,r ∩ L2
0),

such that (u, σ, p) is solution of problem (1)–(6). Moreover, the mappings

( f, u0, σ0) 
→
(

u( f, u0, σ0), σ ( f, u0, σ0), p( f, u0, σ0)
)

are analytic in their respective spaces.

Local existence in time can be proved for arbitrarily large data, using an abstract
theorem for fully nonlinear parabolic equations, namely Theorem 8.1.1 of [37].

Theorem 2 Let d ≥ 2, let Ω ⊂ R
d be a bounded, connected open set with boundary

of class C2 and assume d < r < ∞, 0 < µ < 1, T > 0. If

f ∈ Cµ(Lr ), u0 ∈ DAr , σ0 ∈ W 1,r ,

then there exists T∗ ∈ (0, T ] such that problem (13)–(16) possesses a solution

u ∈ C1([0, T∗],Hr ) ∩ C0([0, T∗],DAr ), σ ∈ C1([0, T∗], W 1,r ).
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As for Corollary 1 we can deduce the following result.

Corollary 2 Under the assumptions of the above Theorem, there exists a unique

p ∈ C1([0, T∗], W 1,r ∩ L2
0)

such that (u, σ, p) is a solution of problem (1)–(6).

Remark 2 Part (i) of Theorem 1 is compatible with Theorem 9.2 of [25], in which
the convective terms have been taken into account. Moreover, if 2/q + d/r < 1,
we have Lq(DAr ) ∩ W 1,q(Hr ) ⊂> C0(C1) and thus ∇u ∈ C0([0, T ] × Ω) which
implies (u · ∇)u ∈ Lq(Lr ). Therefore, Theorem 1 part (i) still holds when the con-
vective term (u · ∇)u is added to the momentum equation (1) or (13). However, since
(u · ∇)σ �∈ W 1,q(W 1,r ), the convective term (u · ∇)σ can not be added to (14) in the
present analysis.

Remark 3 Since

‖(u · ∇)u‖W 1,q (Lr ) ≤ C
(
‖u‖W 1,q (DAr ) + ‖u‖W 2,q (Hr )

)
,

then Theorem 1 part (ii) still holds if the convective term (u · ∇)u is added to (13).
However, since (u ·∇)σ �∈ W 2,q(W 1,r ), the convective term (u ·∇)σ can not be added
to (14) in the present analysis.

Remark 4 Parts (iii) and (iv) of Theorem 1 still hold when replacing little Hölder
spaces by the classical Hölder spaces. Indeed, the only difference is that the trace

space is not DAr

Eµ,∞ anymore but Eµ,∞.

Remark 5 The trace spaces E1−1/q,q or DAr

Eµ,∞ are abstract space but they both
contain DAr . For instance in part (i), if u0 ∈ W 2,r ∩ W 1,r

0 then u0 ∈ E1−1/q,q . Also,
the condition “‖Pr f ‖Lq (Lr ) small” is satisfied whenever ‖ f ‖Lq (Lr ) is small.

Remark 6 The existence results presented in this section still hold when considering
more realistic constitutive equations for the extra-stress tensor σ . This is for instance
the case of the simplified Giesekus [31] and Phan-Thien Tanner [42] models, respec-
tively defined by

σ + λ

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
+ α

λ

ηp
σσ = 2ηpε(u),

σ + λ

(
∂σ

∂t
− (∇u)σ − σ(∇u)T

)
+ ε

λ

ηp
tr(σ )σ = 2ηpε(u),

where α and ε are given positive parameters.

Remark 7 If we assume that the operator Ar satisfies the maximal regularity property
(see Definition (1) in Appendix A) when Ω is a convex polygon, then Theorem 1
still holds. We did not find such a result in the literature, therefore we will make this
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assumption and prove convergence of the finite element scheme. It should be noted
that the corresponding property is true in stationary case for some r > 2 depending
on the angles of the polygon, see [43].

3.1 Proof of Theorem 1

The proof is detailed for part (ii) only, which contains the major mathematical diffi-
culties. Then, we will briefly explain how the same arguments can be used to prove
parts (i), (iii) and (iv).

In order to prove part (ii) of Theorem 1, we shall introduce the mapping F :
Y × X → Z , where

Y = {
(Pr f, u0, σ0), such that ( f, u0, σ0) ∈ W 1,q(Lr ) × DAr × W 1,r

and − ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ E1−1/q,q
}
,

X = W 2,q(Hr ) ∩ W 1,q(DAr ) × W 2,q(W 1,r ),

Z = W 1,q(W 1,r ) × Y.

The mapping F is defined for all y = (Pr f, u0, σ0) ∈ Y and x = (u, σ ) ∈ X by

F(y, x) =

⎛
⎜⎜⎜⎜⎜⎝

λ

2ηp

∂σ

∂t
+ 1

2ηp
σ − ε(u) − S(u, σ )

ρ
∂u

∂t
+ ηs Ar u − Pr div σ − Pr f

u (., 0) − u0
σ (., 0) − σ0

⎞
⎟⎟⎟⎟⎟⎠

,

with

S(u, σ ) = λ

2ηp

(
(∇u)σ + σ(∇u)T

)
. (22)

Then problem (13)–(16) can be reformulated as follows. Given y ∈ Y , find x ∈ X
such that

F(y, x) = 0 in Z . (23)

The aim is to use the implicit function theorem, hence noticing that F(0, 0) = 0, we
will prove that

• the spaces X, Y and Z equipped with appropriate norms are Banach spaces,
• F is a well defined, real analytic mapping,
• the Fréchet derivative Dx F(0, 0) is an isomorphism from X to Z .

This will establish existence for part ii) of Theorem 1. Uniqueness follows from
Lemma 1 for 2 ≤ q < ∞.

The space X is equipped with the norm ‖ · ‖X defined for x = (u, σ ) ∈ X by

‖x‖X = ‖u, σ‖X = ‖u‖W 2,q (Lr ) + ‖u‖W 1,q (W 2,r ) + ‖σ‖W 2,q (W 1,r ).
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Obviously, (X, ‖.‖X ) becomes a Banach space. The space Y is equipped with the norm
‖ · ‖Y defined for y = (Pr f, u0, σ0) ∈ Y by

‖y‖Y = ‖Pr f, u0, σ0‖Y

= ‖Pr f ‖W 1,q (Lr ) + ‖u0‖W 2,r + ‖σ0‖W 1,r

+ ‖ − ηs Ar u0 + Pr f (0) + Pr div σ0‖E1−1/q,q .

As a consequence of the continuity of the linear mapping

(Pr f, u0, σ0) 
−→ −ηs Ar u0 + Pr f (0) + Pr div σ0

from W 1,q(Hr )×DAr × W 1,r (equipped with the product norm) to Lr and due to the
completeness of E1−1/q,q , the space (Y, ‖.‖Y ) is a closed subspace of W 1,q(Hr ) ×
DAr × W 1,r and thus a Banach space. The space Z is equipped with the product norm
and becomes a Banach space.

In order to prove that F is well defined and analytic we need to prove that S : X →
W 1,q(W 1,r ) is well defined and analytic. For this purpose, will use the following
Lemma.

Lemma 2 For every pair x1 = (u1, σ1), x2 = (u2, σ2) ∈ X,

b(x1, x2) := ∇u1σ2 + σ1(∇u2)
T ∈ W 1,q(W 1,r ).

Moreover, the corresponding bilinear mapping b : X × X → W 1,q(W 1,r ) is contin-
uous, that is, there exists a constant C such that for all x1, x2 ∈ X we have

‖b(x1, x2)‖W 1,q (W 1,r ) ≤ C‖x1‖X‖x2‖X . (24)

Proof Let x1 = (u1, σ1), x2 = (u2, σ2) ∈ X . Since r > d, W 1,r (Ω) ⊂> L∞(Ω) so
that W 1,r (Ω) is an algebra (see [1]) and there exists a constant C depending only on
Ω such that

‖b(x1, x2)‖W 1,r ≤ C‖u1‖W 2,r ‖σ2‖W 1,r .

Then we have

‖b(x1, x2)‖q
Lq (W 1,r )

=
T∫

0

‖b(x1, x2)‖q
W 1,r

≤ C

T∫

0

‖u1‖q
W 2,r ‖σ2‖q

W 1,r

≤ C‖u1‖q
L∞(W 2,r )

T∫

0

‖σ2‖q
W 1,r .
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Since q > 1, W 1,q(0, T ) ⊂> L∞(0, T ) and we also have that W 1,q(B) ⊂> L∞(B)

for any Banach space B, thus

‖b(x1, x2)‖q
Lq (W 1,r )

≤ C‖u1‖q
W 1,q (W 2,r )

‖σ2‖q
Lq (W 1,r )

,

which proves that

‖b(x1, x2)‖Lq (W 1,r ) ≤ C‖u1, σ1‖X‖u2, σ2‖X . (25)

Similarly, there exists a constant C depending only on Ω , λ and ηp such that

‖∂b

∂t
(x1, x2)‖q

Lq (W 1,r )
=

T∫

0

‖∂b

∂t
(x1, x2)‖q

W 1,r

≤ C

T∫

0

(
‖∂u1

∂t
‖q

W 2,r ‖σ2‖q
W 1,r + ‖u1‖q

W 2,r ‖∂σ2

∂t
‖q

W 1,r

)

≤ C

⎛
⎝‖σ2‖q

L∞(W 1,r )

T∫

0

‖∂u1

∂t
‖q

W 2,r + ‖u1‖q
L∞(W 2,r )

T∫

0

‖∂σ2

∂t
‖q

W 1,r

⎞
⎠

≤ C

⎛
⎝‖σ2‖q

W 1,q (W 1,r )

T∫

0

‖∂u1

∂t
‖q

W 2,r + ‖u1‖q
W 1,q (W 2,r )

T∫

0

‖∂σ2

∂t
‖q

W 1,r

⎞
⎠ ,

which proves that

‖∂b

∂t
(x1, x2)‖Lq (W 1,r ) ≤ C‖u1, σ1‖X‖u2, σ2‖X . (26)

The estimates (25) and (26) prove that b(x1, x2) ∈ W 1,q(W 1,r ) and (24).

Remark 8 In fact we also have proved that W 1,q(W 1,r ) is an algebra for 1 < q < ∞
and d < r < ∞.

Remark 9 For x ∈ X we have S(x) = λ

2ηp
b(x, x), where S : X → W 1,q(W 1,r ) is

introduced in (22). Thus, in virtue of [16], S is well defined and analytic.

Corollary 3 The mapping F : Y × X → Z is well defined and analytic. Moreover,
for x = (v, τ ) ∈ X its Fréchet derivative Dx F(0, 0)x is given by

Dx F(0, 0)x =

⎛
⎜⎜⎜⎜⎜⎝

λ

2ηp

∂τ

∂t
+ 1

2ηp
τ − ε(v)

ρ
∂v

∂t
+ ηs Arv − Pr div τ

v (., 0)

τ (., 0)

⎞
⎟⎟⎟⎟⎟⎠

.
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Proof In order to study the property of the mapping F : Y × X → Z we rewrite it as
follows

F(y, x) = L1 y + L2x +

⎛
⎜⎜⎜⎜⎝

λ

2ηp
b(x, x)

0
0
0

⎞
⎟⎟⎟⎟⎠

, (27)

where L1 : Y → Z , L2 : X → Z are bounded linear operator defined for y =
(Pr f, u0, σ0) ∈ Y and x = (u, σ ) ∈ X by

L1 y =
(

0
−y

)
, L2x =

⎛
⎜⎜⎜⎜⎜⎝

λ

2ηp

∂σ

∂t
+ 1

2ηp
σ − ε(u)

ρ
∂u

∂t
+ ηs Ar u − Pr div σ

u (., 0)

σ (., 0)

⎞
⎟⎟⎟⎟⎟⎠

and b : X × X → W 1,q(W 1,r ) is defined in Lemma 2. Clearly, the first two terms
in (27) are analytic. The last term is also analytic in virtue of [16], which proves that
F is analytic. Moreover Dx F(0, 0) = L2 which completes the proof.

In order to use the implicit function theorem, it remains to check that Dx F(0, 0) is an
isomorphism from X to Z . Therefore, we have to check that, for g ∈ W 1,q(W 1,r ) and
(h, v0, τ0) ∈ Y there exists a unique (v, τ ) ∈ X such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ

2ηp

∂τ

∂t
+ 1

2ηp
τ − ε(v) = g,

ρ
∂v

∂t
+ ηs Arv − Pr div τ = h,

v (., 0) = v0,

τ (., 0) = τ0.

(28)

Lemma 3 Let d ≥ 2, let Ω ⊂ R
d be a bounded,connected open set with boundary

of class C2, let T > 0 and assume d < r < ∞, 1 < q < ∞. Given g ∈ W 1,q(W 1,r )

and (h, v0, τ0) ∈ Y , there exists a unique (v, τ ) ∈ X solution of (28). Moreover, there
exists a constant C such that for g ∈ W 1,q(W 1,r ) and (h, v0, τ0) ∈ Y

‖v, τ‖X ≤ C
(‖g‖W 1,q (W 1,r ) + ‖h, v0, τ0‖Y

)
. (29)

Proof Solving the first equation of (28) we obtain for the extra-stress

τ = kτ0 + 2ηp

λ
k ∗ (ε(v) + g), (30)
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with k ∈ C∞([0, T ]) defined by k(t) := e− t
λ and the convolution operator ∗ by

( f ∗ g)(t) :=
t∫

0

f (t − s)g(s) ds ∀t ∈ [0, T ],∀ f, g ∈ L1(0, T ).

Introducing (30) in the second equation of (28), yields

⎧⎨
⎩

ρ
∂v

∂t
+ ηs Arv + ηp

λ
k ∗ Arv = h̃,

v(., 0) = v0.

(31)

where h̃ := h + Pr div (kτ0) + 2ηp
λ

Pr div (k ∗ g) ∈ W 1,q(Hr ). Since Ω is of class
C2, −Ar satisfies the maximal regularity property (see Theorem 15 p. 102 in Sect. 17
of [52] for the Lr (Lr ) estimate and Remark 13 in Appendix (A) for the Lq(Lr ) esti-
mate). Moreover, DAr = Lr (Ω) and since v0 ∈ DAr , −Arv0 + h̃(0) ∈ E1−1/q,q ,
Corollary 5 and Lemma 14 both in Appendix (A) prove the existence and uniqueness
of the solution v ∈ W 2,q(Hr ) ∩ W 1,q(DAr ). The estimates of Corollary 5, Lemma
14 and Remark 12 (in Appendix A) ensure the existence of a constant C such that for
(h, v0, τ0) ∈ Y , g ∈ W 1,q(W 1,r ) <

‖v‖W 2,q (Lr ) + ‖v‖W 1,q (DAr ) ≤ C
(‖h, v0, τ0‖Y + ‖g‖W 1,q (W 1,r )

)
.

Because of the regularity of Ω , the graph norm ‖.‖DAr
is equivalent to the whole norm

‖.‖W 2,r , thus there exists a constant C such that

‖v‖W 2,q (Lr ) + ‖v‖W 1,q (W 2,r ) ≤ C
(‖h, v0, τ0‖Y + ‖g‖W 1,q (W 1,r )

)
. (32)

Going back to the extra-stress, Eq. (30), since g + ε(v) ∈ W 1,q(W 1,r ), Remark 12 in
Appendix (A) ensures that k ∗ (g + ε(v)) ∈ W 2,q(W 1,r ) and there exists a constant
C such that

‖k ∗ (g + ε(v))‖W 2,q (W 1,r ) ≤ C
(‖g‖W 1,q (W 1,r ) + ‖v‖W 1,q (W 2,r )

)
.

It remains to use (30) to obtain the existence and uniqueness of τ ∈ W 2,q(W 1,r ).
Moreover there exists a constant C such that

‖τ‖W 2,q (W 1,r ) ≤ C
(‖h, v0, τ0‖Y + ‖g‖W 1,q (W 1,r )

)
. (33)

Collecting the estimations (32) and (33) we obtain (29).

Proof (of Theorem 1, part ii) We apply the implicit function theorem to (23). From
Corollary 3, F is well defined and analytic, F(0, 0) = 0. Moreover, from Lemma 3
Dx F(0, 0) is an isomorphism from X to Z . Therefore, we can apply the implicit
function theorem (see for instance Theorem 4.5.4 chapter 4 p. 56 of [14]). Thus there
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exists δ0 > 0 and ϕ : Y → X analytic such that for all y := (Pr f, u0, σ0) ∈ Y with
‖y‖Y < δ0 we have F(y, ϕ(y)) = 0.

We will now briefly explain how same arguments can be used to prove parts (i),
(iii) and (iv) of Theorem 1.

The proof of part (i) is very similar to the one presented hereabove. Indeed, it
suffices to use the spaces

Y = {
(Pr f, u0, σ0), such that ( f, u0, σ0) ∈ Lq(Lr ) × E1−1/q,q × W 1,r},

X = W 1,q(Hr ) ∩ Lq(DAr ) × W 1,q(W 1,r ),

Z = Lq(W 1,r ) × Y

and to use Corollary 5 (Appendix A) in order to prove the existence and uniqueness
of the function v solution of (31). Concerning part (iii), we shall use the spaces

Y = {
(Pr f, u0, σ0), such that ( f, u0, σ0) ∈ hµ(Lr ) × DAr × W 1,r

and − ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ DAr

Eµ,∞}
,

X = h1+µ(Hr ) ∩ hµ(DAr ) × h1+µ(W 1,r ),

Z = hµ(W 1,r ) × Y.

and Lemma 13 (Appendix A) in order to prove the existence and uniqueness of the
function v solution of (31). Finally, the link between parts (i) and (ii) is the same as
between parts (iii) and (iv). Thus we can extend the arguments presented in part (ii)
to little Hölder spaces in order to obtain more regularity in time.

3.2 Proof of Theorem 2

This result is obtained using the fully nonlinear theory for parabolic problems which
can be found in [37]. More precisely, Theorem 8.1.1 pp. 290 will be used on problem
(13)–(16) that can be rewritten as follows

ẋ(t) = G(t, x(t)), t > 0, x(0) = x0,

where x := (u, σ ), x0 := (u0, σ0) and G : [0, T ] × DAr × W 1,r → Hr × W 1,r is
defined by

G(t, x) :=
⎛
⎜⎝

−ηs

ρ
Ar G1

G2 −1

λ
Id

⎞
⎟⎠ x +

⎛
⎝

1

ρ
Pr f (t)

Ŝ(x)

⎞
⎠ .

Hereabove, G1 ∈ L(W 1,r ;Hr ) and G2 ∈ L(DAr , W 1,r ) are defined by

G1σ = 1

ρ
Pr div σ, G2u = 2ηp

λ
ε(u)
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whilst Ŝ : DAr × W 1,r → W 1,r is defined by

Ŝ(u, σ ) := (∇u)σ + σ(∇u)T .

Lemma 4 The application Ŝ : DAr × W 1,r → W 1,r is well defined and analytic.
Moreover, G : [0, T ] × DAr × W 1,r → Hr × W 1,r is continuous with respect to
(t, x).

Proof Same arguments as provided in Lemma 2 and Remark 9 in the previous subsec-
tion can be used to ensure Ŝ : DAr × W 1,r → W 1,r is well defined and analytic. Let
us prove now the continuity of G. In order to simplify the notations, let us introduce
de linear part of G, namely L ∈ L(DAr × W 1,r ,Hr × W 1,r ) defined by

L :=
⎛
⎜⎝

−ηs

ρ
Ar G1

G2 −1

λ
Id

⎞
⎟⎠ .

Fix (t, x) ∈ [0, T ] × DAr × W 1,r and let {tn}n≥0 ⊂ [0, T ], {xn}n≥0 ⊂ DAr × W 1,r

such that tn → t and xn → x when t goes to infinity. Therefore,

‖G(t, x) − G(tn, xn)‖Lr ×W 1,r

≤ ‖L(x − xn)‖Lr ×W 1,r + ‖ 1

ρ
(Pr f (t) − Pr f (tn))‖Lr + ‖Ŝ(x) − Ŝ(xn)‖W 1,r .

Thus, since f ∈ Cµ(Lr ) and Ŝ is continuous from DAr × W 1,r to W 1,r , it follows

‖G(t, x) − G(tn, xn)‖Lr ×W 1,r

≤ ‖L‖L(DAr ×W 1,r ,Hr ×W 1,r )‖x − xn‖W 2,r ×W 1,r

+ C
(‖Pr f ‖Cµ(Lr ) |t − tn |µ + ‖x − xn‖W 2,r ×W 1,r

)
.

Hence

‖G(t, x) − G(tn, xn)‖Lr ×W 1,r → 0 when n → ∞.

The crucial point in order to prove Theorem 2 is

{
for t ∈ [0, T ]and x ∈ DAr × W 1,r the Fréchet derivative Dx G(t, x)

is the generator of an analytic semigroup.
(34)

The above property will be a consequence of a result by S. B. Angenent [2].

Lemma 5 For t ∈ [0, T ] and x ∈ DAr × W 1,r the Fréchet derivative Dx G(t, x) is
the generator of an analytic semigroup.
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Proof Let x := (u, σ ) ∈ DAr × W 1,r . In order to characterize the Fréchet deriv-
ative Dx G(t, x), t ∈ [0, T ], let us define the operators Su ∈ L(W 1,r , W 1,r ) and
Sσ ∈ L(DAr , W 1,r ) by

Suτ := (∇u)τ + τ∇u, ∀τ ∈ W 1,r

and
Sσ v := (∇v)σ + σ∇v, ∀v ∈ DAr .

Lemma 2 ensures Sσ ∈ L(DAr , W 1,r ), Su ∈ L(W 1,r , W 1,r ). Using this notations we
obtain for t ∈ [0, T ] and x ∈ DAr × W 1,r

Dx G(t, x) =
⎛
⎜⎝

−ηs

ρ
Ar G1

G2 + Sσ −1

λ
Id + Su

⎞
⎟⎠ , (35)

and since G1 ∈ L(W 1,r ,Hr ), G2 ∈ L(DAr , W 1,r ), we have

Dx G(t, x) ∈ L(DAr ⊗ W 1,r ,Hr ⊗ W 1,r ).

Finally, since −Ar : DAr → Hr is generator of an analytic semigroup (see [32]),
Lemma 2.6 p. 98 (part a) of [2] concludes the proof.

Let us go back to the proof of Theorem 2.

Proof (of Theorem 2) We apply Theorem 8.1.1 p. 290 of [37] with u = x0 = (u0, σ0),
t0 = 0, t = 0 and O = DAr × W 1,r . Since DAr × W 1,r = Hr × W 1,r , the condition
G(0, x0) ∈ DAr × W 1,r is satisfied for all x0 ∈ DAr × W 1,r . Thus it remains to check

(i) property (34) is satisfied,
(ii) for t ∈ [0, T ] and x ∈ DAr × W 1,r , the graph norm of the operator Dx G(t, x)

is equivalent to the norm ‖.‖W 2,r ×W 1,r ,
(iii) (t, x) 
→ G(t, x) is continuous with respect to (t, x), and it is Fréchet differen-

tiable with respect to x ,
(iv) for all x := (u, σ ) ∈ DAr ×W 1,r there are R = R(x), L = L(x), K = K (x) >

0 verifying

‖Dx G(t, x) − Dx G(t, z)‖L(DAr ×W 1,r ,Hr ×W 1,r ) ≤ L‖x − z‖W 2,r ×W 1,r ,

‖G(t, x) − G(s, x)‖Lr ×W 1,r

+‖Dx G(t, x) − Dx G(s, x)‖L(DAr ×W 1,r ,Hr ×W 1,r ) ≤ K |t − s |µ ,

for all t, s ∈ [0, T ], x, z ∈ B(x, R) ⊂ DAr × W 1,r .
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Relation (i) is satisfied by using Lemma 5. Property (ii) is satisfied since W 1,r ⊂> L∞
(see [1]). The application G is continuous by Lemma 4. The Fréchet derivative is given
by (35) and is well defined. Finally, (iv) may be proved as follow. Let x = (u, σ ),
z := (v, τ ) and z̃ := (w, ξ) all belonging to DAr × W 1,r , using again the continuous
embedding W 1,r ⊂> L∞ we have

‖Dx G(t, x)z̃ − Dx G(t, z)z̃‖Lr ×W 1,r = ‖Dx Ŝ(x)z̃ − Dx Ŝ(z)z̃‖Lr ×W 1,r

= ‖∇(u − v)ξ + ξ(∇(u − v))T + ∇w(σ − τ) + (σ − τ)(∇w)T ‖W 1,r

≤ C‖z̃‖W 2,r ×W 1,r ‖x − z‖W 2,r ×W 1,r ,

where C is independent of u and σ . Moreover, for t, s ∈ [0, T ] and x ∈ DAr × W 1,r

Dx G(t, x) = Dx G(s, x).

Hence, since f ∈ Cµ(Lr ), we have for t, s ∈ [0, T ] and x ∈ DAr × W 1,r

‖G(t, x) − G(s, x)‖Lr ×W 1,r = ‖ 1

ρ
(Pr f (t) − Pr f (s))‖Lr ≤ C |t − s |µ ,

where C is independent of t, s and x . Relations (i)–(iv) ensure the existence of
0 < T∗ < T such that there exists a solution

x ∈ C0([0, T∗],DAr × W 1,r ) ∩ C1([0, T∗],Hr × W 1,r )

of (13)–(16).

4 Existence of the finite element approximation and a priori error estimates

In this section we assume that Ω is a convex polygon and that

2 ≤ q < +∞, 2 = d ≤ r < +∞.

We set

Y = Lq(Lr ) × E1−1/q,q × W 1,r ,

X = W 1,q(Lr ) ∩ Lq(W 2,r ) × W 1,q(W 1,r ),

the data and solution spaces, respectively. According to Theorem 1 part (i), Corollary 1
and Remark 7 we know that, if y = ( f, u0, σ0) ∈ Y is sufficiently small, then there
exists a unique solution

(
u(y), σ (y), p(y)

)
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of (1)–(6), the mapping

y →
(

u(y), σ (y), p(y)
)

being analytic (therefore continuous).
In order to prove that the solution of the nonlinear finite element discretization (12)

exists and converges to that of (1)–(6), we introduce Xh ⊂ X defined by

Xh = L2(Vh) × L∞(Mh)

equipped with the norm || · ||Xh defined for all xh = (uh, σh) ∈ Xh by

‖xh‖2
Xh

:= 2ηs

T∫

0

‖ε(uh(t))‖2
L2(Ω)

dt + λ

4ηp
sup

t∈[0,T ]
‖σh(t)‖2

L2(Ω)
.

Then, we rewrite the solution of (12) as the following fixed point problem. Given
y = ( f, u0, σ0) ∈ Y , find xh = (uh, σh) ∈ Xh such that

xh = Th

(
y, S(xh)

)
, (36)

where S is still defined as in (22) but has been extended to the larger space

S : L2(H1) × L∞(L2) → L2(L2).

The operator Th is the semi-discrete time-dependent three fields Stokes problem
defined by

Th : Y × L2(L2) → Xh

( f, u0, σ0, g) → Th( f, u0, σ0, g) =
def.

(ũh, σ̃h)

where for t ∈ (0, T )

(ũh, σ̃h, p̃h) : t 
−→ (ũh(t), σ̃h(t), p̃h(t)) ∈ Vh × Mh × Qh

satisfies ũh(0) = ihu0, σ̃h(0) = ihσ0 and

ρ
(∂ ũh

∂t
, vh

)
+ 2ηs

(
ε(ũh), ε(vh)

)
−

(
p̃h, div vh

)
+

(
σ̃h, ε(vh)

)
−

(
f, vh

)

+
(

div ũh, qh

)
+

∑
K∈Th

αh2
K

2ηp

(
∇ p̃h,∇qh

)
K

+ 1

2ηp

(
σ̃h, τh

)
+ λ

2ηp

(∂σ̃h

∂t
, τh

)
−

(
ε(ũh), τh

)
− λ

2ηp

(
g, τh

)
= 0 (37)

for all (vh, τh, qh) ∈ Vh × Mh × Qh , a.e in (0, T ).
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It should be noticed that, given y = ( f, u0, σ0) ∈ Y sufficiently small, the solution
x(y) = (u(y), σ (y)) ∈ X of the continuous Oldroyd-B problem (1)–(6) also satisfies
a fixed point problem, namely

x(y) = T
(

y, S(x(y))
)
. (38)

Here the operator T is the time-dependent three fields Stokes problem defined by

T : Y × Lq(W 1,r ) → X

( f, u0, σ0, g) → T( f, u0, σ0, g) =
def.

(ũ, σ̃ ),

where (ũ, σ̃ , p̃) satisfy

ρ
∂ ũ

∂t
− 2ηs div ε(ũ) + ∇ p̃ − div σ̃ = f in Ω × (0, T ), (39)

div ũ = 0 in Ω × (0, T ), (40)
1

2ηp
σ̃ + λ

2ηp

(∂σ̃

∂t

)
− ε(ũ) = g in Ω × (0, T ), (41)

ũ(·, 0) = u0 in Ω, (42)

σ̃ (·, 0) = σ0 in Ω, (43)

ũ = 0 on ∂Ω × (0, T ). (44)

We then have the following stability and convergence result, which proof can be found
in Appendix (B).

Lemma 6 The operator Th is well defined and uniformly bounded with respect to
h : there exists C1 > 0 such that for all h > 0 and for all ( f, u0, σ0, g) ∈ Y × L2(L2)

we have
||Th( f, u0, σ0, g)||Xh ≤ C1

(
|| f, u0, σ0||Y + ||g||L2(L2)

)
. (45)

Moreover, there exists C2 > 0 such that for all h > 0 and for all ( f, u0, σ0, g) ∈
Y × Lq(W 1,r ) we have

||(T − Th)( f, u0, σ0, g)||Xh ≤ C2h
(
|| f, u0, σ0||Y + ||g||Lq (W 1,r )

)
. (46)

Our goal is now to prove that (36) has a unique solution converging to that of
(38). For this purpose, we use, as in [43], an abstract framework and write (36) as the
following problem : given y = ( f, u0, σ0) ∈ Y , find xh = (uh, σh) ∈ Xh such that

Fh(y, xh) = 0, (47)

where Fh : Y × Xh → Xh is defined by

Fh(y, xh) = xh − Th

(
y, S(xh)

)
. (48)
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In order to prove existence and convergence of a solution to (47), we use Theorem
2.1 of [15]. The mapping Fh : Y × Xh → Xh is C1. Moreover, we need to prove that
the scheme is consistent, that Dx Fh has bounded inverse at ih x - recall that ih is the
L2(Ω) projection onto the finite element space, x is the solution of (38) - and that
Dx Fh is locally Lipschitz at ih x .

Lemma 7 Let δ0 be as in Theorem 1 part i), 1, let y := ( f, u0, σ0) ∈ Y with ‖y‖Y ≤ δ0
and let x(y) = (u(y), σ (y)) ∈ X be the solution of (38). Then, there exists a constant
C1 such that for all y ∈ Y with ‖y‖Y ≤ δ0, for all 0 < h ≤ 1, we have

‖Fh(y, ih x(y))‖Xh ≤ C1h
(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
. (49)

Moreover, there exists a constant C2 such that for all y ∈ Y with ‖y‖Y ≤ δ0, for all
0 < h ≤ 1, for all z ∈ Xh we have

‖Dx Fh(y, ih x(y)) − Dx Fh(y, z)‖L(Xh) ≤ C2

h
‖ih x(y) − z‖Xh . (50)

Proof Using (38) and (48), we have

Fh(y, ih x) = ih x − x − Th(y, S(ih x)) + T(y, S(x))

= ih x − x + Th(0, S(x) − S(ih x)) + (T − Th)(y, S(x)),

so that,

1

3
‖Fh(y, ih x)‖2

Xh
≤ ‖ih x − x‖2

Xh

+‖Th(0, S(x) − S(ih x))‖2
Xh

+ ‖(T − Th)(y, S(x))‖2
Xh

.

Using standard interpolation results for the first term of the right hand side, Lemma 6
for the second and third terms, it follows that

‖Fh(y, ih x)‖2
Xh

≤ C
(

h2‖x‖2
X + ‖S(x) − S(ih x)‖2

L2(L2)
+ h2‖y‖2

Y + h2‖S(x)‖2
Lq (W 1,r )

)
, (51)

C being independent of h and y. Proceeding as in Lemma 1, we have

‖S(x)‖2
Lq (W 1,r )

≤ C‖x‖4
X , (52)
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C being independent of h and y. On the other hand, we also have

2ηp

λ

(
S(x) − S(ih x)

)

= ∇u σ + σ(∇u)T − (∇ihu)ihσ − ihσ (∇ihu)T

= ∇(u − ihu)σ + (∇ihu)(σ − ihσ)

+ σ (∇(u − ihu))T + (σ − ihσ)(∇ihu)T ,

so that, using a Cauchy–Schwarz inequality

‖S(x) − S(ih x)‖2
L2(L2)

≤ C‖x − ih x‖2
Xh

(
‖σ‖2

L∞(L∞) + ‖∇ihu‖2
L2(L∞)

)
,

C being independent of h and y. Standard interpolation results lead to

‖∇ihu‖L∞ ≤ ‖∇u‖L∞ + ‖∇(ihu − u)‖L∞ ≤ C‖u‖W 2,r ,

C being independent of h and y. Thus, using again standard interpolation, we have

‖S(x) − S(ih x)‖2
L2(L2)

≤ Ch2‖x‖4
X , (53)

C being independent of h and y. Finally, (52) and (53) in (51) yields (49).
Let us now prove (50). Let z = (v, τ ) ∈ Xh , let z̃ := (ṽ, τ̃ ) ∈ Xh , we have

(
Dx Fh(y, ih x) − Dx Fh(y, z)

)
z̃ = −Th

(
0, (DS(ih x) − DS(z))z̃

)
.

Using Lemma 6 we obtain

‖ (Dx Fh(y, ih x) − Dx Fh(y, z)) z̃‖Xh

≤ C‖(DS(ih x) − DS(z))z̃‖L2(L2), (54)

C being independent of h and y. We have

2ηp

λ

(
DS(ih x) − DS(z)

)
z̃ = (∇(ihu − v))τ̃ + τ̃ (∇(ihu − v))T

+∇ṽ(ihσ − τ) + (ihσ − τ)(∇ṽ)T .

Then, using Cauchy–Schwarz inequality, there exists a constant C independent of h
and y such that

‖(DS(ih x) − DS(z))z̃‖L2(L2) ≤ C
(
‖∇(ihu − v)‖L2(L∞)‖τ̃‖L∞(L2)

+‖∇ṽ‖L2(L∞)‖ihσ − τ‖L∞(L2)

)
.

123



238 A. Bonito et al.

A classical inverse inequality yields

‖(DS(ih x) − DS(z))z̃‖L2(L2) ≤ C

h

(
‖∇(ihu − v)‖L2(L2)‖τ̃‖L∞(L2)

+‖∇ṽ‖L2(L2)‖ihσ − τ‖L∞(L2)

)
,

so that we finally have

‖(DS(ih x) − DS(z))z̃‖L2(L2) ≤ C

h
‖ih x − z‖Xh ‖z̃‖Xh .

This last inequality in (54) yields (50).

Before proving existence of a solution to (47) we still need to check that Dx Fh

(y, ih x) is invertible.

Lemma 8 Let δ0 be as in Theorem 1 part i), 1, let y := ( f, u0, σ0) ∈ Y with ‖y‖Y ≤ δ0
and let x(y) = (u(y), σ (y)) ∈ X be the solution of (38). Then, there exists 0 < δ1 ≤ δ0
such that for all y ∈ Y with ‖y‖Y ≤ δ1, for all 0 < h ≤ 1, we have

‖Dx Fh(y, ih x(y))−1‖L(Xh) ≤ 2.

Proof By definition of Fh , we have

Dx Fh(y, ih x) = I − Th(0, DS(ih x)),

so that we can write

Dx Fh(y, ih x) = I − Gh with Gh := Th(0, DS(ih x)).

If we prove that ‖Gh‖L(Xh) ≤ 1/2 for y sufficiently small, then Dx Fh(y, ih x) is
invertible and ‖Dx Fh(y, ih x)−1‖L(Xh) ≤ 2.

Let z := (v, τ ) ∈ Xh . Using Lemma 6 we have

‖Gh(z)‖Xh ≤ C1‖DS(ih x)z‖L2(L2),

C1 being independent of y and h. Using the same arguments as in the proof of Lemma
7, we have

2ηp

λ
‖DS(ih x)z‖L2(L2)

= ‖(∇ihu)τ + τ(∇ihu)T + (∇v)ihσ + ihσ(∇v)T ‖L2(L2)

≤ 2
(
‖∇ihu‖L2(L∞)‖τ‖L∞(L2) + ‖∇ihσ‖L∞(L∞)‖∇v‖L2(L2)

)

≤ C2

(
‖u‖L2(W 2,r )‖τ‖L∞(L2) + ‖∇v‖L2(L2)‖σ‖W 1,q (W 1,r )

)
,
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C2 being independent of y and h. Hence,

‖Gh(z)‖Xh ≤ C3‖x‖X‖z‖Xh ,

where C3 is independent of y and h. From Corollary 1, the mapping y → x(y) is
continuous, thus if ||y||Y is sufficiently small we have ‖x‖X ≤ 1/(2C3) so that

‖Gh(z)‖Xh ≤ 1

2
‖z‖Xh .

We can now prove existence of a solution to the finite element scheme (12) and
convergence to the solution of (1)–(6).

Theorem 3 Let δ0 be as in Theorem 1 part i), 1, let y := ( f, u0, σ0) ∈ Y with
‖y‖Y ≤ δ0 and let x(y) = (u(y), σ (y)) ∈ X be the solution of (38). Then, there exists
0 < δ2 ≤ δ0 and ζ > 0 such that for all y ∈ Y with ‖y‖Y ≤ δ2, for all 0 < h ≤ 1,
there exists a unique xh(y) = (uh(y), σh(y)) in the ball of Xh centered at ih x(y) with
radius ζh, satisfying

Fh(y, xh(y)) = 0.

Moreover, the mapping y → xh(y) is continuous and there exists C > 0 independent
of h and y such that the following a priori error estimate holds

‖x(y) − xh(y)‖Xh ≤ Ch. (55)

Remark 10 The above Theorem still holds when the stabilization term in (12) is
replaced by

∑
K∈Th

αh2
K

2ηp

(
−div (2ηsε(uh) + σh) + ∇ ph − f,∇qh

)
K
,

provided 0 < α ≤ CI . Here CI is the largest constant satisfying the following inverse
estimate

CI

∑
K∈Th

h2
K ‖div τh‖2

L2(K )
≤ ‖τh‖2

L2(Ω)
∀τh ∈ Mh .

Remark 11 Theorem 3 also holds when y = ( f, u0, σ0) ∈ Y is sufficiently small,
with Y corresponding to Theorem 1 part (iii) thus defined by

Y = {( f, u0, σ0) ∈ hµ(Lr ) × DAr × W 1,r

such that − ηs Ar u0 + Pr f (0) + Pr div σ0 ∈ E1−1/q,q}.

This convergence result in little Hölder spaces rather than Sobolev (with respect to the
time variable) will be used in a forthcoming paper [7] when considering a finite ele-
ment scheme for the Hookean dumbbells model which is a stochastic model formally
equivalent to Oldroyd-B.
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In order to prove the above Theorem, we will use the following abstract result.

Lemma 9 (Theorem 2.1 of [15]) Let Y and Z be two real Banach spaces with norms
‖.‖Y and ‖.‖Z respectively. Let G : Y → Z be a C1 mapping and v ∈ Y be such that
DG(v) ∈ L(Y ; Z) is an isomorphism. We introduce the notations

ε = ‖G(v)‖Z ,

γ = ‖DG(v)−1‖L(Y ;Z),

L(α) = sup
x∈B(v,α)

‖DG(v) − DG(x)‖L(Y ;Z),

with B(v, α) = {y ∈ Y ; ‖v − y‖Y ≤ α}, and we are interested in finding u ∈ Y such
that

G(u) = 0. (56)

We assume that 2γ L(2γ ε) ≤ 1. Then Problem (56) has a unique solution u in the ball
B(v, 2γ ε) and, for all x ∈ B(v, 2γ ε), we have

‖x − u‖Y ≤ 2γ ‖G(x)‖Z .

Proof (Proof of Theorem 3) We apply Lemma 9 with Y = Xh, Z = Xh, G = Fh

and v = ih x(y). According to Lemma 7 there exists a constant C1 independent of y
and h such that

ε = ‖Fh(y, ih x(y))‖Xh ≤ C1h
(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

According to Lemma 8, for ‖y‖Y sufficiently small

γ = ‖Dx Fh(y, ih x(y))‖L(Xh) ≤ 2.

According to Lemma 7, there is a constant C2 independent of y and h such that

L(β) = sup
z∈B(ih x(y),β)

‖DFh(ih x(y)) − DFh(z)‖L(Xh) ≤ C2

h
β.

Hence, we have

2γ L(2γ ε) ≤ 2.2
C2

h

(
2.2C1h

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

))

= 16C1C2

(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)
.

Using the continuity of the mapping y → x(y), there exists 0 < δ2 ≤ δ0 such that for
all y ∈ Y with ‖y‖Y ≤ δ2, then

‖y‖Y + ‖x(y)‖X + ‖x(y)‖2
X ≤ 1

32C1C2
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so that 2γ L(2γ ε) ≤ 1/2 < 1 and Lemma 9 applies. There exists a unique xh(y) in
the ball B(ih x(y), 2γ ε) such that

Fh(y, xh(y)) = 0

and we have

‖ih x(y) − xh(y)‖Xh ≤ 4C1h
(
‖y‖Y + ‖x(y)‖X + ‖x(y)‖2

X

)

≤ 4C1h

32C1C2
= 1

8C2
h.

It suffices to use the triangle inequality

‖x(y) − xh(y)‖Xh ≤ ‖x(y) − ih x(y)‖Xh + ‖ih x(y) − xh(y)‖Xh ,

and standard interpolation results to obtain (55). The fact that the mapping y → xh(y)

is continuous is a direct consequence of the implicit function theorem used to prove
Lemma 9.
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A Appendix: pertubated abstract Cauchy problem

The aim of this appendix is to state some existence results taken from [18–20,48–50]
and used in this paper on the abstract Cauchy problem

u̇(t) = Au(t) + f (t) t ∈ (0, T ), u(0) = u0. (57)

where f : [0, T ] → E , u0 ∈ E and (E, ‖.‖) is a real Banach space. Then, these
results will be extended to the case when a convolution term k ∗ Au is added to (57).
Here the convolution product ∗ is defined for f, g ∈ L1(0, T ) by

( f ∗ g)(t) =
t∫

0

f (t − s)g(s)ds.

Remark 12 From [48] we have: if f ∈ Lq(0, T ; E), g ∈ L1(0, T ) then f ∗ g ∈
Lq(0, T ; E) and

‖ f ∗ g‖Lq (E) ≤ ‖g‖L1(0,T )‖ f ‖Lq (E).

We have the following result in Hölder spaces (see [18,19]).
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Theorem 4 Let (E, ‖.‖) be a Banach space. Let A be a closed, densely defined opera-
tor in E with domainDAr , generator of an analytic semigroup on E. Let 0 < µ < 1 and
let f ∈ Cµ(E). Assume that the compatibility conditions u0 ∈ DAr and Au0 + f (0) ∈
Eµ,∞ := (

E,DAr

)
µ,∞ holds. Then there exists a unique solution u of problem (57)

in C1+µ(E) ∩ Cµ(DAr ) and u satisfies

u(t) = et Au0 +
t∫

0

e(t−s)A f (s)ds, t ∈ (0, T ).

Moreover there exists a constant C such that

‖u̇‖Cµ(E) + ‖Au‖Cµ(E) ≤ C
(‖ f − f (0)‖Cµ(E) + ‖Au0 + f (0)‖Eµ,∞

)
.

A similar result also holds in little Hölder spaces (see again [18,19]).

Theorem 5 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined
operator in E with domain DAr , generator of an analytic semigroup on E. Let 0 <

µ < 1 and let f ∈ hµ(E). Assume the compatibility conditions u0 ∈ DAr and

Au0 + f (0) ∈ DAr

Eµ,∞ where Eµ,∞ := (
E,DAr

)
µ,∞. Then there exists a unique

solution u of problem (57) in h1+µ(E) ∩ hµ(DAr ) and u satisfies

u(t) = et Au0 +
t∫

0

e(t−s)A f (s)ds, t ∈ (0, T ).

Moreover there exists a constant C such that

‖u̇‖hµ(E) + ‖Au‖hµ(E) ≤ C
(
‖ f − f (0)‖hµ(E) + ‖Au0 + f (0)‖DAr

Eµ,∞
)
.

Before stating some existence results for Sobolev spaces, we have to introduce the
maximal regularity property (MRp).

Definition 1 Let 1 < q < ∞. The operator A possesses the maximal Lq -regularity
property (MRp) if for u0 = 0 and any f ∈ Lq(E), there exists a unique solution u of
(57) in W 1,q(E) ∩ Lq(DA) and there exists a constant C such that

‖u̇‖Lq (E) + ‖Au‖Lq (E) ≤ C‖ f ‖Lq (E).

Remark 13 Let 1 < q0 < ∞. If A possesses the maximal Lq0 -regularity property,
then β A + ωI possesses the maximal Lq -regularity property for all 1 < q < ∞, for
all β > 0 and for all w ∈ R (see [20,50]).

In general, a maximal regularity result does not hold for Sobolev spaces. It has to be
assumed. The following result can be found in [19].
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Lemma 10 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined
operator in E with domain DA, generator of an analytic semigroup et A on E. Let 1 <

q < ∞, assume A satisfies MRp, f ∈ Lq(E) and u0 ∈ E1−1/q,q := (E,DA)1− 1
q ,q .

Then there exists a unique solution u of problem (57) in W 1,q(E) ∩ Lq(DA) and u
satisfies

u(t) = et Au0 +
t∫

0

e(t−s)A f (s)ds, t ∈ (0, T ).

Moreover, there exists a constant C such that

‖u̇‖Lq (E) + ‖Au‖Lq (E) ≤ C
(‖u0‖E1−1/q,q + ‖ f ‖Lq (E)

)
.

Assuming more regularity of the data with respect to the time variable, and compati-
bility conditions at initial time, the following regularity result can be obtained.

Corollary 4 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined oper-
ator in E with domain DA, generator of an analytic semigroup on E. Let 1 < q < ∞,
assume A satisfies MRp, let f ∈ W 1,q(E) and u0 ∈ E. Assume that the compatibility
conditions u0 ∈ DA and Au0 + f (0) ∈ E1−1/q,q := (E,DA)1− 1

q ,q hold. Then the

solution u of (57) satisfies u̇ ∈ W 1,q(E) ∩ Lq(DA). Moreover, there exists a constant
C such that

‖ü‖Lq (E) + ‖Au̇‖E ≤ C
(‖Au0 + f (0)‖E1−1/q,q + ‖ ḟ ‖Lq (E)

)
.

We now perturb the first equation of (57) by adding a term of the form k ∗ Au. In order
to obtain an existence result, this following technical Lemma will be useful.

Lemma 11 Given β �= 0, m ≥ 1 and k ∈ W m,1(0, T ), there exists an unique b ∈
W m+1,1(0, T ) such that

βb + k ∗ b = 1.

Proof We recall a result given in [44], Theorem 1.4 p.46. For all p ≥ 1, there exists
an unique r : W m,p(0, T ) → W m,p(0, T ) such that for all a ∈ W m,p(0, T )

r(a) + a ∗ r(a) = a.

Then, taking a = β−1k in the equation above, the unique solution S(b0) ∈ W m,1(0, T )

such that S(b0) + β−1k ∗ S(b0) = 1 is given by

S(b0) = 1 − r(β−1k) ∗ 1.

Thus we obtain

b(t) = β−1S(b0) = β−1 − β−1r(β−1k) ∗ 1

123



244 A. Bonito et al.

and

ḃ(t) = −β−1r(β−1k) in L1(0, T ).

Since r(β−1k) ∈ W m,1(0, T ), it follows b ∈ W m+1,1(0, T ).

Lemma 12 Let (E, ‖.‖E )be a Banach space. Let A be a closed, densely defined opera-
tor in E with domain DA, generator of an analytic semigroup on E. Let
1 < q < ∞, assume A satisfies MRp, let β > 0, γ ∈ R and a ∈ L1(0, T ).
Let f ∈ Lq(E), u0 ∈ E1−1/q,q := (E,DA)1− 1

q ,q , then there exists a unique u ∈
W 1,q(E) ∩ Lq(DA) satisfying

u̇ = β Au + γ u + a ∗ u + f, u(0) = u0.

Moreover, there exists a constant C such that

‖u̇‖Lq (E) + ‖Au‖Lq (E) ≤ C
(‖ f ‖Lq (E) + ‖u0‖E1−1/q,q

)
. (58)

Proof Let B := β A + γ , since A satisfies the MRp using Remark 13 it follows B
satisfies the MRp and there exists a constant such that

‖Au‖Lq (E) + ‖u‖Lq (E) ≤ C
(‖Bu‖Lq (E) + ‖u‖Lq (E)

)
, (59)

for all u ∈ DA. Therefore, it remains to prove for given f ∈ Lq(E) and u0 ∈ E1−1/q,q

there exists an unique z ∈ W 1,q(E) ∩ Lq(DA) such that

z = et Bu0 +
t∫

0

e(t−s)B f (s)ds +
t∫

0

e(t−s)Ba ∗ z(s)ds. (60)

Lemma 10 ensures z0 := et Bu0+∫ t
0 e(t−s)B f (s)ds ∈ W 1,q(E)∩Lq(DA). We rewrite

(60) as a fixed point problem. Given z0 ∈ Z := Lq(E) and let F : Z → Z defined
for all z ∈ Z by

F(z) := v,

where, v ∈ Z satisfies
v̇ = Bv + a ∗ z, v(0) = 0.

Let us notice F is well defined using Remark 12 and Lemma 10. Then (60) becomes

z = z0 + F(z).

We will show there exists n > 0 such that

‖Fn‖L(Z) < 1. (61)
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Lemma 10 again ensures there exists a constant C such that

‖v‖Lq (E) ≤ C‖a ∗ u‖Lq (E) ≤ C‖a‖L1(0,T )‖u‖Lq (E).

Denoting by c(n) := c ∗ . . . ∗ c︸ ︷︷ ︸
n times

for all c ∈ L1(0, T ), it follows

‖Fn‖L(Z) ≤ Cn‖a(n)‖L1(0,T ). (62)

Since

‖c ∗ c‖L1(0,T ) ≤ ‖c‖L∞(0,T ) ∗ ‖c‖L∞(0,T ) = ‖c‖2
L∞(0,T )1 ∗ 1 = ‖c‖2

L∞(0,T )T,

for all c ∈ L∞(0, T ) we find

‖c(n)‖L1(0,T ) ≤ ‖c‖n
L∞(0,T )

T n−1

(n − 1)! , ∀c ∈ L∞(0, T ).

Using the above inequality in (62), it follows

‖Fn‖L(Z) ≤ T n−1

(n − 1)!C
n‖a‖n

L∞(0,T )

which tends to 0 when n goes to infinity. Thus (61) is proved and a fixed point theorem
(see Theorem 4.4.1 of [16]) ensures the existence of an unique z ∈ Z satisfying (60)
and there exists a constant constant C such that

‖z‖Lq (E) ≤ C‖z0‖Lq (E). (63)

The fact that z ∈ W 1,q(E) ∩ Lq(E) is a direct consequence of (60) since z0, a ∗ z ∈
W 1,q(E) ∩ Lq(E). It remains to prove the estimation (58). Going back to (60) and
using Lemma 10 again, there exists a constant C such that

‖ż‖Lq (E) + ‖Bu‖Lq (E)

≤ C
(‖u0‖E1−1/q,q + ‖ f ‖Lq (E) + ‖a ∗ u‖Lq (E)

)
. (64)

Using (63) we obtain

‖a ∗ z‖Lq (E) ≤ ‖a‖L1(0,T )‖z‖Lq (E) ≤ C‖a‖L1(0,T )‖z0‖Lq (E),

which coupled with (59) and (64) proves (70).

Corollary 5 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined
operator in E with domain DA, generator of an analytic semigroup on E. Let 1 <

q < ∞, assume A satisfies MRp, let β > 0, k ∈ W 1,1(0, T ), f ∈ Lq(E) and
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u0 ∈ E1−1/q,q := (E,DA)1− 1
q ,q , then there exists a unique u ∈ W 1,q(E) ∩ Lq(DA)

satisfying
u̇ = β Au + k ∗ Au + f, u(0) = u0. (65)

Moreover, there exists a constant C such that

‖u̇‖Lq (E) + ‖Au‖Lq (E) ≤ C
(‖ f ‖Lq (E) + ‖u0‖E

)
. (66)

Proof Since k ∈ W 1,1(0, T ), Lemma 11 ensures the existence of a b ∈ W 2,1(0, T )

such that
βb + k ∗ b = 1. (67)

Moreover b(0) = β−1. Convolving the equation for u in (65) and using the equation
above, we have

b ∗ u̇ = 1 ∗ Au + b ∗ f.

Differentiating with respect to time the equation above, using b(0) = β−1, we obtain

β−1u̇ + ḃ ∗ u̇ = Au + β−1 f + ḃ ∗ f. (68)

Noticing that

ḃ ∗ u̇ + ḃu0 = d

dt

(
ḃ ∗ u

) = ḃ(0)u + b̈ ∗ u,

the equation (68) becomes

u̇ = β Au − βḃ(0)u + f + βḃ ∗ f + βḃu0 − βb̈ ∗ u.

Differentiating equation (67) and since ḃ ∈ C0([0, T ]), k ∈ W 1,1(0, T ) we find
ḃ(0) = −β−2k(0). Finally, (65) reduce to

u̇ = β Au + f + βḃ ∗ f + βḃu0 − βb̈ ∗ u + β−1k(0)u, u(0) = u0.

The Lemma 12 completes the proof.

The previous Corollary also holds in little Hölder spaces.

Lemma 13 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined oper-
ator in E with domain DAr , generator of an analytic semigroup on E. Let 0 < µ < 1.

Let k ∈ W 1, 1
1−µ (0, T ), f ∈ hµ([0, T ]; E) and u0 ∈ D(A) satisfying Au0 + f (0) ∈

D(A)
(E,DA)µ,∞ , then there exists a unique u ∈ h1+µ([0, T ]; E) ∩ hµ([0, T ];D(A))

satisfying
u̇ = β Au + k ∗ Au + f, u(0) = u0.
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Proof The proof use same arguments of the proof for Corollary 5. It has to be slightly
modified in the two following senses. Remark 12, has be replace by the affirmation: let

0 < µ < 1, for all g ∈ L
1

1−µ (0, T ), for all f ∈ hµ([0, T ]; E) there exists a constant
C such that

‖ f ∗ g‖hµ(E) ≤ C‖g‖
L

1
1−µ (0,T )

‖ f ‖hµ(E). (69)

In the proof for Lemma 12, relation (62) does not holds in hκ(E) but using some
properties of the operator L ∈ L(hµ(E)) defined for v ∈ hµ(E) by Lv := a ∗ v and
Theorem 3 p.211 and Theorem 4 p. 212 in [53] the same conclusion follows.

Lemma 14 Let (E, ‖.‖E ) be a Banach space. Let A be a closed, densely defined oper-
ator in E with domain DA, generator of an analytic semigroup on E. Let 1 < q < ∞,
assume A satisfies MRp, let β > 0 and k ∈ W 1,1(0, T ). Let f ∈ W 1,q(E), u0 ∈ DA

such that β Au0 + f (0) ∈ E1−1/q,q := (E,DA)1− 1
q ,q , then there exists a unique

u ∈ W 2,q(E) ∩ W 1,q(DA) satisfying

u̇ = β Au + k ∗ Au + f, u(0) = u0.

Moreover, there exists a constant C such that

‖ü‖Lq (E) + ‖Au̇‖Lq (E)

≤ C
(‖ ḟ ‖Lq (E) + ‖Au0‖E + ‖Au0 + f (0)‖E1−1/q,q

)
. (70)

Proof Let u be the unique solution in W 1,q(E) ∩ Lq(DA) satisfying

u̇ = β Au + k ∗ Au + f, u(0) = u0.

Let us define z ∈ W 1,q(E) ∩ Lq(DA) such that

ż = β Az + k Au0 + k ∗ Az + ḟ z(0) = β Au0 + f (0). (71)

Corollary 5 ensures z is well defined since ḟ ∈ Lq(E) and since β Au0 + f (0) ∈
E1−1/q,q . Moreover there exists a constant C such that

‖ż‖Lq (E) + ‖Az‖Lq (E)

≤ C
(‖Au0 + f (0)‖E1−1/q,q + ‖ ḟ ‖Lq (E) + ‖k Au0‖Lq (E)

)
. (72)

Let v ∈ W 2,q(E) ∩ W 1,q(DA) defined by

v(t) := u0 +
t∫

0

z(s)ds. (73)
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We will show v = u. Let us recall that if A is a bounded operator we have

t∫

0

Ay(s)ds = A

t∫

0

y(s)ds, ∀y ∈ L1(0, t ′;DA), ∀t ′ ∈ [0, t].

From (71) and since A is bounded, it follows

z(t) = β Au0 + f (0) + β A

t∫

0

z(s)ds + f (t) − f (0)

+ 1 ∗ k Au0 + k ∗ A

T∫

0

z(s)ds.

Using the definition of v (73) we have

{
v̇ = β A(v − u0) + β Au0 + f (t) + (1 ∗ k)Au0 + k ∗ A(v − u0),

v0 = u0.

Thus the uniqueness of the solution ensured by Corollary 5 proves v = u or z = u̇.
The estimate (70) is a direct consequence of (72).

B Appendix: Proof of Lemma 6

A priori, (37) has to be understood in a weak sense with respect to the time variable:
find (ũh, σ̃h, q̃h) ∈ Xh such that

− ρ

T∫

0

(
ũh,

∂vh

∂t

)
+ ρ

(
u0, vh(0)

)
+ 2ηs

T∫

0

(
ε(ũh), ε(vh)

)

−
T∫

0

(
p̃h, div vh

)
+

T∫

0

(
σ̃h, ε(vh)

)
−

T∫

0

(
f, vh

)

+
T∫

0

(
div ũh, qh

)
+

∑
K∈Th

αh2
K

2ηp

T∫

0

(
∇ p̃h,∇qh

)
K

+ 1

2ηp

T∫

0

(
σ̃h, τh

)
− λ

2ηp

T∫

0

(
σ̃h,

∂τh

∂t

)
+ λ

2ηp

(
σ0, τh(0)

)

−
(
ε(ũh), τh

)
− λ

2ηp

T∫

0

(
g, τh

)
= 0,
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for all vh ∈ H1(Vh) such that vh(T ) = 0, for all τh ∈ H1(Mh) such that τh(T ) = 0
and for all qh ∈ L2(Qh). A solution of the above equation satisfies uh ∈ H1(Vh) and
σh ∈ H1(Mh).

We then claim that problem (37) has a unique solution (ũh, σ̃h, p̃h) ∈ Xh . Indeed,
when writing (ũh, p̃h, σ̃h) with respect to a finite basis of Vh × Qh × Mh , problem
(37) can be expressed as a linear differential system. The degrees of freedom corre-
sponding to the pressure can be eliminated. By a classical result of ODE, the resulting
differential system has a unique solution, each components being in H1(0, T ).

In order to prove (45), we choose vh = ũh(t), τh = σ̃h(t), qh = p̃h(t) in (37) and
integrate from t = 0 to s, with 0 ≤ s ≤ T . We obtain

ρ

2
‖ũh(s)‖2

L2(Ω)
+ λ

4ηp
‖σ̃h(s)‖2

L2(Ω)
+ 2ηs

s∫

0

‖ε(ũh)‖2
L2(Ω)

+
∑

K∈Th

αh2
K

2ηp

s∫

0

‖∇ p̃h‖2
L2(K )

+ 1

2ηp

s∫

0

‖σ̃h‖2
L2(Ω)

= ρ

2
‖ũh(0)‖2

L2(Ω)
+ λ

4ηp
‖σ̃h(0)‖2

L2(Ω)
+

s∫

0

( f, ũh) +
s∫

0

(g, σ̃h) .

Using Young and Poincaré inequalities, there exists a constant C such that

ρ

2
‖ũh(s)‖2

L2(Ω)
+ λ

4ηp
‖σ̃h(s)‖2

L2(Ω)
+ ηs

s∫

0

‖ε(ũh)‖2
L2(Ω)

+
∑

K∈Th

αh2
K

2ηp

s∫

0

‖∇ p̃h‖2
L2(K )

+ λ

2ηp

s∫

0

‖σ̃h‖2
L2(Ω)

≤ ρ

2
‖ũh(0)‖2

L2(Ω)
+ λ

4ηp
‖σ̃h(0)‖2

L2(Ω)
+ C

⎛
⎝

s∫

0

‖ f ‖2
L2(Ω)

+
s∫

0

‖g‖2
L2(Ω)

⎞
⎠ .

It suffices to note that

‖ũh(0)‖L2(Ω) = ‖ihu0‖L2(Ω) ≤ ‖u0‖L2(Ω) ≤ C‖u0‖E1−1/q,q ,

‖σ̃h(0)‖L2(Ω) = ‖ihσ0‖L2(Ω) ≤ ‖σ0‖L2(Ω) ≤ C‖σ0‖W 1,r ,

to obtain (45).
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We now prove the convergence result (46). Let

eu = ũ − ũh = Πu + Cu, Πu = ũ − ih ũ, Cu = ih ũ − ũh,

eσ = σ̃ − σ̃h = Πσ + Cσ , Πσ = σ̃ − ih σ̃ , Cσ = ih σ̃ − σ̃h,

ep = p̃ − p̃h = Πp + C p, Πp = p̃ − ih p̃, C p = ih p̃ − p̃h,

where (ũh, p̃h, σ̃h) solve (37) and (ũ, p̃, σ̃ ) solve (39)–(44). Using the triangle inequal-
ity we have

‖eu, eσ ‖Xh ≤ ‖Πu,Πσ ‖Xh + ‖Cu, Cσ ‖Xh .

Using classical interpolation results, we obtain

‖Πu,Πσ ‖Xh ≤ Ch‖u, σ‖X .

We now estimate ‖Cu, Cσ ‖Xh . The solution of (39)–(44) satisfies

ρ
(∂ ũ

∂t
, vh

)
+ 2ηs

(
ε(ũ), ε(vh)

)
−

(
p̃, div vh

)
+

(
σ̃ , ε(vh)

)
−

(
f, vh

)

+
(

div ũ, qh

)
+ 1

2ηp

(
σ̃ , τh

)
+ λ

2ηp

(∂σ̃

∂t
, τh

)
−

(
ε(ũ), τh

)
−

(
g, τh

)
= 0

for all (vh, τh, qh) ∈ Vh × Mh × Qh . Subtracting (37) to the above equation, it follows
that

ρ
(∂eu

∂t
, vh

)
+ 2ηs

(
ε(eu), ε(vh)

)
−

(
ep, div vh

)
+

(
eσ , ε(vh)

)

+
(

div eu, qh

)
+

∑
K∈Th

αh2
K

2ηp

(
∇ep − ∇ p̃,∇qh

)
K

+ 1

2ηp

(
eσ , τh

)
+ λ

2ηp

(∂eσ

∂t
, τh

)
−

(
ε(eu), τh

)
= 0, (74)
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for all (vh, τh, qh) ∈ Vh × Mh × Qh . On the other hand, from the definition of Cu ,
Cσ and C p, we have

ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
−

(
C p, div Cu

)
+

(
Cσ , ε(Cu)

)

+
(

div Cu, C p

)
+

∑
K∈Th

αh2
K

2ηp

(
∇C p,∇C p

)
K

+ 1

2ηp

(
Cσ , Cσ

)
+ λ

2ηp

(∂Cσ

∂t
, Cσ

)
−

(
ε(Cu), Cσ

)

= ρ
(∂(eu − Πu)

∂t
, Cu

)
+ 2ηs

(
ε(eu − Πu), ε(Cu)

)
−

(
ep − Πp, div Cu

)

+
(

eσ −Πσ , ε(Cu)
)
+
(

div (eu −Πu), C p

)
+

∑
K∈Th

αh2
K

2ηp

(
∇(ep − Πp),∇C p

)
K

+ 1

2ηp

(
(eσ − Πσ ), Cσ

)
+ λ

2ηp

(∂(eσ − Πσ )

∂t
, Cσ

)
−

(
ε(eu − Πu), Cσ

)
.

(75)

From the definition of ih (the L2 projection onto the finite element spaces), we obvi-
ously have

(∂Πu

∂t
, Cu

)
= 0,

(
Πσ , Cσ

)
= 0,

(∂Πσ

∂t
, Cσ

)
= 0,

so that, using (74), (75) yields

ρ
(∂Cu

∂t
, Cu

)
+ 2ηs

(
ε(Cu), ε(Cu)

)
+

∑
K∈Th

αh2
K

2ηp

(
∇C p,∇C p

)
K

+ 1

2ηp

(
Cσ , Cσ

)
+ λ

2ηp

(∂Cσ

∂t
, Cσ

)

= 2ηs

(
ε(Πu), ε(Cu)

)
+

(
Πp, div Cu

)
−

(
Πσ , ε(Cu)

)

−
(

div (Πu), C p

)
−

∑
K∈Th

αh2
K

2ηp

(
∇Πp,∇C p

)
K

+
(
ε(Πu), Cσ

)

+
∑

K∈Th

αh2
K

2ηp

(
∇ p̃,∇C p

)
K

= I1 + · · · + I7. (76)
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It now remains to bound the terms I1, . . . , I7 in the above equality. Using Cauchy–
Schwarz and Young’s inequalities, we have

I1 = 2ηs

(
ε(Πu), ε(Cu)

)

≤ 2ηs ||ε(Πu)||L2(Ω)||ε(Cu)||L2(Ω)

≤ 3ηs ||ε(Πu)||2L2(Ω)
+ ηs

3
||ε(Cu)||2L2(Ω)

.

Similarly, we have

I2 =
(
Πp, div Cu

)
≤ 3

4ηs
||Πp||2L2(Ω)

+ ηs

3
||div Cu ||2L2(Ω)

≤ 3

4ηs
||Πp||2L2(Ω)

+ ηs

3
||ε(Cu)||2L2(Ω)

,

and

I3 = −
(
Πσ , ε(Cu)

)
≤ 3

4ηs
||Πσ ||2L2(Ω)

+ ηs

2
||ε(Cu)||2L2(Ω)

.

An integration by parts yields, since Πu = 0 on ∂Ω

I4 =
(

div (Πu), C p

)
= −

(
Πu,∇C p

)
= −

∑
K∈Th

(
Πu,∇C p

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇C p||2L2(K )

+
∑

K∈Th

3ηp

αh2
K

||Πu ||2L2(K )
.

Again, Cauchy–Schwarz and Young’s inequalities yield

I5 = −
∑

K∈Th

αh2
K

2ηp

(
∇Πp,∇C p

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇C p||2L2(K )

+ 3αh2

4ηp
||∇Πp||2L2(Ω)

,

and

I6 =
(
ε(Πu), Cσ

)
≤ ηp||ε(Πu)||2L2(Ω)

+ 1

4ηp
||Cσ ||2L2(Ω)

.

Finally, we have

I8 =
∑

K∈Th

αh2
K

2ηp

(
∇ p̃,∇C p

)
K

≤
∑

K∈Th

αh2
K

12ηp
||∇C p||2L2(K )

+ 3αh2

4ηp
‖∇ p̃‖2

L2(Ω)
.
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The above estimates of I1, . . . , I7 in (76) yield

ρ
(∂Cu

∂t
, Cu

)
+ 1

2
2ηs

(
ε(Cu), ε(Cu)

)
+ 1

2

∑
K∈Th

αh2
K

2ηp

(
∇C p,∇C p

)
K

+ 1

4ηp

(
Cσ , Cσ

)
+ λ

2ηp

(∂Cσ

∂t
, Cσ

)

≤ C
(
||ε(Πu)||2L2(Ω)

+ ||Πp||2L2(Ω)
+ ||Πσ ||2L2(Ω)

+
∑

K∈Th

1

h2
K

‖Πu‖2
L2(K )

+ h2||∇Πp||2L2(Ω)
+ h2||∇ p̃||2L2(Ω)

)

where C depends only on ρ, ηs , ηp and α. Time integration for 0 ≤ s ≤ T yields

ρ

2
‖Cu(s)‖2

L2(Ω)
+ ηs

s∫

0

‖ε(Cu)‖2
L2(Ω)

+ λ

4ηp
‖Cσ (s)‖2

L2(Ω)

≤ ρ

2
‖Cu(0)‖2

L2(Ω)
+ λ

4ηp
‖Cσ (0)‖2

L2(Ω)

+ C

s∫

0

(
||ε(Πu)||2L2(Ω)

+ ||Πp||2L2(Ω)
+ ||Πσ ||2L2(Ω)

+
∑

K∈Th

1

h2
K

‖Πu‖2
L2(K )

+ h2||∇Πp||2L2(Ω)
+ h2||∇ p̃||2L2(Ω)

.

Using standard interpolation results, we finally obtain

‖Cu, Cσ ‖2
Xh

≤ Ch2
(
‖ũ, σ̃‖2

X + ‖ p̃‖2
Lq (W 1,r )

+ ‖∇u0‖2
L2(Ω)

+ ‖∇σ0‖2
L2(Ω)

)
,

where C does not depend on h, f , u0, σ0 and g. Then, using continuous embeddings
between interpolation spaces (see [37]), we have

‖∇u0‖2
L2(Ω)

≤ C‖u0‖2
E1−1/q,q

,

where C does not depend on h, f , u0, σ0 and g. Moreover, using the fact that the
mapping

( f, u0, σ0, g) → (ũ, σ̃ , p̃)

is continuous from

Y × Lq(W 1,r ) → Lq(W 2,r ) × Lq(W 1,r ) × Lq(W 1,r ),
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we obtain
||Cu, Cσ ||Xh ≤ Ch

(
|| f, u0, σ0||Y + ||g||Lq (W 1,r )

)
,

which concludes the proof.
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