
Improvements for Constraint Solving in the
SystemC Verification Library

Daniel Große
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

grosse@informatik.uni-
bremen.de

Rüdiger Ebendt
German Aerospace Center

Institute of Transport Research
12489 Berlin, Germany

ruediger.ebendt@dlr.de

Rolf Drechsler
Institute of Computer Science

University of Bremen
28359 Bremen, Germany

drechsle@informatik.uni-
bremen.de

ABSTRACT
For verification of complex system-on-chip designs often
constraint-based randomization is used. This allows to sim-
ulate scenarios that may be difficult to generate manually.
For the system description language SystemC the SystemC
Verification (SCV) Library has been introduced. Besides
advanced verification features like data introspection and
transaction recording the SCV library enables constraint-
based randomization for SystemC models. However, the
SCV library has two disadvantages that restrict their prac-
tical use: There is no support of bit operators in SCV con-
straints and the SCV constraint solver cannot guarantee a
uniform distribution of the constraint solutions. In this pa-
per we provide a detailed analysis of these problems and
present solutions that have been integrated in the library.

Categories and Subject Descriptors: J.6 [Computer-
aided Engineering]: Computer-aided design (CAD)

General Terms: Verification

Keywords: SystemC, Constraint-based Randomization,
SystemC Verification Library

1. INTRODUCTION
Today circuit and system design is a very challenging task.

Due to the increasing usage of circuit and systems in all
kinds of devices – ranging from cell phones to safety critical
systems – functional verification has become an important
issue. Since complete formal verification methods are only
applicable to medium sized designs, simulation-based tech-
niques are used most frequently [3, 13].

In directed simulation explicitly specified stimulus pattern
are applied over a number of clock cycles to the design in
order to stimulate a certain functionality and the response
is compared with the expected result. However, directed
simulation only checks single scenarios. Since these scenarios
have to be generated manually, this is a very time consuming
and expensive task.

In order to overcome this limitation random pattern sim-
ulation is used to generate random stimulus patterns for the
design. E.g. random address and data is computed to verify
communication over a bus.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

To reduce the amount of time for the specification of sim-
ulation scenarios constraint-based random stimulus genera-
tion has been introduced (see e.g. [13]). For the simulation
only those stimulus pattern are generated that satisfy cer-
tain given constraints. By this, the random stimulus genera-
tion process is controlled. The resulting stimuli allow to test
scenarios that may be difficult to generate manually. This
helps to uncover bugs that may otherwise remain undetected
especially because corner cases are not excluded.

In the context of system description languages, like Sys-
temC, the SystemC Verification (SCV) library [12] has been
introduced for constraint-based random stimulus generation
and was used successfully in industrial verification projects
(see e.g. [9, 4]). The SCV library allows for system level
verification using constrained randomization. However, the
SCV library has two major disadvantages that restrict their
practical use. On the one hand in the constraints no bit
operators are supported. On the other hand the constraint
solver does not fulfill the important requirement that the
constraint solutions must be uniformly distributed.

In this paper we analyze these two problems and describe
improvements that overcome these limitations. The paper
is structured as follows. Section 2 starts with an introduc-
tion of SystemC, the SCV library and BDDs, the basic data
structure that is used in the SCV to represent constraints.
Then, in Section 3 the improvements for the SCV library are
presented. First, new bit operators for SCV constraints are
introduced. In the second part we explain how a uniform
distribution across all constraint solutions can be guaran-
teed. Finally, the paper is summarized in Section in 4.

2. PRELIMINARIES
In this section, first SystemC and the SCV library are

described. Next the basic underlying data structure that is
used by the SCV library to represent constraints is briefly
reviewed.

2.1 SystemC
As a C++ class library SystemC [11] enables modeling

of systems at different levels of abstraction starting at the
functional level and ending at a cycle-accurate model. The
well-known concept of hierarchical descriptions of systems
is transferred to SystemC by describing a module as a C++
class. Furthermore, fast simulation is possible at an early
stage of the design process and hardware/software co-design
can be carried out in the same environment. For details on
SystemC we refer to [5, 7].

2.2 SystemC Verification Library
The first version of the SCV library was introduced in

December 2002 as an open source class library [12, 8, 6]. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147965043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

layers on top of the system description language SystemC
and adds tightly integrated verification capabilities to Sys-
temC. In the following the main features of the SCV library
are summarized:

• Data introspection for SystemC and C++ data types

– Manipulation of arbitrary data types

– Manipulation of data objects without compile time
information

• Transaction API

– Transaction monitoring and recording

– Basis for debugging, visualization and coverage

• Constraint-based stimulus generation for SystemC and
C++

– High quality pseudo random generator

– Integrated constraint solver based on BDDs

Since this paper presents improvements for constraint solv-
ing using the SCV library in the following we briefly review
the basic underlying data structure used by the constraint
solver.

2.3 Binary Decision Diagrams
As is well-known a Boolean function f : Bn → B can be

represented by a Binary Decision Diagram (BDD) which is
a directed acyclic graph where a Shannon decomposition

f = xifxi=0 + xifxi=1 (1 ≤ i ≤ n)

is carried out in each node.
A BDD is called ordered if each variable is encountered at

most once on each path from the root to a terminal node
and if the variables are encountered in the same order on
all such paths. A BDD is called reduced if it does not con-
tain isomorphic subgraphs nor does it have redundant nodes.
Reduced and ordered BDDs are a canonical representation
since for each Boolean function the BDD is uniquely spec-
ified [2]. In the following, we refer to reduced and ordered
BDDs for brevity as BDDs.

Example 1. In Figure 3 a BDD for the function f =
x1x2 + x1x2x3 is shown. The BDD is shown using comple-
ment edges [1]. These allow to represent both a function and
its complement by the same node, modifying the edge point-
ing to the node instead. Therefore the BDD only contains
the 1-terminal.

2.4 Constraints in the SCV Library
In the SCV library constraints are declared as classes.

This allows an object-oriented way to manage constraints
using hierarchy and inheritance. In detail a constraint is
derived from the scv constraint base class. The data to
be randomized is specified as scv smart ptr variables.

Example 2. An example of an SCV constraint is shown
in Figure 1. The name of the constraint is my constraint.
Here, the two unsigned integer variables a and b are random-
ized. The conditions on the variables a and b are defined by
expressions in the SCV CONSTRAINT() macro.

Internally a constraint in the SCV library is represented
by the corresponding characteristic function, i.e. the func-
tion is true for all solutions of the constraint. This charac-
teristic function of a constraint is represented as a BDD. As
BDD package CUDD [10] is used in the SCV library.

1 struct my constra int : public
s c v c on s t r a i n t b a s e {

2 scv smart pt r<s c u in t <32> > a , b ;
3
4 SCV CONSTRAINT CTOR(my constra int) {
5 SCV CONSTRAINT(a () > 100) ;
6 SCV CONSTRAINT(b () == 0) ;
7 }
8 } ;

Figure 1: Example constraint

1 struct c on s t r a i n t : public
s c v c on s t r a i n t b a s e {

2 scv smart pt r<s c u in t <32> > a , b ;
3
4 SCV CONSTRAINT CTOR(con s t r a i n t) {
5 SCV CONSTRAINT(a () . range (1 , 3) == 5) ;
6 SCV CONSTRAINT(b () [1 0] == 1) ;
7 }
8 } ;

Figure 2: Example constraint with bit operators

3. IMPROVEMENTS FOR CONSTRAINT
SOLVING

After a detailed analysis of the SCV constraint solver two
disadvantages were found that restrict the practical use. In
the following two sections we describe the problems and the
solutions.

3.1 Bit Operators
Constraint expressions over variables to be randomized

can only use the following operators:

• Arithmetic operators: +, -, *

• Relational operators: ==, !=, >, >=, <, <=

• Logical operators: !, &&, ||

As can be seen there is no support for bit operators in
the SCV constraint solver. However, bit operators are very
important for the verification engineer during the specifica-
tion of constraints. Bit operators allow for simpler and more
compact formulations of complex constraints. In detail the
following bit operators have been implemented:

1. Bitwise and: a() & b()

2. Bitwise or: a() | b()

3. Bitwise not: ˜a()

4. Bit-select: a()[i] for constant i

5. Slice-select: a().range(x,y) for constant x and y

Example 3. In Figure 2 an example constraint that uses
bit operators is shown. Note that these kinds of constraints
can otherwise not be written in such a simple and compact
way.

For the implementation first in the class scv expression
the according operators were overloaded and new member
functions were added. The class scv expression is used for
the internal representation of the constraint expressions in
form of an expression tree. In such a tree leaf nodes are
variables or constants and non-terminal nodes are marked
with operators.

1

2 2

f

x

x x

x3

1

Figure 3: BDD for f = x1x2 + x1x2x3

The class scv expr is used to store the BDD representa-
tion of an scv expression. For the construction of the BDD
in this class each bit operator has to be mapped to the ac-
cording BDD synthesis operations. For example in case of
a “bitwise and“ the resulting bit vector is computed by the
BDD-AND operation for each bit of the two input vectors.
Of course there are several special cases like different length
of vectors, different data types etc. that have to be taken
into account.

3.2 Uniform Distribution
The uniform distribution of the solutions of constraints

is a very important aspect for the quality of a constraint
solver. However, we observed that the solutions are not
always uniformly distributed. This problem occurs in sce-
narios of high practical relevance. If variables are fixed to a
certain value for constraint solving, i.e. these variables are
disabled for randomization then the solutions computed by
the constraint solver are not uniformly distributed across
the set of all possible solutions. Later we will illustrate
this phenomenon by a simple example. Before describing
our remedy we explain the constraint solving process of the
SCV library in more detail.

The constraint solver works on individual bits when solv-
ing constraints. As explained in Section 2 for a constraint,
a BDD representation is computed. The constraint solver
generates a solution of a constraint by using the BDD that
represents the constraint. For this purpose the algorithm
starts at the root node and traverses the BDD down to the
1-terminal. A path starting from the root and ending at
the 1-terminal determines the values of the variables along
the path. These values correspond to a solution of the con-
straints since the BDD is the characteristic function of the
constraint. One could assume that choosing the 0- or 1-
assignment for a Boolean variable with a probability of 50%
guarantees a uniform distribution. However, the following
observation shows that this is not true. As explained above
all constraint solutions are paths to the 1-terminal start-
ing from the root node. But during the BDD traversal some
sub-BDDs can have more paths to the 1-terminal than other
sub-BDDs. Thus, if a sub-BDD with fewer paths is selected
this leads to an overweighting of the fewer represented solu-
tions. This is illustrated by the following example.

Example 4. In Figure 3 the BDD for the function f =
x1x2 + x1x2x3 is shown, where dashed lines are used for
the 0-assignment and a dot on an edge represents a comple-
ment edge (i.e. the function below is inverted). If during the
BDD traversal of the function the 1-edge of the root node
is choosen there is exactly one path to the 1-terminal. If
instead the 0-edge is chosen, the reached sub-BDD has two
paths to the 1-terminal: In the non-reduced BDD there is
a node marked with x3 that is reached by assigning x1 = 0

Table 1: Probabilities for solutions
x1 x2 x3 probability
0 1 0 25%
0 1 1 25%
1 1 1 50%

and x2 = 1; the 1-edge of this node as well as the uncomple-
mented 0-edge point to the 1-terminal.

In total, the probabilities following the intuitive traversal
algorithm are shown in Table 1.

This example demonstrates that the probability for choos-
ing the 1-edge of the root node should be corrected to 33%
instead of 50%. By this a uniform distribution across all
solutions is achieved.

In the SCV constraint solver a special weighting algo-
rithm is implemented to guarantee the uniform distribution
of all solutions. In a pre-processing step the BDD of all
initial constraints is traversed and the correct probabilities
are computed for each node. The basic idea of the recursive
weighting algorithm is to compute weights of the else- and
then-child of a node while taking into account whether nodes
have been removed due to BDD reduction rules. Based on
the weights a probability is assigned to each BDD node.
Then, for the generation of values – one constraint solution is
picked uniformly distributed across all solutions of the con-
straint – the computed probabilities of the pre-processing
step are used during the BDD traversal.

The SCV constraint solver calls the weighting algorithm
only once at the beginning for the initial BDD that repre-
sents the constraints. Thus, the SCV constraint solver is
not able to handle simplifications like e.g. fixing variables
to a certain value. In this case the BDD that represents
the constraints is modified due to the simplification but the
probabilities are not updated. This causes a non-uniform
distribution of the constraint solution. We provide an ex-
ample for this observation. For simplicity we only use one
single constraint in the following example. Note that the
presented technique is not restricted to this case. An arbi-
trary number of constraints as well as derived constraints
including the hard/soft constraint mechanism of the SCV
library are fully supported. After the example we give some
technical details for solving the problem.

Example 5. Consider the constraint in Figure 4. This
constraint specifies that a + b = c and c is fixed to 99 (see
lines 7 and 8). The distribution shown in Figure 5 was the
result from running this constraint 100,000 times in the SCV
constraint solver. As can be seen there is a strong bias of
the solutions in the middle part.

One has to overcome several difficulties while correcting
this behavior. This is due to the design of the SCV library
which divides the functionality of handling the BDD-based
representation of constraints roughly into two parts, i.e. one
global constraint manager object and the respective con-
straint objects (one for each constraint specified). On the
one hand, it may seem natural to direct all BDD-related
tasks via one dedicated constraint manager object (which
is encapsulated in a class called scv constraint manager
and creates a CUDD manager object at start). On the other
hand, a closer inspection unveils serious flaws in the central-
ized design:

The SCV constraint manager maintains the number of
BDD variables necessary for representing the least recently
used constraint object. However, this number is reseted
(i.e., “forgotten”) as soon as a new constraint object is cre-

1 struct t r i a n g l e c : public
s c v c on s t r a i n t b a s e {

2 scv smart pt r<s c u in t <7> > a , b ;
3 scv smart pt r<s c u in t <8> > c ;
4
5 SCV CONSTRAINT CTOR(t r i a n g l e c) {
6 SCV CONSTRAINT(a () + b () == c ()) ;
7 c−>d i sab l e randomiza t i on () ;
8 ∗c = 99 ;
9 }

10 } ;

Figure 4: Triangle constraint

 0 20 40 60 80 100 120 0
 20

 40
 60

 80
 100

 120

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

hits

a

b

hits

Figure 5: Distribution for a + b = 99 with original
SCV

 0 20 40 60 80 100 120 0
 20

 40
 60

 80
 100

 120

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

hits

a

b

hits

Figure 6: Distribution for a + b = 99 with improved
SCV

ated. Hence if a previous constraint is simplified, this num-
ber is not available anymore. This is a problem since the
weighting algorithm crucially depends on this number. There
are similar problems with the information contained in two
hash tables stored at the constraint manager object: the ta-
bles nodeHashP and nodeWeightHash hold the probability in-
formation for all nodes of the BDD representing a constraint
and the according weighting information, respectively. At
the time of simplification of a previous constraint, the data
stored in the table needs to be cleared which is not done by
the SCV system.

We did a complete redesign of the constraint management
classes that also solved these problems. Furthermore we
put more intelligence into the constraint objects. E.g. now
every constraint object is capable of giving back a pointer
to its BDD representation via a method getBddNodeP. We
have preserved backwards compatibility and full functional-

ity/structure of the SCV interfaces (e.g., the possibility of
overloading C++ virtual member functions like
scv constraint base::next which triggers the next ran-
dom assignment of the constraint variables). In order to
achieve this, it was necessary to give the simplified BDD to
the constraint object in several methods of the class
scv constraint manager, e.g. assignRandomValue, as well
as in several internal utility routines called from other code
within the SystemC verification standard, e.g. in
scv set value.

The result of our redesign now is a tight integration of
the weighting algorithm and the BDD synthesis operations.
After structural modifications in the interfaces and correct
initialization of internal data structures now the weighting
algorithm is called after a simplification. Thus, the weights
and probabilities are recomputed and a uniform distribution
is achieved. In Figure 6 the result for the constraint from
Example 5 is shown again for 100,000 times calling the SCV
constraint solver. As can be seen a uniform distribution
among all solution was established.

4. CONCLUSIONS
Constraint-based randomization using the SCV library is

crucial for complex verification tasks in todays system-on-
chip designs. In this paper, two major problems of the SCV
library have been tackled by a careful redesign and several
extensions of the SCV core. As a result, all issues that
previously existed due to non-uniform distribution of gen-
erated stimuli have been resolved. Moreover, as a benefit
for the verification engineer during constraint creation, the
constraint specification language has been extended in ex-
pressiveness. Both means a significant improvement in prac-
ticality of the SystemC Verification Library.

5. ACKNOWLEDGMENTS
This research work was supported in part by the German

Federal Ministry of Education and Research (BMBF) in the
project URANOS under the contract number 01M3075.

6. REFERENCES
[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation

of a BDD package. In Design Automation Conf., pages 40–45,
1990.

[2] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[3] R. S. French, M. S. Lam, J. R. Levitt, and K. Olukotun. A
general method for compiling event-driven simulations. In
Design Automation Conference, pages 151–156, 1995.

[4] D. Große, R. Siegmund, and R. Drechsler. Processor
verification. In P. Ienne and R. Leupers, editors, Customizable
Embedded Processors, pages 281–302. Elsevier, 2006.

[5] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

[6] C. N. Ip and S. Swan. A tutorial introduction on the new
SystemC verification standard. http://www.systemc.org.
White paper, 2003.

[7] W. Müller, W. Rosenstiel, and J. Ruf, editors. SystemC
Methodologies and Applications. Kluwer Academic Publishers,
2003.

[8] J. Rose and S. Swan. SCV randomization version 1.0. 2003.
[9] R. Siegmund, U. Hensel, A. Herrholz, and I. Volt. A functional

coverage prototype for SystemC-based verification of chipset
designs. In 9th European SystemC User Group Meeting at
Design, Automation and Test in Europe, 2004.

[10] F. Somenzi. CUDD: CU Decision Diagram Package Release
2.3.0. University of Colorado at Boulder, 1998.

[11] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org. Functional Specification for
SystemC 2.0.

[12] SystemC Verification Working Group,
http://www.systemc.org. SystemC Verification Standard
Specification Version 1.0e.

[13] J. Yuan, C. Pixley, and A. Aziz. Constraint-based
Verification. Springer, 2006.

