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Abstract A method to extract a lumped-parameter equiva-

lent circuit for a free-free flexural MEMS resonator, based

on the Euler-Bernoulli beam equation and exploiting a modal

analysis approach, is presented. The dynamic behaviour pre-

dicted by the equivalent circuit is compared with FEM sim-

ulations, and the effect of a geometrical mismatch is investi-

gated as well. The resonance frequency and the quality factor

are correctly predicted. The method could be used for more

complex systems of interconnected beams. The circuit can

be used as a quick and intuitive analysis tool for the system-

level designer and to allow the simulation of the device in a

system-level design environment.
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Introduction

Compact models for MEMS components, which operate on

multiple physical domains, are required for efficient simula-

tion of complex systems, including MEMS devices as well

as analog and digital circuits. Consequently, a large amount

of MEMS literature has been devoted to the development of

such models (often based on a lumped-parameter approach)

and to their integration in the flow of system simulation and

design [1–3]. In this respect, electrical lumped-parameter
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equivalent circuits are especially useful. They reduce the

number of state variables of the model and they can be im-

plemented in a language for behavioural modelling [3], but

also on more established and conventional (from the point

of view of the electronic design) circuit simulators. This last

aspect is relevant not only because circuit simulators are read-

ily available in a design environment, but also because the

equivalent circuit gives to the designer a quick insight into the

component behaviour regardless of the underlying physical

working principle, leading to a tighter interaction between

the system-level and the device designer.

Among MEMS devices, electromechanical resonators

have been proposed as fundamental components for RF fil-

ters and mixers [4], as well as frequency references for RF

oscillators [4–6]. Several different designs, based on tor-

sional, flexural, and bulk vibrational modes, have been pre-

sented, and equivalent circuits for a number of different

designs have been proposed [5, 7, 8], although a general

approach to equivalent circuit extraction is not established

yet.

In this paper we present a method to extract a lumped-

parameter equivalent circuit for laterally actuated free-free

flexural resonators. FEM simulations of the frequency re-

sponse of devices with different dimensions were performed

to validate the model and investigate the effect of design

fabrication error.

Resonator structure and operation

The free-free flexural resonator is shown in Fig. 1: the me-

chanical structure is composed by a main beam with free

ends, suspended at the nodal points of its first resonance mode

by two support clamped-clamped beams. The resonator is

driven into motion by an electrostatic force generated by the
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Fig. 1 Schematic structure of
the free-free resonator. The
vertical main beam and
horizontal support beams are
represented. Darker squares are
anchors to the substrate

voltage V in; an output electrode, properly biased with a DC

voltage V bias, is used to collect the current, due to the change

in the output capacitance, produced by resonator motion.

The actual device was fabricated in the thick-film

technology THELMA, developed by STMicroelectron-

ics. A SEM photograph of the device is shown in

Fig. 2.

Support beams are connected to the main beam at their

middle point and are designed to resonate on their second

resonance mode at the same frequency of the main beam

(matching condition), so that their deformed shape has a node

(i.e. fixed point) at the intersection. As a consequence, at

least ideally, they do not exert any bending moment on the

main beam. This allows higher quality factors with respect

to more conventional structures [9, 10]. To predict the effect

of design and fabrication errors on the quality factor and

on the resonance frequency, it is interesting to investigate

the dynamic behaviour of the structure when the matching

condition is not respected, i.e. when the supports are longer

(or shorter) than the optimum length. The equivalent circuit

presented in the following was developed to model this aspect

as well.

Fig. 2 SEM image of the resonator

Equivalent circuit

The resonator in Fig. 1 can be decomposed into three beams;

each of them can be modelled according to the Euler-

Bernoulli beam equation, as the beams can be considered

slender (i.e. with their length more than five times their

width). The more complete Timoshenko beam theory [11],

used for thick beams, is computationally tougher and does

not lead to a compact equivalent circuit. Results from Euler-

Bernoulli model have shown a reasonably good agreement

with measurements on similar devices [12].

The deflections w(x, t) (for the main beam) and u(y, t) (for

the supports) can be written as a linear superposition of the

equation solutions found by modal analysis [7], each of them

corresponding to a different resonance frequency. By calling

�n(x) and �n(y) these solutions, i.e. the mode-shapes of the

nth resonance mode of the main beam and of the supports,

respectively, the displacements are thus expressed as

w(x, t) =
+∞∑
n=1

ξn(t)�n (x)

u(y, t) =
+∞∑
n=1

ηn(t)�n (y)

(1)

where ξ n(t) and ηn(t) are generalized displacements. A

closed analytical form for each mode-shape can be calcu-

lated. Substitution of Eqs. (1) in the Euler-Bernoulli equa-

tion leads, for each resonance mode, to the following ordinary

differential equation:

Mn ξ̈n(t) + Dn ξ̇n(t) + Knξn(t) = Pn (2)

where Pn is a generalized force, and Mn , K n and Dn , are the

equivalent lumped mass, stiffness and damping respectively.

These parameters can be derived by integrating along the

beam length the relevant distributed parameter (mass density,
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flexural stiffness, and damping coefficient) weighted with the

nth mode-shape. Pn is related to the electrostatic force, and

thus it is proportional to the driving voltage V in through a

coupling factor �n .

Equation (2) is formally equivalent to the one describing

an RLC series circuit, once the mappings Dn → Rn , Mn →
Ln , 1/Kn → Cn are performed. The generalized force (gen-

eralized velocity ξ̇n) is then interpreted as a voltage (cur-

rent). The input voltage V in is coupled with the equiva-

lent circuit of each mode by an ideal transformer of turn

ratio �n .

If the quality factor of the resonator is high enough, and

the input voltage is narrowband around the first resonance

frequency of the main beam, we can suppose that the first

generalized displacement ξ 1(t) is much larger than those of

the higher modes. Consequently, only the first RLC series

of the infinitely many implied by Eq. (2) will be included in

the equivalent circuit. The same cannot be said of the sup-

ports because their length can be different from the optimum

(matching) length. While this hypothesis greatly simplifies

the equivalent circuit, it is not strictly necessary to the devel-

opment of the following passages.

To model the dynamic properties of the full system, the

behaviour of the nodal points (which are defined by the con-

dition �1(x) = 0) has to be taken into account. We as-

sume a rigid connection, i.e., we suppose that the angle

between the main beam and the supports remains square

during deflection. This hypothesis can be written simply

as:

∂w(x, t)

∂x

∣∣∣∣
x=x̂i

= ∂u(y, t)

∂y

∣∣∣∣
y=ŷi

(3)

where (x̂i , ŷi ) are the coordinates of the nodal point. Substi-

tution of Eqs. (1) into Eq. (3) gives

∞∑
n=1

�′
n(x̂)ξn(t) =

∞∑
n=1

� ′
n(ŷ)ηn(t). (4)

Solving for the first generalized displacement of the main

beam we get:

ξ1(t) =
∑∞

n=1 � ′
n(ŷ)ηn(t)

�′
1(x̂)

−
∑∞

n=2 �′
n(x̂)ξn(t)

�′
1(x̂)

. (5)

Because of the above discussion, the second term in Eq. (5)

can be neglected. If we define a coupling coefficient �n be-

tween the main beam and the nth mode of the support beam

as

�n = � ′
n(ŷ)

�′
1(x̂)

(6)

Equation (5) becomes:

ξ1(t) =
∞∑

n=1

�nηn(t) (7)

Equation (7) holds also for the first time derivative of the

generalized displacements. This leads to a straightforward

electrical representation: the equivalent RLC circuit of the

nth mode of the support beams is coupled to the first mode of

the main beam through an ideal transformer of turn ratio �n

(Fig. 3). We note here that this approach could be generalized

to more complex systems of interconnected beams, although

the resultant equivalent circuit would eventually become so

complex as to be impractical for many scopes. It can be shown

that the expression in Eq. (6) can be written also as

�n = λcc,n

λff ,1

Lb

Ls
F(λcc,n, λ f f,1) (8)

where Lb,Ls are the lengths of the main beam and the support

beam, λcc,n , λff ,1are the nth eigenvalue of the support beam

and the first eigenvalue of the main beam, respectively; the

function F(λcc,n,λff ,1) can be easily derived from the analyt-

ical expressions of the mode-shapes [11]. It can be shown

that F is bounded for λcc,n → ∞ (n → ∞).

The existence of a nodal point at the centre of the support

beams is compatible with their even resonance modes only;

thus in Eq. (7) only even n are considered. Moreover, higher

modes can be considered as quasi-statically driven in the

considered frequency range, i.e., their electrical equivalent

reduces to a capacitance, whose value is [7]:

Cn = 1

Kn
= L3

s

λ4
cc,n

1

E Is
(9)

where E is the Young’s modulus of the material which the

beams are made of and I s is the moment of inertia of the

support beam cross-section.

The circuit in Fig. 3 can be further simplified by using the

impedance transformation properties of ideal transformers,

so that every impedance is transferred to the first loop (Fig. 4).

The capacitance Cup, taking into account all the higher order

modes of both supports, can be expressed as:

Cup =
∞∑

n=1

�2
n

Cn

2
= L2

b Ls

2λ2
f f,1 E Is

∞∑
n=1

(F(λcc,n, λ f f,1))2

λ2
cc,n

(10)

Because of the boundedness of F , the terms of the series in

Eq. (10) vanish as λ−2
cc,n , so that only a limited number of

higher modes of the support beam can be actually used to

compute Cup.

A further simplification is possible by removing Cup

altogether, leading to an equivalent circuit reduced to a single
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Fig. 3 Full equivalent circuit
for the resonator

Fig. 4 Reduced equivalent
circuit

RLC series. In the next section, a comparison between FEM

simulations and the results predicted by the circuits with Cup

(extended) and without (simplified) will be presented.

FEM simulations

To validate the model, modal and frequency response sim-

ulations were performed using FEMLAB [13], and the re-

sults compared with the equivalent circuit predictions. Two

types of simulations were implemented: the first one based

on 1D beam elements (described by the Euler-Bernoulli

theory), the second one with 2D elements. The simulated

device was characterized by the following dimensions (as

defined in Fig. (1):Lb = 42.2 μm, Ls = 59.8 μm ÷ 79.8

μm, W s = W b = 2.2 μm. The value Ls = 69.8 μm corre-

sponds to the matched condition, where the main and support

beams show resonance at the same frequency.

For each Ls , a modal simulation was carried out to extract

the resonance frequency of the first mode. Subsequently,

a frequency response simulation was performed in a nar-

row band around the resonance frequency, and the max-

imum deflection wmax of the main beam was extracted

for each frequency. A uniform distributed mechanical load

p = �1V in/Le was used to mimic the electromechanical

load applied by the electrode, Le being the length of the

electrode (see Fig. 1). In the frequency response simulations,

the damping was modelled as a bulk viscoelastic loss ac-

cording to the Kelvin-Voigt model [14]. The same damping

model was used to extract the equivalent resistances in the

circuit.

Assuming a lumped-parameter second-order resonant sys-

tem behaviour around the resonance frequency, the simulated

frequency response was fitted against this function:

|Wmax( f )| =
∣∣∣∣∣∣

WR
Q

1 − ( f
f0

)2 + j f
Q f0

∣∣∣∣∣∣ (11)

where W max is the Fourier transform of the deflection, f 0 the

resonance frequency, W R the deflection at resonance, and Q
the quality factor. W R and Q were used as fitting parameters.
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Simulations results for f 0, Q and W R are compared with

the corresponding values predicted by the extended and the

simplified circuit (as defined at the end of the preceding

section) in the graphs of Figs. 5–7. On the horizontal axis,

the mismatch, i.e. the difference between the actual and the

matched support length, is represented.
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Fig. 5 Frequency resonance f 0 as a function of support length mis-
match: comparison between the equivalent circuit and simulation results
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Fig. 6 Quality factor Q as a function of support length mismatch:
comparison between the equivalent circuit and simulation results
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Fig. 7 Maximum displacement W R of the main beam as a function
of support length mismatch: comparison between the equivalent circuit
and simulation results

The resonance frequency and quality factor are more ac-

curately predicted by the extended circuit model than by

the simplified one (Figs. 5 and 6), but the relative error is

very small in both cases (less than 2.5% with respect to 2D

simulations for a large relative mismatch of ±10 μm over

69.8 μm).

For the maximum deflection W R (Fig. 7) the error between

theoretical and simulated curves is significantly larger, espe-

cially if we consider the simplified model. The maximum

relative error with respect to the 2D simulations is nearly

13% for the extended model, and nearly 25% for the simpli-

fied one. The total error is contributed both by an offset and

a higher slope of the curve.

The offset is to be ascribed to the use of the Euler-Bernoulli

equation in deriving the equivalent circuit, as the 1D simula-

tions (which are based on the same model) are also affected

by.

Conclusions

An equivalent electrical circuit describing the behaviour of

a free-free flexural MEMS resonator was developed, and

its predictions compared with the results of FEM simula-

tions. The circuit, even in a simplified topology, correctly

predicts the values of the resonance frequency and the qual-

ity factor of the device, even when possible fabrication de-

fects alter the matching condition used in the design. Ac-

ceptable results are obtained with respect to the prediction

of the maximum resonator deflection (which is related to

the output signal amplitude, and the linearity of the device)

only when the extended equivalent circuit is used. This effect

can be ascribed, at least to some extent, to the non-ideal be-

haviour of the real device with respect to the Euler-Bernoulli

model.
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