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Abstract 

This paper compares three traffic representations for urban traffic noise assessment: (i) a 

coarse static calculation based on mean speeds and flow rates, (ii) a refined static calculation 

based on mean kinematics patterns, (iii) a whole dynamic noise estimation model that 

considers vehicle propagation on the network. The three methodologies are applied on real 

traffic situations and compared to on-field noise levels. Representation (i) is not refined 

enough to guarantee a precise noise assessment. Representation (ii) can be sufficient for LAeq 

estimation in most of cases. However, representation (iii) improves noise estimation since it 

considers vehicle interactions on the network. Moreover, it allows for specific descriptors to 

be estimated with a great accuracy, like the LAeq,1s distributions or the mean noise pattern that 

reproduces every traffic cycle. Finally, the dynamic noise estimation appears to be still 

consistent if the model is fed with data averaged on 2 hour-period.     . 



 

I Introduction 

Traffic management can be a very efficient policy to fight against urban traffic noise [1][2]. It is 

increasingly implemented in European [3] or local [4] noise reduction projects. On-field studies have been 

conducted to measure noise impacts of traffic management policies [5]. Noise abatement can be obtained 

through speed reduction [6]. Traffic calming policy also ensures noise reduction since it forbids strong 

accelerations [7]: a 3 dB(A) decrease can be obtained for example from traffic light coordination that 

homogenize speeds [8]. Moreover, simulations show that noise reduction can also be attained by re-

routing traffic flows [9][10], or creating quiet zones [11]. 

To improve noise estimation and prediction, it is crucial to use a precise noise estimation model, able 

to capture how traffic flow is affected by such strategies. LAeq or noise distribution estimations can be 

statistically derived from acoustical and traffic measurements [12]. This can be helpful to describe urban 

noise [13], but this method prevents from evaluating all traffic management policies since it is limited to 

specific traffic situations. Models based on a coupling between traffic data estimation (flows, speeds, etc.), 

noise emission laws and sound propagation calculation, are more efficient. Their accuracy is closely linked 

to the traffic representation. Classical models use a static representation of traffic, which is considered as 

smooth and homogeneous [14]; noise levels are then estimated from flow rates and mean flow speeds. 

Such models are relevant to assess noise levels in inter-urban conditions. However this traffic 

representation is less accurate for urban traffic noise estimation [15], especially close to traffic signals, 

where traffic conditions vary a lot [16]. Some classical models have been refined to account for traffic flow 

characteristics in urban area. Corrections for interrupted traffic flow [17] and intersections [18] have for 

example been introduced, deduced from queue lengths determination. Noise estimation close to 

intersections can also be refined by considering the mean kinematics pattern [19]. However, those models 

are limited to energetic descriptors estimation, like Lden or A-weighted sound pressure level LAeq. Those 

descriptors are not always sufficient to precisely describe urban traffic noise [20], which is characterized 

by a strong dynamic linked to traffic signals [21]. Specific descriptors have been proposed in [22] to 

capture this dynamics.  

The breakthrough in traffic noise estimation comes with dynamic models, which can output LAeq, but 

also instantaneous sound pressure levels [23][24]. Those models are based on a dynamic representation 

of traffic that gives at each time-step (usually 1s) position x(t), speed v(t) and acceleration a(t) of each 

vehicle on the network [25][26][27]. Then LAeq,1s evolution is estimated, from which classical but also 

specific descriptors can be calculated. 

In practice the choice of the traffic representation should be made in terms of the level of accuracy 

expected for the results and the amount of data required for calibration. The first studies that have tested 

traffic representations for LAeq estimation in urban area [28] have pinpointed the need for precise data 

collection [29]. Dynamic traffic representations have been compared in [30][31] for classical and specific 



descriptors estimation. It was shown that precise noise estimation is bound to a detailed and 

individualized description of each vehicle trajectory. However, those studies did not confront the different 

traffic representations to urban acoustical data.  

The contribution of this paper is to analyze three traffic representations for urban traffic noise 

estimation: (i) a coarse static calculation based on mean speeds and flow rates, (ii) a refined static 

calculation based on mean kinematics patterns, (iii) a whole dynamic noise estimation model that 

considers vehicle propagation on the network. The three methodologies are applied on real traffic 

situations and compared to on-field noise levels. Traffic and acoustic measurements are taken at 5 points 

that depict usual traffic situations: close to a traffic signal, between two consecutive traffic signals, and 

close to a bus station. The comparisons are based on the abilities of the models to precisely estimate 

classical and specific descriptors at those points. Note that the correspondence between those descriptors 

and noise annoyance will be investigated in a future work. Noise emission laws and propagation model 

are fixed for all calculations to ensure comparison. The amount of traffic data required for the estimation 

is also discussed. 

The experimentation and the three calculation processes will be presented in the first part of the 

paper. The results will be then presented. Finally the required representations for urban traffic noise 

estimation will be discussed, according to the descriptors and the level of accuracy needed. 

II Method 

II.1 Experimentation 

The experiment consists in traffic and acoustic measurements from 15.30 h to 17.30 h on a weekday. 

The site is a major arterial (Cours Lafayette, Lyon, France). This is a one-way three-lane road (the 

shoulder lane is shared by buses and passenger cars) with 5 signalized intersections. The street is U-

shaped with 5-floor buildings. It is quite busy, with about 1400 vehicles per hour during the experiment. 

The perpendicular arterial Cours Saxe is also busy, with about 1000 veh/h, including 200 veh/h that turn 

right into the Cours Lafayette. Flow rates on other perpendicular streets are about 250 veh/h. The signal 

cycle duration is equal to 90 s and traffic signals are coordinated through a green wave. The durations of 

green and red cycles are given in Fig 1. 

The recorded traffic data is the number of vehicles at each intersection for each movement and at each 

traffic cycle, and the precise bus trajectories (including stopping time at bus stations). Acoustic recordings 

are LAeq,1s evolution for the selected points. The five selected points for noise level measurements are 

typical of urban situations:  

- in front of a bus station downstream of a traffic signal (P1), 

- between two consecutive traffic signals (P2), 

- close to a traffic signal: in front of (P3) and downstream (P4 and P5).  

Measurement points are 2m-high. Their exact location is given in Fig 1. 
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Fig 1: experimental site. Position of traffic signals TS and their green time tgreen  and red time tred 

durations.   

 

 

II.2 Noise estimation 

II.2.1 Calculation process 
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Fig 2: global modeling chain 

 

Noise estimation follows the same modeling procedure whatever the traffic representation is (see Fig 

2). The main steps are:  

- the site is discretized into cells whose length varies between 9 and 18 m (one cell per lane). 

This cell length is relevant for noise estimation close to intersections [31]. Moreover, this 

length guarantees acoustical homogeneous cells, as required in [35] for static noise 

estimation,  

- data given by the traffic model feed noise emission laws to estimate the noise emission Lw(t) 

of each cell. The laws used in this study distinguish light vehicles and buses, and give Lw with 

respect to speed v and driving conditions (cruising, decelerating or accelerating) [36][37]; see 

Fig 3. Note that heavy vehicles are not considered in this study since they are forbidden to 

enter the Cours Lafayette,  



- the propagation model NMPB-Routes-96 implemented in Mithra software [38] gives the 

LAeq,cell(t) contribution of each cell for each receiver,  

- the contributions of the cells are acoustically summed to give LAeq,1s(t) at the receiver: 

 ( )
( ),

10
,1 10log 10 ,

Aeq cellL t

Aeq s
cells

L t
 

=  
 
 
∑  (1) 

- noise descriptors are finally calculated. If a static traffic representation is involved, traffic 

variables and thus noise emissions are independent of time, and then only LAeq,T can be 

calculated, where T is the observation period. If a dynamic traffic model is involved, traffic 

variables are estimated every 1s, and then LAeq,1s time evolution but also specific acoustic 

descriptors can be calculated. 
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Fig 3: noise emission laws for both light vehicles and buses 

II.2.2 Coarse static traffic representation 

The flow of vehicles on each cell is divided into two subflows: the light vehicles subflow Qlv and the bus 

subflow Qbus. No acceleration or deceleration zones are considered: vehicles are supposed to pass through 

intersections without stopping. Noise emission 
i
wL  of a given cell is, for each class i of vehicle, deduced 

from the mean speed vi, acceleration ai and flow rate Qi on the cell: 

 ( ) ( ) { }, 10 log ,      with lv,bus .i i i i
w wL L v a Q i= + =  (2) 

Finally, global noise emission Lw of the cell is the acoustical sum ⊕  of the emissions 

lv
wL and bus

wL  of the cell:  

 .lv bus
w w wL L L= ⊕  (3) 



II.2.3   Refined static traffic representation 

Stops at intersections are considered. The flow is no longer divided into 2 subflows but into 4 

subflows: Qg,lv, Qr,lv, Qg,busand Qr,bus. Qg,i represents the vehicles of class i that pass through the intersection 

at free-flow speed, when the traffic signal is green (Qg,i=Qi*tg/tc), and Qr,i represents the vehicles that stop 

at the intersection when the traffic signal is red (Qr,i=Qi*tr/tc), where tg, tr and tc are respectively the green, 

the red and the cycle durations of the traffic signal. Noise emission
,g i

wL  that corresponds to the subflow 

Qg,i is calculated as in II.2.2, considering that vehicles move at free-flow speed. Speed on any cell of the 

network depends on the distance x from the traffic signal for the red subflows: it is the average of the 

speeds at the upstream and downstream boundaries of the cell, which are deduced from the mean 

acceleration a, the maximal speed u, and the deceleration d of vehicles. ( )min 2 ;=v ax u  on cells 

downstream of the traffic signal, and ( )min 2 ;=v dx u  on cells upstream of the traffic signal. Finally, 

the noise emission Lw of the cell is the acoustical sum of the emissions
,g lv

wL ,
,r lv

wL ,
,g bus

wL and
,r bus

wL on the 

cell:  

 , , , , .g lv r lv g bus r bus
w w w w wL L L L L= ⊕ ⊕ ⊕  (4) 

 

II.2.4 Dynamic traffic representation 

 The dynamic traffic model aims at predicting how key traffic variables evolve along the network. The 

model used in this study is SYMUBRUIT1, which is based upon a detailed and individualized vehicle 

representation. Positions of all vehicles on the network are predicted at each time-step and are governed 

by three parameters: the maximal speed u reached when traffic is free, the wave speed w at which a 

congestion spills back on the network, and the minimum spacing smin between two vehicles, observed 

when vehicles are stopped for example at a traffic signal. Position of vehicle i at the next time step xi(t+Δt) 

is  the minimum between the position it is willing to reach when traffic is free and the position it cannot 

overpass when traffic is congested. The time-step is fixed to ∆t=smin/w to reduce numerical viscosity. 

Then:  

 ( ) ( ) ( )1 min

position when traffic is free position when traffic is congested

min , .i i ix t t x t u t x t s−

 
 + ∆ = + ∆ −
 
 
����� �����

 (5) 

Speed vi(t) and acceleration ai(t) are then deduced from positions xi(t) and xi(t+∆t). The model has 

been refined to take into account the bounded acceleration of vehicles [32], the influence of slow motion 

                                                                    
1 SYMUBRUIT is a simulation tool dedicated to dynamic noise estimation developed by INRETS and 

ENTPE 



of buses [33], and the lane-changing phenomena [34]. Movements at the intersections are handled by 

assigning proportions of turning and through movements observed during the experiment. 

The model requires knowledge of flow rates at each entrance, turning proportions at each intersection, 

and information on buses trajectories. Two calculations are done in the paper: (i) a first calculation in III.2 

using the flow rates and movements recorded per cycle during the experiment, and the precise buses 

trajectories, (ii) a second calculation in III.3 using the mean flow rates and movements recorded during 

the experiment, and global information on bus frequencies and waiting times at bus stations.   

II.2.5 Calibration 

The static models have been calibrated to fit on-field measurements. Vehicle kinematic parameters are: 

an average deceleration rate d=3m/s² and an average acceleration rate a=0.8m/s². Note that the low 

acceleration value could be due to the traffic signal settings, which incite vehicles to accelerate slowly to 

benefit from the green wave. The other vehicle properties are the wave speed w=-3.33m/s, the minimum 

spacing smin=5m, and the maximal speed u. The maximal speed of light vehicles depends on the location on 

the network: u1 = 17m/s at the beginning of the Cours Lafayette (up to the second intersection), u2=15m/s 

at the end of the Cours Lafayette (after the second intersection), and u3=10m/s on the crossing roads. The 

maximal speed of buses is ubus=10m/s. Finally, a constant 51 dB(A) noise was added to take into account 

the background noise. 

 

II.2.6 Descriptors 

The descriptors considered in this study are energetic descriptors (LAeq, LL<80 - that is the noise level 

after filtration of events that exceed 80 dB(A) -), statistical descriptors (L1, L10, L50, L90), LAeq,1s distributions 

(that represents the proportion of observed or simulated LAeq,1s that fall within each 1dB(A) range), and 

specific descriptors based on [22] that reveal noise dynamics at the traffic signal scale: 

- The mean noise pattern. This is the pattern that repeats on average every traffic signal. It is 

obtained by selecting, for each instant ti ∈[0 ; tc], the sample Si that contains the instants t ≡ ti 

[tc]2, and then operating an acoustical average of the elements of Si whose level falls between 

L90,Si and L10,Si calculated from Si.  

- L’g and L’r, deduced from LAeq,1s distribution. This distribution often shows two modes in 

urban area, which correspond to the green and red phases of the closest traffic signal. The 6 

parameters of the bi-Gaussian distribution fit (the standard deviation σi, the mode xi, and its 

amplitude Ai, with i={1,2}) permit to fit two Gaussian functions to the observed or simulated 

distribution. L’g and L’r, are calculated by operating the acoustical average of the elements 

between L90 and L10 of the two Gaussian functions. Hence L’g and L’r correspond respectively 

to the upper and the lower level of the mean noise pattern.  

                                                                    
2 This symbol ≡ stands for modulo 



- NL5>75: the percentage of cycles whose L5 exceeds 75 dB(A). This descriptor tells about the 

periodicity of peaks of noise. A strong value refers to a periodic occurrence of peaks of noise. 

- NL95>65: the percentage of cycles whose L95 exceeds 65 dB(A). This descriptor tells about the 

periodicity of calm periods. A weak value corresponds to a strong occurrence of calm periods. 

- L5/cycle: the average of the 5% noisiest events per cycle tells about the intensity of peaks of 

noise at the traffic signal scale. A high value of L5/cycle means that noise events appear at each 

cycle. 

- L95/cycle: the average of the 5% lowest events per cycle tells about the calm of the red phases. A 

strong L95/cycle means that calm periods are not very marked. 

 

III Results 

III.1 LAeq estimation  

LAeq estimations and measurements are depicted in Tab 1. The coarse static calculation seems 

insufficient for LAeq estimation even if a 3 dB(A) error is accepted. The model overestimates noise levels 

since it considers that all vehicles go at their free-flow speed u on the network. The estimation is correct at 

the entrance of the network (1.5 dB(A) error at P1), where vehicle speeds are high indeed. Yet, error is 

larger farther away, where vehicles are actually slowed down by green wave or stopped by traffic lights. 

The refined static model improves estimation (with only 2.2 dB(A) mean error) since it takes into account 

stops at intersections. However, it is still insufficient if a greater level of accuracy is required, since: (i) it 

supposes that all vehicles move at their free-flow speed during the green phase, (ii) it cannot represent 

efficiently the queue formation and the waiting time during the red phase, since it supposes that all 

vehicles stop in front of the traffic signal.  

Finally, the dynamic model guarantees a precise estimation of LAeq (error falls below 2 dB(A) for all the 

points), since the characteristics of the traffic flow in urban area (queue formation and discharge at each 

traffic signal, platoons of vehicles behind buses, etc.) are represented. Estimation seems particularly 

precise in front of the traffic signal: error falls below 1 dB(A) for P3, P4 and P5, what can be linked to a 

precise localization of accelerating zones. Moreover, the noise decrease at those last three points is 

underlined by the dynamic model while it is not by static models: it is due to vehicles that arrive from the 

Cours Saxe and turn right into the Cours Lafayette. Those vehicles slow down traffic flow, which cannot be 

captured by the static models. Finally, the slight underestimation of noise levels with the dynamic model is 

due to peaks of noise (such as klaxons), which increase LAeq and are not taken into account by the model. 

 

 

 



 

P1 P2 P3 P4 P5 mean 

error 
measurement 73.8 73.5 70.3 71.2 71.2 

coarse static representation 75.1 76.5 74.4 74.3 74.4 3.1 

refined static representation 74.5 76.0 73.2 73.5 73.1 2.2 

dynamic representation 75.3 71.9 70.6 70.3 70.7 1.1 

Tab 1 : LAeq estimation (in dB(A)) at the 5 points of experimentation through the three different 

calculations; in clear green: error exceeds 1 dB(A); in dark grey: error exceeds 2 dB(A); in black: 

error exceeds 3 dB(A) 

III.2 Specific descriptors estimation with dynamic noise 

estimation model  

Noise estimation can be refined with a dynamic traffic representation, which allows for specific 

descriptors estimation. A first calculation of these descriptors is done by using data recorded at each 

traffic cycle; see Tab 2. Note that such refined data are not easy to collect in practice; the amount of data 

required for the estimation will be tested in the next section.  

Energetic descriptors are precisely estimated. Errors fall under 1 dB(A) as soon as peaks of noise are 

filtered (see LL<80 estimation), which confirms that the slight underestimation of LAeq was due to peaks of 

noise that are cumbersome to capture with a simulation model. The LAeq,1s distributions are also estimated 

with a strong accuracy; see Fig 4. The two modes of the distributions, which are due to green and red 

phases of the traffic signal and are characteristic of noise dynamics in a one-lane road [22], are well 

reproduced by the model. 

 Statistical descriptors are also precisely estimated. Overestimation of L1 close to the bus station at P1 

may be due to an overestimation of the noise emitted by the bus when staying at and leaving the bus 

station. This may be due to inappropriate choice of acceleration levels when constructing noise emission 

laws for buses. Other statistical descriptors are estimated with an error under 3 dB(A) for all points, and 

with error under 1 dB(A) for most of points. 

Moreover, the mean noise pattern is reproduced accurately for the five points; see Fig 4. The 

succession of calm and noisy periods at the traffic cycle scale (due to the red and green phases) is well 

reproduced through the mean noise pattern. Moreover, the upper and lower levels of the mean noise 

pattern L’g and L’r are estimated with an error under 1 dB(A) for most of the points. This can be a valuable 

result to assess noise dynamics at this scale.  

Finally, variations around this mean noise pattern can be estimated. NL95>65 and NL5>75, which tell about 

occurrences of calm and noisy periods at the traffic cycle scale [22], are estimated with errors under 10% 

close to the traffic signal, at P3, P4 and P5. Hence variety in noise levels from one cycle to another is 

captured by the model. However, NL5>75 is overestimated at P2 (27.5% error): all the cycles are seen noisy 

by the model at this point whereas some cycles are actually a bit calmer. This point may be improved by 



introducing stochastic effects in noise emission laws, for instance by considering a specific class for the 

noisiest vehicles with a different acceleration rate, instead of a mean law. Finally, L5/cycle and L95/cycle are 

estimated with error under 3 dB(A), except for L5/cycle estimation at P1 (due to peaks of noise), which 

guarantees an accurate representation of noise amplitude.  

 

  

Experimental  

results  

Simulation results 

Model fed with data per cycle  

Simulation results 

Model fed with 2h data 

  

P1 P2 P3 P4 P5 

 

P1 P2 P3 P4 P5 

 

P1 P2 P3 P4 P5 

LAeq 

 

73.8 73.5 70.3 71.2 71.2 

 

75.3 71.9 70.6 70.3 70.7 

 

75.0 71.4 70.0 69.6 70.2 

LL<80 

 

72.5 71.3 69.7 70.3 70.5 

 

72.7 71.9 70.4 70.1 70.5 

 

72.3 71.4 69.8 69.5 70.1 

L1 

 

81.8 80.6 78.3 79.7 79.2 

 

86.3 78.3 78.0 78.1 78.2 

 

86.3 78.3 77.7 77.6 77.7 

L10 

 

76.0 74.9 73.6 74.3 74.6 

 

77.7 75.7 74.0 74.1 74.9 

 

77.2 75.7 73.2 73.4 74.6 

L50 

 

71.4 69.7 67.1 67.8 67.5 

 

71.8 70.1 68.0 66.8 67.4 

 

71.0 68.4 67.5 66.2 66.3 

L90 

 

64.4 63.4 61.1 60.1 58.1 

 

62.0 61.6 62.6 59.4 57.2 

 

64.9 61.8 62.9 59.6 57.4 

NL5>75 (%) 

 

92.5 68.8 37.5 51.3 51.3 

 

100.0 96.3 38.8 47.5 61.3 

 

97.5 88.8 25.0 28.8 55.0 

NL95>65 (%) 

 

17.5 11.3 2.5 0.0 0.0 

 

0.0 0.0 5.0 0.0 0.0 

 

31.3 0.0 3.8 0.0 0.0 

L5/cycle 

 

77.1 76.2 74.4 75.3 75.5 

 

80.4 76.6 74.7 74.8 75.5 

 

79.8 76.3 74.0 74.3 75.2 

L95/cycle 

 

62.9 62.8 60.4 58.9 57.1 

 

60.4 60.5 61.9 58.2 56.3 

 

63.5 60.6 62.1 58.3 56.4 

L'g 

 

73.7 72.2 71.8 72.4 72.7 

 

74.4 73.4 72.5 72.4 72.9 

 

73.1 73.7 71.7 72.0 72.9 

L'r 

 

68.5 65.0 64.4 63.9 61.5 

 

65.9 64.3 65.8 63.3 60.6 

 

69.3 64.8 65.5 63.7 61.7 

L'g-L'r 

 

5.2 7.2 7.4 8.5 11.2 

 

8.4 9.1 6.8 9.1 12.3 

 

3.7 8.9 6.2 8.3 11.2 

 

Tab 2 : specific descriptors estimation (in dB(A)) with dynamic model at the 5 points of 

experimentation; in white: error is under 1 dB(A) (or 10%); clear grey: error is between 1 dB(A) 

(or 10%) and 2 dB(A) (or 20%); in dark grey: error is between 2 dB(A) (or 20%) and 3 dB(A) (or 

30%); in black: error exceeds 3 dB(A) (or 30%). 
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Fig 4: noise characterization of the selected points where the dynamic model is fed by data per 

cycle.  
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Fig 5: noise characterization of the selected points, where the dynamic model is fed by 2 hour-

data.  

 

 

 

 

 

 



 

III.3 Estimation of specific descriptors from coarse data  

The dynamic model was shown relevant in III.2 to assess noise dynamics in an urban corridor 

regulated by traffic signals. However, the model was fed with detailed data which are not easy to 

collect in practice. The robustness of the dynamic noise estimation model has to be tested with 

aggregated data to validate its practical use. Hence the same set of descriptors as in the previous 

section is estimated but with input data aggregated upon the whole 2 hour-period (flow rates, 

turning proportions and bus frequencies), as it would be done in practice. Flow rate evolution during 

the experimentation is given in Fig 6: flow values can sometimes vary abruptly from one cycle to the 

other, but remain constant on average over the two hours.   
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Fig 6: flow rates evolution on the Cours Lafayette during the experimentation (15.30 h to 17.30 

h) 

Noise distribution and mean noise pattern estimations are depicted in Fig 5. Descriptor 

estimations are given in Tab 2. Globally, the 2 hour-dataset gives very similar estimations as the cycle 

database. The main characteristics of noise dynamics can be still deduced from the results given by 

the model. Noise distributions remain precisely estimated at the five points. They reveal for each 

point the two modes seen in the previous part, which are estimated with errors under 2 dB(A); see 

L’g and L’r estimations. Moreover, statistical descriptors estimation is not deteriorated: error is under 

3 dB(A) except for L1 estimation at P1. However, noise levels seem a bit underestimated at the end of 

the network (P3, P4 and P5): see LAeq or L50 underestimation at P4. 

Furthermore, mean noise patterns still highlight the alternation between the green and the red 

phases, which is reflected by L’g and L’r. However, the shape of the mean noise pattern is a bit 

distorted at P1: the low levels of the pattern are underestimated. It is due to the low flow rate on the 

perpendicular street (about 1 vehicle per cycle). Many cycles actually show no vehicle, which gives a 

low level when traffic signal is red; this phenomenon is reproduced while working with cycle data. 



On the contrary, the 2 hour- data give one vehicle at each cycle, which keeps a relative high red level. 

The model could be improved by considering distributions for vehicle arrivals on the network.     

Finally, estimation of variations around this mean noise pattern is not deteriorated by the 2 hour-

dataset: L5/cycle and L95/cycle are estimated with errors under 3 dB(A) for the five points.  

Hence the model is not sensitive to flow rate variations at the traffic cycle scale: it still captures 

noise dynamics as long as hourly flow rates are known. Its great accuracy with 2 hour-data enables 

its practical use for estimation of urban traffic noise.  

 

IV Discussion 

 

Three traffic representations have been tested in this paper for urban traffic noise estimation: (i) 

a coarse static representation that only considers mean speed and flow rates, (ii) a refined static 

representation based on mean vehicle kinematics patterns which vary whether the traffic signal is 

green or red, (iii) a dynamic representation, that aims at reproducing each vehicle trajectory on the 

network. Representations were compared to on-field data in order to study their ability to precisely 

estimate noise descriptors. The experimental site is a one way three-lane arterial. Traffic 

measurements consist of vehicle counting and movement recordings at each intersection for each 

traffic signal cycle. Acoustical measurements are LAeq,1s evolution at 5 points that depict current traffic 

situations: close to a traffic signal, close to a bus station, and between two consecutive traffic signals. 

The noise emission laws and the sound propagation calculations were kept constant to ensure 

comparison. 

 The coarse static representation can be accepted for LAeq estimation if a 3 dB(A) mean error is 

accepted. This representation overestimates noise levels, since it is based on a coarse estimation of 

vehicle mean speeds. Estimation can easily be refined by considering accelerating and decelerating 

zones, and distinguishing green and red phases in the kinematics patterns. Errors in LAeq estimation 

then fall to 2 dB(A). Hence, this representation can be sufficient in most of cases. However, it fails in 

taking into account specific traffic flow influence, like flow disruption induced by injection of vehicles 

from perpendicular streets or by traffic light coordination. Final refinement consists in considering a 

dynamic traffic model, which reproduces vehicle interactions on the network. This guarantees LAeq 

estimation with errors under 1 dB(A) at each point along the network; moreover this is the only 

available method to estimate specific descriptors, since the output of the model is the LAeq,1s 

evolution.   

The LAeq,1s distributions and mean noise patterns (i.e. the pattern that repeats on average at each 

traffic signal) have been calculated with the dynamic traffic representation from traffic data averaged 

on each cycle. Results are very convincing: the shape of the noise distribution, which highlights two 

modes, fits the measured ones. Moreover, the simulated mean noise patterns are similar to the 



observed ones, and the characteristic levels of those patterns (green and red mean noise levels) are 

estimated efficiently, with errors under 1 dB(A) for the majority of the points. Hence, noise dynamics 

along the network can be clearly reflected by the model. Note that future improvements for the 

dynamic estimation were pinpointed by the study: maximum noise levels estimation could be refined 

by improving noise emission laws for buses and differentiating the noisiest vehicles; noise level 

estimation during red phases could be refined by considering distributions in vehicle arrivals.  

Finally, the dynamic noise estimation model appears to be still consistent even if the model is fed 

with data averaged on a 2 hour-period. Note that results are based on an experiment where flow 

rates remain almost constant with time. The ability of the model to assess the noise impact of a 

congested period will have now to be tested. If its robustness is confirmed, the model could be used 

for practical applications. This will be useful to precisely assess the dynamics of urban traffic noise. 

The impact of this dynamics on human noise perception should finally be investigated, to propose a 

global tool that greatly improves noise impact assessment of urban traffic management policies.   

 

V Acknowledgements 

 The authors would like to thank Estelle Chevallier for her careful reading of this paper and her 

pertinent comments. Data used in this paper have been collected for the French Transportation 

Program Predit project named ‘‘Urban noise dynamic estimation: real case study’’, partly funded by 

ADEME ‘‘French Environment and Energy Management Agency’’. This research is also partly funded 

by Région Rhône-Alpes. 

 

VI References 

  

[1] Ellebjerg, L. and Bendtsen H. Possibilities of noise reduction through road traffic flow 

management. in Inter-noise. 2007. Istanbul. 9p.  

[2] Bendtsen, H., Haberl J., Litzka J., Pucher E., Sandberg U. and Watts G. Traffic 

management and noise reducing pavements - recommendations and additional noise 

reducing measures (Danish Road Directorate, Copenhagen, 2005). 2005: 90p. 

[3] Rust, A. and Affenzeller J. Plans for future european research to reduce transport noise. 

in Inter-noise. 2007. Istanbul. 10p. 

[4] Vancluysen, K. State of the art on noise abatement policies and tools in cities, noise 

abatement priorities and necessary technologies. WP I.1 Urban Scenarios and Priority 

Setting. 58p. 



[5] Desarnaulds, V., Monay G. and Carvalho A. Noise reduction by urban traffic 

management. in Journées d'automne 2004, Société Suisse d'Acoustique. 2004. Jona. 4p. 

[6] Ellebjerg, L. Effectiveness and benefits of traffic flow measures on noise control 

(Danish Road directorate, Copenhagen, 2007). Silence project. WP H.1 Methods for 

Noise Control by Traffic Management, 2007. 50p. 

[7] European Commission. The effect of speed on noise, vibration and emissions from 

vehicles, European commission, Editor. 1998. 80p. 

[8] Ellenberg, M. and Bedeaux J.-F. "Calming waves for safety. A time to rethink green 

waves?" Traffic Technology International, 1999. April/May 1999: p. 55-58. 

[9] Kliucininkas, L. and Saliunas D. Noise mapping for the management of urban traffic 

flows. ISSN 1392 - 1207. Mechanika. 2006. Nr.3(59), 2006. 

[10] Thorsson, P.J. and Ögren M. Macroscopic modeling of urban traffic noise - influence of 

absorption and vehicle flow distribution. Applied Acoustics, 2005. 66: p. 195-209. 

[11] Nilsson, N.A. and Stenman A. Creating quiet city zones by noise charges and quiet 

vehicles. Part two: noise reduction effects. in Inter-noise 2007. 2007. istanbul. 10 p. 

[12] Bazaras, J., Jablonskyte J. and Jotauniene E. Interdependance of noise and traffic flow. 

Transport, 2008. 23(1): p. 67-72. 

[13] Barrigon Morillas J.M. et al. Evaluation of urban noise in the city of Caceres (Spain) by 

two different methods. in 19th International Congress on Acoustics, Madrid, 2-7 

September 2007. 2007. 6p. 

[14] CERTU. Review of French road and railway noise prediction models (in french : 

« Catalogue des logiciels de calcul du bruit des infrastructures routières et ferroviaires, 

un aperçu du marché français »). Centre d’études sur les réseaux, les transports, 

l’urbanisme et les constructions publiques. 2002. 47p. 

[15] Steele, C. A critical review of some traffic noise prediction models. Applied Acoustics, 

2001. 62: p. 271-287. 

[16] Tajika, T., Tachibana H., Yamamoto K. and Oshino Y. Road traffic noise prediction 

with the consideration of the relation between traffic volume and vehicle speed. in 

Internoise. 2000. Nice, France.  

[17] Makarewicz, R., Fujimoto M. and Kokowski P. A model of interrupted road traffic 

noise. Applied Acoustics, 1999. 57: p. 129-137. 

[18] De Coensel, B., Botteldoren D., Vanhove F. and Logghen S. Microsimulation Based 

Corrections on the Road Traffic Noise Emission near Intersections. Acta acustica united 

with acustica, 2007. 93: p. 241-252. 



[19] Picaut, J., Bérengier M. and Rousseau E. Noise impact modelling of a roundabout. in 

Inter-noise. 2005. Rio de Janeiro, Brésil. 

[20] Can, A., Leclercq L., Lelong J. et Defrance J. Descriptors for urban traffic noise 

dynamic characterization (in French), LICIT, Editor. 2007b. 93p. 

[21] Nelson, P., Transportation noise. Reference book. 1987: Butterworth. 520 p. 

[22] Can, A., Leclercq, L., Lelong, J. and Defrance, J. Capturing urban traffic noise 

dynamics through relevant descriptors. Applied Acoustics, 69 : p.1270-1280. 2008. 

[23] De Coensel, B., De muer T., Yperman I. and Botteldoren D. The influence of traffic 

flow dynamics on urban soundscape. Applied Acoustics, 2005. 66: p. 175-194. 

[24] Leclercq L., Can A., Crepeaux P., Defrance J., Fournier M., Lelong J., Miege B., 

Minaudier C., Olny X. and Vincent B., Dynamic prediction of urban traffic noise: a real 

case study (in French : « Estimation dynamique du bruit de circulation en milieu urbain 

: étude d'un cas réel »). Rapport INRETS/LICIT N°0703. 2008. 65p. 

[25] Leclercq, L. A traffic flow model for dynamic estimation of noise. 2002: Phd report. 

317 p. (in french). 

[26] Rotranomo. Final conference on 28.09.2005 [on line]. 2005, 

http://www.rotranomo.com/. 

[27] Oshino, Y., Tsukui K., Hanabusa H., Bhaskar A., Chung E. and Kuwahara M. Study on 

road traffic noise prediction model taking into account the citywide road network. in 

Inter-noise. 2007. Istanbul. 8p. 

[28] IMAGINE. Review of the suitability of traffic models for noise modelling - WP2 : 

demand and traffic flow modelling. 2004: Project funded by the CE under the sixth 

framework programme. 132p. 

[29] IMAGINE. Collection methods for additional data. 2006, Project funded by the CE 

under the sixth framework programme. 

[30] Can, A., Leclercq, L. and Lelong, J. Dynamic estimation of urban traffic noise: 

influence of traffic and noise source representations. Applied Acoustics, 69: p.858-867, 

2008. 

[31] Can, A., Leclercq, L. and Lelong, J. Selecting noise source and traffic representations 

that capture urban traffic noise dynamics. Submitted for publication. 

[32] Leclercq, L. Bounded acceleration closed to fixed and moving bottlenecks. 

Transportation Research Part B, 2007. 41(3): p. 309-319. 



[33] Leclercq, L., Chanut S. and Lesort J.-B. Moving bottlenecks in Lighthill-Whitham-

Richards Model: A unified theory. Transportation Research Record: Journal of the 

Transportation Research Board, 2004. 1883: p. 3-13. 

[34] Laval, J. and Leclercq L. Microscopic modeling of the relaxation phenomenon using a 

macroscopic lane-changing model. Transportation Research Part B, 2008; 42(6): p. 512-

522. 

[35] Besnard F., Berengier M., Doisy S., Fürst N., Hamet J.F., Lelong J. and Pallas M.A. 

Vehicle noise emission guide (in French, « Guide méthodologique, Emission sonore des 

véhicules »), Paris, SETRA, 2009. 

[36] Besnard F., Berengier M., Doisy S., Fürst N., Hamet J.F., Lelong J. and Pallas M.A. 

The procedure for updating the vehicle noise emissions values of the French "Guide du 

Bruit des transports terrestres". in EAA European Acoustics Association Euronoise. 

2003. Naples. 

[37] Hamet, J.F, Besnard, F., Doisy, S. and Lelong, J. New vehicle noise emission for 

French traffic noise prediction. Submitted for publication. 

[38] Mithra, Manuel technique Mithra 5.0. 2002: 58p. 

 


