
cannot associate a 100% probability of certainty to the events the
data represent. The technique captures and combines whatever cer-
tainty or knowledge exists in the event classification capability of
the information sources. The knowledge contributed by the infor-
mation sources is combined, by using Dempster’s rule, to find the
conjunction of the events and the associated probability or belief
that the decision is correct (1–4).

The U.S. Department of Defense (DoD) data fusion model and
Dempster–Shafer inference, in particular, as a tool for combining
multisource data are discussed in the following sections. Field test
data from inductive loop detector (ILD) pairs and toll collection
stations are then used to demonstrate application of the technique to
travel time analysis and estimation. This process involves computing
a confusion matrix that describes the likelihood the sensors or toll
collection devices are reporting correct travel times. Information
derived from electronic toll collection (ETC) with tags, real-time
credit card payments from the credit-card-only lane, and cash payments
are used to find the “true” travel time values (used as the reference
value) against which travel time estimates gathered from ILD data,
toll tag data only, and toll tag plus real-time credit card payment data
are compared. Travel times computed from toll tag data alone are an
important travel time information source as those data can be supplied
in real time to traffic management centers and used to supplement
travel times derived from loops.

DATA FUSION MODEL

Many data-processing techniques originally developed by the DoD
to support identification and tracking of military objects, including
Dempster–Shafer inference, can be used today to aid traffic manage-
ment on surface streets and highways (5–7). The DoD data fusion
model consists of a hierarchy of five processing levels. Level 0 deals
with preprocessing of data from the contributing source. It may nor-
malize, format, order, batch, and compress input data (7, 8). It may
even identify subobjects or features in the data that are used later in
Level 1 processing.

For highway and arterial traffic management, Level 1 processing
concerns data gathering from all appropriate sources, including real-
time point and wide-area traffic flow sensors, transit system opera-
tors, toll data, cellular telephone calls, emergency call box reports,
probe vehicle and roving tow truck messages, commercial vehicle
transmissions, and roadway-based weather sensors (3).

Level 2 processing identifies the probable situation causing the
observed data and events by combining the results of Level 1 pro-
cessing with information from other sources and databases. These
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Dempster–Shafer data fusion can enhance travel time estimation for
motorists and traffic managers. In this paper, travel time data from
inductive loop road sensors and toll collection stations are merged through
Dempster–Shafer inference to generate an improved estimate of travel
time. The technique captures travel time data from the two sources and
combines them by using Dempster’s rule and belief values (also called
probability mass) calculated from a confusion matrix. The most probable
travel time over the monitored road section is selected as that with 
the largest belief. A case study is provided to illustrate application of the
fusion technique with data gathered on winter Saturdays for 2 years:
2003 data are used to compute the confusion matrices and belief values,
and 2004 data are used for validation.

Availability, accuracy, and reliability of systemwide travel time
information contribute to effective decision making in support of
safe and efficient operation of traffic management systems. Such
information is made available in modern traffic management sys-
tems through sensor and data-processing technologies that gather
real-time traffic and weather data that are descriptive of roadway
conditions. Typical data sources include roadway sensor or transit
fleet vehicle driver and operator reports of intersection and highway
gridlock, 911 dispatch or traveler cellular telephone reports of traffic
accidents, police radio or taxi communication channel reports of local
congestion events, and roadway weather sensors.

Only a small amount of reported information is generally used at
a traffic management center—partly due to automatic accumulation
of multisource and multimedia data and the associated differences in
formats, arrival times, and reliability of incident occurrence informa-
tion and variations in the reported incident locations. Underutilization
of available information is exacerbated by a lack of decision-support
systems to process imprecise, incomplete, and conflicting information.

This paper describes and reports on application of Dempster–Shafer
inference to assist traffic engineers and system managers at traffic
operation centers in calculating travel time over a given section of
roadway. Dempster–Shafer inference, a statistical-based classification
technique, can be used when data sources contributing information

N.-E. El Faouzi and O. De Mouzon, Laboratoire d’Ingénierie Circulation Transports,
INRETS-ENTPE, 25 Avenue François Mitterrand Case 24, 69675 Bron Cedex, France.
L. A. Klein, Klein & Associates, 562 Giotto, Irvine, CA 92614. Corresponding
author: N.-E. El Faouzi, elfaouzi@inrets.fr.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2129, Transportation Research Board of the National Academies, Washington,
D.C., 2009, pp. 73–80.
DOI: 10.3141/2129-09

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147964251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sources may include highway patrol reports and databases, roadway
configuration drawings, local and national weather reports, anticipated
traffic mix, time-of-day traffic patterns, construction schedules, and
special event schedules.

Level 3 processing assesses traffic flow patterns and other data with
respect to the likely occurrence of a traffic event (e.g., traffic conges-
tion, incident, construction or other preplanned special event, fire,
or police action) that affects traffic flow.

Level 4 processing seeks to improve the entire data fusion process
by continuously refining predictions and assessments and evaluat-
ing the need for additional sources of information. Sometimes a fifth
level is added to address issues concerned with enabling a human to
interpret and apply the results of the fusion process.

Dempster–Shafer inference is an example of a Level 1 data fusion
technique that can be used to support traffic management decision
making when the available input data do not allow a definitive event
or condition to be identified (9, 10). Once received, these data are
combined in a meaningful way to address traffic management needs.
The advantages of Dempster–Shafer data fusion lie in its ability to
combine whatever information data sources are able to contribute and
to find the conjunction of the events with the highest probability of
occurrence.

DEMPSTER–SHAFER INFERENCE

Assume a traffic-related event is of type h1, h2, . . . , or hp, represent-
ing the set of all propositions making up the hypothesis space, called
the frame of discernment denoted by θ. A probability mass m(hi)
is assigned to any of the original propositions or to a union of propo-
sitions based on available information from the data sources. For
example, the union or disjunction that the event is of type h1 or h2

(denoted h1 ∪ h2) is assigned probability mass m(h1 ∪ h2) as derived
from information from one of the sources. Probability mass may also
be assigned by the information source to the negation of a proposition
such as m(h

–
1) = m(h2 ∪ h3 ∪ . . . ∪ hp).

When all probability mass cannot be directly assigned by the infor-
mation source to any of the propositions, their unions, or the nega-
tions of propositions, the remaining mass is assigned to the frame of
discernment θ (representing uncertainty about further definitive
assignment) as m(θ) = m(h1 ∪ h2 ∪ . . . ∪ hp). The mass assigned to θ
represents the uncertainty that remains concerning the ability of
the information source to gather and interpret the data. The sum of
probability masses over all propositions, uncertainty, and negation
equals unity.

Each proposition or event is further characterized by its degree of
support and degree of plausibility. Support for a given proposition
is defined as the sum of all probability mass assigned directly by the
sensor to that proposition (1). Thus, support for an event type as h1,
h2, or h3, denoted by S(h1 ∪ h2 ∪ h3), contributed by a sensor or other
information source is equal to

Plausibility of a given proposition is defined as the sum of all
mass not assigned to its negation; in other words, plausibility defines
the mass free to move to the support of a proposition. The plausibility
of hi, denoted by Pl(hi), is written as

S h h h m h m h m h m h h m h1 2 3 1 2 3 1 2 1∪ ∪( ) = ( ) + ( ) + ( ) + ∪( ) + ∪ hh

m h h m h h h

3

2 3 1 2 3 1

( )
+ ∪( ) + ∪ ∪( ) ( )
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where S(h
–

i) represents the degree to which the evidence impugns a
proposition (i.e., supports negation of the proposition).

An uncertainty interval is defined to capture the information
contained in the support and plausibility for a proposition. The
uncertainty interval is bounded from below by the support value,
which is equal to the minimal commitment for the proposition based on
direct sensor evidence. The upper bound for the uncertainty interval is
given by the plausibility and represents the support plus any potential
commitment. This interpretation of the uncertainty interval shows
what proportion of evidence is truly in support of a proposition and
what proportion results merely from ignorance or the requirement to
normalize the sum of the probability masses to unity. Accordingly,
the uncertainty interval is written as [S(hi), Pl(hi)], where

Support and probability mass obtained from an information source
represent different concepts. Support is calculated from the sum of
the probability masses that directly support the proposition and its
unions. Probability mass is determined from the ability of the infor-
mation source to assign some certainty to a proposition based on the
evidence.

Dempster’s rule supplies the formalism to combine probability
masses provided by multiple information sources for compatible
propositions. The conjunction of the propositions with the largest prob-
ability mass is usually selected as the output of the process. Proposi-
tions are compatible when their conjunction exists. If the conjunctions
form the empty set, the probability masses associated with the conjunc-
tions are set equal to zero and the probability masses of the nonempty
set intersections are increased by a proportionality factor K so that
their sum is unity.

The general form of Dempster’s rule for calculating the total
probability mass committed to an event c, known as the orthogonal
sum, is given by

where

where ai and bj are the hypotheses or unions of hypotheses assigned
probability masses by information sources A and B, and φ is defined
as the empty set. If K−1 is 0, then mA and mB are contradictory and the
sum defined by Dempster’s rule does not exist.

ESTIMATION OF MOTORWAY TRAVEL TIME

Test Site Description

Travel time data from 7 days in 2003 and 5 days in 2004 were avail-
able from a 7-km section of the Autoroutes Rhône-Alpes (AREA)
motorway in France. This section, illustrated in Figure 1, shows the
location of toll stations, ILD pairs in each lane, exit and entry ramps,
and rest area.

K m a m bA i B j
a bi j

−

∩ =

= − ( ) ( )⎡⎣ ⎤⎦∑1 1 5
φ

( )

m c K m a m bA i B j
a b ci j

( ) = ( ) ( )⎡⎣ ⎤⎦
∩ =
∑ ( )4

S h hi i( ) ≤ ( )Pl ( )3

Pl h S hi i( ) = − ( )1 2( )



Data Sources

The inductive loop detector pairs give 6-min aggregated volume,
occupancy, and speed data. Toll collection data provide entry and exit
times at toll gates, identification of entry and exit toll gates, class of
vehicle (car, heavy vehicle, truck, motorcycle, bus), and means of
payment (e.g., electronic toll tag, real-time credit card payment,
or cash).

Implementation of the Dempster–Shafer fusion process requires
the available data to be subjected to some preliminary processing to
convert them into travel times and travel time intervals, where each
travel time interval is assigned a likelihood by using a probability
mass value. This procedure is the primary factor in determining the
success of the fusion operation.

Travel Time Derivation from Loop 
and Toll Collection Data

Information conveyed by each source is converted to travel time before
fusion occurs. ILD data are transformed to travel time data by a speed
extrapolation method (11). This simple strategy estimates speed
between loop detector stations from upstream and downstream mea-
surements by assuming that measurements made by a detector located
at a fixed point are still representative of the traffic state prevailing
in its neighborhood N. The associated speed field is given by

where

xu and xd = upstream and downstream locations, respectively, of
the loop detectors,

D = length of the section between the two detectors, and
Nx = neighborhood of position x defined by Nxs = {x; � x − xs �

≤ D/2}.

Toll collection data are filtered with a statistical-based filter (12) to
remove extremely long and short travel times (outliers or whiskers).
These extreme values are due to stops for resting or entering service
areas located within the test section shown in Figure 1 and to motor-
cycles that often travel between lanes and do not experience prevail-
ing congestion. The filtered data are then aggregated to calculate the
6-min travel time intervals. Electronic toll tag data are extracted from
toll collection data and used as a supplementary source to enhance
ILD-computed travel times.
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Once these steps are completed, travel time is separated into four
intervals to form the frame of discernment. They are defined according
to prevailing traffic conditions

so that

so that

so that

so that

where TTff is free-flow travel time when vehicle speed is set equal
to the speed limit of 130 km/h (80 mph).

Figure 2 illustrates the travel time hypotheses with respect to
traffic-flow conditions before, during, and after a midday incident.
Thus, h1 represents free flow at the prevailing speed limit, h2 and h3

represent two stages of travel time during the onset or conclusion of
congestion, and h4 represents travel time at peak congestion.

The travel times are then further segregated by time of day to deter-
mine whether probability mass values are sensitive to time of day.
Similar operations are performed for the rest of the travel time data
collected on the remaining 6 days of 2003.

IMPLEMENTATION OF DEMPSTER–SHAFER
INFERENCE DATA FUSION

Generation of Probability Mass Functions

As there is no standard method to generate probability mass functions,
it was decided to generate and combine them with a statistical training
procedure using confusion matrices. Confusion matrices, one for
each data source under consideration, were created from the 24-h and
time-of-day travel time data as follows. The first confusion matrix
compared the “true” travel times computed using all the toll collection
data (electronic toll tag + real-time credit card payments + cash) with
estimated travel times computed from the inductive loop sensor pairs
over a 24-h data collection period. The second confusion matrix
replaced the estimated loop travel times with travel times computed
using only ETC data. The true travel times were the same as before.
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FIGURE 1 Motorway section over which travel time data were
collected and analyzed (TS � toll station, RA � rest area).



The entries in the confusion matrix are the numbers of instances n
a travel time hypothesis estimated by a source agrees with the true
travel time over the data collection period. Accordingly, the confusion
matrix (CMj) for each source j, with j ∈ {ILD, ETC} is specified as
shown in Equation 11 as a p × p table that shows n ( j )

ik , where p des-
ignates the number of travel time hypotheses and i and k are the row
and column indices, respectively.

The CMj displays the similarity between the travel time hypothesis
decision vector estimated by each source and the vector representing
the true hypothesis. The diagonal elements are the number of correctly
classified travel time intervals from each data source, while the
off-diagonal elements are the number of misclassified travel time
intervals. Thus, n( j )

ii is the number of instances the travel time interval
hi estimated by data source j ∈ {ILD, ETC} matches the true travel
time interval hj derived from all toll collection data (electronic toll
tag + real-time credit card payments + cash), and n( j )

ik , i ≠ k, is the
number of instances data source j ∈ {ILD, ETC} estimated travel time
interval hi when the true one was hk. The matrix is updated each time a
travel time estimate is processed during the data collection period.

As an example of how the matrix is populated, consider the four-
hypothesis problem. At the first 6-min time step, the travel time
interval estimated by the inductive loops is h2 and the true travel time
is also h2. Thus, the confusion matrix appears as

after the first time step data are incorporated. Inductive loop data from
the second time step estimate the travel time interval as h2, while the
true travel time is h3. Accordingly, the matrix appears as

CMILD =
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after the second time step. If the third sample contains the same infor-
mation as the first, then the value of n22

ILD is updated to 2. Column
two is continually updated and the other columns are populated with
inductive loop travel time estimates as data collection proceeds over
various traffic flow conditions that occur during the 24-h period.

The probability mass functions are found by normalizing the confu-
sion matrix of Equation 11 by either of two strategies. For simplicity
of notation, the j superscript that appeared with n is dropped.

Strategy 1. The frame of discernment θ is included as a potential
travel time decision to model ignorance about travel time on the part
of the data source. Normalization of the confusion matrix occurs by
dividing each matrix element by the total of all the matrix elements.
Probability masses m are assigned to each travel time hypothesis
as follows: if source j gives hk as an output, then select the kth col-
umn of confusion matrix CMj—for example, {ñ1k, . . . , ñpk}, where
ñik = nik /Σi,k nik and p = number of travel time hypotheses—and define

Strategy 2. Here one is always able to select one of the travel time
hypotheses as the output of the data source. Normalization is performed
by column (i.e., in each column, the entries are divided by the total
of the column entries) so that each column vector representing prob-
ability mass values sums to unity. Probability masses m are assigned
to each travel time hypothesis as follows: if source j gives hk as an
output, then select the kth column of confusion matrix CMj —for
example, {n�1k, . . . , n�pk}, where n�ik = nik /Σi nik—and define

To investigate the sensitivity of probability mass values to time of
day, other confusion matrices were derived by the same procedures
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but with travel time data segregated by time of day for the morning
(time period P1: 0600 to 1300), afternoon (time period P2: 1300
to 2000), and night (time period P3: 2000 to 0600). The time-of-
day formation of the confusion matrices corresponding to travel time
hypotheses is shown in Figure 3 for ILD data. The same method
applies to ETC data. The process of using probability masses derived
from time-of-day considerations is referred to as dynamic fusion,
while the process that uses probability masses derived from the entire
ensemble of 24-h data is referred to as static fusion.

Implementation of Dempster’s Rule

The application of Dempster’s rule is demonstrated by using the
probability mass values found from the confusion matrices represent-
ing travel times calculated from ILD data and ETC + real-time credit
card payment data. The corresponding probability masses are shown
in Tables 1 and 2 for application of Strategy 2. The hypotheses are
defined in Equations 7 through 10.

Dempster’s rule is implemented by forming a matrix with the
probability masses that are to be combined entered along the first
column and last row as shown in Table 3. Inner matrix (row, column)
elements are computed as the product of the probability mass in the
same row of the first column and the same column of the last row.
The proposition corresponding to a matrix element is equal to the
conjunction of the propositions that are multiplied.

For example, consider the fusion of the column probability
mass vectors for h2. The h2 column vector from Table 1 is entered
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along the first column and the h2 column vector from Table 2 is
entered in the last row of Table 3. Superscripts 1 and 2 correspond
to the ILD and ETC + real-time credit card payments source,
respectively.

In this example, matrix element (1, 2) represents the proposition
formed by the conjunction of m(1)(h1) from ILD data and m(2)(h1)
from ETC data. The un-normalized probability mass m(h1) associated
with the intersection of the propositions (i.e., travel time less than
1.1 × free-flow travel time) is

The off-diagonal elements in Table 3 are members of the empty
set φ. Therefore, the mass assigned to φ must be redistributed to

m h m h m h1
1

1
2
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FIGURE 3 Confusion matrix derivation using travel times from ILD data.

TABLE 1 Probability Masses for
Travel Time Hypotheses from ILDs
and True Values from All Toll
Collection Data over 24 h

h1 h2 h3 h4

h1 1 0.20 0.00 0.00

h2 0.00 0.61 0.08 0.00

h3 0.00 0.16 0.69 0.05

h4 0.00 0.03 0.23 0.95



the nonempty set elements by using the value K from Equation 5,
where

and

As shown in Table 4, the probability masses corresponding to
the null set elements are set to 0 and the probability masses of the
nonempty set elements are multiplied by K so that their sum is unity.
This procedure results in hypothesis h2 having the largest probability
mass, equal to

Therefore, it is selected as the most probable travel time hypothesis
and the output of the Dempster–Shafer fusion process (i.e., travel times
are between 1.1 × TTff and 1.3 × TTff).
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When three or more information sources contribute data, the appli-
cation of Dempster’s rule is repeated recursively by using the results
of the first application of the rule as the probability mass elements
of the first column and the probability mass values from the third
information source as the elements of the last row (or vice versa). The
final output is obtained after the probability masses from all the
information sources have been incorporated.

RESULTS AND DISCUSSION

Dempster–Shafer inference was applied to the 2003 data to compute
probability mass values. The same values were used with the 2004 data
for validation purposes. The combined travel times from ILD estimates
and ETC estimates were calculated for each data set.

Outputs of the fusion process, using the two strategies defined by
Equations 14 and 15, were compared with the actual travel time
intervals derived from all toll collection data. Performance of the
applied fusion strategies in terms of correct classification percentage
is presented in Table 5. Two scenarios that reflect different automated
toll payment market penetration rates are listed for each strategy.
Scenario A uses only ETC data collected during the selected study
days to compute travel time, whereas Scenario B uses both ETC data
and real-time credit card payment transactions to compute travel time.

Table 5 shows that the ILD source almost always outperforms
the ETC travel time data. The percentage of correct classification
obtained from fusion is always better than that of individual sources.
Furthermore, Strategy 2 exhibits more improvement than Strategy 1.

The sensitivity of fusion performance to a varying ETC market
penetration rate was explored for each of the three time-of-day periods
using the market penetration data in Figure 4.

Examination of the evolution of the correct classification percentage
by ETC market penetration rates in Table 5 shows that an increase in
the ETC market penetration (from Scenario A to Scenario B) results in
better performance for the individual source and the fused data sets.
This situation occurs because the true or reference travel time is com-
puted from all toll data. Therefore, as more electronic toll data are used
(here through the addition of the real-time credit card transactions to

TABLE 2 Probability Masses for
Travel Time Hypotheses from ETC 
and True Values from All Toll
Collection Data over 24 h

h1 h2 h3 h4

h1 0.36 0.03 0.00 0.00

h2 0.60 0.35 0.01 0.00

h3 0.04 0.51 0.35 0.28

h4 0.00 0.11 0.64 0.72

TABLE 3 Application of Dempster’s Rule for Combining Probability Masses 
for Travel Time Hypothesis h2 from ILD and ETC Data

m(2)(h1) = 0.03 m(2)(h2) = 0.35 m(2)(h3) = 0.51 m(2)(h4) = 0.11

m(1)(h1) = 0.20 m(h1) = 0.0060 m(φ) = 0.0700 m(φ) = 0.1020 m(φ) = 0.0220

m(1)(h2) = 0.61 m(φ) = 0.0183 m(h2) = 0.2135 m(φ) = 0.3111 m(φ) = 0.0671

m(1)(h3) = 0.16 m(φ) = 0.0048 m(φ) = 0.0560 m(h3) = 0.0816 m(φ) = 0.0176

m(1)(h4) = 0.03 m(φ) = 0.0009 m(φ) = 0.0105 m(φ) = 0.0153 m(h4) = 0.0033

TABLE 4 Normalized Probability Masses for Travel Time Hypotheses

m(2)(h1) = 0.03 m(2)(h2) = 0.35 m(2)(h3) = 0.51 m(2)(h4) = 0.11

m(1)(h1) = 0.20 m(h1) = 0.02 m(φ) = 0 m(φ) = 0 m(φ) = 0

m(1)(h2) = 0.61 m(φ) = 0 m(h2) = 0.70 m(φ) = 0 m(φ) = 0

m(1)(h3) = 0.16 m(φ) = 0 m(φ) = 0 m(h3) = 0.27 m(φ) = 0

m(1)(h4) = 0.03 m(φ) = 0 m(φ) = 0 m(φ) = 0 m(h4) = 0.01



the ETC data), the more the electronic toll data set resembles the ref-
erence value data set. Strategy 1 is less sensitive to variation in ETC
rates than Strategy 2, where the percentage of correct classification
is strongly dependent on the increase in ETC market penetration.
However, Strategy 1 performs worse overall than Strategy 2.

Dynamic fusion, which incorporates the temporal dimension of
the data sources, is generally as good as or better than static fusion
(in 11 of 12 cases). According to these results, the best strategy appears
to be dynamic fusion using Strategy 2. Thus, Strategy 2 is selected for
fusing travel times from the 2004 ILD and ETC data. The probability
mass values were kept the same as those computed from the 2003 data
and applied to the 2004 travel time data. Results of this validation
process are shown in Table 6.

Analysis of the 2004 data reveals two principal findings:

• Contrary to 2003, the ETC travel time data source outperforms
the ILD data source except for Scenario A in time period P3. The per-
cent of correct classification increases with an increase in market pen-
etration of ETC data when changing from Scenario A to Scenario B.
This trend is more pronounced for individual data sources.

• Dynamic fusion is generally as good as or better than static fusion
(in five of six cases). However, fusion does not always outperform
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individual sources. This situation is especially apparent in Strategy 1
(not shown), which almost never improves in overall performance
(in one of six cases). The results with Strategy 2 and Scenario B are
better only for dynamic fusion and only in P1 and P3 (i.e., two of
six cases).

This disappointing result for the fusion process can be explained
by the structural change in the motorway ETC deployment policy
that resulted in increased market penetration of ETC tags. Both the
Scenario A and Scenario B ETC market penetration percentages are
similar in 2003 and 2004, except for P2 in 2004 (see 2004 data in
Figure 4 that show almost constant market penetration for Scenario A
and Scenario B during P2), which explains why Strategy 2–Scenario B
fusion performs poorly in P2 of 2004.

CONCLUSIONS

Application of Dempster–Shafer inference to estimate travel times by
combining data from two sources was presented. This technique is
conceptually clear, easy to apply, and effective for processing infor-
mation from different data sources. The output of the process can offer

TABLE 5 Individual Sources and Fusion Schemes in Terms of Correct Classification (%), 2003 Data

Fusion of Fusion of Fusion of Fusion of
ILD + ETC ILD + ETC ILD + ETC ILD + ETC

ETC Data ETC Data Data (SA) + CC Data Data (SA) + CC Data
Time Type of ILD Data Only in SA Only in SB Using (SB) Using Using (SB) Using
Period Fusion Only (% of total tolls) (% of total tolls) Strategy 1 Strategy 1 Strategy 2 Strategy 2

P1 Static 26 3 (32) 17 (42) 29 31 29 32
Dynamic 29 32 29 34

P2 Static 29 12 (19) 23 (28) 32 34 37 40
Dynamic 32 34 34 40

P3 Static 31 1 (34) 10 (46) 31 33 31 35
Dynamic 32 37 32 37

NOTE: SA = Scenario A, SB = Scenario B, CC = credit card.
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timely updates to assist in traffic management decision making as
it is designed to extract whatever information exists in an other-
wise incomplete database derived from a variety of data sources.
The benefits gained from implementing the system on the AREA
motorway in the Rhône-Alpes region of France are highly trans-
ferable to other locations. Dempster–Shafer inference supports
fast identification of travel time changes induced by congestion
and thus can be used to support the timely display of traffic advi-
sory messages and removal of incidents that improve the quality
of transportation system services to motorists and transportation
system managers.

Implementation of the Dempster–Shafer data fusion technique
indicates that the most critical item influencing its effectiveness is
accurate probability mass values for each data source that contributes
information. One technique for generating the probability mass values
was described, although others exist (11). Further evaluation of
the technique is important for its validation before it can be applied
operationally. For example, the data fusion method should be assessed
in other regions, over longer sections of highway, and with other data
sources such as mobile telephone data. Issues such as the effect of
the fusion technique on the time interval over which the travel time
estimate is valid also need to be explored.
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TABLE 6 Individual Sources and Fusion Schemes in Terms of Correct Classification (%), 2004 Data

Fusion of Fusion of
ILD + ETC ILD + ETC

ETC Data ETC + CC Data (SA) + CC Data
Type of ILD Data Only in SA Data in SB Using (SB) Using

Time Period Fusion Only (% of total tolls) (% of total tolls) Strategy 2 Strategy 2

P1 Static 4 12 (29) 50 (42) 15 04
Dynamic 04 58

P2 Static 9 19 (22) 48 (39) 21 13
Dynamic 21 13

P3 Static 11 5 (33) 18 (48) 11 11
Dynamic 11 27


