
1

Discretization of Parametrizable Signal Manifolds
Elif Vural and Pascal Frossard

Abstract—Transformation-invariant analysis of signals often
requires the computation of the distance from a test pattern
to a transformation manifold. In particular, the estimation of
the distances between a transformed query signal and several
transformation manifolds representing different classes provides
essential information for the classification of the signal. In
many applications the computation of the exact distance to
the manifold is costly, whereas an efficient practical solution
is the approximation of the manifold distance with the aid
of a manifold grid. In this paper, we consider a setting with
transformation manifolds of known parameterization. We first
present an algorithm for the selection of samples from a single
manifold that permits to minimize the average error in the
manifold distance estimation. Then we propose a method for the
joint discretization of multiple manifolds that represent different
signal classes, where we optimize the transformation-invariant
classification accuracy yielded by the discrete manifold represen-
tation. Experimental results show that sampling each manifold
individually by minimizing the manifold distance estimation
error outperforms baseline sampling solutions with respect to
registration and classification accuracy. Performing an additional
joint optimization on all samples improves the classification
performance further. Moreover, given a fixed total number
of samples to be selected from all manifolds, an asymmetric
distribution of samples to different manifolds depending on their
geometric structures may also increase the classification accuracy
in comparison with the equal distribution of samples.

Index Terms—Manifold discretization, transformation mani-
folds, manifold distance, pattern transformations, pattern classi-
fication

I. INTRODUCTION

COMPARED to traditional signal processing techniques
where the treatment of signals is performed in the high-

dimensional signal space, the characterization of signal sets
via low-dimensional manifold models have several advantages.
Particularly in image processing, manifold models have been
seen to provide more compact and efficient signal representa-
tions as well as assisting the analysis of data. Manifold models
for signals have recently been studied in several research areas
such as dimensionality reduction [1], [2], image registration
[3], [4] and transformation-invariant pattern classification [5].

A signal manifold in a high-dimensional signal space is
a set of signals that can be mapped to a lower-dimensional
parameter space. In [6] Peyré et al. demonstrate several ex-
amples of parametrizable signals using local patch manifolds,
and examine inverse problem regularizations with manifold
models and applications to image inpainting. Similarly, Wakin
et al. study image appearance manifolds (IAM) in [7], which
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are image sets defined by a few generating articulation pa-
rameters. In this work, we consider transformation manifolds
that are defined as signal sets which can be described by
parametrizable transformations of a reference signal model.
An instance of transformation manifold can be a pattern
transformation manifold, which refers to the family of patterns
obtained by applying a certain set of geometric transformations
to a reference pattern; or the observation manifold of an
object, which consists of its images captured under varying
viewpoints. Among several manifold models, transformation
manifolds are of specific interest as they provide a basis
for performing transformation-invariant analysis of signals
that have been exposed to geometric transformations. For
instance, it is possible to classify a transformed query signal
by computing the distance between the signal and each of the
transformation manifolds that represent different classes. The
class label of the signal is then estimated to be the same as
the class label of the manifold that has the smallest distance
to the signal.

The computation of the manifold distance is in general a
demanding task, mainly due to the variety and complexity
of the involved models. There have been several research
efforts addressing the manifold distance computation problem.
The tangent distance provides an estimation of the manifold
distance through local linearity assumptions [8]. However,
this approach is likely to suffer from local minima, which
is improved by the investigation of the tangent distance in a
multiresolution manner [5]. While these are generic methods
applicable to a large set of manifold-modeled signals, there
are also some works proposing transformation estimation
solutions for particular types of manifolds, such as those
generated by 2D pattern transformations [4], [9].

Although there have been many attempts, the general prob-
lem of manifold distance estimation still retains its challenges
as it usually involves high computational complexity. In order
to estimate the manifold distance, it is a practical solution to
represent the manifold by a finite grid of manifold samples,
where the distance between a space point and its projection
onto the manifold is approximated by the distance between the
point and the nearest manifold sample. The usage of such a
grid improves the distance estimation complexity immensely,
possibly at the price of a lower distance accuracy.

The choice of the manifold grid has considerable influence
on the accuracy of the distance estimation. In this work, we
study the distance-based discretization of signal manifolds
of known parameterization. We build on our previous work,
where we propose a manifold discretization algorithm that
minimizes the manifold distance estimation error stemming
from the representation of the manifold by finitely many grid
points [10]. Our discretization method bears some resemblance
to the LBG vector quantization algorithm [11] due to the al-
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ternating steps of optimization that compute the representative
samples for a given space partition, and respectively the parti-
tion for a given set of samples. However, the proposed method
differs essentially from the LBG algorithm, since it targets the
minimization of the manifold distance with samples positioned
on the manifold and does not have a signal approximation
objective. Noting the dependency between the registration and
classification efficiencies, we extend this sampling solution to
a setting with several transformation manifolds representing
different class models, where we optimize all manifold sam-
ples in a joint manner such that the relative geometries of
different manifolds are taken into account. The experimental
results show that our discretization approach is significantly
better than basic discretizations such as random grids or
regular grids in the parameter domain in terms of registration
and classification accuracy. The classification performance is
further improved when the relative properties of the manifolds
are also considered in addition to their individual properties
in the sampling.

Meanwhile, some state-of-the-art solutions to surface dis-
cretization are as follows. It is typical to achieve the sampling
in a straightforward way by generating a grid regular in the
parameter domain. However, especially when the number of
manifold samples is limited, a regular discretization in the
parameter space is not guaranteed to offer a good performance.
Structured grid generation has been well-studied especially
for analytical two-dimensional surfaces in R3, mostly for
the purpose of obtaining finite-difference solutions to partial
differential equations [12]. On the other hand, it is also
possible to find sampling solutions for surfaces represented in
non-analytical forms such as meshes [13]. Even though some
of these sampling methods may in principle be generalized
for arbitrary dimensional manifolds, the targeted applications
must be taken into account in grid generation.

The paper is organized as follows: In Section II, we for-
mulate the utilization of transformation manifolds in signal
classification and set our notation. In Section III we overview
the discretization of parametric signal manifolds based on
distance estimation, whereas in Section IV we propose an
extension of the registration-based sampling solution for clas-
sification. We present the experimental results obtained on
some transformation manifolds in Section V, and conclude
in Section VI.

II. MANIFOLD MODELS IN TRANSFORMATION-INVARIANT
SIGNAL ANALYSIS

The analysis of transformed signals in registration or classi-
fication settings mostly consists in estimating their distance or
projection to transformation manifolds. Let M ⊂ Rn denote
a set of signals conforming to a manifold model defined
over the parameter domain Λ ⊂ Rd. Then, M is given by
M = {U(λ), λ ∈ Λ}, where U denotes the mapping from the
d-dimensional parameter domain Λ to the set of n-dimensional
signals. As an example, consider a reference visual pattern,
and the family of patterns generated by applying arbitrary ro-
tations and scale changes to the reference pattern. Then, every
combination of rotation ψ and scale s defines a parameter

vector λ = (ψ, s), and the set of constructed patterns lies on
a pattern transformation manifold M = {U(λ), λ = (ψ, s)}
of intrinsic dimension d = 2. Image appearance manifolds
[7] or image parameter articulation manifolds [14] constitute
other examples of the manifolds we study. Although we focus
on transformation manifolds in this work, we maintain a
generic formulation that it is applicable to parametric signal
manifolds in general. We also note that parametrizable signal
manifolds are not restricted to image manifolds, which could
find examples within acoustic and seismic signals for instance
[6], [15].

Let x ∈ Rn be a signal belonging to the space of n-
dimensional digital signals. We denote the distance of x to
the manifold M as D(x,M) = minλ∈Λ{d(x, U(λ))}, where
the distance function d(x, y) is taken as the `2-distance ‖x−y‖
throughout this work. Then, a projection y of x onto the mani-
fold is a manifold point with minimum distance to x, i.e., y =
U(λ∗), for some λ∗ such that λ∗ = arg minλ∈Λ{d(x, U(λ))}.
The projection of a signal onto a transformation manifold is
typically associated with the registration of the signal with
respect to a transformation model. Given a signal x with an
unknown geometric transformation and the related transfor-
mation manifold M, the estimation of the transformation that
best represents x corresponds to finding the point of M with
smallest distance to x.

Now let us consider a setting with multiple signal manifolds,
each of which represents the transformation model of a dif-
ferent class. Let M1,M2, · · · ,MM ⊂ Rn be smooth1 man-
ifolds of M different signal classes defined on the parameter
domains Λ1,Λ2, · · · ,ΛM by the mappings U1, U2, · · · , UM ,
where Um : Λm →Mm, m = 1, · · · ,M . We assume that all
{Mm} are submanifolds of the same Euclidean space Rn,
however, the parameter domains {Λm} may be subsets of
different spaces. Let x ∈ Rn be a query signal of unknown
class that has undergone an unknown transformation. Then,
provided that the transformation manifolds {Mm} constitute
sufficiently accurate models for the representation of the
involved signal classes, x belongs to the same class as the
manifold with minimum distance to it, i.e., the class label l(x)
of x is given by

l(x) = arg min
m

D(x,Mm), m = 1, · · · ,M. (1)

Now let us consider only two manifolds Mm and Mr

representing two different class models. In order to represent
the sets of signals that belong to the same class as each of
these two manifolds, we define the half-spaces2 Hmr and
Hrm as follows: We denote by Hmr the set of points whose
distance to Mm is smaller than their distance to Mr (notice
that Hmr 6= Hrm with our notation):

Definition 1:

Hmr = {x ∈ Rn : D(x,Mm) < D(x,Mr)}. (2)

1In [7] it is shown that differentiability of a manifold fails in the cases
where the generating model involves sharp edges, however, approximate
differentiable representations of such manifolds can be obtained by their
regularization.

2Although in the standard definition, the boundary surface determining a
half-space is an affine hyperplane, here we generalize the term to include the
case where the boundary is a hypersurface.
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The notation S in (2) denotes the closure of the set S. Note
that Hmr is defined in this way considering the degenerate
cases that may be caused by manifold intersections. We then
define the decision surface Bmr as the boundary of the half-
space Hmr,

Definition 2:

Bmr = ∂Hmr. (3)

Bmr is a combination of hypersurfaces, i.e. a union of (n−1)-
dimensional manifolds in Rn.

If we consider M class representative manifolds instead of
two, the set of space signals belonging to the class represented
by Mm are given by the approximation region Hm ⊂ Rn of
Mm:

Definition 3:

Hm =
⋂

r∈{1,··· ,M}\{m}

Hmr . (4)

Finally, in order to adapt the decision surface Bmr determined
by two manifolds to the case of multiple manifolds, we define
the combined decision surface B,

Definition 4:

B =
M⋃
m=1

∂Hm, (5)

where the notation ∂S denotes the boundary of the set S.
The combined decision surface B is a collection of subsets
of all decision surfaces Bmr, i.e., B ⊂

⋃
m 6=r Bmr. It forms

a boundary between different portions of the space, where
each of these portions belongs to a different class as imposed
by the manifoldsM1,M2, · · · ,MM . An illustration of class
representative transformation manifolds, the approximation
regions Hm of manifolds, and the decision surface B is given
in Fig. 1.

Now, having set our notation, we remark the following.
The registration problem consists in obtaining the projection
of a signal x onto a manifold M, and the classification of
the signal x corresponds to the determination of the approx-
imation region Hm it lies in. The exact knowledge of the
manifolds determines the projection and class label of a signal
perfectly. Although a discrete representation is less accurate,
it reduces significantly the complexities of the registration and
classification problems, and the requirement for storage space.
The accuracy of the discretization depends on its capability in
approximating the manifold distance. In Sections III and IV,
the registration and classification accuracies of discretizations
are formulated and sampling solutions are proposed.

III. MANIFOLD DISCRETIZATION FOR MINIMAL
DISTANCE ESTIMATION ERROR

In this section, we describe a solution for manifold dis-
cretization such that the manifold distance estimation error
caused by representing the manifold with a finite number
of samples is minimized. Note that the main purpose of the
sampling scheme proposed here is the accurate estimation of
the manifold distance for registration applications rather than
the approximation of the manifold, which are not necessarily

M1

M2
M3B

H1

H2

H3

Fig. 1. Illustration of transformation-invariant signal classification via
transformation manifolds: M1, M2, M3 are three manifolds representing
different classes; H1, H2, and H3 are their respective approximation regions;
and B is the combined decision surface.

equivalent. We build on [10] and present an iterative approach
for the optimization of the manifold samples.

The discretization of a manifold M consists in selecting a
predetermined number N of manifold points, i.e., a sample
set S = {Si} = {U(λi)} ⊂ M, i = 1, · · · , N for some
{λ1, · · · , λN} ⊂ Λ.

We would like to select a set of samples that minimizes the
total manifold distance estimation error E over R, where R is
a bounded and piecewise connected region in the space Rn.
We consider R to be a region of interest which depends on the
application. For instance, in the case of images one can define
R as a hyperrectangular region R = {x ∈ Rn : ai ≤ xi ≤ bi}
with the typical values of 0 and 255 for the parameters ai and
bi. We define the error E by

E =
∫
R

(D2(x,S)−D2(x,M)) dx, (6)

where D(x,S) = mini=1,2,··· ,N{d(x, Si)} denotes the dis-
tance between x and the sample set S. The formulation of the
error in terms of the squared distances is due to the ease of
analytical manipulation.

For a given sample set, one can partition R into N regions
as R =

⋃N
i=1Ri, where each Ri is a region consisting of

points with smallest `2-distance to Si among all samples, i.e.,
Ri = {x ∈ R : d(x, Si) ≤ d(x, Sj),∀j ∈ {1, · · · , N}}.
Hence, the total manifold distance estimation error becomes

E =
N∑
i=1

Ei =
N∑
i=1

∫
Ri

(d2(x, Si)−D2(x,M)) dx. (7)

In order to minimize the error E, we follow an iterative
optimization procedure. In each iteration of the algorithm,
we first determine the partition regions corresponding to the
samples, and then optimize each sample individually such
that the error Ei in the regarding region is minimized. Once
the partition is determined, the minimization of the manifold
distance estimation error Ei within a specific region Ri is
achieved as follows. The error term Ei can be rearranged as

Ei =
∫
Ri

d2(x, Si) dx−
∫
Ri

D2(x,M) dx,

where the second integration depends only on Ri, and is
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constant with respect to Si. Therefore, Ei is given by

Ei =
∫
Ri

d2(x, Si) dx+ ci

=
∫
Ri

xTx dx− 2ST
i

∫
Ri

x dx+ ViS
T
i Si + ci,

where ci is a constant independent of Si, and Vi =
∫
Ri
dx is

the volume of the region Ri. Denoting the centroid of Ri by
Gi = (

∫
Ri
x dx)/(

∫
Ri
dx), we get

Ei =
∫
Ri

xTx dx+ Vi(−2ST
i Gi + ST

i Si) + ci

= Vi(ST
i Si − 2ST

i Gi) + c′i,

where we express the sum of the terms independent of Si
by c′i. As Ei differs from ‖Si − Gi‖2 only up to a positive
multiplicative factor and an additive term constant with respect
to Si, one can equivalently minimize

εi = ‖Si −Gi‖2 (8)

at each iteration of the algorithm. This actually means that Si
should be selected as the manifold point closest to the centroid
of the region Ri.

The following is a summary of the procedure we apply for
obtaining a manifold discretization that minimizes the total
manifold distance estimation error. Given the available domain
of parameters and the mapping defining the manifold, we begin
with an initial sample set S(0) = {Si(0)} on the manifold,
which is possibly randomly selected. We optimize the sample
set iteratively. In each kth iteration of the algorithm, we first
compute the regions {Ri(k)} that partition R with respect
to the manifold samples {Si(k)}, and then we modify each
sample Si(k) individually to obtain the new sample Si(k+ 1)
such that the manifold distance estimation error given by (8)
is minimized in the corresponding region. The new sample
Si(k + 1) is the projection of the centroid Gi(k) onto the
manifold. Iterations are repeated until improvements become
negligible. We call this algorithm Registration-Efficient Man-
ifold Discretization (REMD). An iteration of the algorithm is
illustrated in Fig. 2, and the pseudocode is given in Algorithm
1.

Assuming that the feasible domain Λ of parameter vectors is
compact and the mapping U is bounded, for a given number of
samples N , there exists a solution S∗ that globally minimizes
the total error E in (6). At each iteration of the discussed
method, first the partition regions are updated and then the
samples are readjusted, both of which are modifications that
either reduce E or retain it. Since the error E is non-increasing
throughout the iterations and is also lower bounded, the
algorithm converges. However, in general the cost function is
a non-convex, complicated function of the parameter vectors;
therefore, the algorithm is not guaranteed to converge to
the globally optimal solution. This could be mitigated by
the choice of a good initial distribution of samples. For
instance, in order to begin with a fair and balanced sample
distribution, a preliminary stage can be added before the main

S  (k)1G     (k)1 

G  (k) 2

G  (k) 3

S  (k+1)1

S  (k)2
S  (k+1)2 S  (k)3

S  (k+1)3

M

Fig. 2. Illustration of a single iteration of the algorithm with three samples:
Each Gi(k) is the centroid of the partition region corresponding to the sample
Si(k) at the kth iteration. The updated sample Si(k + 1) is the projection
of the centroid Gi(k) onto the manifold.

iterations. Here one can impose the condition that the pairwise
distance between any two samples in the ambient space or the
parameter space is larger than some threshold value.

Algorithm 1 Registration-Efficient Manifold Discretization
1: Input:

Λ: Feasible domain of parameter vectors
U : Mapping from parameter domain Λ to manifold M
N : Number of manifold samples

2: Initialization:
3: Choose an initial set of manifold samples S(0) = {Si(0)},
i = 1, · · · , N .

4: k = 0.
5: repeat
6: Determine the partition regions {Ri(k)}.
7: Compute the centroids {Gi(k)} of the regions.
8: Update each sample Si(k) to Si(k + 1), which is the

projection of the centroid Gi(k) on the manifold.
9: k = k + 1.

10: until The difference between S(k) and S(k − 1) is
insignificant

11: S = S(k).
12: Output:
S = {Si}: A set of manifold samples

IV. CLASSIFICATION-BASED DISCRETIZATION OF
MULTIPLE MANIFOLDS

We have examined above a discretization solution for a sin-
gle signal manifold based on the minimization of the distance
estimation error given by the approximation of the manifold
by a set of samples. Now we consider the sampling problem
with multiple signal manifolds. We consider that the manifold
distance is computed with a discrete set of samples from each
manifold, and the estimated class label of a signal is the label
of the nearest manifold sample. Clearly, the accuracy of a
sampling in classification is highly related to its accuracy in
distance approximation. One possible solution to the multiple
discretization problem is to sample each class representative
manifold independently with the REMD algorithm reviewed
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in Section III. Although this brings a certain improvement in
the classification performance compared to baseline sampling
solutions such as regular or random sampling, it fails in taking
into account the geometric properties of different manifolds
relative to each other. Therefore, a preferable approach to the
multiple discretization problem relies in the joint discretization
of all manifolds.

Furthermore, given a fixed budget for the total number of
manifold samples, which can also be interpreted as a fixed
computational complexity for classification, we would like
to determine how many samples should be selected from
each manifold such that the overall classification accuracy is
maximized. The convenience of representing a manifold by a
discrete sample set is highly dependent on the manifold geom-
etry. The sample budget may thus vary for different manifolds.
Moreover, in the determination of the budget allocation, the
relative dependencies of the manifolds must also be taken into
account. For instance, if a subgroup of manifolds are more
likely to lead to misclassifications because of their internal
resemblance, then it may be more preferable to allocate them
a higher number of samples.

In Section IV-A, we first analyze the classification accuracy
with a multiple manifold discretization, then in Section IV-B
we describe an iterative algorithm for sampling multiple signal
manifolds that aims to improve the classification accuracy
gradually. In Section IV-C we discuss some possible ap-
proaches for determining the allocation of the overall sample
budget to different manifolds.

A. Classification with Discrete Samples on Manifolds
The classification of signals with discretized manifolds can

be formulated as follows. We consider M signal manifolds
M1,M2, · · · ,MM , where each manifold Mm is approxi-
mated by the finite set

Sm = {Smi } = {Um(λmi )} ⊂ Mm (9)

of Nm samples, for i = 1, · · · , Nm and λmi ∈ Λm. The classi-
fication problem consists in determining the closest manifold
for each test signal. Given a signal x ∈ Rn, the estimation
l̂(x) of its true class label l(x) is determined by its nearest
neighbour among all manifold samples:

l̂(x) = arg min
m

D(x,Sm)

= arg min
m

(
min

i=1,..,Nm

d(x, Smi )
)
.

(10)

We analyze now the classification error induced by the
discretization of manifolds. Let R ⊂ Rn denote a bounded
and piecewise connected region of interest in the signal space.
For each manifold Mm, we define a partitioning of R into
regions {Rmi }, where each region consists of points closest to
a specific sample Smi of Mm among its all samples,

R =
Nm⋃
i=1

Rmi ,

Rmi = {x ∈ R : d(x, Smi ) ≤ d(x, Smj ),
j ∈ {1, · · · , Nm}}.

(11)

Now, consider a signal x ∈ Rmi that is of the class given by
Mm, i.e., x ∈ Rmi ∩ Hm. Depending on the distribution of
samples, x can be correctly classified only if its distance to
Smi is the smallest among the distances to all other manifold
samples. Thus, we define a function Emi : Rmi → {0, 1} such
that it represents the classification error for signals of class m
in the region Rmi :

Emi (x) =
{

1 if x ∈ Hm and d(x, Smi ) > D
(
x,
⋃
r 6=m Sr

)
0 otherwise

(12)
Then, from (12) we define the total classification error E,

E =
M∑
m=1

Nm∑
i=1

∫
Rm

i

Emi (x) dx. (13)

Notice that due to the definition of the error Emi (x), the total
classification error E corresponds to the sum of the volumes
of the regions in R where signals are not correctly classified.
Another source of misclassification associated with a sample
Smi corresponds to the points that are actually closer to another
manifold than Mm, but are misclassified as a result of being
closer to Smi than their nearest manifold sample of the correct
class. Hence, in analogy with Emi , we can define an alternative
classification error function Fmi : Rmi → {0, 1} as

Fmi (x) =
{

1 if x /∈ Hm and d(x, Smi ) < D
(
x,
⋃
r 6=m Sr

)
0 otherwise

,

(14)
which leads to the following alternative formulation of the
total classification error F :

F =
M∑
m=1

Nm∑
i=1

∫
Rm

i

Fmi (x) dx. (15)

The classification errors E in (13) and F in (15) are equal.
However, due to the two mentioned sources of misclassifica-
tion associated with a single sample Smi , we formulate the
classification error as the combination of the two, where the
reason for this choice is made more clear in the algorithm
description in Section IV-B. Hence we write the total classifi-
cation error as

ε =
1
2

M∑
m=1

Nm∑
i=1

∫
Rm

i

(
Emi (x) + Fmi (x)

)
dx, (16)

where ε = E = F .
Note that a geometric interpretation of the problem is the

following. Let R̃mi denote the region of space with smallest
distance to the sample Smi among the samples of all manifolds:

R̃mi = {x ∈ R : d(x, Smi ) ≤ d(x, Srj ),
∀r ∈ {1, · · · ,M},∀j ∈ {1, · · · , Nr}},

(17)

where R̃mi ⊂ Rmi . Also, let Amrij denote the affine hyperplane
which is at equal distance to the two samples Smi and Srj
from two different manifolds Mm and Mr. In analogy with
the way that the decision surface B is defined in Section
II as the boundary for the determination of the true classes
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Fig. 3. Illustration of transformation-invariant signal classification via
transformation manifolds

l(x) of signals, let now A denote the decision surface which
determines the class label estimation l̂(x) of signals based
on the manifold approximations given by samples. Hence, we
define

A =
M⋃
m=1

∂
(Nm⋃
i=1

R̃mi
)
, (18)

where A ⊂
⋃
m,r,i,j Amrij . The definition of the classification

error function ε in (16) corresponds to the total volume of the
regions between the true boundary B and its approximation A.
Therefore, the problem of minimizing the classification error
can be regarded geometrically as the selection of the sample
sets

⋃M
m=1 Sm such that the resultingA constitutes an accurate

approximation of B inside R. This is illustrated in Fig. 3.

B. Discretization Algorithm

We would like to minimize the classification error ε in (16)
by optimizing the sample sets

⋃M
m=1 Sm. In order to achieve

this, we suggest an iterative procedure as follows. We start
with an initial set of samples. Then, in each iteration we
optimize one manifold sample Smi and try to reduce ε by
perturbing Smi . However, the dependence of the classification
error on the location of a sample Smi is fairly intricate, and it
is not simple to determine the optimal sample location. Hence,
in the minimization of the error, we adopt a constructive
approach rather than optimal, therefore, the search directions
in the perturbation of a sample may not always decrease the
overall error. In order to handle this, we accept an update on
a sample location only if it reduces the classification error.
After reaching a locally optimum error with the perturbation
of the single sample Smi , we repeat this process with different
manifold samples until convergence. The reduction of the
error at each step assures the convergence of the algorithm.
The overall procedure is not guaranteed to converge to the
globally optimal solution and results in a local minimum,
whose accuracy depends on the initialization of the samples.

In a single iteration of the algorithm, we would like to find
an update on Smi that reduces the error ε, where the rest of
the samples are considered to be fixed. The examination of
Eq. (16) reveals that the effect of the sample Smi on ε is

twofold. The terms Emi (x) and Fmi (x) involve the distance
of space points d(x, Smi ) to the sample Smi , but the region
of integration Rmi is also defined by the position of the
sample Smi . Hence, the classification error has a complicated
dependence on the sample location Smi . Let Θm

i and Φmi
denote the regions of Rmi where Emi (x) = 1 and Fmi (x) = 1
respectively (see Fig. 3):

Θm
i = {x ∈ Rmi ∩Hm :

d(x, Smi ) > D
(
x,
⋃
r 6=m

Sr
)
}, (19)

Φmi = {x ∈ Rmi \ Hm :

d(x, Smi ) < D
(
x,
⋃
r 6=m

Sr
)
}. (20)

The error terms in the expression (16) contributing to ε are
in fact the sum of the volumes of these two regions Θm

i and
Φmi . Therefore, in order to reduce the error ε, we seek an
update on Smi that decreases the volumes of Θm

i and Φmi . Let
Smi (k) be the location of the sample Smi at the kth iteration
of the search algorithm, and let Rmi (k), Θm

i (k), and Φmi (k)
be defined similarly. The definitions (19) and (20) suggest
that decreasing the distance d(x, Smi (k)) between the sample
and the points in Θm

i (k) reduces the misclassified portion
of Θm

i (k). Similarly, it is necessary to increase the distance
d(x, Smi (k)) between the sample and the points in Φmi (k) in
order to reduce the misclassified portion of Φmi (k). Hence, we
define the distance measures DΘ(Smi (k)) and DΦ(Smi (k)) as
follows:

DΘ(Smi (k)) =
∫

Θm
i (k)

d2(x, Smi (k)) dx, (21)

DΦ(Smi (k)) =
∫

Φm
i (k)

d2(x, Smi (k)) dx. (22)

As discussed in Section III, the minimization of DΘ(Smi (k)) is
possible by minimizing the distance d(θmi (k), Smi (k)), where
θmi (k) is the centroid of Θm

i (k). Similarly, in order to max-
imize DΦ(Smi (k)), one should maximize d(φmi (k), Smi (k)),
where φmi (k) is the centroid of Φmi (k). However, even an
update on Smi (k) that decreases DΘ(Smi (k)) and simultane-
ously increases DΦ(Smi (k)) does not guarantee that the total
classification error ε decreases. This is because in general
Θm
i (k + 1) 6⊂ Θm

i (k) and Φmi (k + 1) 6⊂ Φmi (k). Even if
the error is reduced within Θm

i (k), Θm
i (k+ 1) might contain

points that are not inside Θm
i (k) and actually increase ε. Still,

when it is aimed to reduce ε by perturbing only Smi (k) in a
given configuration of the samples and manifolds, curing the
immediate regions of misclassification Θm

i (k) and Φmi (k) is
a promising attempt. We thus propose to update the sample
Smi (k) in the following way as long as the overall error does
not increase.

Let µmi (k) and νmi (k) denote the parameter vectors corre-
sponding respectively to the projections of the centroids θmi (k)
and φmi (k) on the manifold. Then, the purpose of moving
Smi (k) closer to θmi (k) and away from φmi (k) leads to the
following two updates:



7

Smi (k + 1) = Um
(
(1− α)λmi (k) + αµmi (k)

)
such that α minimizes ε,

(23)

Smi (k + 1) = Um
(
(1 + β)λmi (k)− β νmi (k)

)
such that β minimizes ε,

(24)

where λmi (k) is the parameter vector defining Smi (k) and
both α and β are positive scalars. Hence we determine
the directions of perturbation with respect to the centroids
of the misclassified volumes, and we adjust the amount of
perturbation to obtain the largest decrease in the error. In this
way, we find a locally optimum sample location reducing the
misclassified portions of Θm

i (k) and Φmi (k). It also guarantees
that the possible penalty of creating new misclassified regions
by moving the sample is always smaller than the benefit of
correcting previous misclassifications. In the optimization of
a single sample Smi , we alternate between the updates in
(23) and (24) until convergence, where the parameters µmi (k)
and νmi (k) are updated after each perturbation. Then we
continue the optimization process by picking other manifold
samples and applying the same procedure until the classifi-
cation error converges. We call this algorithm Classification-
Driven Manifold Discretization (CMD) and give an overview
of it in Algorithm 2. Finally, we note that at each iteration
the perturbation of a manifold sample in the described way
corresponds to a one-dimensional search in the d-dimensional
parameter space. Although the algorithm is not guaranteed
to be optimal, it offers a compromise in the performance-
complexity trade-off.

C. Sample Budget Allocation

We have considered so far that the number of samples per
manifold is predetermined. We address now the problem of
the allocation of samples from a total budget to the different
manifolds. This allocation is driven by the properties of the
different manifolds. We propose two solutions for budget
allocation that can be paired with the CMD algorithm.

A first simple way of determining the sample budget be-
tween manifolds is the following. We initialize the sample set
of each manifold to be a dense grid on the manifold, and delete
samples progressively until the number of total samples meets
the budget constraint. We determine the sample to be deleted
based on the classification error associated with each sample.
Following the previously mentioned arguments, we delete a
grid point on one manifold where Θm

i is relatively small.
When the number of remaining grid points reaches the budget,
we optimize the resulting sample sets using CMD for the
final adjustment of sample locations. Since the optimization of
sample locations takes places after the budget allocation, we
name this approach Manifold Discretization with Predefined
Allocation (MDPA).

Secondly, we introduce a joint budget allocation and CMD
sample optimization solution where we allow the deletion
of a sample from one manifold to create a new sample in
another manifold during the iterations. In order to elaborate
on the transfer of samples between manifolds, we turn back

Algorithm 2 Classification-Driven Manifold Discretization
1: Input:

Λm: Feasible domains of parameter vectors
Um: Mappings from parameter domains Λm to manifolds
Mm, m = 1, · · · ,M⋃M
m=1 Sm(0) =

⋃M
m=1

⋃Nm

i=1{Smi (0)}: Initial set of man-
ifold samples

2: Initialization:
3: Initialize total classification error ε as defined in Eq. (16).
4: k = 0.
5: repeat
6: Pick (possibly randomly) a manifold Mm and a sam-

ple Smi from this manifold, m ∈ {1, · · · ,M}, i ∈
{1, · · · , Nm}.

7: repeat
8: Determine the misclassified region Θm

i (k) and the
parameter vector µmi (k).

9: Update Smi (k+ 1) = Um
(
(1−α)λmi (k) +αµmi (k)

)
such that α minimizes ε.

10: k = k + 1.
11: Determine the misclassified region Φmi (k) and the

parameter vector νmi (k).
12: Update Smi (k+ 1) = Um

(
(1 +β)λmi (k)−β νmi (k)

)
such that β minimizes ε.

13: k = k + 1.
14: until The location of sample Smi converges
15: until ε converges
16:
⋃M
m=1 Sm =

⋃M
m=1 Sm(k).

17: Output:⋃M
m=1 Sm: A set of representative samples for each man-

ifold

to the geometric interpretation of our problem formulation.
In a configuration with multiple manifolds, our definition of
the classification error is the total volume of the regions lying
between the piecewisely planar boundary surface A formed
by the sample sets and the true boundary surface B. As a
result, the classification accuracy of such a setting is directly
dependent on the approximability of the boundary surface
B by a piecewise linear model. A “well-behaved” manifold
region corresponding to a well-approximable part of B is more
amenable to be represented by a small set of discrete samples
than a manifold region corresponding to a part of B that is
difficult to approximate by a linear model. Therefore, the
compensation of the loss of a sample from a well-behaved
manifold region is relatively easier. We thus propose the
following method for dynamic sample budget allocation and
optimization. We start with an equal distribution of samples
per manifold that satisfies the overall budget constraint, and
begin optimizing them with the CMD algorithm. During
iterations, we deduce that the manifold region around a sample
has poor representability, whenever the misclassified region
Θm
i has a large volume compared to average and the iterations

7-14 in Algorithm 2 fail to improve the classification accuracy.
In a similar way, we determine regions of good representability
around samples where the volume of the corresponding Θm

i

is relatively small. Consequently, we add a new sample to the
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poorly representable region, at the cost of deleting a sample
from a well representable region selected among all manifolds.
We place the new sample at the point corresponding to the
projection of the centroid of Θm

i onto the manifold. We further
adapt the discretization to the new configuration in the regions
where sample deletion and creation have taken place, and we
apply the iterations 7-14 of CMD to all neighboring samples
on the same manifolds as the deleted sample and the newly
created sample. Note however that the sample transfer is not
guaranteed to reduce the classification error. In order to ensure
the improvement of the classification accuracy, we finally
accept the update only if it reduces the error. We call this
approach Dynamic Manifold Discretization (DMD).

V. EXPERIMENTAL RESULTS

A. Setup

We now present experimental results demonstrating the per-
formances of the manifold discretization algorithms discussed
in Sections III and IV. All experiments are conducted on two
different kinds of image appearance manifolds, namely the
transformation manifold of a 2D pattern, and the manifold
generated by the observations of a synthetical 3D object under
varying viewpoint.

In the first experimentation setup, we construct pattern
transformation manifolds generated by the 2D rotation and
translation of visual patterns. Given a pattern p, we define its
transformation manifold M by

M = {U(λ)p : λ = (ψ, tx, ty) ∈ Λ}, (25)

where ψ is the rotation parameter, tx and ty are the horizontal
and vertical translation parameters, and Λ is the domain of
transformation parameter vectors. For experimentation, we use
a database of top-view images of 5 different objects, where
each object has 500 different images captured under different
orientations and positions. An example image for each object
is displayed in Fig. 4. Note that due to the positioning of the
camera and the limitations on object positions, the 2D pattern
transformation model in (25) constitutes an approximate model
for the observations. For each of the objects we build the trans-
formation manifold of a fixed representative pattern picked
among the database images. The image set of each object
is grouped randomly into 300 training and 200 test images.
The categorization of the database into training and test sets
is changed randomly at each repetition of the experiment.
For computational convenience, all images are converted to
greyscale, downsampled to a resolution of 50×60 pixels, and
background pixels are set to the luminance value of 0 by
simple thresholding. Manifold points are generated by rotating
and translating the representative pattern (cropped previously
near the boundary) over a 50×60 pixel zero background
within the parameter range ψ ∈ [−π, π); tx ∈ [−7, 7];
ty ∈ [−12, 12]. All images and generated manifold points are
normalized to have unit norm. Some illustrative images from
the transformation manifold of one of the objects are given in
Fig. 5.

In the second experimentation setup, the object observation
manifolds are generated as follows: Given a synthetical 3D

Fig. 4. Example images from database

(a) (b) (c) (d)

Fig. 5. Images from a pattern transformation manifold

object model P , we consider the observation manifold defined
by

M = {U(λ)P : λ = (ψx, ψy, ψz) ∈ Λ}, (26)

where U(λ)P is the image of the object rendered under the
viewpoint specified by the three rotation angles ψx, ψy, ψz . We
use the Princeton Shape Benchmark database of 3D models
[16], where we conduct our experiments on 8 different classes
of objects (car, airplane, ship, tank, human, animal, table,
bottle) with several (4-30) objects belonging to each class.
Some example objects belonging to the airplane class are
shown in Fig 6. For each class we choose a representative
object, and generate the observation manifold of the represen-
tative object in the parameter range ψx, ψy, ψz ∈ [−π/4, π/4].
The representative object of each class is changed randomly
in repetitions of the experiment. All rendered images are
converted to greyscale, downsampled to the resolution of
50×50 pixels and normalized to unity. The training and test
sets for each manifold consist of 500 random observations
of the objects of the same class within the same parameter
range. Some images from an object observation manifold are
displayed in Fig. 7.

In both experimental setups, we use training images only
for the computation of the centroids of space regions. We
compute the centroid of a region of Rn experimentally by
taking random training images, checking if they are in the
inquired region, and then computing the arithmetic average
of inliers when a sufficient number of them are accumulated
as suggested in [17]. After the centroids are computed, we
estimate their projections onto the manifold with the aid of
a dense grid on the manifold. We first locate the projection
coarsely by finding the grid point that has the smallest distance
to the centroid, and then refine the location of the projection by
minimizing its distance to the centroid using gradient descent
tools.

B. Results on registration accuracy

Here we test the REMD algorithm on pattern transformation
and object observation manifolds. In both experimental setups,
we initialize the algorithm with a randomly selected sample
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Fig. 6. Example objects from the airplane class

(a) (b) (c) (d)

Fig. 7. Images from an object observation manifold

set. We compare the sample set determined by the REMD
algorithm to the initial random sample set and to the sample set
given by a regular grid over the parameter domain. The perfor-
mance evaluation criterion is the accuracy of the discretization
in manifold distance estimation. For each discretization, the
distances of test points to the sample set are computed and
the average registration error is calculated. The registration
error is taken as the `2-distance between the exact projection
of the test point onto the manifold and the manifold sample
with smallest `2-distance to the test point.

In the setup with pattern transformation manifolds, we
build and sample the transformation manifold of each object
individually. For each object the experiment is repeated 10
times with different random initializations. The results are
averaged over all realizations and all objects. In Fig. 8(a),
average registration errors obtained with the REMD output,
random and regular sample sets are plotted for several numbers
of samples. Then, we compute the distance of each test point
to all manifold samples obtained with these three discretization
approaches. For each test point we determine the sample
among all three sets that has the smallest distance to the test
point. In Fig. 8(b) we report the percentage of the test points
that have their closest manifold sample within the REMD
output, random and regular sample sets, respectively.

These experiments intend to measure the capability of the
discretization to provide an accurate approximation of the
projection onto the manifold. As shown in the figures, the
discretization obtained by the REMD method yields the least
registration error when compared to the random discretization
and the regular discretization in the parameter domain. In
addition, for the majority of the test points the most accu-
rate approximation of the projection lies within the REMD
algorithm output sample set.

The experiments on object observation manifolds are con-
ducted similarly. We construct and sample the observation
manifold of each object individually. Experiments are repeated
5 times for each class with different random initializations. The
results are again averaged over all realizations and all objects.
Fig. 9(a) shows the registration errors obtained with the
samplings and Fig. 9(b) shows the percentage of test images
with the best projection approximations within the REMD
output, random and the regular sample sets. The results are in
accordance with the results obtained on pattern transformation
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(b) Distribution of test points with respect to projection accuracy

Fig. 8. Sampling results obtained on pattern transformation manifolds

manifolds. Note that although the intrinsic dimensions of man-
ifolds are the same in the two experimental setups, the typical
number of samples required for accurately representing the
pattern transformation manifolds and the object observation
manifolds is quite different in these experiments. This is
due to the differences in the type and range of geometric
transformations that generate the manifolds. The fact that
the object observation manifolds are defined over a relatively
small parameter domain makes it possible to represent them
with fewer samples compared to the pattern transformation
manifolds for similar performance.

C. Results on transformation-invariant classification

In this part, we evaluate the performances of the discretiza-
tion approaches in Section IV in transformation-invariant
classification. In all of the pattern transformation manifold
experiments, the image set of each object in the database is
regarded as a different signal class. Similarly, in the synthetical
objects database, the rendered images of each class of objects
are considered to belong to a separate signal class. Only
training images are available to the sampling algorithms, and
the classification performance is measured on test images.
Once the sample sets are obtained, the classification of a test
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Fig. 9. Sampling results obtained on object observation manifolds

image is performed by assigning the label of the manifold
sample with smallest distance. In all of the following figures,
the correct classification rates of test images are plotted
in percentage with respect to the number of samples per
manifold. All experiments are repeated 10 times with different
random algorithm initializations and averaged.

First, we compare the REMD algorithm, the random dis-
cretization and the regular discretization in the parameter
domain with respect to their classification performances. The
experimental setting is the same as that of Section V-B, i.e., the
transformation manifold of each class is sampled individually
via the REMD algorithm, randomly and regularly, where an
equal number of samples are selected on each manifold. The
results obtained on pattern transformation manifolds and ob-
ject observation manifolds are plotted respectively in Fig. 10(a)
and Fig. 10(b). The plots indicate that in both setups, the
REMD output sample set has higher classification performance
compared to the random and regular discretizations. This is in
agreement with the results of the registration experiments of
Section V-B, confirming the dependency of the transformation-
invariant classification performance on the accuracy of man-

ifold distance estimation. When the two plots in Fig. 10(a)
and Fig. 10(b) are compared, it is seen that the classification
rate improvement introduced by REMD or by increasing
the number of samples is higher in pattern transformation
manifolds. This can be explained by the difference between
the two setups. In object observation manifold experiments
there are several object models belonging to the same class.
Therefore, space points have a relatively large deviation from
the manifold of the representative object. This deviation is
smaller in pattern transformation manifolds as the space points
of a specific class are the images of the same object.

Then we search the efficiency of jointly optimizing all
manifold samples in comparison with sampling each mani-
fold individually. For this purpose, we first select an equal
number of samples from each manifold independently with
the REMD algorithm as in the previous experiment. Then
we apply an additional stage of joint optimization, where
we optimize the samples from all classes together via two
alternative approaches. In the first approach, we optimize
the output sample set of the REMD algorithm further with
the CMD algorithm (marked simply as CMD in the plots).
In the second one we again begin with the REMD output
sample set, but then perform the joint optimization of manifold
samples using a simulated annealing algorithm where we
define the cost function as the classification error ε in (16). We
name this approach Manifold Discretization with Simulated
Annealing (MDSA). The simulated annealing algorithm is
based on seeking the global optimum by trying random search
directions, whereas the CMD algorithm has a more restricted
search domain. Therefore, the results with MDSA are pro-
vided as a benchmark for the evaluation of the efficiency
of CMD. The classification rates are plotted in Fig. 11(a)
for pattern transformation manifolds and in Fig. 11(b) for
object observation manifolds. The results show that the joint
optimization of manifold samples after the individual sampling
stage brings a significant improvement on the classification
rate. This is consistent with the expectation that the relative
characteristics of manifolds, i.e., their structures with respect
to each other, should also be taken into account as well as
their individual characteristics in classification. Moreover, the
performances of the sample sets obtained by CMD and MDSA
are close to each other. This shows that CMD is an effective
constructive algorithm. The slight superiority of MDSA to
CMD is justifiable in the sense that the CMD algorithm
performs a one-dimensional search in the parameter domain
at each update step, whereas in simulated annealing the search
space is full dimensional in the parameter domain.

Finally, in a third experiment we examine the effect of the
uneven distribution of the total sample budget to different
manifolds. We compare the performances of the CMD algo-
rithm with equal budget distribution to different manifolds,
DMD and MDPA, which have been discussed in Section IV-C.
In order to test CMD, we first select an equal number of
samples from each manifold independently with the REMD
algorithm, and then optimize the output of REMD in a further
stage with CMD as in the previous experiment. We apply
the same procedure for DMD as well; it is initialized with
the output of REMD with equally distributed samples, where
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Fig. 10. Classification results obtained by sampling class representative
manifolds individually

the movement of samples between different manifolds is
allowed afterwards to optimize the distribution of the sample
budget. The correct classification rates obtained with the three
sampling approaches are plotted with respect to the average
number of samples selected per manifold in Fig. 12(a) and
Fig. 12(b), respectively for pattern transformation and object
observation manifolds. The results suggest that an uneven dis-
tribution of the sample budget to different manifolds according
to their geometric properties may improve the classification
accuracy when compared to the equal distribution of samples.
It is seen that the performances of DMD and MDPA are close
to each other in the object observation manifolds experiment.
However, in the pattern transformation manifolds experiment,
the number of available training images per manifold sample is
much smaller, which has a negative influence on the efficiency
of budget distribution in the first stage of progressive sample
deletion in MDPA.

D. Discussion of Results

Here we make an interpretation of our experimental results
from the perspective of the trade-off between computational
complexity and performance. The main motivation behind this
work is the difficulty of the exact computation of the manifold
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Fig. 11. Effect of the joint optimization of samples on classification accuracy

distance. The state-of-the-art methods accomplishing mani-
fold distance computation are considerably demanding. For
instance, the algorithm proposed in [4] involves a complexity
of O(K ·n1 ·n2), where K is the number of atoms used in the
decomposition of the reference pattern and n1×n2 is the image
resolution, while a similar algorithm complexity is reported
in [5]. On the other hand, in order to estimate the manifold
distance we propose the utilization of a suitable manifold grid
that is to be determined offline. Once the grid is obtained,
the manifold distance estimation is simplified merely to the
computation of the norms of the difference vectors between the
query signal and the samples, which clearly reduces the cost of
distance estimation significantly. Meanwhile, it is not easy to
draw a general conclusion in the comparison of the accuracies
of manifold distance computation algorithms and our grid
approach. This is highly dependent on the algorithms under
comparison. For instance, the algorithm in [4] is guaranteed
to find the global solution in the projection of query images
onto pattern transformation manifolds, resulting in a perfectly
accurate distance computation. However, methods such as [3],
[5], [8] do not have such optimal performance guarantees. In
the approximation of the manifold distance with a grid, the
registration accuracy is clearly dependent on the number of



12

0 20 40 60 80 100 120 140
55

60

65

70

75

80

85

Average number of samples per manifold

Co
rre

ct
 c

la
ss

ific
at

io
n 

ra
te

 (%
)

 

 

CMD
DMD
MDPA

(a) Pattern transformation manifolds

5 10 15 20 25
71

72

73

74

75

76

77

78

Average number of samples per manifold

Co
rre

ct
 c

la
ss

ific
at

io
n 

ra
te

 (%
)

 

 

CMD
DMD
MDPA

(b) Object observation manifolds

Fig. 12. Effect of the uneven distribution of sample budget on classification
accuracy

samples, and the registration error asymptotically approaches
zero as the number of samples increases. We also note that, in
presence of large geometric transformations the grid approach
may have an advantage over algorithms based on tangent
distance, which are susceptible to local minima. Considering
these, we conclude that sample-based approaches achieve a
compromise between accuracy and computational effort.

Now, let us turn to the complexity of the discretization
process. To start with, the REMD algorithm is in principle
an adaptation of the LBG vector quantization algorithm [11]
to the manifold-modeled signal case. Therefore the main
complexity of the algorithm is O(N), where N is the number
of selected samples. As CMD is an extension of REMD to
multiple manifolds, it has the same order of complexity with
respect to the total number of samples. In the case that the
centroids are estimated via training images, the complexity of
the discretization algorithm also has a first-order dependence
on the number of training images [18]. Also, a practical matter
of concern is the estimation of the projections of the centroids
onto manifolds, which we overcome by the aid of a dense
grid. However, the manner of the determination of projections
is out of the scope of this work, as a variety of solutions may

be applicable depending on the type of the treated signals.
Finally, we note that the classification performance of CMD,

which has a refined search space, is fairly close to that of
MDSA where the correct classification rate is optimized by
simulated annealing. Comparing these two approaches with
respect to their convergence rates, we have seen that CMD
terminates in a much less number of iterations, which is a
result of its capability of assessing the proper search directions.
Yet, the overall running time of the CMD algorithm depends
on the computational time required by the projection of space
points onto manifolds. The speed of the required registration
block depends on the type of transformations involved. Ef-
ficient solutions exist for certain geometric transformations.
For instance, the phase correlation method [19] is a well-
known and fast technique that recovers image translations.
We remark also that image registration is an active research
field and recent works such as [20] are promising for the
generalization of such techniques to handle a wider range of
geometric transformations.

VI. CONCLUSION

We have studied the sampling of signal manifolds with
known parameterization. We present a discretization solution
for a single manifold based on registration accuracy. Then
we generalize the problem to the discretization of multiple
signal manifolds that represent different classes of signals, and
propose a method for the joint optimization of all manifold
samples for the improvement of classification performance. We
also discuss possible ways of optimizing the distribution of a
fixed sample budget to different class representative manifolds
in order to improve the classification accuracy. We test the
proposed sampling approaches on pattern transformation man-
ifolds and object observation manifolds. Experimental results
indicate that the registration accuracy of the distance-based
sampling is considerably higher than random and regular sam-
plings. The consideration of the relative structures of different
manifolds in the discretization improves the classification
performance significantly when compared to the independent
discretization of each manifold. Moreover, distributing the
total sample budget unequally to the manifolds in a manner
that takes account of their different characteristics may also
bring an improvement. The results reveal the potential of our
work to find various application areas in the treatment of
parametrizable signal sets.
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