
1

A High–Performance Parallel Implementation
of the Chambolle Algorithm
Abdulkadir Akin‡, Ivan Beretta‡, Alessandro Antonio Nacci†,

Vincenzo Rana‡, Marco Domenico Santambrogio†, David Atienza‡
‡Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

E-mail: abdulkadir.akin@epfl.ch, ivan.beretta@epfl.ch, vincenzo.rana@epfl.ch, david.atienza@epfl.ch
†Dipartimento di Elettronica e Informazione (DEI), Politecnico di Milano, Italy.

E-mail: alessandro.nacci@mail.polimi.it, santambr@elet.polimi.it

Abstract—The determination of the optical flow is a central
problem in image processing, as it allows to describe how
an image changes over time by means of a numerical vector
field. The estimation of the optical flow is however a very
complex problem, which has been faced using many different
mathematical approaches. A large body of work has been recently
published about variational methods, following the technique for
total variation minimization proposed by Chambolle. Still, their
hardware implementations do not offer good performance in
terms of frames that can be processed per time unit, mainly
because of the complex dependency scheme among the data. In
this work, we propose a highly parallel and accelerated FPGA
implementation of the Chambolle algorithm, which splits the
original image into a set of overlapping sub-frames and efficiently
exploits the reuse of intermediate results. We validate our
hardware on large frames (up to 1024× 768), and the proposed
approach significantly improves state-of-the-art implementations,
reaching up to 76× speedups, which enables real-time frame rates
even at high resolutions.

I. INTRODUCTION

The optical flow is a vector field representing the velocity
of an object in a sequence of frames, and it can be determined
by analyzing the variation of the brightness inside a sequence
of successive images [1]. The estimation of this vector field
is one of the most important problems in image and video
processing, as it can be employed for motion estimation [2]
and compensation [3], as well as in other fields such as
robotics [4] and even medical analysis [5]. Another important
application of the optical flow is the correction of an image
acquired by CMOS optical sensors using the rolling shutter
technique [6], which is nowadays used in most of the cheap
photo cameras. In particular, rolling shutter is a method of
image acquisition in which each frame is recorded by scanning
across the frame either vertically or horizontally, which may
generate errors and distortions in the final image.

The optical flow estimation problem is considered to be
computationally challenging [5] because of the large amount
of movements that can be detected in a frame, and because of
the noise that can alter the image brightness. A wide range of
different techniques, such as [7] [8] [9], has been proposed
in the past, but variational methods [10] have emerged as
one of the most successful approaches in recent years. The

variational technique we consider in this work is called TV-L1

[11], which distinguishes itself from other approaches because
it can handle highly–varying intensities in the frames.

The TV-L1 method includes both a mathematical definition
of the variational problem, and a numerical scheme to compute
the solution. The numerical scheme is based on a fixed-
point algorithm originally proposed by Chambolle [12], which
iteratively refines the solution (which in this case is the optical
flow estimation) at different levels of precision. Though TV-L1

seems to be very promising from a theoretical point of view,
its implementations don’t reach real-time performances, except
for very small images. A multithread software implementation
of TV-L1 we developed and analyzed, for example, can take
more than 15 seconds to process just one frame on a standard
x86 workstation, and up to 50 seconds are required on the
ARM processor of an Apple iPhone 3GS. However, the
profiling of the executions of TV-L1 on both the platforms
shows that the Chambolle algorithm itself is the bottleneck that
generates the poor timing performances. Besides the execution
of an outermost loop which does not require any complex
matrix operation, approximately 90% of the execution time is
spent on the Chambolle iterative technique, which proves to
be the most critical and computationally intensive part.

Although Chambolle is employed in many different domains
other than optical flow estimation, no parallel and efficient
implementation has been proposed so far, and even the best
performing implementations on GPUs are essentially sequen-
tial, and they do not achieve real-time frame rates with high
resolution images [13]. This lack of performance is mainly
due to the complex data dependencies during the execution,
as the evaluation of one element of the vector field requires
a large amount of intermediate results that were previously
computed for that element and for some of its neighbors.

In this paper, we propose a novel design of the Chambolle
algorithm, which merges multiple iterations of the algorithm
and resolves the data dependencies in a very efficient way
(cfr. Section V), while introducing a negligible amount of
redundant computation that does not affect the final frame
rates (Section VI). We exploit loop decomposition and sliding
windows to divide the input frames into sub-matrices that can
be processed in parallel. Then, we targeted these techniques for
an FPGA device to exploit the fine-grained level of hardware978-3-9810801-7-9/DATE11/ c©2011 EDAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147964184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

parallelism they offer, and we designed an efficient data reuse
mechanism that reduces the number of memory accesses and
speeds-up the execution. The proposed implementation proves
to be significantly faster than the state-of-the-art approaches,
and it can work on larger frames (up to 1024 × 768) while
still reaching real-time frame rates.

The remainder of this paper is structured as follows. In
Section II, we introduce the Chambolle algorithm and we
provide an overview of the related works. Then, we discuss
the proposed parallelization techniques in Section III, and the
details of the FPGA implementation in Sections IV and V. We
propose a set of experimental results in Section VI, and finally
Section VII concludes the paper.

II. CONTEXT DEFINITION

In this section we briefly introduce the algorithm we aim at
accelerating, and then we present, at the best of our knowledge,
the most relevant work in the litterature. The mathematical
aspects of the algorithm is beyond the scope of this work, but
they are deeply discussed in [11], [12] and [13].

A. The Chambolle Algorithm

The optical flow between two images I0 and I1, which are
given in the form of two input matrices, is represented by a
bi-dimensional vector u = (u1, u2), which is the output of the
algorithm. The vector u is initialized at 0, and its final value is
computed by means of an iterative way: each iteration is called
level, and each level refines the estimation by increasing its
precision [13]. Each level works as follows. Firstly, a support
variable v = (v1, v2) is defined using a thresholding function
of I1 and of the value of u computed at the previous level [13].
Then, the value of u at the current level is determined using an
iterative technique known as Chambolle algorithm [12], whose
computational steps are summarized in Algorithm 1 (for sake
of simplicity, the pseudo-code only shows the computation of
u1, but u2 is computed in the same way, by simply substituting
u1 and v1 with u2 and v2).

Algorithm 1 Chambolle Algorithm
1: for i = 1, .., Niterations do
2: div p = (BackwardX(pxu1) +BackwardY (pyu1))
3: Term = div p− v1/θ
4: Term1 = ForwardX(Term)
5: Term2 = ForwardY (Term)
6: |∇u1| =

√
Term2

1 + Term2
2

7: pxu1 = [pxu1 + τ/θ · Term1] / [1 + τ/θ · |∇u1|]
8: pyu1 = [pyu1 + τ/θ · Term2] / [1 + τ/θ · |∇u1|]
9: u1 = v1 − θ· div p

10: end for

The vector u is updated by means of two intermediate
values, namely px = (pxu1, pxu2) and py = (pyu1, pyu2),
which are initialized at 0 [13]. In order to simplify the
description of the hardware implementation, we also introduce
the auxiliary variables Term, Term1, and Term2, whereas θ
and τ are predefined values that determine the precision. The
BackwardX(z) function returns a matrix where each element

of z is reduced by its left neighbor, whereas in BackwardY
it is subtracted by its upper neighbor, in ForwardX by its
right neighbor, and in ForwardY by its lower neighbor.

B. Related Works

A few implementations of the Chambolle algorithm can be
found in literature, as part of the complete TV-L1 numerical
scheme. At the best of our knowledge, a parallel implementa-
tion of this approach has never been proposed because of the
complex dependencies among the intermediate results.

In [11] and [13], the robust TV-L1 technique to calculate the
optical flow between two frames is proposed and implemented
using modern GPUs. The authors proved that a real-time
frame rate can be achieved by the most powerful devices
for low resolution sequences, but only few frames that are
larger than 512 × 512 can be processed in one second. A
Matlab implementation of the technique in [13] performs the
estimation in 5 to 6 seconds, and it also shows some limitations
in terms of memory usage.

Additional hardware results of the execution of TV-L1

on GPUs can be also found in [14], but even the fastest
implementation cannot top the 6 frames per second (fps), even
on 512× 512 images.

Fast estimations of the optical flow can be achieved by
using different techniques and by simplifying the working
domain. For example, the implementation proposed in [15]
can process up to 156 fps on 768×576 images, working on a
low-cost FPGA device. However, the resulting optical flow is
specifically suited for motion detection, and it cannot be used
in other applications such as rolling shutter correction. The
specific target allows the authors to filter the input frames, for
example background subtraction, and to heavily simplify the
amount of data to be processed for the optical flow estimation.

III. THE PROPOSED PARALLEL SOLUTION

Aim of this work is to design a parallel implementation
of the Chambolle algorithm, which is made difficult by its
recursive nature. Algorithm 1 shows that the elements of px
and py computed at iteration n are immediately required
at iteration n + 1 to compute functions BackwardX and
BackwardY (line 2). Furthermore, a complex dependency
scheme among the elements of px and py is generated by
the Backward and Forward functions (lines 2, 4 and 5),
which relate each element of the matrix to the values of its
neighbors computed at the previous iterations. We analyzed
which elements at iteration n contribute to the value of a pixel
at level n+ 1, and we report them in Figure 1.a.

Starting from the aforementioned dependency scheme, we
introduce two sources of parallelism in the proposed hardware
implementation, namely, loop decomposition and sliding win-
dow techniques, which are shown in the following paragraphs.

A. Loop Decomposition

The loop decomposition technique is conceptually similar
to loop unrolling [16], but our approach aims at directly
computing each element of px and py at iteration n + x by

3

n

n n+1

n

n

n

n+1

n n

n

n+1

n+1

n

n

n

n n+1

n

n

n n

(a)

(b)

n+1

n+1 n+2

n+1

n+1

n+1

n+2

n+1 n+1

n+1

n+2

n+1

n+1

n

n n n n

n

n

n

n

n n n n

n

n

n

n+2

n

n+1

n+2

(c)

Fig. 1. Data dependencies among the data computed in successive iterations

finding a formula that employs the values available at iteration
n. For example, let us consider Figure 1.a: the value of the
central element at iteration n+1 can be directly computed only
if the values at iteration n of the neighbors are also computed.
In this way, however, 7 elements at iteration n have to be
computed just to obtain one element at iteration n + 1. The
overhead can be reduced by computing more than one element
at iteration n+1 as shown in Figure 1.b, where 14 elements at
iteration n are required to generate four elements at n+1, thus
reducing the overhead to 3.5 elements at iteration n for each
element at iteration n+1. Further benefits can be achieved by
applying the same technique on a larger number of iterations
as shown in Figure 1.c, where elements at iteration n + 2
are computed from the elements at iteration n. Finally, we
observed that the overhead can be reduced if the group of
elements that are computed are disposed on a squared shape.

Theoretically, loop decomposition allows the input matrix
I1 to be divided into different sub-matrices, which can be pro-
cessed by independent cores that resolve the data dependencies
locally and produce different parts of the output. However,
when a core processes the elements that lie close to the border
of a sub-matrix, some of the neighbors may belong to a
different sub-matrix, and the dependency scheme illustrated in
Figure 1 may not be satisfied. As a consequence, only a subset
of the elements of a sub-matrix are computed correctly, and
we call them profitable elements. It is worth noting that this
side effect does not occur when the boundary elements also
lie on the border of I1, because the algorithm inherently treats
them as special cases, and their value is computed correctly.

B. Sliding Windows

We solved the problem of the non-profitable elements by
developing a technique called sliding window. The rationale is
to divide I1 into overlapping sub-matrices, whose profitable ar-
eas are contiguous. This approach introduces a slight memory
overhead, because certain elements are replicated in multiple
sub-matrices. A computation overhead is also introduced, as
the cores may process some elements which are not profitable
and will not be part of the output. However, the sliding
window technique enables a coarse-grained parallelization of
Chambolle in spite of its recursive nature and its complex data
dependencies, and this greatly improves the throughput of the
proposed implementation, as we will see in Section VI.

IV. A GENERAL OVERVIEW OF THE PROPOSED
HARDWARE SOLUTION

The proposed hardware implementation of the Chambolle
algorithm is targeted to an FPGA device, which provides
an ideal platform for testing the inherent parallelism of our
approach. The top-level block diagram of the hardware ar-
chitecture is shown in Figure 2. The hardware employs two
concurrent sliding windows (SW1 and SW2) that works
completely in parallel, each one updating the values of both
u1 and u2 (we use the notation sw1u1 to indicate the value of
u1 computed by sliding window SW1). A sliding window
is logically divided into two parts: an array of processing
elements (PEs), and a dedicated amount of on-chip memory
implemented on the BRAMs of the FPGA.

CONTROL UNIT
 Address and control Address and control
 signals for SW1 signals for SW2

θ
Niterations

dt

8 BRAMs for sw1u1 1 BRAM for Term

PE Array for sw1u1

sw1u1

8 BRAMs for sw1u2 1 BRAM for Term

PE Array for sw1u2

sw1u2

8 BRAMs for sw2u1 1 BRAM for Term

PE Array for sw2u1

sw2u1

8 BRAMs for sw2u2 1 BRAM for Term

PE Array for sw2u2

sw2u2

Fig. 2. Top-level block diagram of the proposed hardware implementation

Each SW works on sub-matrices of 88× 92 elements, and
then slides to span the entire length of the original matrix. The
length has been determined according to the proposed memory
scheme, which is discussed in section V-B and requires the
length to be a multiple of 8, whereas the width has been chosen
both for memory reasons and to obtain a shape that is close to
a square, like we discussed in the previous section. A detailed
view of a SW, and in particular of the circuit that processes
sw1u1, is shown in Figure 3. The data required to compute the
components of u (i.e., v, px and py, as shown in Algorithm 1)
is stored in the on-chip BRAMs, in order to reduce the access
to the off-chip memory. A SW can compute 7 elements in
parallel for both u1 and u2, thus finding 14 elements of vector
u at the same time. This structure not only accelerates the
execution, but it also enables a significant data reuse among
the PEs, as discussed in the following paragraph, and reduces
the access to both on-chip and off-chip memory.

CONTROL UNIT
 Read addresses Write addresses Read and write
 for BRAMs for px and py addresses for BRAM-Term

θ
Niterations

dt

Addresses for
external access

Read or write enable

Vertical Rotator Vertical Rotator

Updated px and py

PE Array for sw1u1 1 BRAM for Term

8 BRAMs for sw1u1

Port 2 (Address)
Port 2 (Enable)

Port 2 (Data In)
Port 2 (Data Out)

Port 1 (Address)

Port 1 (Data In)

Port 1 (Write only)

Initial loading of
px, py and v for sw1u1

sw1u1 , px and py sw1u1

px, py and v

Fig. 3. Computation of sw1u1

In fact, the proposed hardware is able to compute the value

4

of one element in just 18 clock cycles: 1 cycle is required by
the Control Unit, 1 cycle by the synchronous read from the
BRAM memory, 1 cycle by the vertical rotator, and 15 cycles
by the PE array. Furthermore, the processing of each one of
sw1u1, sw1u2, sw2u1 and sw2u2 requires 8 BRAMs to store
the respective px, py and v values, plus an additional BRAM
that is necessary to exchange data between two iterations of
the PEs. Hence, only 36 BRAMs are used: all of them are
controlled by the control unit, except the initialization of the
algorithm, which is performed through the FPGA input pins.

V. IMPLEMENTATION DETAILS OF THE CHAMBOLLE
ALGORITHM

In this section, we provide a detailed top-down description
of the hardware architecture. In particular, we initially discuss
the structure of the PE arrays and their memory organization,
in order to show how the operands are propagated to feed the
PEs. Finally, a detailed view of a single PE is provided.

A. Processing Element Arrays and Data Reuse

The proposed hardware implementation includes four PE
arrays, two for each SW, to find the outputs u1 and u2
of Chambolle, which are subsequently used to update v by
means of the thresholding function. Each PE array contains
14 processing elements, 7 of which are called PE-Ts and are
used to calculate the values of Term and u (see Algorithm 1),
while the other 7 are named PE-Vs and are used to compute
px and py. Overall, there are 56 PEs in the proposed hardware:
28 of them are PE-Ts, and 28 of them are PE-Vs.

The proposed ladder organization of a PE array that works
on the first 7 rows (also called first region) of the input matrix
is shown in Figure 4, which also illustrates how the same
PEs are then reused to process the following 7 rows (second
region). In particular, while PE-T1 is calculating Term for
the elements in uppermost row, PE-T7 computes Term for
the elements in row 6. Then, after all the PEs have completed
the first 7 rows, PE-T1 starts computing Term for row 7,
while PE-T7 shifts to row 13.

PE-V1

PE-T1PE-V2

PE-T2PE-V3

PE-T3PE-V4

PE-T4PE-V5

PE-T5PE-V6

PE-T6PE-V7

PE-T7BRAM-Term PE-V1

PE-T1PE-V2

PE-T2PE-V3

PE-T3PE-V4

PE-T4PE-V5

PE-T5PE-V6

PE-T6PE-V7

PE-T7BRAM-Term

BRAM-Term

Column Number:
 0 ... 8 9 10 11 91

 Row BRAM
Number: Number:

0 BRAM 0

1 BRAM 1

2 BRAM 2

3 BRAM 3

4 BRAM 4

5 BRAM 5

6 BRAM 6

7 BRAM 7

8 BRAM 0

9 BRAM 1

10 BRAM 2

11 BRAM 3

12 BRAM 4

13 BRAM 5

87 BRAM 7

...

Re
gi

on
 0

Re
gi

on
 1

Fig. 4. Organization of 7 PE-Ts and 7 PE-Vs in a sliding window, and
memory organization during the computation of sw1u1

The Term of one element depends on the values of px
and py vectors of the same element (we refer to these values

as c px and c py), the px vector of the element on the left
(l px), and the py vector of the element above (a py). Without
any data reuse policy, each PE-T in a PE array requires 4
values, which have to be loaded from the on-chip memory, and
consequently 4 PE arrays with 7 PE-Ts require 112 values to
be read from the memory. Thanks to the ladder organization
of the PEs, we can limit this data transfer by propagating
the intermediate results. Figure 5 shows how the the 7 PE-
Ts are disposed, and how they were aligned in the previous
cycle (dashed boxes). Since all the PEs require their c px and
c py vectors computed in a previous iteration, we load them
from the BRAMs. Then, as the processing direction in a SW
goes from left to right, these vectors can be reused as l px
and a py vectors for the following cycle without accessing
the memory. For instance, PE-T3 takes the l px vector from
the flip-flop that stores the c px vector processed in previous
cycle. Similarly, c py can be reused as a py by the PE-Ts
which are located below, as for example the c py vector used
by PE-T2 is the a py vector of PE-T3 for the next cycle.

l_px a_py
PE-T1

c_px c_py

l_px a_py
PE-T1

c_px c_py

l_px a_py
PE-T2

c_px c_py

l_px a_py
PE-T2

c_px c_py

l_px a_py
PE-T3

c_px c_py

l_px a_py
PE-T3

c_px c_py

l_px a_py
PE-T7

c_px c_py

l_px a_py
PE-T7

c_px c_py

BRAM

...

BRAM BRAM

BRAM BRAM

BRAM BRAM

BRAM BRAM

Processing
Direction

Fig. 5. Data reuse among the 7 PE-Ts during the computation of sw1u1

(the dashed boxes indicate the position of the PE-Ts in the previous cycle)

The PE-Vs start computing px and py for one element one
cycle after the PE-Ts, and they also exploit a massive reuse
of data. Algorithm 1 shows that, in order to compute px and
py vectors for an element, three Term values are required:
the one of the corresponding element, the one of its right
neighbor, and the one of the bottom neighbor. We reuse the
values of Term which processed by the battery of PE-Ts, and
we propagate them using pipelining flip-flops. For instance, in
order to compute px and py for the element at position (2, 11),
the Term values of elements in (2, 11), (2, 12) and (3, 11) are
required. PE-T3 calculates the Term value at (2, 11), and at
the same time PE-T4 calculates the Term value for (3, 10).
In the next clock cycle, PE-T3 and PE-T4 compute the Term
values for (2, 12) and (3, 11), respectively Then, PE-V3 takes
the required Term values from PE-T3 and PE-T4, as well
as the synchronized result of PE-T3 that was computed in
previous clock cycle, and determines the new px and py for
element (2, 11), without reading any data from BRAM. Once
the values of px and py have been determined, they are stored
in BRAM for the following iterations.

B. Memory Organization

The proposed data reuse scheme reduces both the number of
accesses to the BRAMs and the amount of memory required

5

to store the intermediate results. As shown in Figure 5, the
battery of PE-Ts needs to read 15 vectors from BRAMs, but
28 vectors would be required if data reuse is not implemented.
In this subsection, we show how those BRAMs are organized.

According to Figure 4, PE-Vs from 2 to 7 take the required
values of Term from the two adjacent PE-Ts and from the
result computed in previous clock cycle by the PE-Ts that
are on their right. Therefore, the computation of these six
PE-Vs does not require any additional BRAM to store the
intermediate values of Term computed by the PE-Ts. Only
PE-V1 needs to load the Term values computed by PE-T7

in the previous region, which has to be stored in a BRAM
block (called BRAM-Term). For instance, in order to calculate
px and py for row 6, the values of Term for rows 6 and
7 are required, but they cannot be computed in successive
clock cycles because the two rows belong to two different
regions (see Figure 4), and are processed by the PE array in
two separate moments. Therefore, the Term values of row 6
are stored in a dual-port BRAM, and they are read back when
PE-T1 computes the Term values of row 7.

As a PE array requires 8 BRAMs for px, py and v (which
explains why the length of the sub-matrix has been set as a
multiple of 8, in this case to 88 elements), and also a BRAM-
Term block is required as a bridge between two different
regions, 9 BRAMs are required to process each region. The
results computed by each PE-V are stored in the corresponding
BRAMs according to the addressing shown in Figure 4.
When the array completes a region and starts processing the
following one, the address used to access the BRAMs needs
to be increased by an offset of 92, and this step is performed
by a vertical rotator, which is shown in Figure 3.

Overall, the 8 BRAMs of each region are indexed using
1012 addresses, and 32 bit blocks of data are stored in each
address. The 32 bits encode v, which requires 13 bits, followed
by c px and c py, which require 9 bits each. After the PE-Vs
find the new values of px and py, we update the values in the
BRAMs by using the write ports of the BRAMs, overwriting
the vector values that have been read in previous cycles.

C. Processing Elements

In this section, we describe the PE-T and PE-V processing
elements. The hardware architecture of a PE-T is shown in
Figure 6, and the one of a PE-V is shown in Figure 7.

!"#$%

&"#$%

!"#'%

("#'%

)%

*+!"%

,--%

,--%

,--%

!"./01%

0"./01%

!"%

,--%

,--%

&"#$%

("#'%

!"

,--%

,--% ,--%

,--%

Fig. 6. Hardware architecture of a PE-T

The implementation of a PE-T includes the Backward
operations for px and py, which are performed in parallel

!"#$%&'

%"#$%&'

("#$%&'

)*'

!+,-*.,*'

/0'

,$1'/0'

,$1'/2'

/2'

Fig. 7. Hardware architecture of a PE-V

before computing the value of Term, which is then used
as r Term for the PE-Vs that is processing the same row,
whereas b Term can feed the PE-Vs that is processing the
upper row. Moreover, the value of Term is pipelined for 1
clock cycle in order to use it as c Term.

The hardware architecture for PE-Vs implements the
Forward operations between c Term, r Term and b Term
in parallel, and then computes the new px and py vectors.
The main issue in the design of the PE-V architecture is
the square root function to compute px and py, as shown
on line 6 of Algorithm 1. An efficient and precise hardware
implementation of the square root is still an open problem
[17][18], and there are two main techniques to handle it:
iterative techniques, which achieves better precisions, and
look-up tables, which are faster.

We opted for a look-up table implementation as we mainly
focus on speed, while the achieved precision is still acceptable
for Chambolle: the error of the approximated square root is
below 1% in more than 90% of the samples we tested. The
look-up table takes 32 bit signal represented using fixed point
notation, where the integer part takes 24 bits, and the decimal
part takes 8 bits. The entries of the table are 8-bit values, thus
the table contains 28 = 256 pre-computed values, and only
requires 70 LUTs to be deployed on the FPGA. Instead of
dividing the input value into 4 pieces of 8 bits each, which
can index 4 different tables, we developed a technique that
increases the precision while using only one table (thus saving
approximately 12200 LUTs over the 28 PE-Vs). In particular,
we take the 8 most significant bits of the input value, and
we use them to get the result from the table, discarding the
remaining bits. The 8-bit block we use starts in an odd position
(counting from left to right), and finishes in an even one: if
the first non-zero bit is located in the n-th position, where n
is even, then the 8 bit block will start from the zero bit at
position n − 1. In this way, if the decimal value of the 8 bit
block is equal to m, and if the rightmost bit of the block is
in position 2k, then the number is equal to m · 22k, and its
square root can be computed by accessing the table with value
m, and by left-shifting the output by k positions.

VI. EXPERIMENTAL RESULTS

The proposed parallelization approach of the Chambolle
algorithm has been fully implemented in Verilog and syn-
thesized for a Xilinx Virtex 5 FPGA (XC5VLX110T). Table
I shows the resource usage of the Chambolle core, which
reaches a working frequency of 221 MHz after place and route.

6

If needed, the number of required DSPs can be reduced by
mapping part of the multiplications on the LUTs.

TABLE I
AREA USAGE ON A XC5VLX110T FPGA

FlipFlops LUTs BRAMs DSPs
Used 23143 32829 36 62
Total 69120 69120 128 64

Percentage 33% 47% 28% 96.8%

Table II shows the comparison between the performance
achieved by the proposed approach the ones obtained by the
other state-of-the-art implementations. We assumed that the
images to be processed are pre-loaded in the device memory,
in order to focus the measures on the Chambolle algorithm
itself. The estimated speedup achieved by the implementation
proposed in this paper ranges from 16.5× to 76× w.r.t. images
with a resolution of 512 × 512. Furthermore, the proposed
hardware proves to scale very well with the frame size, still
achieving more than 30 fps on 1024× 768 images.

TABLE II
COMPARISON W.R.T. STATE-OF-THE-ART IMPLEMENTATIONS

Ref. Device Iterations Image Frame
Resolution Rate (fps)

50 56
[13] GeForce 7800 GS 100 128× 128 32.1

200 17.5
50 18

[13] GeForce 7800 GS 100 256× 256 9.6
200 5
50 5

[13] GeForce 7800 GS 100 512× 512 2.6
200 1.3
50 95

[13] GeForce Go 100 128× 128 57
7900 GTX 200 30.9

50 34.1
[13] GeForce Go 100 256× 256 17.5

7900 GTX 200 8.9
50 9.3

[13] GeForce Go 100 512× 512 4.7
7900 GTX 200 2.3

ATI mobility
[14] Radeon HD3650 100 512× 512 1-2

(OpenCV+OpenGL)
ATI mobility

[14] Radeon HD3650 100 512× 512 3-4
(OpenGL only)

[14] NVIDIA GTX285
(OpenGL only) 100 512× 512 5-6

Proposed Xilinx Virtex-V
Approach XC5VLX110T 200 512× 512 99.1
Proposed Xilinx Virtex-V
Approach XC5VLX110T 200 1024× 768 38.1

VII. CONCLUSIONS

In this paper we have proposed a high-performance parallel
implementation of the Chambolle algorithm, by exploiting
both loop decomposition and sliding windows techniques.
Experimental results show that the performance of the pro-
posed approach are up to two orders of magnitude higher
with respect to state-of-the-art solutions on 512×512 images.
Furthermore, real-time frame rates can be achieved even on
large images (e.g. 1024×768), which have never been targeted
by the existing works. Finally, the area usage of the proposed

approach is quite low, as it occupies less than half of the slices
in the target FPGA device.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Prof. Pierre Vandergheynst
(LTS2-EPFL) for all his support and discussions about the
possible optimization benefits in the parallel implementation
of the Chambolle algorithm. This research has been partially
funded by the Swiss NSF Research Grant 20021-109450/1.

REFERENCES

[1] A. Verri and T. Poggio, ”Motion field and optical flow: qualitative prop-
erties,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 11, no. 5, pp. 490 –498, may. 1989.

[2] S. Sun et al., ”Motion estimation based on optical flow with adaptive
gradients,” in Proc. of International Conference on Image Processing
2000, vol. 1, 2000, pp. 852 –855 vol.1.

[3] S. Lin, et al., ”An optical flow based motion compensation algorithm
for very low bit-rate video coding,” in Proc. of ICASSP 1997, vol. 4,
apr. 1997, pp. 2869 –2872 vol.4.

[4] S. Kim et al., ”Mobile robot velocity estimation using an array of optical
flow sensors,” in Proc. of ICCAS 2007, pp. 616 –621.

[5] S. Behbahani et al., ”Analysing optical flow based methods,” IEEE Inter-
national Symposium on Signal Processing and Information Technology,
2007, pp. 133 –137.

[6] S. Baker et al., ”Removing rolling shutter wobble,” in Proc. of CVPR
2010, pp. 2392 –2399.

[7] B. K. P. Horn and B. G. Schunck, ”Determining optical flow,” Artificial
Intelligence, vol. 17, pp. 185–203, 1981.

[8] M. Black and P. Anandan, ”A framework for the robust estimation of
optical flow,” in Proc. of Computer Vision 1993, pp. 231 –236.

[9] N. Papenberg et al., ”Highly accurate optic flow computation with the-
oretically justified warping,” International Journal of Computer Vision,
vol. 67, pp. 141–158, 2006.

[10] G. Aubert et al., ”Computing optical flow via variational techniques,”
SIAM Journal on Applied Mathematics, vol. 60, pp. 156–182, 1999.

[11] T. Pock et al., ”A duality based algorithm for tv-l1-optical-flow image
registration,” in Proc. of MICCAI 2007, pp. 511–518.

[12] A. Chambolle, ”An algorithm for total variation minimization and
applications,” Journal of Mathematical Imaging and Vision, 2004.

[13] C. Zach et al., ”A duality based approach for realtime tv-l1 optical flow,”
in Proc. of DAGM Symposium on Pattern Recognition, 2007.

[14] A. Weishaupt, et al., ”Tracking and Structure from Motion,”, available
at: http://infoscience.epfl.ch/record/146572, 2010.

[15] M. Abutaleb et al, ”A reliable fpga-based real-time optical-flow estima-
tion,” in Proc. of NRSC 2009, pp. 1 –8.

[16] J. W. Davidson and S. Jinturkar, ”An Aggressive Approach to Loop
Unrolling,” in Proc. of Compiler Construction ’96.

[17] I. Sajid et al., ”Pipelined implementation of fixed point square root in
fpga using modified non-restoring algorithm,” in Proc. of ICCAE 2010,
vol. 3, pp. 226 –230.

[18] Y. Li and W. Chu, ”Implementation of single precision floating point
square root on fpgas,” in Proc. of FPGAs for Custom Computing
Machines 1997, pp. 226–232.

