
RVC: A MULTI-DECODER CAL COMPOSER TOOL

F. Palumbo, D. Pani, E. Manca, L. Raffo ∗

DIEE - Dept. of Electrical and Electronic Eng.
University of Cagliari
09123 Cagliari, Italy

M. Mattavelli, G. Roquier

EPFL
CH-1015, Lausanne

Switzerland

ABSTRACT

The Reconfigurable Video Coding (RVC) framework is a re-

cent ISO standard aiming at providing a unified specification

of MPEG video technology in the form of a library of compo-

nents. The word “reconfigurable” evokes run-time instantia-

tion of different decoders starting from an on-the-fly analysis

of the input bitstream.

In this paper we move a first step towards the definition of

systematic procedures that, based on the MPEG RVC spec-

ification formalism, are able to produce multi-decoder plat-

forms, capable of fast switching between different configura-

tions. Looking at the similarities between the decoding algo-

rithms to implement, the papers describes an automatic tool

for their composition into a single configurable multi-decoder

built of all the required modules, and able to reuse the shared

components so as to reduce the overall footprint (either from

a hardware or software perspective). The proposed approach,

implemented in C++ leveraging on Flex and Bison code gen-

eration tools, typically exploited in the compilers front-end,

demonstrates to be successful in the composition of two dif-

ferent decoders MPEG-4 Part 2 (SP): serial and parallel.

Index Terms— RVC, RVC-CAL language, MPEG stan-

dard, reconfigurable systems

1. INTRODUCTION

The MPEG Reconfigurable Video Coding (RVC) framework

is a recent ISO standard defining the methodology and for-

malism for the specification of video coding technology. The

main innovation is based on the adoption of a dataflow model

of computation expressed using the RVC-CAL language and

the associated network language FNL whose definitions are

part of the new MPEG standard [1]. Compared to the tra-

ditional ways of providing specifications based on textual

descriptions and on C/C++ monolithic reference software

∗The research leading to these results has received funding from the Euro-

pean Communitys Seventh Framework Programme (FP7/2007-2013) under

grant agreement no. 248424, MADNESS Project, and by the Region of Sar-

dinia, Young Researchers Grant, PO Sardegna FSE 2007-2013, L.R.7/2007

“Promotion of the scientific research and technological innovation in Sar-

dinia”

implementations, the new standard provides the specification

of video codecs in forms of dataflow programs composed

by a network of Functional Units (FUs) belonging to a stan-

dard Video Tool Library (VTL). The specification of a codec

by means of this formalism, which is a form of executable

program providing a full functional validation, leads to an

abstract codec specification, that can be translated into a

proprietary implementation by replacing the FUs of the “ab-

stract” network with custom hw/sw implementations of the

corresponding components. Such composability property of

dataflow specifications is a very attractive feature enabling

to conceive implementations procedures based on static or

dynamic reconfigurations.

A possible exploitation of the MPEG RVC framework

is the definition of hardware reconfigurable multi-standard

video decoders able to configure at run-time the correct de-

coder for the incoming video bitstream, as depicted in Fig. 1.

A consequence of the modular approach of an RVC specifica-

tion is that several FUs are common among different codecs,

so that reusing the available elements in the VTL becomes a

natural implementation solution.

Decoder
Composition
Mechanism

Abstract
Decoder Model

(FNL + RVC -CAL)

VTL
(RVC -CAL

FUs)

Proprietary
Tool Library

Decoder
Implementation

Decoding
Solution

Selection of
FUs and

Parameter
Assignment

Proprietary Decoder

Standard RVC Model
Decoder Description

(FNL + BSDL)

Encoded Video Data Decoded Video Data

Fig. 1. The RVC design model.

In this paper we present a C++ tool, called Multi-Decoder

CAL Composer (MDCC), for the automatic merging of multi-

ple decoder descriptions with the purpose of creating a single

multi-standard decoder instance that can be easily converted

into a proprietary hw/sw implementation. As a matter of fact,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147964022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

when several decoders described by using the RVC standard

approach need to be implemented, a manual procedure to ac-

complish this task would be very prone to errors and resource

consuming. The proposed tool analyzes the different RVC

standard “abstract decoder specifications” and inserts config-

urable Switching Boxes (Sboxes) to enable non-shared mod-

ules to be used only by the specific decoder configuration that

require them. In this way the final implementation does not

require a complete decoder instantiation to meet the require-

ments of the incoming video bitstream, but rather a reconfig-

uration of the multi-standard implementation in order to acti-

vate only the needed FUs. Such a general approach could be

exploited for both hardware and software implementations,

reducing the time required to switch between different de-

coders. Similar approaches have been proposed in different

fields, such as the one presented in [2] for multimode DSPs.

The MDCC tool leverages on Flex and Bison code generation

tools, typically exploited for the compilers front-end, in or-

der to parse the abstract description of two decoders to create

two C++ graphs. These graphs are then merged into a single

composed graph, recursively extended in order to take into

account more decoder descriptions. The final output is also

made available as a network of FUs in order to comply with

the standard RVC approach.

The rest of this paper is organized as follows. In Sect. 2

information about the RVC and the available tools are given.

In Sect. 3 the proposed approach is described whereas the re-

sults on a case study (a dual-standard decoder) are discussed

in Sect. 4. Section 5 concludes.

2. BACKGROUND ON MPEG RVC

RVC is a new MPEG standard [1, 3, 4, 5], but unlike pre-

vious standards, it does not define a new codec, but rather

a framework for the description of new codecs [6]. Follow-

ing the principles of the design for reusability, RVC fosters

the fast development of new video codecs through either the

combination of different FUs in non-standard ways or via the

extension of the VTL with new algorithms (which undergo

a standardization process at library component level) for the

description of new video codecs.

The framework is based on the RVC-CAL language [1],

a dataflow-oriented actor language based on the actor entity,

which is an abstract representation of a computing element

working asynchronously in order to generate output data se-

quences from input ones. Inputs and outputs take the form

of tokens and specific tokens configurations can fire an action

inside the actor, possibly leading to the emission of output to-

kens as a final outcome of a state change of the actor. Since

actors do not expose their internal state, all the inter-actors in-

teractions can take place only by means of tokens exchange.

Within the RVC framework, actors are used to describe the

FUs that constitute the VTL. RVC-CAL is a standard subset

of the original CAL language introducing some restrictions

aimed at the easier development of automatic hw/sw genera-

tion tools. Actor interconnections in forms of networks cre-

ate intrinsically parallel dataflow descriptions which are at the

basis of the codec descriptions, involving also token-passing

FIFOs in order to provide appropriate buffering for the inter-

actor communications [7]. The RVC standard explicitly in-

troduces 3 framework elements [8]:

• VTL [4]: a library of FUs (RVC-CAL actors) for video

coding;

• FNL [3]: the FU Network Language, an XML-based

language for the description of the actor networks as

.nl files;

• BSDL [5]: the MPEG-21 Bitstream Syntax Description

Language (also XML-based) to describe the behaviour

of the bitstream parser to be implemented in the de-

coder to properly analyze the encoded stream.

At the time being, several tools have been created to

support developers to migrate towards the new RVC stan-

dard specification formalism. OpenDF [9] is an interpreter

infrastructure for the simulation of hierarchical networks

of actors. Leveraging on the adoption of a library of com-

mon FUs, RVC also enables the development of automatic

tools to map the VTL onto a library of hw/sw modules to

be used for the real implementation of the decoder (Fig. 1).

At now, two compiler infrastructures are ready for the auto-

matic code generation from RVC-CAL descriptions for both

hardware (FPGA) and software (multicore processors) archi-

tectures. On the hardware side, Openforge is a supporting

tool that turns CAL models into hardware description lan-

guages (VHDL/Verilog) [10]. On the software side, the Open

RVC-CAL Compiler (ORCC) [11] is a supporting tool that

turns CAL models into software implementations in several

programming languages (C/C++, LLVM, etc.) [12].

3. MULTI-DECODER CAL COMPOSER

The MDCC tool has been conceived in order to provide a

unique description of a multi-decoder system, preserving the

functionalities of the different integrated dataflows, to be used

by both hardware architects and software developers. The for-

mer will be able to assemble a platform to implement the be-

haviour of different decoders on the same system, with fast

switching between different algorithms. The latter will have

available a comprehensive description of the integrated de-

coders within a single code.

MDCC works inserting, where needed, an Sbox in the

FNL description of the multi-decoder, under the hypothesis

that the considered decoders have some parts in common that

can be shared in a multi-decoder environment. As Fig. 2

shows, the final output of the MDCC tool is the directed graph

(DG) of the overall multi-decoder environment, while the in-

puts are the N different CAL dataflow descriptions of the de-

coders to be integrated. We assume that these decoders are

provided in terms of RVC-CAL atomic actors and their inter-

connections in terms of FNL (.nl files).

CAL decoder 1
(CAL actors,. nl files) C++ graph 1

C++ graph 2

C++ graph N

MERGER
[2:1]

MDCC

CAL2GRAPH

CAL2GRAPH

CAL2GRAPH

MERGER
[2:1]

global multi-decoder
(C++ graph, . nl file)

CAL decoder 2
(CAL actors,. nl files)

CAL decoder N
(CAL actors,. nl files)

C++ graph 3 MERGER
[2:1]

multi-decoder 2
(C++ graph)

multi-decoder 1
(C++ graph)

multi-decoder N-2
(C++ graph)

Fig. 2. Multi-Decoder CAL Composer (MDCC).

Figure 2 highlights also which are the two main compo-

nents of the MDCC tool:

• the CAL2graph interpreter creates the C++ DG of a

single CAL dataflow;

• the Merger algorithm creates the multi-decoder C++

DG starting from two DGs.

3.1. The CAL2graph interpreter

The CAL2graph interpreter operates on the single decoder

basis, creating the DG of a single CAL decoder. Its inputs are:

the FNL description of a single decoder with all the atomic ac-

tors and/or the other .nl files describing sub-networks of ac-

tors. At the end of the DG creation process, the output graph

will be pruned of any node corresponding to a network of ac-

tors by means of a flattening operation, able to transform the

original DG in a graph composed by just atomic CAL actor

nodes. In the C++ DG, the nodes are representative of the

atomic actors whereas the arcs of the interconnections among

them. The CAL2graph interpreter works in three steps:

• the analysis of the .nl file through a lexical analyzer that

generates the Lexical Tokens (LTs) to be processed by

the grammar interpreter;

• the analysis of the LTs through the grammar interpreter

that determines the DG using the grammar rules asso-

ciated to the different sequences of LTs;

• the recursive iteration of the first two steps until the DG
is pruned by not atomic actors.

The first two phases of the CAL2graph interpreter have

been realized using Flex and Bison [13], which are two code-

generating tools expressively designed to aid in compiler de-

velopment. Flex, which stands for fast lexical analyzer, is able

to take a sequence of characters and to break them apart into

LTs. These LTs are then processed by Bison, which is able

to associate actions to pre-defined sequences of LTs. These

sequences are normally known as a grammar.

In the CAL2graph interpreter, Flex has been used to real-

ize the lexical analyzer and Bison to define the grammar in-

terpreter. The Bison parser combines the sequences of LTs as

received by the lexical analyzer and, according to the matched

grammar rule, performs different actions to create the DG of

the single decoder. Mainly, as highlighted in Fig. 3, there are

three categories of rules implemented by the Bison grammar

interpreter, which are related to:

• nodes management (Actor Interface Section in Fig. 3);

• connections management (Link Section in Fig. 3);

• recursion management (Final Section in Fig. 3).

In practice the CAL2graph interpreter, in each stage of its

recursion, first of all instantiates the nodes of the DG (Actor
Interface Section in Fig. 3) and then creates the oriented arcs

among them (Link Section in Fig. 3). It starts parsing the top

.nl file of the decoder and, as soon as an actor or another .nl
file (correspondent to a CAL sub-network) is found, a node of

the DG is constructed. For all the non atomic actors, a refer-

ence is pushed in a queue in order to apply recursion on them.

In the Link Section of Fig. 3, the arcs between two nodes are

created and the undertaken actions are different according to

the received sequence of LTs:

Actor A
in 1 = port Name

in_A

Source Decoder Display
out 1

Fig. 4. Connection of the input port of a sub-network to the

actor output port of the original DG.

• portname→actorname.portname implies to connect:

– one of the network input ports with the proper ac-

tor input port (top .nl file analysis)

– the input port of the sub-network with the actor

output port in the upper level .nl file (generic re-

cursive step, see Fig. 4);

• actorname1.portname→actorname2.portname implies

to connect two intermediate actors;

• actorname.portname→portname implies to connect:

– one of the network output ports with the proper

actor output port (top .nl file analysis)

Flex: Analyses
the NL file

Start

send LT
Bison:

Analyses the
LT

Matches the actor interface rule

if atomic
actor

trueInstantiates
the actor

Creates a link
between the

network actor and
the subnet actor

Creates a link
between the subnet

actor and the
network actor

Bison Bison

Bison:
Analyses the

LT

Actor1.inputPort -->
Actor2.outPort

Matches the link rule

Creates a link
between the

two actor

Bison

Creates a link
between the input
port and the actor

Creates a link
between the

network's actor and
output port

continue analyses file

Start Link
section

Port-->
Actor.inPort

Actor.inPort -->
Port

empty queue

Exit

Start Final
section

!empty
 queueDeletes non

atomic Actor
NL file

Matches keyword "end": end file

Top module
!Top module

Top module

!Top module

Recursion

Matches keyword "structures"

LINK SECTIONACTOR INTERFACE SECTION

FINAL SECTION

continue analyses NL Flex: Analyses
the NL file

send LT
Saves
the file
in the
queue

Fig. 3. The CAL2graph interpreter.

– the output port of the sub-network just con-

structed with the actor input port in the upper

level .nl file (generic recursive step, see Fig. 5);

Source Decoder Display

out 2

in 2

Actor C
out C

Fig. 5. Connection of the output port of a sub-network to the

actor input port of the original DG.

As soon as all the nodes have been instantiated and their

connections established, the Final Section (Fig. 3) can take

place: the CAL2graph interpreter pops a reference to a .nl
sub-network from the queue (if any) and executes all the pre-

viously described steps again. At the end of each recursion,

the newly created sub-graph is substituted to the non atomic

node placed originally in the global DG (see Fig. 6). As al-

ready said, the CAL2graph interpreter will not stop until the

DG is not composed of atomic actors only, meaning that the

.nl references queue is empty.

3.2. The Merger algorithm

The Merger algorithm is responsible of taking two atomic

DGs and combining them, in order to build the multi-decoder

DG. At the first step, as it is clear in Fig. 2, it combines the

DG of two decoders. Then, until there are decoders to be

integrated in the multi-decoder structure, it combines a DG
of a single decoder with the multi-decoder DG created in the

previous run. Then, the final DG will be representative of

the complete reconfigurable multi-decoder. In this part of the

MDCC tool the Sbox unit is introduced.

out 1
in 1

Actor A Actor B Actor C

Actor D

in 2

in b

Decoder

out a out b in c

in d

out 2

out C
in A

Source Decoder Display

Fig. 6. Substitution of a non atomic node with its correspon-

dent sub-network.

3.2.1. The Switching Box Unit (Sbox)

The Sbox in the multi-decoder offers high-speed runtime re-

configuration capabilities. Mainly the Sbox allows to change,

at runtime, the topology of the connections among the actors

of the different integrated dataflows in order to define which

one of the integrated decoders is in use. It is conceived to be

placed at the crossroads between different paths of the multi-

decoder to allow more than one dataflow to share a common

dataflow where some actors are in common and some others

not. It is clear that this element will play a key role when the

output provided by the MDCC tool to the harware architects

will be translated into a real hardware platform. In this case

the Sbox units must be able to be programmed:

• to connect each one of their input ports to the output

ports, in order to change at run-time the topology;

• to define at run-time some of its possible internal pa-

rameters that can differ from one decoder to another,

such as the width (in bits) of the input and output con-

nections, the pipeline stages placed at the input and at

the output ports or the width (in bits) of the ports.

The Merger algorithm instantiates the Sbox units as sim-

ple graph nodes. It will be responsibility of the MDCC tool

build();

analisys new Actor

TRUE

Start
recursion

build2 ();

nodeAnalisys ()

check and
comparison of
actors's output
ports

searchActor ()

next link
or

next port

end iteration & next recursion

next link or
next port

end process Exit

new
root();

Start

end iteration

compare()

analisys root1 , root2

the children and their
connections are copied
into the global directed
graph. If one (or more)
child(ren) and a father are
connected to the same
input port, then an Sbox
will be added

looks for the
actor type in
the two graphs

If links are the same, a
child and its link are
created; otherwise, an
Sbox is instatiated ,
and its output ports
are linked to two
different children

Fig. 7. The Merger algorithm.

users to decide how to use these elements for the final multi-

decoder implementation.

3.2.2. The Algorithm

Figure 7 depicts the flow chart of the Merger algorithm. It

starts analyzing the graphs from their roots, which are the

global inputs of the system. The algorithm starts consider-

ing the first input of the system. At first, it checks where

it is connected in the single DGs to be merged (compare()
function). Then, it verifies (build() function) if the intercon-

nections among the considered input and the actors input port

in the two DGs to be merged are the same or not to instanti-

ate accordingly the proper nodes and interconnections in the

global DG. The Merger algorithm iterates these steps for any

interconnection of the roots, then recursion can take place.

In the recursive steps, the algorithm considers, one at a

time, the nodes already instantiated in the global DG and

not processed yet. It checks whether the considered node is

present in both the DGs to be merged or not (searchActor()
function). If it is so, the Merger algorithm iterates the com-
pare() and build() functions on all its output ports to combine

the single DGs together. If it is not, it iterates the nodeAnaly-
sis() and build2() functions to preserve the dataflow of the sin-

gle decoders in the multi-decoder environment. The Merger
algorithm will continue recursion until all the children nodes

of the already analyzed nodes are not processed.

3.2.3. Example of the Algorithm Application

Here follows a description of a step by step application of the

Merger algorithm; clearly we are not considering here any

real application but just two simple dataflows. o1 and o2 are

�

Fig. 8. Single dataflow 1 (A), single dataflow 2 (B) and cor-

respondent global DG (C). All these graphs have been plotted

using Graphiti.

the roots of the system. The Merger algorithm iterates three

times on o1 comparing, in the two DGs, its interconnections.

In the two DGs of the dataflow1 (Fig. 8.A) and the dataflow2

(Fig. 8.B) the connections between o1 and the actors A and B

are found to be the same by the compare() function; therefore

in the global DG they will be copied as they are by the build()
function. That is not the case for the third iteration on o1,

which is connected to the actor C in the dataflow 1 and to

the actor D in the dataflow 2. The build() function in this

case has to insert a Sbox node between o1 and the C and D

nodes; this Sbox will have an input arc connected to o1 and

two output arcs (o1 1 and o1 2) connected respectively to C

and D. The same steps are applied to o2, which connection is

simply replicated in the global DG since it is the same in both

dataflows. The recursion on the already instantiated children

nodes (A, B, C, D and E) can start.

Actor A is found to be present in both graphs by the

searchActor() function. It has only one output arc then just

one iteration of the compare() and build() functions is re-

quired: a Sbox node is being inserted to redirect data towards

H and F. Recursion on actor B, even though it is present in

both dataflows, does not generate any iteration of the algo-

rithm since node B has no output arc. The same applies for

the C node. As soon as node D is processed, the Merger
algorithm recognizes that, even though D is present just in the

dataflow2 (according to the searchActor() function output),

its child F is already instantiated and connected in the global

DG, therefore the build2() function instantiates a Sbox node

�

Fig. 9. The multi-decoder graph obtained merging the parallel MPEG-4 SP decoder and the serial MPEG-4 SP decoder single

graphs using the Merger algorithm.

and modifies the already established connection to allow both

the previous path and D to connect to the same F input port.

The actor E is present in both dataflows (according to the

searchActor() function output) and the compare() and build()
functions has to simply replicate G and its interconnection in

the global DG (being the same in both dataflows).

At this point the Merger algorithm has accomplished the

analysis of the children of the roots, but still G, F and H have

to be processed. The analysis of the G node proceeds as the

B and C ones and no iterations of the algorithm are required.

The same applies for H. F is present in both dataflows (ac-

cording to the searchActor() function output) and it is found

to be connected to the same global output port (according to

the compare() and build() functions output), which is there-

fore replicated in the global DG using the build() function.

4. RESULTS

This Section discusses a use case of the MDCC tool and its

possible exploitations. More space is accorded to the possible

hardware applications, since one of the future development

of this research is the completion of the MDCC tool with an

automatic hardware platform generator tool. Even though, the

MDCC tool can be also used from a software development

perspective.

4.1. The parallel MPEG-4 SP and the serial MPEG-4 SP
Use Case

In a first time, the MDCC tool has been tested over simple

factitious dataflows, similar to the ones presented in the ex-

ample discussed in Sect. 3.2.3. In all those cases it was pos-

sible to exploit the Graphiti tool to verify the outputs both of

the CAL2graph interpreter and of the Merger. In order to do

that, both components of the MDCC tool provide as output

also the .nl file of the C++ graph they are generating, to be

easily displayed using Graphiti.

In terms of real applications, two different decoders have

been processed by the MDCC tool: the parallel MPEG-4 SP

decoder and the serial MPEG-4 SP decoder. Using Graphiti

we have compared the graphs of the parallel MPEG-4 SP de-

coder and of the serial MPEG-4 SP decoder generated using

the CAL2graph interpreter with respect to the ones of the de-

coders prior to apply the MDCC tool. In both cases the graphs

before and after the application of the MDCC tool were the

same, taking into account the flattening process.

Moreover it was also possible to operate on the processed

decoders a functional test by means of OpenDF. We substi-

tuted, in the pre-processed CAL decoders, the original FNL

description of the decoder with the flattened one produced by

the CAL2graph interpreter. It resulted that it was possible

to operate anyway a complete video decoding, meaning that

the decoder functionalities were not compromised at all by the

flattening operation performed by the CAL2graph interpreter.

The case study adopting the serial MPEG-4 SP decoder

and the parallel MPEG-4 SP decoder has been carried out

merging their single DGs into the multi-decoder DG applying

the Merger algorithm. The resulting multi-decoder DG is de-

picted in Fig. 9, the inserted Sbox units highlighted using cir-

cles. The effectiveness of the MDCC approach is confirmed

by Table1, which compares the number of actors to be inte-

grated on two separated decoders (last two rows of the Actor
Sum column) and those of the merged multi-decoder DG (last

two rows of the MDCC applied column). Considering the

TOT actors (no Sbox) it is clear that the multi-decoder DG in-

tegrates less actors (46 instead of 59). Moreover, even consid-

ering the presence of the Sbox units (TOT actors (with Sbox)
row), it should be considered that it is less costly to integrate

Sbox units (which in hardware are nothing more than pro-

grammable multiplexers) than more complex actors such as

an interpolation unit or a complete DCT. Clearly the more de-

coders will be merged the more will be the instantiated Sbox

units.

Without a CAL implementation of the Sbox unit, the .nl
file of the multi-decoder cannot be simulated using OpenDF.

Nevertheless, the achieved multi-decoder DG is a fundamen-

tal result to be provided to hardware architects and software

developers:

• providing an idea of the common parts two decoders

are able to share;

• enabling an easier management of a multi-decoder en-

vironment;

• enabling the possibility of extracting some possible

metrics of the final multi-decoder platform directly at

this level, before the final implementation.

4.2. The MDCC tool exploitation

One of the future developments of the MDCC tool is its pos-

sible exploitation at a lower level of abstraction to create a

physical multi-decoder platform. We are already working on

the possibility of completing the MDCC with a tool called

graph2HW. The main objective of the graph2HW tool will be

the automatic creation of the HDL description of the overall

multi-decoder platform taking as inputs:

• the multi-decoder DG provided by the MDCC tool;

• the HDL actors library composed of all HDL descrip-

tions of the FUs involved in the multi-decoder platform

(possibly using OpenForge);

• the programmable HDL description of the Sbox.

Table 1. Comparison of the adopted resources merging or not

the parallel MPEG-4 SP decoder and the serial MPEG-4 SP

decoder.

Actor
Parallel Serial Actor MDCC

SP SP Sum Applied

serialize 1 1 2 1

parseheaders 1 1 2 1

blkexp 1 1 2 1

mvseq 1 1 2 1

mvrecon 1 1 2 1

DCsplit 3 1 4 3

splitter 420 B 1 0 1 1

splitter MV 1 0 1 1

spliter Qp 1 0 1 1

splitter BTYPE 1 0 1 1

DCRaddressing 16x16 1 0 1 1

Algo DCRaddressing 8x8 2 0 2 2

Algo DCRaddressing 0 1 1 1

Algo DCRinvpred luma 16x16 1 0 1 1

Algo DCRinvpred chroma 8x8 2 0 2 2

Algo DCRinvpred 0 1 1 1

IS 3 1 4 3

Algo IAP 16x16 1 0 1 1

Algo IAP 0 1 1 1

Algo IAP 8x8 2 0 2 2

IQ 3 1 4 3

idct2d 3 1 4 3

add 3 1 4 3

address 3 1 4 3

buffer 3 1 4 3

interpolation 3 1 4 3

Merger420 1 0 1 1

Sbox 0 0 0 17

TOT actors (no Sbox) 43 16 59 46

TOT actors (with Sbox) 43 16 59 63

The C++ DG of the multi-decoder environment provided

by the MDCC tool stores already all the necessary informa-

tion to create the multi-decoder platform top module, since:

• each node stores the name, the type and the value of

each possible parameter of the related HDL module,

necessary for its instantiation;

• each arc is representative of an interconnection among

the FUs or with the external environment.

Assuming that the input bitstream to be processed in a

real multi-decoder hardware implementation is able to carry

the information relative to the type of processing to be per-

formed, it will be possible to configure at run-time the Sbox

units and all the FU parameters present in the architecture.

At the moment we are assuming that the input bitstream will

carry a sort of ID to identify the datapath to be implemented

among a pre-defined set. We are exploring the possibility of

providing dynamic reconfigurability exploiting a smart agent

to be integrated in the multi-decoder evironment able to cre-

ate the proper configuration starting from meta-information

in the input bitstream and a complete library of FUs.

The multi-decoder DG, as already mentioned in Sect. 4.1,

can also provide important profiling evaluations related to the

final decoder, a lot before the final hardware implementation.

This profiling can provide some directions for better perform-

ing the reconfiguration at the hardware level, but it can also

guide software developers in the applications conception. To

do that, the multi-decoder DG has to be back-annotated with

some extra information, e.g.:

• the activation percentage of each FU (obtained through

high-level execution profiling),

• the relevance of each FU (e.g. related to the number of

decoders it belongs to and to its frequency of use),

• the latency and the physical metrics of each FU (area

occupation and maximum frequency obtained running

off-line some single decoder hardware simulation).

All these information can aid hardware architects and soft-

ware developers when some trade-off choices have to be

taken. For example, on the basis of the back-annotated graph,

hardware architects aiming at minimizing resources utiliza-

tion can face the decision whether or not adopting partial re-

configuration of the multi-decoder platform and they can also

determine the parts of the platform to be partially reconfig-

ured being less used than others. Moreover, since the MDCC

tool is able to create the global DG of any multi-decoder

platform in a few minutes, it is also possible to exploit it in

order to decide whether it is convenient or not to create a

real multi-decoder environment. It might happen in fact that

the effort needed is wasted since the different decoders do

not share enough actors or the back-annotated graph of the

multi-decoder does not show enough costs saving.

5. CONCLUSIONS

This paper presented the Multi-Decoder CAL Composer tool:

a tool able to define a multi-decoder structure starting from

the FNL specification of the single decoders as defined by

the RVC standard. This tool is based on the adoption of the

Flex and Bison code generation tools and on C++ in order

to analyze the different RVC decoders and to merge them to-

gether through the adoption of some switching units, i.e. the

Sbox units. The multi-decoder produced by the MDCC tool

is composed of: FUs commons to different decoders, which

are shared among them in the multi-decoder platform, and

other FUs that are used just when needed by the sub-sets of

decoders they originally belong to. The strength of this ap-

proach is the possibility of easily switching from one decoder

to another on the fly during system execution, whether it is

hardware or software implemented, avoiding a complete con-

text switch. The developed tool has also been integrated with

other state of the art CAL tools such as Graphiti and OpenDF

and, even though specifically designed to address video de-

coding applications, it will be possible to use it to compose

any CAL dataflows.

6. REFERENCES

[1] M. Mattavelli, I. Amer, and M. Raulet, “The reconfig-

urable video coding standard,” Signal Processing Mag-
azine, IEEE, vol. 27, no. 3, pp. 159–167, May 2010.

[2] Vinu Vijay Kumar and John Lach, “Highly flexible mul-

timode digital signal processing systems using adapt-

able components and controllers,” EURASIP J. Appl.
Signal Process., vol. 2006, january.

[3] “ISO/IEC 23001-4 (2009). MPEG systems tech.—Part

4: Codec configuration representation,” .

[4] “ISO/IEC 23002-4 (2010). MPEG video tech.—Part 4:

Video tool library,” .

[5] “ISO/IEC 23001-5 (2008): MPEG systems tech.—Part

5: Bitstream syntax description language (BSDL),” .

[6] Christophe Lucarz, Ihab Amer, and Marco Mattavelli,

“Reconfigurable Video Coding : Objectives and Tech-

nologies,” in IEEE Intl. Conf. on Image Processing,
Cairo, Egypt, 2009.

[7] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli,

M. Raulet, J.-F. Nezan, and O. Deforges, “Reconfig-

urable video coding on multicore,” Signal Processing
Magazine, IEEE, vol. 26, no. 6, pp. 113 –123, nov. 2009.

[8] Shuvra S. Bhattacharyya, Johan Eker, Jorn Janneck,

Christophe Lucarz, Marco Mattavelli, and M. Raulet,

“Overview of the MPEG Reconfigurable Video Coding

Framework,” Jour. of Signal Processing Systems, 2009.

[9] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Jan-

neck, Johan Eker, Carl von Platen, Marco Mattavelli,

and Mickaël Raulet, “OpenDF: a dataflow toolset

for reconfigurable hardware and multicore systems,”

SIGARCH Comput. Archit. News, vol. 36, no. 5, pp. 29–

35, 2008.

[10] Jorn W. Janneck, Ian D. Miller, David B. Parlour, Ghis-

lain Roquier, Matthieu Wipliez, and Mickael Raulet,

“Synthesizing Hardware from Dataflow Programs,”

Journ. of Signal Processing Systems, 2009.

[11] The Open RVC-CAL Compiler, ,” http://orcc.
sourceforge.net/.

[12] Matthieu. Wipliez, Ghislain Roquier, and Jean-François

Nezan, “Software code generation for the rvc-cal lan-

guage,” Journal of Signal Processing Systems, 2009.

[13] John Levine, Tony Mason, and Doug Brown, lex & yacc,
2nd Ed. (A Nutshell Handbook), O’Reilly, 1992.

