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Abstract  

Tensegrity structures are spatial structural systems composed of struts and cables with 
pin-jointed connections. Their stability is provided by the self-stress state in tensioned 
and compressed members. Although much progress has been made in advancing research 
into the tensegrity concept, a rapid survey of current activities in engineering practice 
shows that much of its potential has yet to be accomplished. A design optimization study 
for a tensegrity–based footbridge is presented in order to further advance the tensegrity 
concept in modern structural engineering. In the absence of specific design guidelines, 
design requirements for a tensegrity footbridge are stated. A genetic algorithm based 
optimization scheme is used to find a cost-effective design solution. The dynamic 
performance of the tensegrity footbridge is studied through parametric studies. Design 
results illustrate that the proposed tensegrity-based footbridge meets typical static and 
dynamic design criteria.   
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1. Introduction

Tensegrity structures are spatial structural systems composed of struts and cables. They 
belong to a class of free-standing pin-jointed structures where stability is provided by the 
self-stress state in tensioned and compressed elements. A widely accepted definition has 
been proposed by Motro [1]: “A tensegrity is a system in stable self-equilibrated state 
comprising a discontinuous set of compressed components inside a continuum of 
tensioned components”. This definition includes systems where compressed elements are 
interconnected as tensegrity structures. The tensegrity concept has received significant 
interest among scientists and engineers throughout disciplines such as architecture, civil 
engineering, biology, robotics and aerospace engineering [2]. While the concept is over 
50 years old, a survey of current activities in research and engineering practice shows that 
much of its potential has yet to be accomplished. 
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Amongst civil engineering applications, the tensegrity concept can provide a rich 
opportunity for engineers and architects to explore new ideas and produce original 
structural forms. Tensegrity systems present attractive inspiration for structural 
expression in civil engineering offering elegant appearance together with high strength-
to-weight ratios. Although free-standing tensegrity systems with discontinuous struts are 
not lightweight comparing to conventional civil engineering structures, continuous strut 
configurations present high structural efficiency [3, 4]. Moreover, unlike cable nets, no 
reaction forces have to be anchored to the ground. There are, however, few large-scale 
examples of tensegrity structures. Among the rare tensegrity-based civil structures that 
have been built, there is the tensegrity platform designed by Parnesso and Passera for the 
2002 Swiss National Exhibition in Yverdon [5]. Parnesso and Passera also designed a 
tensegrity roof for a velodrome in Aigle (Switzerland) [6]. The Rostock tower 
(Germany), designed by Schlaich, Bergermann and Partners is composed of a continuous 
assembly of simplex modules. The Rostock tower, built in 2003, is the tallest tensegrity-
based construction (62.3 m) [7, 8]. Large scale laboratory prototypes also exist. Fest et al. 
[9] built a 15m2 double layer tensegrity prototype. The structure is used to explore the 
potential of active tensegrities [10-12]. A tensegrity grid covering a 82m2 area was built 
at LMGC (Montpellier) [13]. This double-layer steel structure weighing 900kg has been 
designed according to the Eurocode3 building standard. Recently, the Kurilpa Bridge in 
Brisbane (Australia) became the largest tensegrity-inspired bridge in the world. The 
pedestrian and cycle bridge is designed by Cox Rayner Architects and Arup. The bridge 
is 470m long with a main span of 120m. Even though the Kurilpa Bridge is not strictly 
classified as a tensegrity structure, this project showed effectiveness and buildability of 
tensegrity-inspired civil engineering structures.    
 
In spite of much research related to geometry, form-finding and architecture of tensegrity 
structures, few studies have focused on design and optimization of tensegrity–based civil 
structures. Motro and Hanaor initiated design studies on double-layer tensegrity grids 
[14, 15]. Investigation into double-layer tensegrity design are also made by Quirant et al 
[16]. Abedi and Shekastehband [17] investigated stability behaviour of plane tensegrity 
structures. Micheletti [18, 19] proposed tensegrity modules for a 32m-span tensegrity 
footbridge to be constructed in TorVergata (Italy). Wang and Li published papers 
concerned with tensegrity grid design [3, 20, 21]. Jensen et al [22] designed a tensegrity 
structure for an offshore aquaculture installation and concluded that the tensegrity 
concept shows promising properties for such applications. Liapi [23] developed 
tensegrity configurations for the lightweight parts of the Hellenic Maritime museum in 
Greece. This study investigated geometric and structural design taking into account 
assembly and erection considerations. De Oliveira et al [24] analytically investigated 
minimum mass design of tensegrity towers and plates. Recently, Motro [25] proposed a 
new family of tensegrity modules called “tensegrity rings” that can be assembled in a 
“hollow rope”. As shown in previous work [26, 27], the concept of “hollow rope” shows 
promise for architecture and civil engineering applications such as footbridges. Few 
studies on design and optimization of tensegrity structures have been observed to be of 
practical significance. Except for tensegrity plane grids, design studies are mainly 



Bel Hadj Ali, N., Rhode-Barbarigos, L., Pascual Albi, A. and Smith, I.F.C. "Design optimization and 
dynamic analysis of a tensegrity-based footbridge" Engineering Structures, Vol.32, No11, 2010, pp 3650-9. 

 
 

 3

performed for small and simple modules. Optimized tensegrity structures are much 
simpler than would be needed for practical civil engineering applications.  
 
Tensegrities are highly coupled structures that often experience large displacements and 
therefore analysis should include geometrical nonlinearity. The properties of low self-
weight, flexibility and nonlinear response to load combine to form challenging tasks for 
engineers aiming to use the tensegrity concept in civil structures. Moreover, studies on 
simple tensegrity structures have revealed the importance of design parameters such as 
the level of self-stress and the stiffness ratio between tensioned and compressed members 
[28]. The self-stress is necessary for stabilizing the structure by activating the geometrical 
stiffness of the tensegrity members. It increases load-bearing capacity but may introduce 
difficulties during the manufacturing process. This suggests that the self-stress level 
should be taken into account as a design variable together with the cross-sectional areas 
of tensioned and compressed members [29]. Due to these peculiarities, design of 
tensegrity structures can be a complex task which suggests the use of design optimization 
techniques [16].  
 
Structural optimization has been widely studied over the last decades and extensive work 
has been done in the area of optimal design of steel trusses and frames. Most of these 
studies focus on weight minimization since engineers have few tools to approach cost 
optimization in a systematic manner [30, 31]. However, designing tensegrity structures 
based on weight minimization is particularly inefficient. In addition to material cost, 
tensegrities require additional pretensioning labor and careful assembling on-site [32]. 
Consequently, this leads to higher labor costs compared with conventional spatial truss 
structures. A realistic design optimization of a tensegrity structure should thus be based 
on cost minimization rather than weight minimization. Although structural optimization 
has been studied extensively, no study has examined cost optimization of a tensegrity 
civil structure. 
 
This paper presents design optimization and dynamic analysis of a tensegrity-based civil 
structure. A pentagonal hollow rope is used as a structural system for a 21m-span 
footbridge. The topology of the footbridge includes bar-to-bar connections, allowing for a 
lightweight solution. The footbridge design is optimized based on a novel approach 
where both structural members and self-stress levels are chosen for minimal cost. The 
footbridge is designed according to Swiss civil engineering building practice. Design 
optimization is conducted through a genetic algorithm (GA). The design algorithm finds 
solutions with minimum cost and also ensures that stresses and displacements are within 
the limits defined by the Swiss code. The footbridge members are sized using standard 
steel sections and stainless steel cables. A sensitivity analysis is performed to investigate 
the influence of design variables on optimization results. The dynamic behaviour of the 
tensegrity-based footbridge is also analyzed. Parametric studies are performed to identify 
parameters that significantly affect the dynamic characteristics of the tensegrity 
footbridge.  
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2. Tensegrity mechanics  
 
Tensegrity systems can be regarded as a special class of spatial truss structures that are 
composed of struts and tendons. Tensioned and compressed components are assembled in 
a self-equilibrated system providing stability and stiffness to the structure.  
 
The first step in the design of tensegrity structures is the determination of their 
equilibrium configuration. This step, known as form-finding, is the first challenge that 
engineers need to tackle when designing tensegrity structures. Tensegrity form-finding 
has received widespread attention over the years resulting in several methods such as 
nonlinear programming techniques [33], dynamic relaxation [34], force density [35] and 
stochastic search [36]. An exhaustive review of form-finding methods for tensegrities can 
be found in [37, 38].  
 
Kinematic and static properties of a tensegrity structure can be investigated once a stable 
configuration is identified. Two major parameters are required for the characterization of 
a tensegrity structure: the number of self-stress states (s) and the number of mechanisms 
(m). These parameters determine the degree of static and kinematic indeterminacy of a 
tensegrity structure [4, 39]. Calladine [40] investigated the statics of tensegrity structures 
and showed that the structural parameters, (s) and (m), are related through an extended 
Maxwell’s rule. For a three dimensional tensegrity framework, with Nm members 
connected in Nj joints and restrained by Nk displacement constraints, the set of 
equilibrium equations can be expressed as follow: 
 

[ ]{ } { }A t F=  [Eq. 1]
 
where [A] is the equilibrium matrix consisting of element direction cosines, {t} is the 
internal element force vector of length Nm and {F} is the external nodal force vector of 
length 3Nj-Nk. Assuming that the rank of the equilibrium matrix is rA, the number of self-
stress states and the number of mechanisms are given by: 
 

m As N r= −  [Eq. 2]
3 j k Am N N r= − −  [Eq. 3]

 
The number of states of self-stress indicates the number of non-trivial solutions to the 
equilibrium equation (Eq. (1)) when: { } {0F }= . The basis of vector spaces of self-stress 
states and mechanisms are calculated from the null spaces of the equilibrium matrix [41]. 
A general self-stress configuration can be then obtained by any linear combination of the 
(s) independent self-stress states. It is noticed that the number (s) represents also the 
number of pretensioning devices which are needed to establish the general self-stress 
state in the structure. Moreover, for a tensegrity structure, cables have uniaxial tension 
behavior while bars experience generally compressive stresses. A tensegrity self-stressed 
configuration is said to be compatible if it ensures tension in cables and compression in 
bars.        
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3. Analysis of tensegrity structures  
 
Tensegrity structures have a nonlinear mechanical behavior in response to external 
loading. Since tensegrities are self-stressed, the effects of the changing geometry on the 
orientation of already stressed elements must be taken into account [42]. Nonlinear 
models and iterative computational schemes are then needed for the static analysis of 
tensegrity structures. In this context, two basic approaches have been developed and 
applied in practice. The first one is a standard nonlinear structural analysis scheme where 
the static equilibrium equation is solved incrementally using modified Newton-Raphson 
procedure [28]. The second is dynamic relaxation: an iterative procedure which was first 
introduced by Day [43] and has been reliably applied to tensile structures [34], 
tensegrities and many other nonlinear problems. In this method, a fictitious dynamic 
model is used to trace the motion of a structure from the time of loading to the moment 
when static equilibrium is attained due to damping [34].  
 
In a linearized form of the equilibrium equation of a tensegrity system, displacement 
vector {U} and external force vector {F} are related by the tangent stiffness matrix [KT], 
 

[ ]{ } {TK U F}=  [Eq. 4]
 
In the literature there are several methods to derive the geometrical stiffness matrix of 
tensegrity structures [28, 44-46]. According to the formulation presented by Kebiche et al 
[28], the tangent stiffness matrix is written as: 
 

[ ] [ ] [T EK K K ]G= +  [Eq. 5]
 
The tangent stiffness matrix [KT] is decomposed into the linear stiffness matrix [KE], 
commonly used for small-deformation truss analyses, and the geometrical stiffness 
matrix [KG], induced by self-stresses. For the development of a finite element model of 
the tensegrity structure, each element in the structure is characterized by the following 
stiffness matrices: 
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where: E is the elastic modulus, A is the member area, L is the length of the member and 
T is the internal axial force. Stiffness matrices are first formulated in a local coordinate 
system {xyz} where x is along the element axis. The global stiffness matrix [KT] is 
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obtained by adding up contributions from the individual elements expressed in a global 
coordinate system. Static analysis of tensegrity structures can thus be performed 
iteratively using transient stiffness method [28].   
 
4. Design requirements of a tensegrity-based footbridge  
 
In the absence of specific codes, design requirements for footbridges are gathered from 
numerous documents, guidelines and recommendations [47]. This situation has partially 
changed following the opening events of the London Millennium Bridge. These events 
have motivated research into static and dynamic behaviour of footbridges and have 
contributed to significant progress in footbridge design. Consequently, codes for 
footbridges are presently available in several countries [48, 49].  
 
In terms of geometry specifications, the Swiss code does not give information about 
minimum deck width, clearance and maximum inclination. The British Standard 
recommends a minimum deck width of 2m in case of non-motorized traffic (pedestrian 
and cyclists) [50]. A minimum clearance of about 2.3m is required in [49]. 
 
Different live load values are specified in national codes. The Swiss code SIA 261 [51] 
proposes two models: a distributed load of 4kN/m2 and a point load of 10kN. The most 
critical among the two live load models is considered for design activities. Together with 
vertical loads, a second load acting in the axis of the carriageway is considered. The 
horizontal force value corresponds to 10% of the sum of the uniformly distributed load or 
60% of the concentrated load. Snow loading is unlikely to be significant when the bridge 
is being heavily used. Consequently, the SIA 260 code [52] states that snow loads are 
only to be considered as an accompanying action for covered bridges. Vertical design 
loads for footbridges include also dead loading that represents the distributed weight of 
the footbridge superstructure including decking. 
 
Wind loading is also to be considered in footbridge design. Wind loading, acting on the 
exposed side faces of the bridge members, is calculated considering a uniform wind 
pressure of 130 to 140 daN/m2. Wind loading is usually considered as accompanying 
action and hence assigned a reduction factor in load combinations [52].   
 
A tensegrity-based footbridge has to be designed to meet usual norms for safety and 
serviceability. However, regarding the peculiarity of tensegrities as self-stressed systems, 
two additional aspects have to be considered. First, the unidirectional behaviour of 
tensioned elements in a tensegrity structure imposes to take into consideration an 
additional criterion intended to prevent the presence of slack cables in the structure under 
service loads. This restriction is not only justified by esthetic aspects but also by the fact 
that slack cables can cause shocks and create disturbances when they repeatedly pass 
from a slack state to a tensioned state and vice-versa [16]. Moreover, it must be 
emphasized that self-stresses play a double role in a tensegrity structure and can be 
regarded as acting differently when structural overall stability or member local resistance 
are concerned. In fact, the self-stress can be considered as a stabilizing load when the 
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overall stability of the structure is verified. However, it must be considered as a 
destabilizing load, and thus assigned a bigger load factor, for member local capacity 
checks. 
 
Considering the above mentioned design aspects proper to tensegrity structures, two load 
combinations will be considered for Ultimate Limit State (ULS) verifications. In Eq. (8) 
and (9), dead load (G), live load (Q), wind load (W) and loads due to self-stress (P) are 
combined differently depending on whether the combination is employed to verify the 
overall stability of the structure or the local member resistance. In the absence of definite 
information in civil engineering codes, the self-stress will be assigned a load factor of 0.8 
(1.2, respectively) when it is considered to act as a stabilizing load (unstabilizing load, 
respectively). These values were proposed by Quirant et al [16] for the design of a double 
layer tensegrity grid.  
 

1.35 1.5 0.8 0.6G Q P+ + +  [Eq. 8]
1.35 1.5 1.2 0.6G Q P+ + +  [Eq. 9]

 
The first ULS load combination (Eq. (8)) is used to verify overall stability of the 
tensegrity structure. The second load combination (Eq. (9)) is used for local capacity and 
buckling checks.  
Under Serviceability Limit States (SLS), design loads are combined as follow:   
 

1.0 0.4 1.0 0.6G Q P+ + +  [Eq. 10]
 
Serviceability design criteria include limiting deformations and vibrations that impair the 
functionality or appearance of the structure. As specified by SIA 260 [52], the maximum 
midspan deflection of the footbridge is limited to Span/600.  
 
Amongst structural concerns, dynamics of tensegrity-based footbridges is a central issue. 
A careful evaluation is required when using these lightweight structural systems for 
footbridges to avoid excessive dynamic response. Tensegrity structures have relatively 
low inherent structural damping. This factor coupled with the low self-weight may cause 
tensegrity footbridges to experience unacceptable vibration levels in response to 
pedestrian and/or wind loads. For dynamic behaviour, acceptance criteria defined by the 
Swiss codes are frequency-dependent. In the vertical direction, natural frequencies of 
footbridges in the range of 1.6 Hz to 4.5 Hz must be avoided. In the horizontal direction, 
natural frequencies smaller than 1.3 Hz and 2.5 Hz must be avoided for transverse and 
longitudinal vibrations respectively. 
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5. Design optimization problem     
 
5.1 Objective function 
 
A realistic design optimization of a tensegrity structure should be based on cost 
optimization. In the absence of definite information about fabrication and assembling 
activities for tensegrity structures, we propose a simplified cost function calculated as the 
sum of material member costs multiplied by a coefficient depending on the self stress 
level (Eq. (11)). 
 

1
(1 )

mN

i i
i

Min C c Lψ
=

= + ∑  [Eq. 11]

 
In the objective function (Eq. (11)), the sum of member material costs of a design 
solution is increased proportionally to the self-stress ratio in the tensegrity structure. The 
self-stress ratio ψ is calculated as the average self-stress ratio considered for tensioned 
elements. For a tensioned member, the self-stress ratio is calculated as the ratio between 
the member pretension axial force and its resistance axial force. It should be pointed out 
that tensioning devices are needed only for (s) members, where (s) is the number of 
independent self-stress states of the structure. In Eq. (11), Li is the length of member i, 
and ci is the cost per unit length of the section that is assigned to member i. Nm is the total 
number of tensegrity members. It should be pointed out that the most important factor 
affecting the total cost of the tensegrity structure is potentially the cost of the joints. In 
steel construction joints are very expensive details that may determine other aspects of 
the design of a structure [30]. In this study, only a single topology is analyzed. Therefore, 
the number of joints and hence, the cost of joints is assumed to remain constant for all 
design solutions.   
 
5.2 Design constraints 
 
The design constraints (Eq. 12 to 15) are formulated according to SIA codes [53]. In 
these equations Ncm and Ntm are the numbers of compressed and tensioned members in the 
structure.  
 

,

,

1 0, 1,...,sd i
m

Rd i

N
i N

N
− ≤ =  [Eq. 12]

,

1 0, 1,...,i
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k i

i Nλ
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− ≤ =  [Eq. 13]
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δ
δ

− ≤  [Eq. 14]
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, 0, 1,...,sd i tmN i> = N  [Eq. 15]
 
Eq. (12) defines the local capacity and buckling checks for tensioned and compressed 
members. Nsd,i is the ultimate axial force of member i, while NRd,i is its axial force 
resistance. For tensioned members, the resistance is calculated using Eq. (16) where fy is 
the yield stress of the steel and A is the cross-sectional area of the member.   
 

1.05
y

Rd

f A
N =  [Eq. 16]

  
For compressed members NRd,i is determined as the buckling force limit (Eq.17) in 
which kχ   is a reduction factor for buckling. 

, 1.05k Rd k yN f Aχ=  [Eq. 17]
 
The slenderness limit (Eq. 13) for compressed elements prevents local instability for strut 
members. The maximum slenderness shall not exceed a value of 200. Eq. (14) and (15) 
define the serviceability limit state requirements for the tensegrity footbridge.  
 
5.3 Design variables  
 
From a structural point of view, tensegrity structures are characterized by the self-stress 
state that ensures their stability. Self-stress is necessary for stabilizing the structure by 
activating the geometrical stiffness. The equilibrium between tension and compression 
forces is responsible for the structural stability and load bearing capacity of tensegrities. 
Previous studies have found that the self-stress level initially introduced in tensegrity 
members before applying loads have a direct impact on both the weight and the 
deflection of the tensegrity footbridge [26, 27]. This suggests that initial self-stresses, 
together with the cross-sectional areas of tensioned and compressed members are the key 
design parameters that affect the structural performance and cost of a tensegrity structure.  
 
6. Static design of a tensegrity-based footbridge 
 
6.1 Structure description   
 
A side view of the tensegrity based footbridge is given in Fig. 1. The footbridge is 
composed of six ring-shaped tensegrity modules connected base to base to span 21.6m 
(Figure 1). Symmetry about midspan is obtained by mirroring three modules. The 
structure is designed so that to have 2.0m width internal space for walking and a 
clearance of 2.5m as recommended by codes [50]. The dimensions of the free space are 
conceived so as to have enough room for non-motorized traffic (pedestrian and cyclists). 
The nodes of the footbridge structure at both extremities are supposed to be attached to a 
steel frame which is rigidly anchored to the ground. The footbridge deck is connected to 
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four base nodes at each module and it is supposed that the deck does not increase the 
number of independent self-stress states.     
 

21.6 m  
Figure 1. The tensegrity footbridge 

 
The tensegrity module is a continuous ring module with a single strut circuit. This 
tensegrity module is called a pentagon module [25, 27]. A pentagon module contains 15 
nodes describing 3 pentagonal layers (Figure 2). The middle pentagonal layer nodes are 
rotated about the longitudinal axes with respect to outer pentagon by 36° in the 
counterclockwise direction. The pentagon module comprises 15 struts held together in 
space by 30 cables forming a ring shaped tensegrity unit. Struts can be separated into 
diagonal and intermediate struts based on their topology. Diagonal struts connect outer 
and inner pentagon nodes while intermediate struts connect middle pentagon nodes to 
outer and inner pentagon nodes. Similarly, cables are separated into 10 layer cables and 
20 x-cables. Layer cables connect nodes of the two outer pentagons while x-cables 
connect middle pentagon nodes to inner and outer pentagon nodes (Figure 3). In Figures 
1 to 3, grayed lines denote bars while thin lines denote cables.   
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Figure 2. The pentagon module 

 
The pentagon module used in this study has a length of 360cm with an inner radius of 
280cm. This geometry satisfies internal space requirements. Diagonal and intermediate 
struts are chosen to have the same length of 488cm. Layer cables have a length of 330cm 
while x-cables are 250cm length. The nodes of the structure at both extremities are 
supposed to be fixed in all three translation directions. Live loads are applied on the 
footbridge deck and are thus transmitted to the four bottom nodes on each module. Dead 
and wind loads are also applied as nodal forces on the structure. 
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Diagonal struts Intermediate struts Diagonal and 
intermediate struts 

Layer cables Four x cables  
 

Figure 3. Illustration of the pentagon module members 
 
Prior to footbridge design optimization, mechanical characterization of the basic 
pentagon module and the whole structure of the footbridge are performed. The study of 
the equilibrium matrix of the two structures is performed considering 6 blocked degrees 
of freedom to prevent rigid body movements. The footbridge is also analyzed when nodes 
at both extremities are fully constrained. The results illustrated in Table 1 reveal the 
existence of 6 elementary self-stress states for the pentagon module and 56 self-stress 
states for the footbridge while no infinitesimal mechanisms are detected. The footbridge 
structure has 80 self-stress states when all nodes at both extremities are constrained. The 
pentagon module and the tensegrity footbridge are thus statically indeterminate but 
kinetically determinate structures. The absence of infinitesimal mechanisms in the 
tensegrity footbridge affects the structural efficiency and the dynamic behaviour of the 
footbridge as will be shown in forthcoming sections. 
 
Table 1. Mechanics parameters for the tensegrity-based module and footbridge 
Parameter  Pentagon module Pentagon footbridge Pentagon footbridge  

(fully constrained) 
Rank of equilibrium matrix 39 189 165 
Number of mechanisms: m 0 0 0 
Number of self-stress states: s 6 56 80 
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6.2 Design optimization  
 
Design optimization of the tensegrity-based footbridge is performed using member 
dimensions and self-stress level as design variables. Struts are separated into two design 
groups: diagonal and intermediate struts. Strut members in each group are to have the 
same hollow tube section profile. Layer cables in the whole footbridge are specified to be 
of same section and experience the same level of self-stress. The same hypothesis is 
taken into account for x-cables. Optimization variables are thus limited to 6 groups: 
cross-sectional sizes of diagonal struts, intermediate struts, layer cables and x-cables in 
addition to self-stress ratios for layer cables and x-cables.  
 
The footbridge members are selected from commercially available standard steel sections 
with specified cross-sectional profiles and cables. For struts, the product set consists of 
45 hollow tube section profiles. The cross-section dimensions, properties and unit prices 
of these profiles are listed in Table A.1 (Appendix A). The used steel grade is S355, with 
a modulus of elasticity of 210000 MPa and yield stress of 355 MPa. For cables, a list of 
22 sections is used. Cable properties and unit prices are listed in Table A.2 (Appendix A). 
Cables are made by stainless steel with a modulus of elasticity of 120000 MPa. Material 
properties and unit prices are obtained from major Swiss steel fabricators. Design 
variables include also the self-stress level in the tensegrity structure. Nine discrete self-
stress ratios are considered running between zero and 20% by steps of 2.5%. The 
prestress is established in tensegrity members by changing their rest lengths. It should be 
pointed out that the final member stresses, after taking into account the self-weight of the 
structure, are different from the initially prescribed prestresses. 
  
Load cases defined in section 2.3 are considered. The footbridge deck is assumed to have 
a weight of 100kg/m2. Structural analyses for load combinations are performed using a 
MATLAB® implementation of nonlinear analysis employing transient stiffness method. 
Analysis results are used to check the footbridge design constraints.        
 
A GA is employed to solve the design optimization task (Eq. 11 to 15). Optimization 
variables are coded as integer strings. Penalty functions are employed to handle design 
constraints. This consists on penalizing individuals violating constraints, and thus giving 
them a lower probability of survival. The penalty function approach is implemented by 
adding an additional term to the objective function. This additional term corresponds to 
the cost of violating constraints. In this manner, the search for optimum solutions is 
directed towards feasible regions of the search space.  
 
Optimization results are quite satisfactory for a population size of 50 individuals running 
for 60 generations. Crossover and mutation probabilities are fixed as 0.9 and 0.1, 
respectively. The best solution generated over a sequence of five runs using different 
random seeds is considered as the optimal design solution.  
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Table 2. Member sections and self-stress ratios of the optimal design solution   
Member  Diameter  

[mm] 
Cross-sectional 
area [mm2]  

Self-stress ratio  
[%] 

Diagonal struts   76.1 902.0 - 
Intermediate struts  101.6 1230.0 - 
Layer cables  6 28.27 15.0 
x-cables  20 314.16 17.5 

 
The optimal design attained after five runs of the GA has a material cost of 41622.0 CHF 
and a cost function value of 48386.0 CHF. The member sections and self-stress ratios for 
the design solution are displayed in Table 2. Under SLS load combination, midspan 
displacement for the design solution is equal to 2.37cm. Under ULS load combinations, a 
maximum axial compression of 102.0kN is obtained in intermediate struts which 
represent 96% of their buckling capacity. Diagonal struts are less stressed with a 
maximum compression load of 39.5kN representing 88% of their buckling capacity. 
Maximum tension forces of 162kN and 13.5kN are obtained for x-cables and layer cables 
respectively. Tension forces in x-cable and layer cables represent 48.2% and 44.7% of 
their respective tension capacities. 
 
6.3 Sensitivity analysis of the designed solution  
 
A sensitivity analysis is conducted in order to determine the influence of the self-stress 
level on the cost of the footbridge design solutions. The evolution of the optimal design 
cost is thus studied with respect to the self-stress level. Self-stress ratios in layer cables 
and x-cables are varied from 5% to 20% in steps of 2.5% and for each value, a GA is 
employed to search for minimum cost design. Design optimization is thus performed 
considering only the member cross-section sizes as design variables. Variation of optimal 
design cost with respect to self-stress ratios in layer and x-cables is illustrated in Figure 4. 
It can be seen that small self-stress levels lead to higher costs. The optimal design cost of 
the footbridge is almost constant for values of self-stress ratios between 12.5% and 20%. 
Optimization results show also that the optimal solution obtained with 20% self-stress 
ratio for the two sets of cables has a cost of 49479 CHF. This solution is 2% more 
expensive compared to the best design solution obtained with a smaller level of self-
stress (15% in layer cables and 17.5% in x-cables). This suggests that increasing self-
stress level beyond certain limits may not lead to better solutions. 
 
When the self-stress ratio is not taken into account in the objective function, optimization 
results show that the material cost can be reduced by increasing the self-stress level. The 
minimum material cost is thus obtained with the highest self-stress level in the tensegrity 
footbridge (20%). In spite of this development, it is recognized that the major cost of this 
structure will come from fabrication of the joints. Recall that in this study it is assumed 
that the number of joints is fixed and that their cost is independent of the level of self-
stress and element sizes. 
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Figure 4. Variation of optimal design cost with respect to self-stress ratios in layer and x-cables 
 
7. Dynamic behaviour of the tensegrity footbridge  
 
7.1 Eigenfrequency analysis  
 
The linearized equation of motion of a tensegrity structure at a defined self-stressed 
configuration can be expressed as follow: 
 

[ ]{ } [ ]{ } { }TM u K u F+ =  [Eq. 18]
 
where: [M] and [KT] are mass and tangent stiffness matrices, respectively. {F} is the 
applied load vector. u, and u  are respectively vectors of nodal displacement and 
acceleration. The standard eigenproblem expressed in Eq. (19) is obtained from Eq. (18) 
for a small harmonic motion of the form: { } { } ( )u u sin tω= , where ω is the angular 
frequency and { }u  is the displacement amplitude vector.      
 

2[ ]{ } [ ]{ }TK u M uω=  [Eq. 19]
 
The spectral decomposition of matrix 1[ T ]M K−  yields the natural frequencies and 
corresponding mode shapes of the tensegrity footbridge.  
 
Eigenfrequency analysis is first performed for the design solution obtained in section 6.2. 
The mass of the footbridge deck is taken into account in the mass matrix. Natural 
frequencies are presented for the five lowest modes in Hz (Table 3). 
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Table 3. Natural frequencies of the tensegrity footbridge 

Mode  Mode type  Natural frequency (Hz) 
1st mode  Lateral bending  6.00 
2nd mode  Vertical bending  6.05 
3rd mode  Torsion  11.76 
4th mode  Lateral bending  13.75 
5th mode  Vertical bending  13.83 

 
Eigenfrequency analysis results show the existence of pairs of modes with close 
frequencies. The first and second modes correspond to the first and second bending 
modes of a simply supported beam. The third mode is a torsion mode. The fourth and 
fifth modes have very close frequencies and correspond to lateral and vertical bending 
modes with two half waves. Modes corresponding to the first five natural frequencies are 
all identified as deformation modes. The absence of soft modes usually detected in 
tensegrity structures is due to the fact that the tensegrity footbridge has no infinitesimal 
mechanisms as shown by the mechanical characterization (Table 1).  
 
It should be pointed out that pedestrian mass is comparable with that of the footbridge 
and thus could alter the vibration frequencies. The evolution of the five first natural 
frequencies is studied with respect to the number of pedestrians per m2 of the footbridge 
deck. In this case pedestrian mass is taken into account in the mass matrix of the 
structure. Results illustrated in Fig. 5 show that the first natural frequencies decrease 
when the number of pedestrians on the footbridge increases. When the footbridge is not 
fully loaded (less than 2 pedestrians/m2), the first natural frequencies of the tensegrity 
footbridge meet acceptance criteria defined by the Swiss code in terms of dynamic 
behavior. The frequency of the first mode of vibration is not in the frequency range to be 
avoided. Recall that the live load to be taken into account in serviceability limit states 
correspond approximately to the weight of two pedestrians/m2 on the footbridge deck. 
Figure 5 also shows that when the footbridge is fully loaded (4 pedestrians/m2), the 
fundamental vibration frequency is below 4 Hz. This suggests that the footbridge should 
be rigorously studied under dynamic excitations induced by pedestrians.  
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Figure 5. Variation of the natural frequencies with respect to the number of pedestrians on the footbridge 

 
Table 4. Natural frequencies of the tensegrity footbridge for various self-stress levels 

 Self-stress ratio 
Mode  5% 10% 20% 
1st Mode [Hz] 5.94 5.96 6.00 
2nd mode [Hz] 6.00 6.02 6.06 
3rd mode [Hz] 11.74 11.75 11.77 
4th mode [Hz] 13.61 13.66 13.78 
5th mode [Hz] 13.68 13.74 13.85 

 
The evolution of the five first natural frequencies is also studied with respect to the self-
stress level in the tensegrity footbridge. Eigenfrequency analysis is conducted with a self-
stress ratio varying from 5% to 20%. The cross-sectional sizes for struts and cables are 
those obtained in section 6.2 while the same self-stress ratio is considered for layer and x-
cables. Natural frequencies for first five modes for increasing self-stress levels are 
displayed in Table 4. Eigenfrequency analysis results show that the natural frequencies of 
the first five modes remain almost constant when the self-stress level is increased in the 
studied range. These results can be explained referring to the stiffness components of a 
tensegrity structure. As shown in Eq. (5), the tangent stiffness [KT] of a tensegrity 
structure is constituted by the elastic stiffness [KE], employed for small deformations 
truss analyses, and the geometrical stiffness [KG], induced by self-stresses. Consequently, 
when the structure experiences deformation modes, which have non-zero elastic energy, 
the stiffness is of the order of Young’s modulus and hence slightly affected by increasing 
the degree of self-stress. However, for infinitesimal mechanism modes, the elastic term 
vanishes and the stiffness is then induced only by [KG] [12]. This shows that, for the 
tensegrity footbridge, the fundamental frequency cannot be modified by changing the 
self-stress level.  
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To further investigate the dynamic behavior of the design solutions obtained with various 
levels of self-stress, the first natural frequencies of the optimized designs are plotted with 
respect to the self-stress ratios in footbridge members (Figure 6). For the studied design 
solutions, the fundamental frequency ranges between 5 and 9Hz. The smallest frequency 
value is obtained with the highest level of self-stress in the structure. Since frequencies 
are not directly affected by the level of self-stress, this result is explained by a reduced 
structural mass due to high level of self-stress. In fact, design optimization with the 
highest level of self-stress (20%) result in 11% mass reduction compared to the design 
solution obtained with a self stress ratio of 5%.      
 
Results illustrated in Fig. 6 show that it is possible to consider the dynamic behavior as 
additional parameter in the design process of the tensegrity footbridge. A final design 
solution can be chosen from a set of optimized designs with respect to its modal 
characteristics. The design optimization task of a tensegrity footbridge can be treated as a 
multi-objective task and techniques for Multi-Criteria Decision Making (MCDA) can be 
used to identify good design solutions. 
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Figure 6. Variation of first natural frequency with respect to self-stress ratios in layer and x-cables 
 
7.2 Parametric studies  
 
To investigate the influence of design variables on the footbridge modal characteristics, 
parametric studies of element cross-sectional sizes versus natural frequencies are 
conducted. Four parameters are examined: the cross-sectional area of diagonal struts,         
intermediate struts, layer cables and finally x-cables. For each parameter, a range of 
values is studied while other parameters are left unchanged. The analysis thus reveals the 
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influence of each parameter assuming mutual independence. The design solution 
obtained in section 6.2 is considered as default configuration for each parametric study. 
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Figure 7. Variation of the natural frequencies with respect to the cross-section area of diagonal struts 
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Figure 8. Variation of the natural frequencies with respect to the cross-section area of intermediate struts 

 
The evolution of the first five natural frequencies with respect to the cross-sectional area 
of struts is illustrated in Fig. 7 for diagonal struts and Fig. 8 for intermediate struts. 
Values for cross-sectional areas are chosen from the list of standard hollow tube profiles 
(Appendix A – Table A1). Results illustrated in Figures 7 and 8 show that the footbridge 
natural frequencies decrease when the cross-sectional areas of struts are increased. This 
suggests that the increase in the stiffness of the footbridge is counter-balanced by a higher 
increase in structural mass leading the natural frequencies to decrease. An observation 
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emerging from the comparison between results illustrated in Figures 7 and 8 is that 
natural frequencies are influenced slightly more by cross-sectional area of intermediate 
struts than by diagonal strut cross-sectional area. This can be explained by the fact that 
the number of intermediate struts in the footbridge is more than twice the number of 
diagonal struts. 
 
To further investigate the influence of cross-sectional parameters on modal characteristics 
of the tensegrity footbridge, the influence of changing cross-sectional areas of layer 
cables and x-cables is studied. Cable cross-sectional areas are chosen from a list of 
commercially available stainless-steel cables (Appendix A – Table A2).  
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Figure 9. Variation of the natural frequencies with respect to the cross-section area of layer cables 

 
The evolution of the first natural frequencies with respect to the cross-sectional area of 
layer cables is illustrated in Fig. 9. It can be seen from this figure that the first natural 
frequencies of the footbridge increase when the cross-sectional area of layer cable is 
increased. Similarly, as shown in Fig. 10, natural frequencies can be increased by 
increasing the cross-sectional are of x-cables. Results illustrated in this figure show an 
expected trend. In fact, an increment of the cross-sectional area of x-cables results in an 
increased stiffness of the structures without significantly increasing dead loads. This is 
also the case for layer cables in a minor degree. It is observed that natural frequencies are 
more influenced by change in x-cable cross-sectional area compared to change in layer 
cables. This suggests that the stiffness of the tensegrity footbridge is more influenced by 
cross-sectional characteristics of x-cables.  
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Figure 10. Variation of the natural frequencies with respect to the cross-section area of x-cables 

 
8. Conclusions  
 
The tensegrity concept presents new opportunities for structural expression in civil 
engineering offering safety and serviceability together with an elegant appearance and 
high strength-to-weight ratio. Although, tensegrities have been around for fifty years, 
tensegrity systems are not yet recognized as feasible engineering solutions. In this paper, 
the feasibility of using the tensegrity concept in a footbridge structural system is 
investigated through design optimization and a dynamic study. A GA is employed to find 
minimal cost design solutions. Design constraints are formulated according to the Swiss 
code of practice. 
 
The following conclusions come out from this study:   
 

 High flexibility hindered the use of tensegrity systems in civil structures. 
However, this study showed that tensegrity systems with connected compression 
elements could compete with traditional structural systems. Based on a ring 
module topology, a minimum-cost design solution satisfying all footbridge design 
requirements is identified. 

 
 The sensitivity analysis showed the importance of the level of self-stress as a 

design parameter. Design solutions obtained through material cost minimization 
have relatively high self-stress level which increases labor costs. This justifies 
explicitly taking into account self-stress costs in order to ensure a consistent 
design optimization of the tensegrity-based footbridge. 

 
 Eigenfrequency analysis results showed that the fundamental frequency of the 

tensegrity footbridge is not directly influenced by the self-stress level. However, 
results of parametric studies showed that natural frequencies are influenced by 
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other design parameters such as the cross-sectional sizes of x-cables. It is thus 
possible to consider the dynamic behavior as additional parameter in the design 
process of the tensegrity footbridge. 

 
 Although tensegrity structures are lightweight and have relatively low inherent 

structural damping, eigenfrequency analysis results showed that the tensegrity-
based footbridge can withstand dynamic loads such as those induced by a small 
number of pedestrians.      

  
These results underline the complexity of the design of tensegrity structures and the need 
for advanced computing methods. The design optimization study of a tensegrity-based 
footbridge is aimed to be a novel contribution toward identifying potential application of 
the tensegrity concept in civil structures.    
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Appendix A. 
 
Table A.1 Hollow tube profile properties   
N° External 

diameter 
Thickness  
 

Cross-
sectional area 

Moment of 
inertia 

Radius of 
gyration 

Price   

 [mm] [mm] [cm2] [cm4] [cm] [CHF/m] 
1 76.1 4 9.06 59.1 2.55 57.4 
2 76.1 5 11.2 70.9 2.52 65.9 
3 88.9 4 10.7 96.3 3 70.2 
4 88.9 5 13.2 116 2.97 85.1 
5 88.9 6 15.6 135 2.94 90.4 
6 88.9 6.3 16.3 140 2.93 95.8 
7 101.6 4 12.3 146 3.45 71.8 
8 101.6 5 15.2 177 3.42 88.4 
9 101.6 6 18 207 3.39 98.9 
10 101.6 6.3 18.9 215 3.38 111 
11 101.6 8 23.5 260 3.32 137.5 
12 101.6 10 28.8 305 3.26 177 
13 114.3 4 13.9 211 3.90 81.8 
14 114.3 5 17.2 257 3.87 102 
15 114.3 6 20.4 300 3.83 114 
16 114.3 6.3 21.4 313 3.82 125.5 
17 114.3 8 26.7 379 3.77 158.5 
18 114.3 10 32.8 450 3.70 201 
19 139.7 4 17.1 393 4.80 119.5 
20 139.7 5 21.2 481 4.77 125.5 
21 139.7 6 25.2 564 4.73 137.5 
22 139.7 6.3 26.4 589 4.72 155.5 
23 139.7 8 33.1 720 4.66 191.5 
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24 139.7 10 40.7 862 4.60 240 
25 139.7 12 48.1 990 4.53 290 
26 139.7 12.5 50 1020 4.52 306 
27 168.3 4 20.6 697 5.81 135 
28 168.3 5 25.7 856 5.78 167 
29 168.3 6 30.6 1009 5.74 198.5 
30 168.3 6.3 32.1 1053 5.73 204 
31 168.3 8 40.3 1297 5.67 276 
32 168.3 10 49.7 1564 5.61 317 
33 168.3 12 58.9 1810 5.54 357 
34 168.3 12.5 61.2 1868 5.53 387 
35 177.8 5 27.1 1014 6.11 208 
36 177.8 6 32.4 1196 6.08 213 
37 177.8 6.3 33.9 1250 6.07 233 
38 177.8 8 42.7 1541 6.01 270 
39 177.8 10 52.7 1862 5.94 335 
40 177.8 12 62.5 2159 5.88 390 
41 177.8 12.5 64.9 2230 5.86 411 
42 193.7 5 29.6 1320 6.67 201.3 
43 193.7 6 35.4 1560 6.64 238 
44 193.7 6.3 37.1 1630 6.63 244 
45 193.7 8 46.7 2016 6.57 307 
 
 
Table A.2 Cable properties   
N° Diameter  

 
Cross-section 
 

Maximum axial 
force  

Price  
 

 [mm] [mm2] [kN] [CHF/m] 
1 6 28.27 31.8 6.10 
2 7 38.48 43.3 7.30 
3 8 50.26 56.5 8.80 
4 9 63.62 71.5 10.20 
5 10 78.54 88.4 10.80 
6 11 95.03 107 14.80 
7 12 113.10 128 17.90 
8 13 132.73 150 19.80 
9 14 153.94 173 23.90 
10 15 176.71 199 24.70 
11 16 201.06 226 24.90 
12 18 254.47 286 37 
13 20 314.16 354 38.30 
14 22 380.13 428 49.25 
15 24 452.39 509 47.20 
16 26 530.93 597 58.10 
17 28 615.75 693 66.10 
18 30 706.86 795 74.90 
19 32 804.25 911 83.20 
20 34 907.92 1030 106.45 
21 36 1017.88 1153 110.30 
22 40 1256.64 1424 133.20 
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