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Abstract—Using graph theory, this paper investigates how a
group of vehicles, endowed with local positioning capabilities
(range and bearing to other vehicles), can keep a predefined
formation. We propose a longitudinal and lateral controller that
stabilizes a system of several vehicles as well as a collision
avoidance mechanism. The stability of our approach is supported
by a mathematical analysis as well as realistic simulations.

I. INTRODUCTION

Since the 1990s, and the start of the California’s Partners for

Advanced Transit and Highways (PATH) project [1], several

works have shown that when multiple cars drive together in

platoons, traffic throughput and safety can be increased [19].

Platooning is a complex task that requires automobiles to be

able to drive in a controlled and coordinated fashion. One

aspect of platooning is to control formations of vehicles.

Managing formations of non-holonomic vehicles has received

a lot of attention in the last decade and is known to be

difficult when only local positioning is available [7, 17, 20].

Our work considers that vehicles have only range and bearing

information to the neighboring vehicles and no communication

available. Hence, we inspire ourselves from potential fields [8]

and graph theoretic [3] approaches and use a decentralized

Laplacian feedback control [2] to solve a consensus prob-

lem [13] with the ultimate goal of guiding a formation of

vehicles. Unlike most of the research on formation control

focusing on differential drive robots, we consider here non-

holonomic vehicles which can only move forward or backward

in a direction tangent to their orientation.

As in [14, 15], we propose a control strategy and analyze

its stability when driving multiple cars. Such strategies always

rely on longitudinal and lateral control that are intrinsically

linked due to non-holonomicity. In Section III, we augment an

existing lateral control policy explained in [9] with a simple

longitudinal PI (Proportional, Integral) controller and we prove

its stability on a single vehicle. Further (in Section IV), we

use the graph theory and the Laplacian feedback control

(explained in Section II) in conjunction with our single car

controller to keep a predefined formation of multiple vehicles.

The stability of the whole system is also proven.

Finally, using the mathematical framework provided by

graph theory, we add an active collision avoidance mechanism

that makes use of both longitudinal and lateral axes. Not

only does it enable the agents to avoid obstacles on the road,

but also to avoid themselves while converging to the desired
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formation. In Section V, we test our approach in Webots [10],

a realistic robotic simulator for which we built a car physics

plugin. Section VI concludes this paper.

II. BACKGROUND

A. Basic Notions of Graph Theory

In this section the main graph theory notions that we will

use are summarized. A directed simple graph with N elements

is defined as a pair G = (V, E), where

• V = {vi, i = 1 . . .N} is the vertex set,

• E ⊆ V × V is the edge set.

The elements of E are ordered pairs of elements ek = (vi, vj)
with k = {1 . . . |E|}. The i-th node neighbors subset is defined

as Ni = {∀vj ∈ V : (vi, vj) ∈ E}. Given such a graph, we

can define the incidence matrix I ∈ R
N×|E| as:

Ii,k =







−1 if ek = (vi, vj)
1 if ek = (vj , vi)
0 otherwise

where ek is the k-th edge of G. When we deal with undirected

graphs a random orientation for the edges can be chosen and

the incidence matrix calculated. The definition of the incidence

matrix allows us to define the Laplacian matrix as

L = I · W · IT (1)

where the weight matrix W ∈ R
|E|×|E| is a diagonal matrix

whose element Wk,k relates to the importance of each edge

ek. In particular, if at least one weight Wk,k differs from 1,

the Laplacian matrix is addressed as the weighted Laplacian

matrix.

B. The Consensus Problem

The consensus problem [13] is a well-known and widely

studied problem in the field of decentralized control. It starts

by considering all the agents of a group as holonomic kine-

matic models:

ẋi = ui

where xi is the state of the i-th agent. The solution of the

consensus problem for a graph of N agents, whose goal is

to drive the whole system to a final common state, can be

solved with a Laplacian-based feedback method if the graph

is connected. The feedback control is in the form

ẋ = u = −Lx. (2)

To extend the consensus problem to more than one dimen-

sion, the Kronecker product can be used:
[

ẋ
ẏ

]

= −L⊗ I2

[

x
y

]

(3)
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Fig. 1. Representation of the problem to solve.

where I2 is the 2 × 2 identity matrix. We can conclude that

if we consider the state xi(t) of each robot i (or agent) to be

its position, we can drive a group of holonomic robots to a

rendez-vous point in x, y-coordinates with Equation 3.

III. FROM COORDINATES TO CONTROL VARIABLES

The solution of the consensus problem briefly outlined

above is based on the assumption that the agents are modeled

as bodyless, holonomic vehicles. This section is dedicated

to finding the appropriate translation between the holonomic

control variables ẋ(t), ẏ(t) and the non-holonomic control

variables of a simplistic car, namely v(t) and φ(t), the speed

and steering angle respectively.

A. Vehicle Model

Although this assumption holds only for low speed and

small steering angles, we will consider throughout this work

the following bicycle model as our car model:







ẋ = cos(θ) · v
ẏ = sin(θ) · v
θ̇ = tan(φ)

L
· v

where [x, y]T defines the position of the midpoint of the rear

axle in an Euclidean reference frame, θ means the orientation

of the car relative to the x-axis, L is the wheelbase, φ is the

steering angle (the angle of the front wheels relative the car’s

local x-axis) and v is the current speed. We note that in this

paper all the mathematical analyses consider an unbounded

steering angle whereas all simulations assume that the steering

angle is limited (|φ| < φmax).

B. Lateral Control

Let us consider the problem represented on Figure 1. We are

given (from the Laplacian control feedback) a horizontal and

vertical displacement rate ẋ and ẏ. This displacement enables

us to create a line (the goal line) that passes through the

[xG, yG]T = [x, y]T + ∆t[ẋ, ẏ]T point (the goal point) where

∆t is a positive time horizon (in the sequel we set ∆t = 1 [s]).

We assume here for simplicity that the wanted final direction

for all vehicles is parallel to the global x-axis (we assume

that vehicles are able to determine this direction, which could
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Fig. 2. Phase portrait showing a region of the e⊥, eθ, ed-space, generated
with l1 = L = 3.0, l2 = 4.0, l3 = 1.0 and φmax = 0.45.

be done by analyzing the road markings for example). Hence

the orientation θ of a vehicle is equal to the heading error

−eθ with respect to the goal line. The lateral and longitudinal

errors with the goal line are e⊥ = yG − y and ed = xG − x
respectively. The goal of this section is to create a control that

reaches the goal point with the correct orientation.

From the vehicle model and as partly explained in [9], we

can deduce that:






ė⊥ = sin(eθ) · v
ėθ = − tan(φ)

L
· v

ėd = − cos(eθ) · v
. (4)

[9] explains a lateral controller able to bring e⊥ and eθ to 0. If

the vehicle moves forward (v > 0), the control law sketched

for φ in Figure 1 is stable. To reach the goal line, we can

apply:

tan(φ(t)) =
− cos(eθ(t))e⊥(t) − (l1 + l2) sin(eθ(t))

l1 − (l1 + l2) cos(eθ(t)) + sin(eθ(t))e⊥(t)
(5)

where l1 and l2 are two positive control constants. If the

vehicle moves backward the control law needs to be slightly

modified. In this work, our mathematical developments focus

only on a forward motion of the vehicles. Nevertheless, they

are also valid for the backward motion if instead of using (5)

we use

tan(φ(t)) =
− cos(eθ(t))e⊥(t) − (l1 + l2) sin(eθ(t))

l1 + (l1 + l2) cos(eθ(t)) − sin(eθ(t))e⊥(t)
.

C. Adding the Longitudinal Control

The key point is to control the speed v(t) of the car so

as to reach the goal point without making the whole system

unstable. Let us use a simple proportional control:

v(t) = l3ed(t)

with l3 a positive constant. Figure 2 shows four trajectories

of this new controller in the e⊥, eθ, ed-space. In this phase

portrait, the steering angle was limited to 0.45 [rad]. We can

observe (and it is expected) that the error ed goes to 0, setting

the speed v to 0, thus stopping the convergence of e⊥ and eθ.
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Fig. 3. Phase portrait showing a region of the e⊥, eθ, ed-space, generated
with l1 = L = 3.0, l2 = 4.0, l3 = 1.0, vG = 1.0, KI = 0.1 and
φmax = 0.45.

As we are investigating a platooning technique where ve-

hicles try to reach a predefined speed, let us assume that the

goal point moves along the goal line at a speed vG > 0 (see

Figure 1) known by all vehicles. In practice (and if this speed

is not known by all cars), vehicles can use a PI controller to

estimate it [5]:

v(t) = l3ed(t) + KI ·
t

∫

0

ed(τ)dτ (6)

Intuitively, if vG stays constant, KI ·
∫ t

0 ed(τ)dτ should reach

vG as the time t tends to infinity. The error dynamics (4)

become:







ė⊥(t) = sin(eθ(t)) · v(t)

ėθ(t) = − tan(φ(t))
L

· v(t)
ėd(t) = − cos(eθ(t)) · v(t) + vG

with v(t) = l3ed(t) + vG and φ(t) as in Equation 5. This

system has two sets of fixed points in the e⊥, eθ, ed-space:

(0, 2kπ, 0) and (0, π + 2kπ,−2vG/l3) with k ∈ Z. The

linearized Jacobian of our system around (0, 2kπ, 0) is:

J0 =





0 vG 0

− vG

Ll2
− (l1+l2)vG

Ll2
0

0 0 −l3



 .

It yields as eigenvalues:

{

λ1 = −l3

λ2,3 = −vG
l1+l2±

√
−4Ll2+(l1+l2)2

2Ll2

Under our current constraints (l1, l2, l3, L, vG > 0), the real

part of all the eigenvalues are negative. We conclude that the

fixed points (0, 2kπ, 0) are asymptotically stable. Furthermore,

as the real part of two eigenvalues of the Jacobian around the

other set of fixed points are positive, the fixed points (0, π +
2kπ,−2vG/l3) are unstable. This not only demonstrates that

our system is stable when operating around (0, 0, 0) but also

V
i

V
i-1V i+1

Fig. 4. Chain or string of vehicles solving the rendez-vous problem.

that it converges to this nominal operation point. Figure 3

shows the same four trajectories as in Figure 2 converging to a

moving goal point using the PI speed controller of Equation 6

in the e⊥, eθ, ed-space.

We have seen in this section that given some displacement

∆t[ẋ, ẏ]T with respect to a car position, we can build a goal

point [xG, yG]T , that if moving (vG 6= 0), can be reached with

the controller given by Equations 5 and 6.

IV. VEHICULAR CONSENSUS

To simplify our upcoming multi-vehicle analysis we will

first transform our system and control law to coordinates

relative to the goal point (i.e. the translation along the x-axis

induced by the speed vG is ignored):







ẋ(t) = cos(θ(t)) · v(t) − vG

ẏ(t) = sin(θ(t)) · v(t)

θ̇(t) = tan(φ)
L

· v(t)

with

tan(φ(t)) =
− cos(θ(t))∆y(t) − (l1 + l2) sin(θ(t))

−l1 + (l1 + l2) cos(θ(t)) − sin(θ(t))∆y(t)

v(t) = l3(xG(t) − x(t)) + vG.

where ∆y(t) = y(t) − yG(t). xG(t) and yG(t) become

inputs to the system. We note that [xG(t) + vG · t, yG(t)]T

represents the goal point position in time. After linearization

of the system around the nominal regime (x(t) = xG(t),
y(t) = yG(t) and θ(t) = 0), we obtain:





ẋ(t)
ẏ(t)

θ̇(t)



 = A ·





x(t)
y(t)
θ(t)



 + B ·
[

xG(t)
yG(t)

]

with

A =





−l3 0 0
0 0 vG

0 − vG

Ll2
− (l1+l2)vG

Ll2



 , B =





l3 0
0 0
0 vG

Ll2



 .

A. String Stability

Let us consider now a fleet of N vehicles that have to solve

the rendez-vous problem. We propose to link each vehicle as

in Figure 4, thus forming a chain. The idea is to give as input



Fig. 5. Block diagram of the controller of each individual vehicle i within
the car chain.

to the controller of each car V i the position of the previous car

V i−1, thus yielding a linearized system P i for each vehicle:





ẋi(t)
ẏi(t)

θ̇i(t)



 = A ·





xi(t)
yi(t)
θi(t)



 + B ·
[

xi−1(t)
yi−1(t)

]

This system is sketched in Figure 5 where we have separated

the system in three sub-blocks Hx, Hy and Hθ representing

the transfer functions from the input [xi−1(t), yi−1(t)]T to the

output [xi(t), yi(t)]T .

This system is identical to the one explained in Section III-C

and is stable. The question now is whether the whole system

(with its N vehicles) is stable – in other words, whether the

disturbances grow or attenuate as they propagate through our

system of vehicles [12]. This is regarded in litterature as string

stability [18]. Sheikholeslam and Desoer in [16] state that a

cascaded system of identical vehicles (with a transfer function

P (s)) is string stable if |P (jω)| < 1 for all ω. We note that

this result is a sufficient condition to prove string stability, but

it is not a necessary condition. Hence if we can prove that our

transfer functions Hx, Hy and Hθ all have gains lower than 1,

then our chain of vehicles is stable. The transfer functions of

our system (7) are:

Hx(s) =
l3

s + l3

Hy(s) =
v2

G

Ll2s2 + vG(l1 + l2)s + v2
G

Hθ(s) =
svG

Ll2s2 + vG(l1 + l2)s + v2
G

.

Their gains are:

|Hx(jω)| =
l23

ω2 + l23

|Hy(jω)| =
v4

G

L2l22ω
4 + ((l1 + l2)2 − 2Ll2)v2

Gω2 + v4
G

|Hθ(jω)| =
v2

Gω2

L2l22ω
4 + ((l1 + l2)2 − 2Ll2)v2

Gω2 + v4
G

,

yielding the following two sufficient (and resonable) condi-

V
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Fig. 6. Integration of the Laplacian feedback control into our system of cars.
(a) Assuming that the car Vi is connected to the other cars Vk and V l, (b)
we create the block diagram that aggregates all car positions and generates a
new goal point to reach.

tions:

L ≤ (l1 + l2)
2

2l2
(7)

l1 ≥ 1 (8)

such that all gains are lower than 1 for all ω. Hence the system

is string stable if it satisfies Equations 7 and 8. Additionally,

we note that each element of the string is BIBO (Bounded

Input Bounded Output) stable.

B. Back to Graph Theory

The key result just obtained allows us to link vehicles

together in any way (provided that only bounded inputs are

given to each controller) whilst keeping our graph of agents

stable. In particular, we can use Equation 3 as a way to use the

Laplacian feedback control to achieve the consensus. Consider

the transformation of the system depicted Figure 5 to the

one on Figure 6. Positions for all vehicles (e.g., V i, Vk, V l)

can be aggregated through the Laplacian equation resulting

in a displacement vector ∆t[ẋ, ẏ]. Adding the corresponding

displacement vector to each car position will produce each

goal point.

1) Decentralization: In the context of platooning on high-

ways without any additional road infrastructure, we need

to decentralize the Laplacian feedback control presented in

Section II-B, as well as use only relative coordinates. To do

so, we make the assumption that any vehicle V i is able to

measure its distance ei,j and azimut αi,j to other neighboring

vehicles Vj . Hence we can transform Equation 3 for each

vehicle V i:














ẋi = −
∑

vj∈Ni

Li,j · ei,j cos(αi,j)

ẏi = −
∑

vj∈Ni

Li,j · ei,j sin(αi,j)
. (9)

In Figure 7, we have linked two vehicles using the above

decentralized law with the incidence matrix I = [1,−1]T

and the weight matrix W = [1]. We have also enforced their

speed to be vG = 1.0 [m/s]. Both cars converge to (0, 0, 0) in

the e⊥, eθ, ed-space and reach the same position in the global

coordinate frame.
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Fig. 8. Trajectories of four cars converging to a rectangular formation.

C. Creating Formations

Until now we have considered that all cars should converge

to the same spatial location. This is, of course, neither possible

nor desirable: the vehicles should keep instead predefined

distances with their neighbors. In [4] it is explained how

to use the Laplacian approach to achieve formation control.

Equation 2 can be modified to accomodate a bias vector b
enabling the system to reach a specific configuration:

ẋ = u = −L(x − b).

Hence Equation 9 becomes:














ẋi = −
∑

vj∈Ni

Li,j ·
(

ei,j cos(αi,j) − bx
i,j

)

ẏi = −
∑

vj∈Ni

Li,j ·
(

ei,j sin(αi,j) − by
i,j

) .

with bx
i,j and by

i,j being the desired longitudinal and lateral

offset between the vehicles V i and Vj respectively.

Figure 8 shows a group of vehicles converging to a rectan-

gular formation. In this example, the Laplacian matrix is:

L =









3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3









and the bias matrices composed of each bias vector are:

bx =









0 0 −10 −10
0 0 −10 −10

10 10 0 0
10 10 0 0









, by =









0 −4 0 −4
4 0 4 0
0 −4 0 −4
4 0 4 0









Thus, by modifying the values of the bias matrices our system

is able to reconfigure into any shape.

d

dx

y

dy

dy

Fig. 9. Safety bounding box defined as the dangerous region where the
vehicle engages collision avoidance.
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Fig. 10. Trajectories of four cars converging to a rectangular formation using
collision avoidance. The maximal deceleration was set to amax = 4.0 [m/s2].

D. Collision Avoidance

Although they are not visible, the example depicted on

Figure 8 engendered two collisions (i.e. at least two of the

cars’ bounding boxes overlapped) at 1.2 and 3.2 seconds into

the run. Fortunately, using graph theory and the Laplacian

feedback control, we can seamlessly add on top of our forma-

tion keeping behavior a distributed collision avoidance control.

Let us define E as the set of all edges (vi, vj) such that the

vehicle Vj is not within the dangerous region of V i. We denote

by dangerous region the spatial region that is covered by a car

driving at its current speed v(t) and suddently decelerating at

its maximum acceleration amax until halted. For simplicity and

as shown in Figure 9, we have defined it as a simple bounding

box where the lateral and rear distances dy are constant and

the frontal distance dx(t) is dependant on time and equal to:

dx(t) =
v(t)2

2amax

Finally, the behavior between pairs of potentially colliding

vehicles should become repulsive instead of attractive. Hence

we could define the weight Wk,k of each edge ek to be:

Wk,k =

{

1/N if ek ∈ E
−δ/di,j otherwise

where δ is a positive constant and di,j is the distance between

the bodies of car V i and car Vj . An adjustment of the bias

vector is also needed as the repulsion point should be the same

for both cars. Thus if ek = (vi, vj) /∈ E then bx
i,j = by

i,j = 0.

Figure 10 shows the trajectories generated by four cars

having the same initial conditions as in Figure 8. We note

that each car has a limited acceleration and deceleration of

amax = 4.0 [m/s2]. We can observe that trajectories are slightly

different and result in no collisions anymore.
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We have also performed systematic 60 [s] simulation runs

where 2, 4, 8 and 16 vehicles were asked to achieve a forma-

tion on two lanes: pairs of cars are asked to stay 10 [m] apart

and cars in the same pair 4 [m] apart (similiar to the experi-

ments in Figures 8 and 10). Vehicles were initially randomly

placed in a 20×20 [m] area (collisions due to cars overlapping

at time t = 0 are ignored) with random orientations and

random speeds varying between 0 and 20 [m/s]. Results are

summarized on Figure 11. We observe that collisions are

significantly reduced and note that some collisions (due to

inadequate initial conditions) were unavoidable as we limited

the maximum acceleration and deceleration.

Finally, we have obtained a complete system able to keep

a predefined formation at a specified speed whilst actively

avoiding collisions.

E. Notes about Assumptions

Throughout this work we have made several assumptions.

In this section, we explain how to alleviate some of them.

1) Straight trajectory: To simplify our analyses, we have

proposed that vehicles need to reach a goal line. As such our

formations are only able to accomodate trajectories with a

small curvature. Fortunately there are no restrictions on the

curve to reach and the notion of goal curve is valid. The

state of each car simply needs to be converted beforehand

from rectangular coordinates to curvilinear coordinates (as

explained in [15]).

2) Leaderless formations: Formation speed and direction

of motion was a priori known by all vehicles. Hence there

were no need to have a formation leader (not even a virtual

leader). In some sense, this approach is quite unique and

provides an approach that is fully distributed and robust to

failure. We can note that optionally, any number of cars within

the formation can be declared as leaders. The leaders do not

use the Laplacian feedback control and do not need to be

known by the other vehicles (the followers). The followers will

automatically adapt and try their best to keep the formation

with the leaders as anchor points. This strategy has already

been used in [5].

3) Unique identifiers: The Laplacian feedback control as-

sumes that vehicles are uniquely identified. To perform pla-

tooning, the relative position of the vehicles within the for-

mation is enough to compute their identifiers. Let us consider

a formation on two lanes, each vehicles can have either 3 (if

it is in leading or trailing row) or 5 neighbors. They are also

able to determine whether they are on the left or right side of

the formation. Hence they are capable of knowing their role

within the formation and assign identifiers to their neighbors

and themselves.

4) Obstacle-free roads: Obstacles can be easily integrated

into our framework. If a vehicle detects an obstacle it will add

it to its list of neighbors and handle it as a replusive agent.

V. EXPERIMENTS

A. Simulated Vehicles

Experiments are conducted in Webots [10], a realistic mo-

bile robotic simulator for which we have developed a realistic

car simulator plugin [6]. Webots carefully reproduces discrete

sensors and actuators with their calibrated nonlinearities and

noise features. Our car model incorporates basic rigid dynam-

ics properties including typical steering dynamics response.

Although not calibrated with an actual vehicle, we performed

several validation runs and tried to bring the friction (of the

tires) and throttle/brake (engine) model close to the ones of a

real vehicle based on literature information..

The main differences between this real Ackermann steering

vehicle and the simulated model (of Equation 4) are that

steering and speed dynamics include a time lag (dependent

on physical properties) and that the speed is only controllable

through the throttle and brake pedals which have a nonlinear

and noisy relation with the acceleration. Hence we will now

control the speed v(t) given by Equation 6 with:

τ(t) = f−1(l4 · (v(t) − vcurrent(t))

where τ(t) is the throttle (if positive) and brake (if negative)

positions, vcurrent(t) is the current speed, f(·) is the nonlinear

relation between the throttle position and the desired acceler-

ation at the current speed and l4 is a positive constant.

We have equiped our simulated vehicles with four simulated

SICK LMS 291 sensors as to cover a 360◦ field of view. The

SICK LMS 291 is a laser rangefinder, which scans at 75 Hz

over 180◦ with a 0.25◦ angular resolution. Their sensing range

can go up to 80 [m] with an error of about 1 [cm] at 30 [m].

We have implemented a dynamic object detection and tracking

method similiar to the one proposed in [11] where synthetic

scans are created and areas of difference between consecutive

scans are tracked by particle filters.

B. Setup

For each experimental run, four intelligent vehicles are

placed in an area free of obstacles. Vehicles have to perform

the rectangular formation already explained in Section IV-D

for Figure 10 at a speed vG = 10 [m/s]. Their initial pose
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Fig. 12. Average and standard deviation of the rooted mean square error of
the distances between each car and the desired distances depending on time.

is randomly drawn from a normal distribution around their

desired pose with a standard deviation of 2 [m] in each

direction and of π/4 [rad] for the orientation. We define by

desired pose the pose such that the longitudinal and lateral

distances between each vehicle satisfy the final formation.

Additionally their speed is randomly drawn from a uniform

distribution between 0 and 20 [m/s].

C. Results

We perform four sets of experiments: three sets where the

range and bearing measurements are given to the vehicles with

a zero mean gaussian noise with variance e2
σ, α2

σ respectively

and a last set where these measurements are gathered from the

dynamic object tracker using the laser rangefinders. The posi-

tion of each car is monitored during a run and each run lasts

60 seconds. After 100 runs, the average rooted mean square

error (MSE) between the actual distances between each pair of

cars and the desired distances is computed. Figure 12 shows

the rooted MSE for (eσ , ασ) = {(0, 0), (2, 0.2), (4, 0.4)}. As

the noise grows the final MSE gets larger, but we observe that

in all cases the formation is stable. The average error on each

vehicle link is lower than a meter even with a noise as high as

4 [m] and 0.4 [rad]. Figure 12 also shows that the convergence

of the last set is steady. When we used the laser rangefinders,

we measured errors of −0.4176 ± 1.4492 [m] for the range

and 0.0449± 0.2143 [rad] for the bearing.

Overall, these simulation results show the good perfor-

mances of our approach and its ability to stabilizes under

challenging conditions (videos showing simulated vehicles are

available on http://disal.epfl.ch/research/context aware its/videos/).

VI. CONCLUSION

In this paper, we demonstrated that we could drive a group

of automobiles in a specific formation. We have proved math-

ematically that our approach is stable. In particular, we solved

the consensus problem for kinematically constrained vehicles

whilst providing an efficient and active collision avoidance

mechanism by exploiting only local measurements between

neighboring vehicles. We also tested the robustness of our

control under realistic conditions.
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