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Summary. A neural network model reference adaptive controller for trajectory
tracking of nonlinear systems is developed. The proposed control algorithm uses a
single layer neural network that bypasses the need for information about the system’s
dynamic structure and characteristics and provides portability. Numerical simula-
tions are performed using nonlinear dynamic models of marine vehicles. Results are
presented for two separate vehicle models, an autonomous surface vehicle and an
autonomous underwater vehicle, to demonstrate the controller performance in terms
of tuning, robustness, and tracking.

1 Introduction

Autonomous marine vehicles are used for a wide range of assignments,
including oceanographic surveys, coastal patrols, pipeline maintenance, and
mine hunting. Such missions require a high degree of agility and maneuverabil-
ity, which can only be provided by a high-performance motion control system.
We distinguish two generic types of marine vehicles: autonomous underwater
vehicles (AUVs) and autonomous surface vehicles (ASVs). AUVs and ASVs
are complementary, with each vehicle having distinct, mission specific advan-
tages and disadvantages. This is enhanced by the prospect of collaborative
control, where the ASVs can be used to transmit real time positioning and
communication information to the AUVs through the air-sea interface.

The development of control algorithms for marine vehicles is the focus of
several research groups around the world. For example, three different stabi-
lization algorithms are developed in [6] for an underactuated hovercraft. How-
ever, the mathematical model for a hovercraft is simple when compared to that
of a standard marine vehicle, as it does not contain many of the nonlinear,
coupled drag terms that generally characterize marine vehicles. Furthermore,
the tracking performance of the algorithm is not assessed, but instead the
velocities are regulated to zero, which is a more fundamental problem.
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Many tracking controllers are available in the literature (see, for example,
[2, 3, 4, 7, 9, 17, 18]). In [18], the case of a surface ship equipped with a pair
of propellers is considered. This controller yields interesting results. However,
the desired trajectory is limited to straight lines and circles. The same type
of underactuation is considered in [17], where the authors derive a controller
that uses a state estimator to handle state measurement uncertainties.

In [2] a global controller is designed that accounts for control amplitude
saturation effects. Then, in [3], a velocity observer is added to the control
algorithm, enabling the controller to work without velocity measurements.

A controller for an underactuated AUV equipped with a propeller and
a side thruster is designed in [7]. The controller handles constant and slow
varying external perturbations.

Typically, the design of a motion controller relies on the system’s mathe-
matical model. However, in the case of marine vehicles it is extremely challeng-
ing to obtain a model that will satisfactorily capture the dynamic behavior
of the system. To compensate for this, one can use an adaptive approach to
handle uncertainties in the geometric and and hydrodynamic constant param-
eters.

The design of adaptive controllers for marine vehicles has been widely
studied. In [5], a nonlinear model-based adaptive output feedback controller
was developed for a surface vessel. Global asymptotic position tracking was
achieved assuming the structure of the mathematical model was of a particular
form, with constant inertia and damping matrices. This structure was also
extended to include a bias term representing drift, currents, and wave load.
Simulations were presented, but did not demonstrate the controller robustness
to unmodeled dynamics.

The dynamical behavior of a marine vehicle can only be partially depicted
using current modeling techniques. These dynamics are especially challenging
when the vehicle’s velocity is not constant, as when it is following a search
pattern or when its desired path is constantly being modified. Additionally,
the ocean environment is characterized by large unknown perturbations. These
features make it desirable to have a control system that is robust to model
parameter and structure uncertainty.

This chapter introduces a neural network model reference adaptive con-
troller (NN-MRAC) that has valuable self-tuning capabilities that allows it
to adapt to the operating conditions in order to optimize the tracking perfor-
mance of the closed loop system. The parameter update mechanism is derived
using Lyapunov stability theory and guarantees that the tracking error is ul-
timately bounded when subject to some generalized constraints. The addition
of a single layer neural network bypasses the need for information about the
system’s dynamic structure and characteristics. The control algorithm is ap-
plied to the surface vessel’s nonlinear model presented in [19] and the AUV’s
nonlinear model from [14]. Numerical simulation results are presented for both
cases.
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2 Mathematical Preliminaries

In this section we establish definitions, notation, and a key result used later
in the chapter. Let R denote the set of real numbers, let R

n denote the set of
n×1 real column vectors, let R

n×m denote the set of real n×m matrices, and
let (·)T denote transpose. Furthermore, ||·|| represents the Euclidean vector
norm, and A > 0 denotes the fact that the Hermitian matrix A is positive

definite. For a subset S ⊂ R
n, we write ∂S,

◦
S for the boundary and the

interior of S, respectively.
In this chapter we consider nonlinear controlled dynamical systems of the

form

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0, (1)

where x(t) ∈ D ⊆ R
n, t ≥ 0, is the system state vector, D is an open set,

0 ∈ D, u(t) ∈ U ⊆ R
m, t ≥ 0, is the control input, U is the set of all admissible

controls such that u(·) is a measurable function, and f(·, ·) is Lipschitz on
D×U . The closed-loop dynamical system corresponding to a feedback control
u(x(t), t), t ≥ 0, is given by

ẋ(t) = f̃(x(t), t) � f(x(t), u(x(t), t)), x(0) = x0, t ≥ 0. (2)

Following [12], the system (2) is said to be ultimately bounded if there is
a compact set Mc ⊂ D, 0 ∈ Mc, such that corresponding to each solution
x(t), t ≥ 0, of (2) there is a T > 0 with the property that x(t) ∈ Mc for all
t > T . The following theorem is introduced to establish a sufficient condition
for ultimate boundedness.

Theorem 1. [12] Consider the closed loop nonlinear dynamical system (2)
and assume that the forward solution x(t), t ≥ 0, corresponding to an initial
condition x(0) = x0 ∈ D exists. Assume that there exists a continuously

differentiable function V : D → R and a compact set M ⊂ D, 0 ∈
◦
M , such

that

V (0) = 0, V (x) > 0, x ∈ D\{0}, (3)
dV (x)

dx
f̃(x, t) ≤ −ε < 0, x ∈ D\M, t ≥ 0, (4)

where ε > 0. Then (2) is ultimately bounded, that is, there exists a time T > 0
and a compact set Mc ⊇M such that x(t) ∈Mc for all t > T .

Remark 1. From the proof of Theorem 1, it follows that the domain of con-
vergence Mc is defined as the smallest level set associated with the Lyapunov
function candidate V (·) that entirely contains the compact set M .
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3 Modeling

In this section we present a generic mathematical model of a marine vehicle
that will be used for the development and testing of the controllers. In par-
ticular, our model assumes that pitch, roll and heave motions are negligible
and feature only the three degrees of freedom corresponding to surge, sway,
and yaw motions. Because of this choice we will assume that the vehicle’s
state space D coincides with R

6, although the control algorithm can be easily
extended to higher dimensions.

3.1 Equations of Motion

The notation used for the vehicle’s generalized equations of motion follows
[8], but is reduced to motion in the horizontal plane. The earth fixed frame
(EFF), denoted by xe, ye and ze, is chosen so that the vehicle’s center of
gravity is at the origin at time t = 0. The xe and ye axes are directed toward
the north and the east, respectively, while the ze axis points downward in
accordance with the right-hand rule. This frame is assumed to be inertial,
the acceleration due to the earth’s rotation being considered negligible. The
vehicle’s configuration in the EFF is

η(t) � [xN(t), yE(t), ψ(t)]T, t ≥ 0, (5)

where xN(t) ∈ R and yE(t) ∈ R describe the distance traveled along the xe
and ye directions, respectively, and ψ(t) ∈ R describes the rotation about the
ze axis.

The body fixed frame (BFF) has its origin fixed at the vehicle’s center
of gravity, the xb axis points forward, the yb axis starboard, and the zb axis
downward. The vehicle’s velocity is defined in the BFF as

ν(t) � [u(t), v(t), r(t)]T, t ≥ 0, (6)

where u(t) ∈ R and v(t) ∈ R are the components of the absolute velocity in the
xb and yb directions, respectively, and r(t) ∈ R describes the angular velocity
about the zb axis. The vectors η(t) and ν(t) are related by the kinematic
equation [8],

η̇(t) = J(η(t))ν(t), t ≥ 0, (7)

where

J(η) �

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤⎦ , (8)

is the rotation matrix from the BFF to the EFF.
Using the form introduced in [8] and the previous notation, the marine

vehicle’s equation of motion is given by

Mν̇(t) + C(ν(t))ν(t) +D(ν(t))ν(t) + g(η(t)) = B̂τ(t), t ≥ 0, (9)
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where M ∈ R
3×3 is the mass matrix (including added mass, see [19] for

more details), C(ν(t)) ∈ R
3×3 contains Coriolis, centripetal, and added-mass

terms, D(ν(t)) ∈ R
3×3 is the damping matrix, g(η(t)) ∈ R

3 is the vector of
restoring forces and moments, τ(t) ∈ R

m is the input vector, and B̂ ∈ R
3×m

characterizes how the control inputs affect the dynamics of the vehicle.
While the rigid body inertia, Coriolis, centripetal, and gravitational terms

are described in [8], the hydrodynamic terms are much more challenging to
model and depend on the particular geometry of the considered vehicle. In
general, even very thorough hydrodynamic modeling efforts are only able to
partially describe the dynamic behavior of a marine vehicle, as the assump-
tions made always considerably affect the final result. In light of these consid-
erations we are going to write the vehicle dynamics as

ν̇(t) = f(x(t)) +Bτ(t), t ≥ 0, (10)

where x � [ ηT νT ]T is the state vector and

B � M−1B̂,

f(x) � −M−1[C(ν) +D(ν)]ν −M−1g(η),

are assumed to be unknown.

4 Adaptive Controller Design

The nonlinearities, unmodeled dynamics, and strong dynamic coupling in-
herent to marine vehicle models make it desirable to have a multi-input/multi-
output control system that is capable of self-tuning. We chose to solve this
problem using an adaptive control approach. The stability analysis and the
parameter update mechanism are derived using Lyapunov stability theory.

To simplify the presentation, the explicit dependence of the state variables
upon time, when obvious, will be omitted.

4.1 Reference System

When using model reference adaptive control, a control algorithm is de-
veloped so that the system mimics the behavior of a reference system that
provides smooth convergence to the desired trajectory. Choosing the appro-
priate reference system allows the vehicle to exhibit less overshoot and os-
cillatory behavior as well as better tracking performance. Furthermore, the
control inputs become more realistic, even when the vehicle is far away from
the desired trajectory, diminishing the need to implement input amplitude
and rate saturation algorithms.

We consider a linear reference system that can be written as

ẋr(t) = Arxr(t) +Brr̂(t), t ≥ 0, (11)
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where xr(t) ∈ R
2m is the reference state, Ar ∈ R

2m×2m, Br ∈ R
2m×m are

constant matrices, and r̂(t) ∈ R
m is the reference input.

The reference system considered here is composed of three uncoupled
second-order oscillators. Each oscillator is characterized by a damping co-
efficient ζi > 0, i = 1, ...,m and a natural frequency w0i > 0, i = 1, ...,m. This
choice was mostly motivated by the simplicity of the corresponding reference
dynamics. The dynamics of the ith oscillator are given by

ẍri(t) + 2ζiω0iẋri(t) + ω2
0ixri(t) = ω2

0ir̂i(t), t ≥ 0, i = 1, ...,m. (12)

The reference system can thus be rewritten as[
ẋ1r(t)
ẋ2r(t)

]
=
[

0m Im
−ω2

0 −Arm

] [
x1r(t)
x2r(t)

]
+
[

0m

ω2
0

]
r̂(t), t ≥ 0, (13)

where

x1r(t) �
[
xr1(t) ... xrm(t)

]T
, t ≥ 0, (14)

x2r(t) �
[
ẋr1(t) ... ẋrm(t)

]T
, t ≥ 0, (15)

and

Arm � diag(2ζ1ω01, ..., 2ζpω0m), (16)

ω0 � diag(ω01, ..., ω0m). (17)

Finally, the desired trajectory for the marine vehicle may be written as

x̃d(t) =
[
xd1(t) ... xdm(t)

]T
, t ≥ 0. (18)

By choosing

r̂(t) = ω−2
0 (¨̃xd(t) +Arm ˙̃xd(t) + ω2

0 x̃d(t)), t ≥ 0, (19)

we find that[
ẋ1r(t)− ˙̃xd(t)
ẋ2r(t)− ¨̃xd(t)

]
= Ar

[
x1r(t)− x̃d(t)
x2r(t)− ˙̃xd(t)

]
, t ≥ 0. (20)

Since

Ar �
[

0m Im
−ω2

0 −Arm

]
, (21)

is Hurwitz, it follows that x1r(t)− x̃d(t) → 0 and x2r(t)− ˙̃xd(t) → 0 as t→∞,
i.e., the reference state converges to the desired trajectory. The remaining
problem is to design a control command, τ(t) ∈ R

m, such that the tracking
error converges to a fixed neighborhood around the origin. Considering that
the mass, Coriolis/centrifugal, and damping matrices of the real system con-
tain unknown parameters and unknown terms, a control signal that accounts
for these uncertainties needs to be considered.
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4.2 Control Command

The next goal is to define a control signal, τ ∈ R
m, that guarantees that

the tracking error is ultimately bounded.

Theorem 2. Consider the vehicle dynamics (7), (10) and the reference dy-
namics (13). Introduce a tracking error e1(η, x1r) ∈ R

m, where η ∈ R
n and

x1r ∈ R
m represent the vehicle and reference configuration, respectively, such

that e1(η(t), x1r(t)) ≡ 0, t ≥ 0, if and only if perfect tracking is achieved.
Assume that the error dynamics can be written in the form

ė1(t) = Q1(η(t), x1r(t))q2(x(t), xr(t), χ(t)), t ≥ 0, (22)

where χ(t) ∈ R
m is an exogenous signal, x(t) ∈ D is the state of the system,

xr(t) ∈ R
2m is the reference state, Q1 : R

n × R
m → R

m×m, and q2 : R
2n ×

R
2m×R

m → R
m. Assume also that there exists a Lyapunov function candidate

Vs(e1) such that dVs(e1)
de1

= 0 if and only if e1 = 0. Next, consider a control
command

τ∗(x, xr, χ, r̂) = −Λ1 [Θ∗w(x, xr, χ, r̂) + δ∗(x)] , (23)

where τ∗(x, xr, χ, r̂) ∈ R
m, Λ1 ∈ R

m×n is such that BΛ1 is nonsingular,
Θ∗ ∈ R

n×m, w(x, xr, χ, r̂) ∈ R
m, and δ∗(x) ∈ R

n. Furthermore, let

Θ∗ = (BΛ1)−1Λ2, (24)

w(x, xr, χ, r̂) =
(
∂q2(x, xr, χ)

∂ν
Λ2

)−1
(
∂q2(x, xr, χ)

∂η
J(η)ν +

∂q2(x, xr, χ)
∂xr

ẋr

+
∂q2(x, xr, χ)

∂χ
χ̇− q̇2des(x, xr)+e2(x, xr, χ)

+G−1
2 QT

1 (η, x1r)
dVs(e1)

de1

T
)
, (25)

δ∗(x) = (BΛ1)
−1
f(x), (26)

with

q2des(η, x1r) = −α(η, x1r)G1Q
T
1 (η, x1r)

dVs(e1)
de1

T

, (27)

e2(x, xr, χ) = q2(x, xr, χ)− q2des(η, x1r), (28)

where α : R
n × R

m → R
+, G1 ∈ R

m×m is positive definite, and Λ2 ∈ R
n×m

is such that ∂q2(x,xr,χ)
∂ν Λ2 is nonsingular. Then the error dynamics associated

with the closed loop given by (7), (10), (13), and (23) are ultimately bounded.

Proof. Using (22), the derivative of the Lyapunov function candidate Vs(e1)
is given by
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V̇s(x, xr, χ) =
dVs(e1)

de1
Q1(η, x1r)q2(x, xr, χ). (29)

Using a backstepping approach derived from [11], we will use q2(x, xr, χ) as
a virtual control command. Ideally q2(x, xr, χ) would be equal to q2des(η, x1r)
defined by (27), such that

V̇s(x, xr, χ) |q2=q2des= −α(η, x1r)
dVs(e1)

de1
Q1(η, x1r)G1Q

T
1 (η, x1r)

dVs(e1)
de1

T

,

(30)
which is negative definite. Next, consider a new Lyapunov function candidate,

V ∗(e1, e2) = Vs(e1) +
1
2
eT2G2e2, (31)

where G2 ∈ R
m×m is positive definite and e2 is defined by (28). The time

derivative of (31) is of the form

V̇ ∗(x, xr, χ, r̂, τ
∗) = V̇s(e1) + eT2 (x, xr, χ)G2ė2(x, xr, χ, r̂, τ

∗). (32)

Next, taking the derivative of (28) and substituting the kinematic and dynamic
equations (7) and (10), we find the error dynamics to be

ė2(x, xr, χ, r̂, τ
∗) =

∂q2(x, xr, χ)
∂η

J(η)ν +
∂q2(x, xr, χ)

∂ν
(f(x) +Bτ∗)

+
∂q2(x, xr, χ)

∂xr
ẋr +

∂q2(x, xr, χ)
∂χ

χ̇− q̇2des(x, xr), (33)

which, after substituting the control input (23), provides the following closed-
loop error dynamics

ė1(x, xr, χ) = Q1(η, x1r)q2(x, xr, χ), (34)

ė2(x, xr, χ) = −e2(x, xr, χ)−G−1
2 QT

1 (η, x1r)
dVs(e1)

de1

T

. (35)

Therefore, (32) becomes

V̇ ∗(x, xr, χ) = −α(η, x1r)
dVs(e1)

de1
Q1(η, x1r)G1Q

T
1 (η, x1r)

dVs(e1)
de1

T

−eT2 (x, xr, χ)G2e2(x, xr, χ), (36)

which is negative definite, proving asymptotic stability of the closed-loop error
dynamics. This concludes our proof.

Remark 2. The matrix Θ∗ and the function δ∗(x) in (23) are unknown, while
w(x, xr, χ, r̂) is a known function of the states and the reference input.
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Remark 3. The particular choice for the error dynamics (22) is motivated by
the individual application of Theorem 2 to marine vehicles. Such a statement
is not limiting in any way since we can always choose Q1(η, x1r) = Im and
χ(t) ≡ 0 for all t ≥ 0.

Theorem 3. Consider the system, tracking error, and virtual command de-
scribed in Theorem 2, with the additional condition that ∂q2(x,xr,χ)

∂ν is bounded
on R

2n × R
2m × R

m and BΛ1 is positive definite. Let the controller (23) be
replaced with the following:

τ(t) = −Λ1 [Θ(t)w(x(t), xr(t), χ(t), r̂(t)) +W (t)σ(x(t))] , t ≥ 0, (37)

where Θ(t) ∈ R
n×m and W (t) ∈ R

n×q, t ≥ 0, are parameter estimates, and
σ(x) ∈ R

q, x ∈ R
n, is a vector composed of basis functions that we use

to approximate the system’s dynamics with a maximum approximation error
ε∗ > 0. Furthermore, let the parameter update laws be

Θ̇ =
∂q2(x, xr, χ)

∂ν

T

GT
2 e2(x, xr, χ)wT(x, xr, χ, r̂)Γ1 − σ1Θ, (38)

Ẇ =
∂q2(x, xr, χ)

∂ν

T

GT
2 e2(x, xr, χ)σT(x)Γ2 − σ2W, (39)

where Γ1 ∈ R
m×m and Γ2 ∈ R

q×q are positive definite σ1 ≥ 0, and σ2 ≥ 0.
Then the tracking error and the parameter estimates are ultimately bounded
with a domain of convergence defined as

Mc � {(e1, e2, Θ̃, W̃ ) : V (e1, e2, Θ̃, W̃ ) ≤ α}, (40)

where

V (e1,e2,Θ̃,W̃ )=Vs(e1)+
1
2
eT2G2e2+

1
2
tr
(
BΛ1Θ̃Γ

−1
1 Θ̃T

)
+

1
2
tr
(
BΛ1W̃Γ−1

2 W̃T
)
,

(41)
and

α � max
(e1,e2,Θ̃,W̃ )∈M

V (e1,e2,Θ̃,W̃ ),

M �
{

(e1, e2, Θ̃, W̃ ) :
∣∣∣∣∣∣G 1

2
2 e2(x, xr, χ)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣G 1
2
2
∂q2(x, xr, χ)

∂ν
BΛ1

∣∣∣∣∣∣∣∣ ε∗,

tr(BΛ1Θ̃Γ
−1
1 Θ̃T) ≤ tr(BΛ1Θ

∗Γ−1
1 Θ∗T),

tr(BΛ1W̃Γ−1
2 W̃T) ≤ tr(BΛ1W

∗Γ−1
2 W ∗T)

}
. (43)

Proof. Since Θ∗ and δ∗(x) from Theorem 2 are unknown, their estimates need
to be introduced. In particular, Θ∗ in (23) will be replaced with its estimate
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Θ(t), such that Θ(t) = Θ∗ + Θ̃(t), where Θ̃(t) represents the estimation error.
Following the approach described in [10], it will be assumed that the vector
function δ∗(x) can be approximated by a linear parameterized neural network
with a maximum approximation error given by ε∗ > 0. Hence, there exists
ε(x) such that ||ε(x)|| < ε∗ for all x ∈ R

2n, and

δ∗(x) � W ∗σ(x) + ε(x), x ∈ R
2n, (44)

where W ∗ ∈ R
m×q is the matrix of unknown control gain weights (constant)

that minimize the approximation error, σ : R
2n → R

q is a vector of basis
functions such that each component of σ(·) takes values in [0, 1], ε(·) is the
vector of approximation errors, and ||W ∗|| ≤ w∗, where w∗ is a bound for the
unknown control gain optimal weight matrix. Next, following the procedure
described in [13], δ∗(x(t)) is replaced in (23) with W (t)σ(x(t)) where W (t) ∈
R

m×q is the estimate of the weights such that W (t) = W ∗ + W̃ (t), with W̃ (t)
representing the estimation error.

When replacing the control command (23) with (37), the corresponding
closed-loop error dynamics are given by

ė1(x, xr, χ) = Q1(η, x1r)q2(x, xr, χ), (45)

ė2(x, xr, χ, Θ̃, W̃ , r̂) = −e2(x, xr, χ)−G−1
2 QT

1 (η, x1r)
dVs(e1)

de1

T

+
∂q2(x, xr, χ)

∂ν
γ(x, xr, χ, Θ̃, W̃ , r̂), (46)

where

γ(x, xr, χ, Θ̃, W̃ , r̂) � −BΛ1

[
Θ̃w(x, xr, χ, r̂) + W̃σ(x)− ε(x)

]
. (47)

To show ultimate boundedness of the closed-loop error dynamics given by
(45) and (46), the following Lyapunov function candidate is considered:

V (e1,e2,Θ̃,W̃ ) = V ∗(e1,e2)+
1
2
tr
(
BΛ1Θ̃Γ

−1
1 Θ̃T

)
+

1
2
tr
(
BΛ1W̃Γ−1

2 W̃T
)
. (48)

Note that V (e1, e2, Θ̃, W̃ ) is a positive definite scalar function with continuous
partial derivatives, in accordance with the hypothesis set by Theorem 1. The
corresponding Lyapunov derivative is given by

V̇ (x, xr, χ, Θ̃, W̃ , r̂) =
∂V ∗(e1, e2)

∂e1
ė1(x, xr, χ)+

∂V ∗(e1, e2)
∂e2

ė2(x,xr,χ,Θ̃,W̃,r̂)

+tr
(
BΛ1Θ̃Γ

−1
1 Θ̇T

)
+ tr
(
BΛ1W̃Γ−1

2 ẆT
)
,

= −α(η, x1r)
dVs(e1)

de1
Q1(η, x1r)G1Q

T
1 (η, x1r)

dVs(e1)
de1

T

−eT2 (x, xr, χ)G2e2(x, xr, χ) + eT2 (x, xr, χ)G2
∂q2(x, xr, χ)

∂ν
BΛ1ε(x)
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−tr
(
BΛ1Θ̃w(x, xr, χ, r̂)eT2 (x, xr, χ)G2

∂q2(x, xr, χ)
∂ν

−BΛ1Θ̃Γ
−1
1 Θ̇T

)
−tr
(
BΛ1W̃σ(x)eT2 (x, xr, χ)G2

∂q2(x, xr, χ)
∂ν

−BΛ1W̃Γ−1
2 ẆT

)
.

Finally, the update laws (38) and (39) provide the following bound for the
Lyapunov derivative:

V̇ (x, xr, χ, Θ̃, W̃ , r̂) ≤ −σ1

2
tr(BΛ1Θ̃Γ

−1
1 Θ̃T) +

σ1

2
tr(BΛ1Θ

∗Γ−1
1 Θ∗T)

−σ2

2
tr(BΛ1W̃Γ−1

2 W̃T) +
σ2

2
tr(BΛ1W

∗Γ−1
2 W ∗T)

−
∣∣∣∣∣∣G 1

2
2 e2(x, xr, χ)

∣∣∣∣∣∣(∣∣∣∣∣∣G 1
2
2 e2(x, xr, χ)

∣∣∣∣∣∣−∣∣∣∣∣∣∣∣G 1
2
2
∂q2(x, xr, χ)

∂ν
BΛ1

∣∣∣∣∣∣∣∣ ε∗
)
.

(49)

It follows from Theorem 1 that the solutions of (38), (39), (45), and (46) are
ultimately bounded with convergence to the compact set Mc, defined in (40).

5 Applications

Application of the NN-MRAC algorithm will be presented in this section
for two different marine vehicles. First, the algorithm is applied to a fully
actuated ASV, then to a nonminimum phase AUV. Both models have the
same general form as presented in Section 2, and their differences will be
pointed out. The theorems from the previous section will be applied to each
case to explicitly define the control command and show the stability of the
error dynamics. Numerical simulation results will be presented for each case.

5.1 ASV

An example of how to compute the hydrodynamic terms that appear in
(9) for an ASV is provided in [19]. Since the modeling trends and dynamical
behavior are similar for different surface vessels, using the model developed
in [19] helps to quantify the dynamics and performance capabilities of surface
vessels and facilitates the testing of the controller.

We assume that the vessel is equipped with two motors in the rear that
can be rotated independently. This provides a control input of

τ � [X,Y,N ]T, (50)

consisting of two forces X,Y ∈ R along the xb and yb axes, respectively, as
well as a yawing moment N ∈ R. This results in a fully actuated vehicle for
motion along the horizontal plane. Hence, B̂ = B = M−1, which is positive
definite because of the nature of the mass matrix.
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Control Command

The position tracking error is defined as e1(η, x1r) � η − x1r. The corre-
sponding error dynamics are given by

ė1(x(t), x2r(t)) = η̇(t)− ẋ1r(t) = J(η(t))ν(t)− x2r(t), t ≥ 0. (51)

Following the notation and procedure introduced in Section 4, let χ(t) ≡ 0
and

Q1(η, x1r) = I3, (52)
q2(x, xr) = J(η)ν − x2r. (53)

The quadratic Lyapunov function candidate

Vs(e1) =
1
2
eT1 Pe1 (54)

is chosen, where P > 0. Hence, (27) and (28) with (52), (53), and α(η, x1r) = 1,
provide

e2(x, xr) = J(η)ν − x2r +G1P (η − x1r), (55)

and the new Lyapunov function candidate becomes

V ∗(e1, e2) =
1
2
eT1 Pe1 +

1
2
eT2G2e2. (56)

Let Λ1 = Λ2 = I3, so that the control command (23) is given by

τ∗(x, xr, r̂) = − [Θ∗w(x, xr, r̂) + δ∗(x)] ,

where the parameters defined in (24), (25), and (26) become

Θ∗ = M,

w(x, xr, r̂) = JT(η)
(
∂q2(x, xr)

∂η
J(η)ν − ẋ2r +G1P (J(η)ν − x2r) + e2(x, xr)

+G−1
2 eT1 (η, x1r)P

)
,

δ∗(x) = Mf(x). (58)

With this control command, we find the derivative of (56) to be

V̇ ∗(e1, e2) = −eT1G1e1 − eT2G2e2, (59)

which is negative definite, and the tracking error converges to zero in accor-
dance with Theorem 2.

Introducing the parameter estimates, the above control command is mod-
ified according to (37) in Theorem 3:
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τ(t) = − [Θ(t)w(x(t), xr(t), r̂(t)) +W (t)σ(x(t))] , t ≥ 0.

The parameter estimates (38) and (39) become

Θ̇ = JT(η)GT
2 e2(x, xr)wT(x, xr, r̂)Γ1 − σ1Θ, (61)

Ẇ = JT(η)GT
2 e2(x, xr)σT(x)Γ2 − σ2W, (62)

which, according to Theorem 3, guarantees that the dynamics of the error and
parameter estimates are ultimately bounded.

Numerical Simulations

In this section maneuvers will be performed to test the controller perfor-
mance capabilities on the ASV.

The reference system, as described previously, consists of three uncoupled
second-order differential equations. The constants describing the reference sys-
tem dynamics are ω0 = 0.2I3 and ζ = diag(0.7, 0.7, 0.45). Other constants
chosen for the controller include Γ1 = 10 I3, Γ2 = 10 I12, G1 = G2 = I3,
σ1 = σ2 = 0.01, and P = I3.

Circular Trajectory Results

The first maneuver performed on the ASV is a circular trajectory about
the origin of the EFF, defined by

xd = A sin(ωt+ φ),
yd = A cos(ωt+ φ),
ψd = −(ωt+ φ), t ≥ 0.

The simulation was performed for a radius A = 10 m, an angular velocity
ω = 2π

75 rad/s, and a phase angle of φ = π
4 . The behavior of the vehicle

is simulated for 75 s, or one complete cycle. The corresponding trajectory is
shown in Figure 1. The vehicle converges quickly to the desired trajectory
while staying relatively close to the reference system. However, undesirable
fluctuations in the control input can be seen for the first 10 s of the simulation.
These are caused by the coupling between sway and yaw, which the reference
system fails to account for.

Octomorphic Trajectory Results

The octomorphic trajectory is given by the following parametric equations:

xd(t) = 2A sin
(
ωt

2

)
, (63)

yd(t) = A sin(ωt), t ≥ 0. (64)
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Fig. 1. Circular trajectory and corresponding control command, τ(t).

The tangential angle for this curve, corresponding to the desired orientation,
is given by

ψd(t) = tan−1
(
ẏd(t)
ẋd(t)

)
= tan−1

(
cos (ωt)
cos
(

ωt
2

)) , t ≥ 0.

This maneuver is more complex than the circular trajectory that was
tracked in the previous section. Tracking a circular trajectory involves a sin-
gle turn with a constant turning radius. The octomorphic trajectory involves
both left and right turns as well as straight lines.

Once again undesirable fluctuations in the control input are observed (see
Figure 2), caused by the coupling between sway and yaw, which the reference
system fails to capture.

Fig. 2. Octomorphic trajectory and corresponding control command, τ(t).
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5.2 AUV

The control algorithm will now be applied to the most commonly used
propulsion system available on AUVs as well as surface vessels: a thruster,
used for propulsion, and a rudder for steering, or, equivalently, a vectored
thruster ([14, 15]). The propulsion system considered provides two indepen-
dent control commands, while the vehicle has three degrees of freedom. The
vehicle will thus have fewer independent actuators than degrees of freedom,
making it underactuated. The corresponding dynamic model is characterized
by unstable zero dynamics, as mentioned in [7, 14, 15], and the system is
said to be nonminimum phase. Furthermore, m = 2 and the available control
command τ ∈ R

2 appearing in (9) is of the form

τ �
[
τ1 τ2
]T
, (65)

where τ1 and τ2 correspond to the surge and the sway force, respectively.

Tracking Errors

The error in position in the EFF and BFF are respectively defined by

ep(x1r, ηs) � ηs − x1r, (66)

ẽ(x1r, η) � J−1
s (ψ)ep(x1r, ηs) =

[
ẽ1(x1r, ηs) ẽ2(x1r, ηs)

]T
, (67)

where ep(x1r, ηs) is the error in the EFF, ẽ(x1r, η) is this same error in position,
but projected in the BFF, ηs �

[
xN yE

]T is the actual position of the vehicle,
x1r ∈ R

2 is the position of the reference system that the vehicle is tracking,
and

Js(ψ) �
[

cosψ − sinψ
sinψ cosψ

]
. (68)

Using (7) and (67), we obtain the following first and second time deriva-
tives for ẽ(t):

˙̃e(x, xr) = νs − J−1
s (ψ)ẋ1r + rSẽ, (69)

¨̃e(x, xr, τ, r̂)= ν̇s(x, τ)− J−1
s (ψ) (ẋ2r + rSη̇r)+ṙSẽ(x1r,η)+rS ˙̃e(x, xr), (70)

where νs �
[
u v
]T, and S is the following skew-symmetric matrix,

S �
[

0 1
−1 0

]
. (71)

Note that the control action τ(t) appears explicitly in the expression of ¨̃e(t)
(70) through ν̇s(t). The distance between the vehicle and its desired position
is defined as
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ed(x1r, ηs) � ‖ẽ(x1r, ηs)‖ = ‖ep(x1r, ηs)‖. (72)

The time derivative of such a distance is given by

ėd(xr, x) =
1

ed(x1r, ηs)
ẽT(x1r, ηs) ˙̃e(x1r, ηs). (73)

Next, we define the error β(x1r, ηs) ∈ (−π, π], which is the angle between
the longitudinal axis of the vehicle and the direction of the desired position
[1]. It can be computed as follows:

β(x1r, ηs) � tan−1
(
ẽ2(x1r, ηs)
ẽ1(x1r, ηs)

)
, (74)

and its time derivative is given by

β̇(xr, x) =
1

e2d(x1r, ηs)
ẽT(x1r, ηs)S ˙̃e(x1r, ηs). (75)

We will consider the tracking error e1(x1r, ηs) =
[
ed(x1r, ηs) β(x1r, ηs)

]T.
As β(x1r, ηs) converges to zero, the vehicle will orient itself toward its desired
position.

We can note that β(x1r, ηs) is not defined for ed(x1r, ηs) = 0, which implies
that we can not guarantee that e1(x1r, ηs) = 0 if and only if ηs = x1r. We are,
however, still able to apply Theorem 2, but we will prove ultimate boundedness
of the error dynamics rather than asymptotic stability. In particular, keeping
in mind that perfect tracking is not achievable in the case of a nonminimum
phase system [16], we will control the vehicle in such a fashion that e1(x1r, ηs)
converges toward a compact set.

Control Command

The time derivative of e1(x1r, ηs) is given by (22), with

Q1(x1r, ηs) =
[

1 0
0 1

ed

]
J−1

s (β),

q2(x, xr, χ) = νs − J−1
s (ψ)ẋ1r + χ, (76)

where χ is a known exogenous signal whose time derivative is given by

T χ̇(x1r, η, χ) = rSẽ(x1r, ηs)− χ, (77)

where T is a diagonal matrix with positive constant elements. We note that
det[Q1(x1r, ηs)] �= 0. We now consider the following Lyapunov function candi-
date Vs(e1):

Vs(e1) = ed sin2
(
β

2

)
+

1
2
e2d. (78)
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Note that

dVs(e1)
de1

=
[
sin2
(

β
2

)
+ ed

1
2ed sin(β)

]
, (79)

and that dVs(e1)
de1

= 0 if and only if e1 = 0.
The velocity error given by (28) is of the form

e2(x, xr, χ) = νs − J−1
s (ψ)ẋ1r + χ+ edG1Js(β)

[
sin2
(

β
2

)
+ ed − a

1
2ed sin(β)

]
,(80)

where the dependencies of β and ed from xr and x were omitted, a > 0 is an
arbitrary constant that will measure the maximum allowable tracking error.
As mentioned in [16], perfect tracking for a nonminimum phase system is
not achievable. Accordingly, the control design objective for such a system
should not be perfect tracking, but bounded-error tracking. Therefore, the
expression of e2 given by (28) is altered by introducing the −a term. This
introduces a position error corresponding to the distance between the vehicle
and its desired position, which avoids unstable vehicle behavior.

We now consider the new Lyapunov function candidate

V ∗(e1, e2) = Vs(e1) +
1
2
eT2G2e2. (81)

Using the control command (23) with

Θ∗ = (BΛ1)−1Λ2, (82)

w(x, xr, χ, r̂) =
∂q2(x, xr, χ)

∂η
J(η)ν − J−1

s (ψ)ẋr + T−1 (rSẽ(x1r, ηs)− χ)

−q̇2des(x,xr,χ)+e2(x,xr,χ)+G−1
2 Js(β)

[
sin2
(

β
2

)
+ ed

1
2ed sin(β)

]
, (83)

δ∗ = (BΛ1)−1f(x), (84)

where

Λ1 �
[

1 0 0
0 1 0

]
, Λ2 �

⎡⎣1 0
0 1
0 0

⎤⎦ , (85)

we obtain the following time derivative for the above Lyapunov function can-
didate:

V̇ ∗(e1, e2) =−eT2G2e2−ed
[
sin2
(

β
2

)
+ed 1

2 sin(β)
]
G1

[
sin2(β

2 )+ed−a
1
2 sin(β)

]
.(86)

Recognizing that V ∗(e1, e2) > 0 and V̇ ∗(e1(t), e2(t)) < 0, t ≥ 0, provided that
ed � a, it follows from Theorem 1 that the error dynamics are ultimately
bounded.
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Introducing the parameter estimates, the control command is modified
according to (37) in Theorem 3,

τ(t) = −Λ1 [Θ(t)w(x(t), xr(t), r̂(t)) +W (t)σ(x(t))] , t ≥ 0.

The parameter estimates (38) and (39) become

Θ̇ = Λ2G
T
2 e2(x, xr, χ)wT(x, xr, χ, r̂)Γ1 − σ1Θ, (88)

Ẇ = Λ2G
T
2 e2(x, xr, χ)σT(x)Γ2 − σ2W. (89)

It follows that the dynamics of the error and parameter estimates are ulti-
mately bounded, in accordance with Theorem 3.

Circular Trajectory Simulation Results

The first maneuver we will attempt is a counterclockwise circle of radius
10m at a velocity of 1m/s, with the following initial conditions:

η(0) =
[
0 0 0

]T
, ν(0) =

[
0 0 0

]T
. (90)

The reference model initial conditions are

xr1(0) =
[
0.4 0

]T
, xr2(0) =

[
0 0
]T
. (91)

The natural frequency and damping matrices of the reference system are set
at 0.2I2 and 0.9I2, respectively. The initial conditions chosen for the Θ and
W estimates are

Θ(0) =
[

15 0
0 50

]
, W (0) =

[
−5 0 −5 0 40 0
0 10 0 10 0 10

]
. (92)

Furthermore, Γ1 = I2, Γ2 = I6, a = 0.4, and G1 = G2 = I2. The dynamic
model of the vehicle corresponds to the Silent Quick Unmanned Intelligent
Diver [14]. The values for M , C(ν), and D(ν) are given in [14]. Finally, the
initial position of the desired trajectory is

ηds(0) =
[
7.0711 7.0711

]T
.

As shown in Figure 3, the tracking performances are excellent.

Octomorphic Trajectory Simulation Results

For our second maneuver, we consider an octomorphic trajectory. The initial
conditions are the same as for the previous example, except for the desired
trajectory

ηd(0) =
[
0 0
]T
.

The result of this simulation are displayed in Figure 4. The tracking perfor-
mances are very good.
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Fig. 3. Circular trajectory and corresponding control command, τ(t).

Fig. 4. Octomorphic trajectory and corresponding control command, τ(t).

6 Conclusion

A NN-MRAC algorithm was developed that uses Lyapunov stability the-
ory to guarantee an ultimately bounded tracking error. The single layer neural
network combines with the parameter update laws to eliminate the need to
know any of the system dynamics, including its structure. This adds portabil-
ity to the controller, which was demonstrated by its implementation on two
different marine vehicles. Numerical simulations performed for an ASV showed
excellent tracking performance despite a strong dependence on the reference
system dynamics during the transient region. Equivalent results were seen for
the AUV, where the complexity was heightened by the nonminimum phase
properties of the system.
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