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Abstract— The presented work addresses the observation
problem for a large class of nonlinear systems, including
systems which are nonlinear in the unmeasured states. As-
suming partial state measurements, the unmeasured states
are reconstructed so that a prediction of the measured states
converges to a neighborhood of the actual measurements. This
prediction-based observer algorithm relies on carefully selected
prediction-observation errors, designed using a backstepping
technique. Lyapunov’s direct method is used to show Lyapunov
stability and convergence of these errors to an arbitrarily small
neighborhood of the origin. The technique is applied to two
different nonlinear systems. Results of numerical simulations
are presented for both cases and illustrate the efficacy of the
algorithm. Experimental results are also provided for one of
the examples.

Keywords: observer, predictor, nonlinear systems, nonlinear
observer, systems non-affine in the unmeasured states.

I. INTRODUCTION

The observation problem for linear systems has received
considerable attention from the research community over
the years, and a wide range of results can be found in
the literature, with outstanding contributions from Kalman
([1], [2]) and Luenberger ([3], [4]), to name but a few.
For nonlinear systems however, the observation problem still
constitutes a challenging problem which is largely open.

The strength of the observation techniques developed for
linear systems naturally led to attempts at extending them
to nonlinear systems. Extended Kalman filtering ([5], [6]),
for instance, is the result of one such tangent, and has
shown its utility in a number of cases ([7]). Alternately,
when only the output appears nonlinearly in the system’s
dynamics, it is possible to construct an observer for which
the observation error dynamics are linear ([8], [9]). Linear
techniques can thus be used to solve the observation problem
for this particular type of systems, which are sometimes
referred to as being in output feedback form ([8]).

The observation problem becomes more difficult if the
considered nonlinear system is not in output feedback form,
that is, if unmeasured states appear nonlinearly in the sys-
tem’s dynamics. High gain observers ([9], [10]) can be used
to address the problem for such systems. Such techniques

essentially consist in selecting observer gains sufficiently
large such that the negative influence of nonlinearities on the
observation errors is overcome. The approach can however
lead to large transient observation errors, due to an issue
referred to as peaking phenomenon ([9]). In [11], the au-
thors present an alternate design methodology for nonlinear
observers applicable to systems which are not in output
feedback form, with an approach taking advantage of the
notions of immersion and invariance ([12]). Although the
technique is of great interest, it requires solving a set of par-
tial differential equations, which, quoting the authors, can be
“extremely difficult.” Nevertheless, observers for a number
of nonlinear systems can be constructed using the approach,
a pair of them being presented in [11]. This immersion and
invariance based procedure constitutes a fairly open-ended
approach.

In the following, we introduce a novel observer design
which, while concerned with a smaller class of systems, has
the advantage of being systematic and relatively simple to
apply. In a departure from high gain observation techniques
such as those in [9], [10], the presented approach relaxes
high gain requirements by using derivative estimates ([13],
[14]). The observer relies on a partial state predictor, which
compares predictions on the measured states with actual
measurements. The prediction error is then used to estimate
the unmeasured states. The design of this predictor-observer
relies on specific prediction-observation errors, designed
using a backstepping technique ([8]). A Lyapunov stability
analysis of the errors’ dynamics shows that they are Lya-
punov stable, and converge to a neighborhood of the origin.
The size of this neighborhood depends upon the accuracy
of the derivative estimate, as well as on a number of design
constants. Accordingly, the errors can be made arbitrarily
small by using a high performance derivative estimator,
and/or selecting appropriate gains.

The paper is structured as follows. Section II describes
the class of systems considered and presents the observation
strategy. The predictor-observer is then introduced in Section
III. Performance of the obtained observer was tested through
numerical simulations for two different systems, a nonlinear
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oscillator and a three degree of freedom helicopter model.
Simulation results are presented in Section IV and illustrate
the efficacy of the proposed observer. The algorithm was
also tested experimentally, on a three degree of freedom
helicopter setup. Implementation results are given in Section
V. Section VI concludes this paper.

II. PROBLEM STATEMENT AND OBSERVATION STRATEGY

Consider a system of the form

ẋ(t) = f(x(t), t), x(0) = x0, t ≥ 0, (1)
y(t) = Cx(t), (2)

where x(t) ∈ Rn, t ≥ 0, is the system’s state vector, y(t) ∈
Rm, t ≥ 0, the measured output vector, with m ≥ n/2, and
C =

[
Im 0m×p

]
, with p = n−m ≤ m.

A sufficient condition for system (1)–(2) to be observable
is that rank[J(x(t), t)] = n, t ≥ 0, ([15], [16]), where

J(x(t), t) ,




∇y(t)
∇y(1)(t)

...
∇y(n−1)(t)


 , t ≥ 0, (3)

where ∇g(x) , dg(x)
dx , and (·)(i) denotes the ith derivative

with respect to time. In the following, we focus on a subset
of the set of observable systems as defined by the above
condition. More specifically, we consider systems for which
rank[Js(x(t), t)] = n, t ≥ 0, where

Js(x(t), t) ,
[ ∇y(t)
∇y(1)(t)

]
, t ≥ 0. (4)

The goal of the presented work is to reconstruct the entire
state vector x(t), t ≥ 0, using the information provided by
the output measurement y(t), t ≥ 0, and partial knowledge
of the form of the right-hand-side of (1). To reach this goal,
we define x1(t) , y(t), t ≥ 0, and decompose the state
vector as x(t) =

[
xT

1 (t) xT
2 (t)

]T
, t ≥ 0, where x2(t) ∈

Rp, t ≥ 0, denotes the unmeasured states which we attempt
to reconstruct. Furthermore, the dynamics of the measured
states are described by

ẋ1(t) = f1(x1(t), x2(t), t), x1(0) = Cx0 , x10 = y(0),
t ≥ 0, (5)

where f1(x1(t), x2(t), t) , Cf(x(t), t), t ≥ 0. Note that,
using (2) and (5), we can rewrite (4) as

Js(x, t) ,
[

Im 0m×p
∂f1(x1,x2,t)

∂x1

∂f1(x1,x2,t)
∂x2

]
, (6)

and the above observability condition reduces to the condi-
tion that rank[∂f1(x1, x2, t)/∂x2] = p. In addition, from (2)
and (5), we have that

ẏ(t)− f1(y(t), x2(t), t) = 0, t ≥ 0. (7)

According to the implicit function theorem ([17]), if
rank[∂f1(x1, x2, t)/∂x2] = p, there exists a unique function
g : Rm×Rm×R→ Rp, such that g(y, ẏ, t) = x2. However,
obtaining a closed form expression of this function can prove

challenging, and its existence can only be guaranteed locally.
In addition, while y(t), t ≥ 0, is measured and hence known,
ẏ(t), t ≥ 0, is not necessarily available. Thus, directly
working in terms of the above g(·) does not constitute a
viable option.

Instead, we will indirectly work in terms of g(·). In
particular, we will construct an estimate x̂2(t) of x2(t),
t ≥ 0, which uniformly converges to a neighborhood of
g(y(t), ẏ(t), t), t ≥ 0. In addition, since ẏ(t), t ≥ 0, is
not measured, we will estimate its value, using measured
information (i.e. y(t), t ≥ 0) and a derivative estimator (such
as those in [13], [14]). The resulting estimate x̂2(t), t ≥ 0, is
then further refined by adjusting it according to a prediction
error. The latter is computed as the difference between the
measured output and a predicted x̂1(t), t ≥ 0, obtained by
integrating a partial state predictor whose form is similar to
(5), with x2(t) replaced by x̂2(t), t ≥ 0.

III. NONLINEAR OBSERVER DESIGN

Following the approach delineated in Section II, it is
possible to construct a partial state predictor of the form

˙̂x1(t) = f1(x1(t), x̂2(t), t), x̂1(0) = x10, t ≥ 0, (8)

where x̂2(t) ∈ Rp, t ≥ 0, is designed so that x̂1(t) ∈ Rm,
t ≥ 0, provides a predicted value of x1(t), t ≥ 0. However,
to provide more flexibility in the design procedure, the
algorithm will rely on predictions of an augmented output
x1a(t), t ≥ 0, obtained from

ẋ1a(t)= f1(x1(t), x2(t), t)+ẋa(t), x1a(0)=x10, t≥0, (9)

where ẋa(t) ∈ Rm, t ≥ 0, is the rate of change of a known
augmenting signal, generated by

ẍa(t)= Wa(x1(t), x̂2(t), t)v(t)+u(t), ẋa(0)=xa(0)=0m,

t ≥ 0, (10)

where the matrix Wa(·) ∈ Rm×(m−p) is designed so that
W2(x1, x̂2, t) ,

[
∂f1(x1,x̂2,t)

∂x̂2
Wa(x1, x̂2, t)

]
∈ Rm×m

is nonsingular, and v(t) ∈ Rm−p, u(t) ∈ Rm, t ≥ 0, are
signals to be designed at a later stage of the proceedings.
In particular, u(t), t ≥ 0, will be constructed to ensure
boundedness of xa(t).

Next, we construct the following partial state predictor,
˙̂x1a(t)=f1(x1(t), x̂2(t), t)+ẋa(t), x̂1a(0)=x10, t≥0,(11)

where x̂1a(t) ∈ Rm is a prediction of x1a(t), t ≥ 0, and
x̂2(t) ∈ Rp is an estimate of x2(t), t ≥ 0.

In the following, we will construct the vector ˙̂x2a(t) ,[
˙̂x
T

2 (t) vT(t)
]T

∈ Rm, t ≥ 0, so that the prediction
error

e1(t) , x1a(t)− x̂1a(t) = x1(t)− x̂1(t), t ≥ 0, (12)

is Lyapunov stable and asymptotically converges to a neigh-
borhood of the origin, uniformly in time. Note that, from
(8) and (11), we have that x̂1(t) = x̂1a(t) − xa(t), t ≥ 0,
provides a prediction of the measured output x1(t), t ≥ 0.
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For the statement of the following theorem, we will use
the notations

W1(x1, x̂2, t) , ∂f1(x1, x̂2, t)
∂x1

, (13)

W3(x1, x̂2, t) , ∂f1(x1, x̂2, t)
∂t

, (14)

as well as the following lemma,
Lemma 3.1: [18] Let A, Σ ∈ Rm×m be Hurwitz, and

Q , RTR, with R ∈ Rm×m full rank. If

H ,
[

A ΣΣT

−Q −AT

]
, (15)

has no eigenvalues on the imaginary axis, then there exists
P ≥ 0 such that

ATP + PA + Q + PΣΣTP = 0. (16)

In addition, if (A,R) is observable, P > 0.
Theorem 3.1: Consider the system given by (1)–(2), and

the partial state predictor (11). Assume that a continuously
differentiable signal z(t) is available such that

ẏ(t) = z(t)− ẋa(t) + ε(t), t ≥ 0, (17)

with ‖ε(t)‖ ≤
√

ε/3, ε ≥ 0, t ≥ 0. Then, consider the
estimated trajectory x̂2(t), t ≥ 0, generated by

˙̂x2a(t) = W−1
2 (x1(t), x̂2(t), t)

[
P−1

2

(
P1e1(t)− 1

2
Q3e2(t)

)

−A1(A1e1(t)−e2(t))− W3(x1(t), x̂2(t), t)+ż(t)

−u(t)+A2e2(t)−W1(x1(t), x̂2(t), t)
(
z(t)−ẋa(t)

+
1
2
WT

1 (x1(t), x̂2(t), t)P2e2(t)
)]

, x̂2a(0)=0m,

t ≥ 0, (18)
x̂2(t) =

[
Ip 0p×(m−p)

]
x̂2a(t), (19)

where A1, A2 are chosen Hurwitz, the observation error is
defined as

e2(t) , f1(x1(t), x̂2(t), t)+ẋa(t)+A1e1(t)−z(t), t ≥ 0.

(20)

In addition, u(t) , −ω2
0xa(t)−2ζω0ẋa(t)−P−1

2 Q3e2(t)/2,
t ≥ 0, with ζ, ω0, Q3 ∈ Rm×m chosen positive definite, and

v(t),
[

0p Ip×(m−p)

]
x̂2a(t), t ≥ 0. (21)

The matrices P1, P2 ∈ Rm×m are obtained from the
following Riccati equations,

AT
1 P1 + P1A1 + Q1 + P 2

1 = 0, (22)
AT

2 P2 + P2A2 + Q2 + P2A1A
T
1 P2 = 0, (23)

where Q1 , RT
1 R1 > 0, Q2 , RT

2 R2 > 0, are chosen such
that

H1 ,
[

A1 Im

−Q1 −AT
1

]
, H2 ,

[
A2 A1A

T
1

−Q2 −AT
2

]
, (24)

have no eigenvalues on the imaginary axis and (A1, R1),
(A2, R2) are both observable. Finally, define Q̄2 , Q2+Q3,

M ,
[

Q−1
1 P1 0m×m

0m×m Q̄−1
2 PT

2

]
, (25)

and let λmax(M) denote the maximum eigenvalue of M .
The solution x̂2a(t), t ≥ 0, to (18) guarantees conver-
gence of the prediction-observation errors (e1, e2) to D ,{
(e1, e2) : eT

1 P1e1 + eT
2 P2e2 ≤ ελmax(M)

}
.

Proof: From (10), (11) and (12), we obtain

ė1(t)= f1(x1(t), x2(t), t) + ẋa(t)− (f1(x1(t), x̂2(t), t)
+ẋa(t)), t ≥ 0, (26)

which, using (20), can be rewritten

ė1(t)= f1(x1(t), x2(t), t) + ẋa(t)− z(t) + A1e1(t)−e2(t)
= A1e1(t)− e2(t) + ε(t), t ≥ 0. (27)

In addition, using (10), (13), (14), (20), and the definition of
W2(·), we obtain

ė2(t)= A1ė1(t) + W1(x1(t), x̂2(t), t)ẋ1(t)− ż(t) +u(t)
+W2(x1(t), x̂2(t), t) ˙̂x2a(t) + W3(x1(t), x̂2(t), t)

t ≥ 0. (28)

Substituting (17) and (27) into (28) yields

ė2(t)= A1ε(t) + A1(A1e1(t)−e2(t)) + W3(x1(t), x̂2(t), t)
+W1(x1(t), x̂2(t), t)(z(t)− ẋa(t) + ε(t))− ż(t)
+u(t) + W2(x1(t), x̂2(t), t) ˙̂x2a, t ≥ 0. (29)

Finally, substituting (18) into (29), we obtain

ė2(t) =P−1
2 (P1e1(t)−Q3e2(t)/2) + A2e2(t) + A1ε(t)
−W1(x1(t), x̂2(t), t)(WT

1 (x1(t), x̂2(t), t)P2e2(t)/2
−ε(t)), t ≥ 0. (30)

Then, consider the following Lyapunov function candidate,

V (e1, e2) = eT
1 P1e1 + eT

2 P2e2, (31)

where P1, P2 > 0 are obtained from (22) and (23), respec-
tively. The time derivative of (31) along the trajectories of
(27) and (30) is given by

V̇ (t)= 2eT
2 (t)P2A1ε(t) + eT

2 (t)P2W1(x1(t), x̂2(t), t)(2ε(t)
−WT

1 (x1(t), x̂2(t), t)P2e2(t))−eT
1(t)(Q1+P 2

1 )e1(t)
−eT

2(t)(Q2+Q3+P2A1A
T
1 P2)e2(t)+2eT

1 (t)P1ε(t),
t ≥ 0, (32)

where we have used (22)–(23). Next, using the completion
of the square rule, we obtain

2eT
1 P1ε=−(P1e1 − ε)T(P1e1 − ε) + eT

1 P 2
1 e1 +εTε, (33)

2eT
2P2A1ε=−(AT

1P2e2−ε)T(AT
1P2e2−ε)+eT

2P2A1A
T
1P2e2

+εTε, (34)
2eT

2P2W1(x1, x̂2, t)ε = eT
2P2W1(x1, x̂2, t)WT

1 (x1, x̂2, t)P2e2

+εTε− (ε−WT
1 (x1, x̂2, t)P2e2)T(ε

−WT
1 (x1, x̂2, t)P2e2). (35)

Substituting (33)–(35) into (32), we obtain

V̇ (t)≤−eT
1 (t)Q1e1(t)− eT

2 (t)Q̄2e2(t) + ε, t ≥ 0. (36)

Hence, V̇ (t), t ≥ 0, is strictly negative outside of the set{
(e1, e2) : eT

1 Q1e1 + eT
2 Q̄2e2 ≤ ε

}
, which allows to con-
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clude ultimate boundedness of (e1(t), e2(t)), t ≥ 0 ([9],
[19]). In addition, the ultimate bound can be characterized
by α , min(eT

1 P1e1 + eT
2 P2e2), subject to the constraint

eT
1 Q1e1 + eT

2 Q̄2e2 = ε. This constrained minimization
problem is easily solved using Lagrange multipliers, yielding
α = ελmax(M), which proves convergence of the error
trajectories to D and concludes this proof.

Remark 3.1: Note that, in the ideal case that ε(t) ≡ 0,
t ≥ 0, we would obtain that (e1(t), e2(t)) → 0 as t → ∞.
Hence, from the definition of e2(t), t ≥ 0, we would obtain
convergence of x̂2(t) to the implicit function g(y(t), ẏ(t), t),
t ≥ 0, defined by (7).

Remark 3.2: In Theorem 3.1, it is assumed that m ≥ n/2.
In the particular case that m = n/2, the design procedure is
simpler. Indeed, in such a situation, the augmenting signal
xa(t), t ≥ 0, becomes superfluous. Hence, in such a case,
x1a(t) = x1(t), x̂1a(t) = x̂1(t), and x̂2a(t) = x̂2(t), t ≥ 0.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

To obtain an estimate z(t) of ẏ(t) + ẋa(t), t ≥ 0, we
will use the Adaptive Integral Variable Structure Derivative
Estimator (AIVSDE) described in [14]. The object of the
technique is, using measurements of a signal r(t), t ≥ 0,
to obtain an estimate of its time derivative ṙ(t), t ≥ 0.
This is achieved by constructing a signal γ(t), t ≥ 0, which
converges to r(t), t ≥ 0. The signal γ(t), t ≥ 0, is obtained
from

γ̇(t)= kr(t)sign(σ(t)) + kbσ(t)− k1k
−1
2 γ(t), γ(0) = γ0,

t ≥ 0, (37)

σ(t)= k2(r(t)− γ(t)) + k1

∫ t

0

(r(τ)− γ(τ))dτ, (38)

where kb, k1, k2 ≥ 0, the adaptive gain kr(t), t ≥ 0, is
obtained from

k̇r(t) =
{

αr for‖σ(t)‖ ≥ µ,
0 for‖σ(t)‖ < µ,

kr(0) = kr0, t ≥ 0, (39)

where αr ≥ 0 and µ ≥ 0. The estimate of ṙ(t) is given by
γ̇(t), t ≥ 0. In particular, setting r(t) = y(t) + xa(t), and
z(t) = γ̇(t), t ≥ 0, we obtain an estimate z(t) of ẏ(t)+ẋa(t),
t ≥ 0.

In the following, we will apply the predictor-observer
described in Section III, in conjunction with the above
AIVSDE technique, to address the observation problem for
two distinct systems. In a first example, we consider a system
with state [xT

1 (t) x2(t)]T ∈ R3, t ≥ 0, where x1(t) ∈ R2,
t ≥ 0, is measured, and we attempt to construct an estimate
x̂2(t) of the unmeasured x2(t) ∈ R, t ≥ 0. In a second
example, we apply the technique to the same observation
problem, for a system with state [ηT(t) νT(t)]T ∈ R6, t ≥ 0,
with output η(t) ∈ R3, t ≥ 0. The estimate ν̂(t) is shown to
converge to neighborhood of the unmeasured ν(t), t ≥ 0.

Example 4.1: Consider the system

ẋ11(t)=−x3
11(t) + tanh(x12(t)) + 3 sin(x2(t)),

x11(0) = x110, t ≥ 0, (40)

0 5 10 15

-1

0

1

2

x
1
1
(t

)

 

 

actual
predicted

0 5 10 15
 -4

 -2

0

2

x
1
2
(t

)

Time [s]

 

 

actual
predicted

Fig. 1. Actual and predicted trajectories.

ẋ12(t)= 4 tanh(x11(t))− 2 tanh(x12(t))− 3 cos(x2(t)),
x12(0) = x120, (41)

ẋ2(t)=−x3
2(t)− 2 tanh((x11(t) + x12(t))2),

x2(0) = x20, (42)
y(t)= x1(t), (43)

where x1(t) ,
[

x11(t) x12(t)
]T ∈ R2, and x2(t) ∈ R,

t ≥ 0. Applying the technique described in Theorem 3.1, we
construct the following predictor-observer,

˙̂x1a(t)=
[ −x3

11(t)+tanh(x12(t))+3 sin(x̂2(t))
4 tanh(x11(t))−2 tanh(x12(t))−3 cos(x̂2(t))

]

+ẋa(t), x̂1a(0)=
[
x110 x120

]T
, t≥0, (44)

˙̂x2a(t)= W−1
2 (x2(t))

(
P−1

2 (P1e1(t)−Q3e2(t)/2)+A2e2(t)

−A1(A1e1(t)−e2(t))+ż(t)−u(t)−W1(x1(t))z(t)

+W1(x1(t))(ẋa(t)−WT
1 (x1(t))P2e2(t)/2)

)
,

x̂2a(0) = x̂2a0, (45)

where e1(t) = x1(t) + xa(t) − x̂1a(t), e2(t) = ˙̂x1a(t) +
ẋa(t) − z(t) + A1e1(t), t ≥ 0, and the augmenting sig-
nal xa(t), t ≥ 0, is obtained from (9), with u(t) =
−2.5/1000xa(t)−

√
2/20ẋa(t)−20e2(t), t ≥ 0. In addition,

W1(x1)=
[ −3x2

11 sech2(x12)
4sech2(x11) −2sech2(x12)

]
, (46)

W2(x̂2)= 3
[

cos(x̂2) − sin(x̂2)
sin(x̂2) cos(x̂2)

]
. (47)

Choosing A1 = −10I2, Q1 = 10I2, A2 = −100I2, and
Q2 = 80I2, we obtain, from (22)–(23), P1 = 0.5132I2,
P2 = 0.5528I2. The parameters of the AIVSDE are chosen
as follows, k1 = kb = 10, k2 = 20, αr = 0, µ = 1, γ0 =
x10 and kr0 = 145. The initial conditions for the system
are chosen as x10 =

[
2 2

]T, and x20 = −1. Finally,
the initial prediction is x̂1a0 =

[
0 0

]T
, while the initial

estimate is chosen as x̂20 =
[ −4 0

]T.
As seen in Figure 1, the predicted trajectory x̂1(t) =

x̂1a(t) − xa(t), t ≥ 0, smoothly converges to the actual
trajectory x1(t), t ≥ 0. Similarly, after a short transient, the
observed trajectory x̂2(t), t ≥ 0, matches the unmeasured
state x2(t), t ≥ 0, very closely, as observed from Figure 2.
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Fig. 2. Actual and observed trajectories.

Example 4.2: Consider the system

η̇(t)= J(η(t))ν(t), η(0) = η0, t ≥ 0, (48)
ν̇(t)=Θ∗1ϕ(η(t)) + Θ∗2τ(t), ν(0) = ν0, (49)
y(t)= η(t), (50)

where η(t) ,
[

φ(t) θ(t) ψ(t)
]T ∈ R3, t ≥ 0, is the

measured output, ν(t) ∈ R3, t ≥ 0, is not measured, and
τ(t) ∈ R2, t ≥ 0, is the control input applied to the system.
In addition, Θ∗1 ∈ R3×2 and Θ∗2 ∈ R3×2 are unknown
constant matrices, and

J(η)=




1 tan(θ) sin(φ) tan(θ) cos(φ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


 , (51)

ϕ(η)=
[

cos(θ) cos(φ) − cos(θ) sin(φ)
]T

. (52)

Applying the technique described in Theorem 3.1, we con-
struct the following predictor-observer,
˙̂η(t)= J(η(t))ν̂(t), η̂(0) = η0, t ≥ 0, (53)
˙̂ν(t)= J−1(η(t))

(
P−1

2 P1e1(t)−A1(A1e1(t)− e2(t))

−W1(η(t), ν̂(t))(z(t)−WT
1 (η(t), ν̂(t))P2e2(t)/2)

+ż(t) + A2e2(t)
)
, ν̂(0) = ν̂0, (54)

where e1(t) , η(t) − η̂(t), e2(t) , A1e1(t) − z(t) +
J(η(t))ν̂(t), t ≥ 0, and W1(η, ν̂) , ∂J(η)

∂η ν̂. We choose
A1 = −4I3, A2 = −40I3, Q1 = 12I3, Q2 = 40I3, and
obtain, from (22) and (23), P1 = 6I3, P2 = (2.5+

√
15/2)I3.

The AIVSDE parameters are chosen as follows, k1 = 10,
k2 = 15, kb = 1/2, αr = 0, µ = 1, γ0 = x10 and kr0 = 1.

In addition, we use the following for plant parameters,

Θ∗1 =



−2.6828 3.2966
9.8298 9.9455

0 −20


, Θ∗2 =




0.25 0
0 −0.575
0 0


. (55)

The initial conditions are chosen as η0 = [ 5 − 27 10 ]T,
ν0 = 03, η̂0 = η0 +[1 1 1 ]T, ν̂0 = [5 5 5 ]T, and z(0) = 03.
The trajectories η(t) and ν(t), t ≥ 0, are shown in Figure
3 and Figure 4, respectively. As was the case with Example
4.1, the algorithm performs admirably. The predicted and
observed trajectories closely match the real ones.
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Fig. 3. Actual and predicted trajectories of η(t), t ≥ 0.
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Fig. 4. Actual and observed trajectories of ν(t), t ≥ 0.

V. EXPERIMENTAL TEST

The previous section presented numerical simulation re-
sults, illustrating the performance of the algorithm. Perfor-
mance was further tested by implementing the presented
predictor-observer algorithm on the Quanser “3DOF heli-
copter” setup. Equations (48)–(50) provide a model of the
setup’s dynamics. Hence, we will apply the algorithm as
designed for Example 4.2. However, a significant hurdle in
the way of implementation is the fact that the measurements
provided by the experimental setup are discrete and quan-
tized, with quantization intervals of π/2048.

The observation of systems with quantized outputs con-
stitutes a challenging problem (as discussed in [20]), which
remains essentially open. The presented predictor-observer
technique does not account for quantization of the mea-
surements, and application of the technique as is to such a
system yields poor results. This poor performance is mainly
due to the difficulty in obtaining a z(t), t ≥ 0, providing a
reasonable approximation of ẏ(t)+ẋa(t), t ≥ 0. In particular,
when the measurements change from a level of quantization
to the next, most numerical derivation techniques lead to
large spikes in the estimate of the derivative. In an attempt
to compensate for this issue, we used a second order low-
pass filter to smooth-out the measurements. This filter has
a damping coefficient ζ =

√
2/2 and a natural frequency

ωn = 10. This simple addition to the algorithm significantly
improved experimental results, to an extent that performance
of the algorithm when subjected to quantized measurements
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Fig. 5. Numerical simulation with measurement quantization, actual and
observed trajectories of ν(t), t ≥ 0.
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Fig. 6. Experimental results, observed trajectory of ν(t), t ≥ 0, compared
to a numerical derivative.

became comparable to that without quantization (see Figure
5 for simulation results showing actual and observed ν(t),
t ≥ 0, with quantized measurements), and allowed imple-
mentation of the presented algorithm.

Experimental results are shown in Figure 6. Note that the
body fixed velocity vector ν(t), t ≥ 0, is not measured.
Hence, to assess performance of the presented algorithm,
we compare the observed ν̂(t), t ≥ 0, to an estimate of
ν(t), t ≥ 0, obtained from the output of the AIVSDE, z(t),
t ≥ 0. Since z(·) is an estimate of η̇(t), t ≥ 0, it can be
pre-multiplied by J−1(η(t)), t ≥ 0, to obtain an estimate of
ν(t), t ≥ 0. As seen in Figure 6, the observed trajectories
are in practice significantly noisier than in simulation. The
algorithm however yields promising results. In particular, the
transient shows that the observer reacts more quickly than
the output of the AIVSDE to large changes in velocity.

VI. CONCLUSION

This paper presents a prediction-based observer, relevant
to a wide class of nonlinear systems, including systems
whose unmeasured states appear nonlinearly in the dynamics.
The algorithm relies on a pair of prediction-observation er-
rors, constructed using a backstepping technique. Lyapunov’s
second method was used to prove Lyapunov stability of these
errors, as well as their convergence to a neighborhood of the
origin. The algorithm makes use of a derivative estimator,
which allows to relax high gain requirements commonly
found in observation techniques for nonlinear systems. In

addition, the relationship between the ultimate bound on the
prediction-observation errors and the derivative estimator’s
level of performance, as well as a number of relevant design
constants, was made explicit. The presented technique could
be extended to a larger class of observable systems, by
working in terms of the p first derivatives of the output
y(t), t ≥ 0, where p ≤ n − 1 is the smallest integer such
that rank(

[ ∇yT(t) ∇ẏT(t) . . . ∇y(p)T(t)
]T

) = n.
Another possible extension of the presented work could
consist in using the information provided by knowledge of
the entire right-hand-side of (1), as opposed to only that of
(5).
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