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Abstract: In this paper, a direct data-driven approach is proposed to tune fixed-order
controllers for unknown stable LTI plants in a mixed-sensitivity loop-shaping problem. The
method requires a single set of input-output samples and it is based on simple convex
optimization techniques; moreover, it guarantees internal stability as the data-length tends to
infinity. Compared to a standard model-based approach, the proposed methodology theoretically
guarantees the same asymptotical performance in case of correct parameterization, whereas the
direct data-driven formulation is less conservative in case of undermodeling. The effectiveness
of the method is illustrated via some numerical examples.
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1. INTRODUCTION

One of the main methods to specify the desired behaviour
of a control system is to describe the frequency-domain re-
lations between the different signals in the loop. In robust
control theory, Ha-Hso loop-shaping are design techniques
that allow one to find a trade-off between different features,
e.g. settling time and noise rejection, by means of Ha-H o
optimization methods.

The fact that any feedback controller design must reflect a
compromise between insensitivity to different disturbances
and good stability margins is first identified in Safonov
et al. [1981], where the mixed-sensitivity criterion is intro-
duced as a very suitable quality measure of the closed-
loop behaviour. Among all different approaches for the
solution of such control-design problem, the Youla-Kucera
parameterization (see Doyle et al. [1992]) represents one of
the most successful. As a matter of fact, by parameterizing
the feedback controller with the Youla-Kucera parameter
@, the mixed-sensitivity problem becomes convex in the
unknown () and the final controller is guaranteed to sta-
bilize the closed-loop system. In case of fixed controller
order, the loop-shaping problem becomes much more com-
plex, as model-reduction techniques (see Obinata et al.
[2001]) must be adopted and closed-loop stability may be
compromized.

In the data-driven framework, i.e. when a control-oriented
model of the plant is difficult to derive from first-principle
methods and experimental data are available, a mathe-
matical model is first deduced from data and then the
fixed-order controller is designed based on the identified
model. In such situations, three optimization problems
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must be solved to obtain the final controller. The best
model with the desired structure is the one that minimizes
a certain identification criterion, @ is the transfer function
that optimizes the loop-shaping cost and finally the fixed-
order controller is the one that, e.g., best fits the frequency
response of the optimal controller, if Ls-model reduction
techniques are used.

In this paper, a different philosophy is proposed to solve
the loop-shaping problem in the data-driven framework.
Since the unique aim of model identification is the de-
sign of the controller, in the proposed approach this first
step is skipped by directly identifying the Youla-Kucera
parameter from a single set of data. The final reduced-
order controller K is then deduced from the same data-
set as the one that minimizes the loop-shaping criterion.
The design issue is naturally converted into a convex data-
driven optimization problem, if @ and K are linearly
parameterized. Furthermore, in both noiseless and noisy
environments, the method is ”one-shot”, i.e. it requires
only one set of input-output samples, and it allows the de-
signer to avoid all the reasoning about the modeling phase,
by still guaranteeing the closed-loop stability. During the
presentation of the method, it will be also shown that, in
case of correct parameterization, model-based and direct
data-driven approaches yield the same performance and
that, if undermodeling occurs, the standard technique is
more conservative, such that the control system quality
may be jeopardized.

Noniterative direct data-driven methodologies for the
design of fixed order controllers already exist in the
model-reference control framework, e.g. the Correlation-
based Tuning (CbT, see e.g. Karimi et al. [2007] and
Van Heusden [2010]) and Virtual Reference Feedback Tun-
ing (VRFT, see e.g. Campi et al. [2002] and Formentin
et al. [2010]). As far as the authors are aware, this is
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the first work where the direct data-driven philosophy is
applied to the mixed-sensitivity loop-shaping problem.

The paper is structured as follows. In Section 2, the
mixed-sensitivity loop-shaping problem is formulated in
the system-theory analytic framework. Then, Section 3
presents the direct data-driven method in detail. A com-
parison between the direct data-driven approach and a
standard formulation of the model-based approach is de-
veloped in Section 4, while some numerical examples are
illustrated in Section 5. The paper is ended by some
concluding remarks.

2. PRELIMINARIES

Consider the unknown stable LTT SISO plant Go(q~ 1),
where ¢~! denotes the backward-shift operator, and three
weighting functions Wg(q~1), Wr(¢~1) and Wy (¢~ 1). The
loop-shaping control aim is to design a LTI fixed-order
controller K (¢!, p) so as to minimize

T(p) = WsS(p)|I* + IWrT(p)II* + WU p)I* , (1)

where:
S(0) = 1 Kl(p)Go’
T(p) = fgzg%o’
Ule) =1 +[f((((pp))G0’

and the symbol ||| indicates either the Ha- or the Hoo-
norm during the whole paper. Notice that throughout the
paper, the arguments ¢ and ¢~ ! are sometimes dropped for
ease of notation. Note that the criterion (1) is generally
non-convex with respect to the parameter vector p and
that in most cases J(p) = 0 cannot be achieved.

Consider now the Youla-Kucera reformulation of (1). The
set of all stabilizing controllers for Go(¢~1) can be written
as (see Doyle et al. [1992])

. —1y Q(g™)
¢= {C<q )= 10 Yo D

Then, the three sensitivity functions can be rewritten as
S =(1-QG), T = QGp, and U = Q. It follows that
the criterion (1) is convex in Q(g~!) or in the parameters
of Q(¢g71), if it is linearly parameterized. The fixed-
order controller is finally found as the model-reduction
K(q™', p) of the full-order controller C = Q/(1 — QGy),
where Q(q™!) € Hoo is the minimizer of the loop-shaping
criterion (1) in the @Q-form.

QY eHm}.@)

In the Youla-Kucera setting, the reduced-order controller
is not guaranteed to internally stabilize the system. In the
following theorem, a sufficient condition for guaranteeing
internal stability is introduced. This constraint can be
included in the final K(q~!, p) design procedure to insure
that also the reduced order controller belongs to C.

Theorem 1. Let Go(q~") and Q(¢~") be discrete-time dy-
namical systems in H.. The controller K (g1, p) stabilizes
the plant Go(g~ 1) if

(1) Alp) = Go [ (1= QG)K (p) — Q| € M

(2) the stability radius {(p) = ||A(p)||, is less than 1

oo

Proof. Consider the scheme in Figure 1, where C(¢71) =
Qg™ Y /(1 — Qg7 1)Go(g™1)). Since Q(¢~') belongs to
Hoo, the full-order controller C'(g1) internally stabilizes
the closed-loop system opened at z. Then, both S(g~1) =
1 — Qg ")Go(g™") and T(¢7') = Qg7 ")Golg™") are
stable. From the Small-Gain Theorem (see Zhou et al.
[1996]), a sufficient condition for the closed-loop stability
of the interconnected system is that the transfer function
between u(t) and z(¢) is stable and its infinity norm is less
than 1 (requirement 1 and 2).
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Fig. 1. Closed-loop system with controller K(p) and ex-
plicit representation of the controller-reduction.

Remark. If the fixed-order controller K (¢!, p) is stable,
requirement 1 is always satisfied since Q(¢™!) € Haso by
hypotheses and S(¢~') = 1 — Q(¢g~")Go(qg ") is stable. If
K(q™ ', p) contains an integrator, it is sufficient to impose
that Q(1) = 1/Gp(1) in the Q-design procedure. By doing
this way, S(¢~!) =1—Q(¢ ")Go(¢~ ') has a zero at 1 and
(1- Qlg)Golg™)K (g, p) is stable for any p.

In practical situation, only an approximation G of the real
system is known. Therefore, the criterion above could yield
to a controller that instabilizes the closed-loop system. A
possible reformulation of the stability constraint for stable
controllers is presented next.

Let consider only a class of controllers in H., and suppose
that a bound

s=swo
wle-ai.

is known. The measure of the stability radius ¢(Go, p) =
HGO Kl — G0Q> K(p) — Q] H for the real plant is such
that >

i) < ) = 11Golle || (1 6Q) K ()~ Q| _+

. (3)
+1Goll.. 8| QK ()|

o0
where |[|Gol|,, can be either computed from data (see
Van Heusden et al. [2007]) or overestimated by means of

HG H + 4. It follows that the stability radius for the real

plant can be transformed in a (more conservative) convex
constraint for p, that only depends on G and 6. If this new
formulation of the stability constraint is used in model-
reduction procedure, internal stability can be guaranteed
for the real system.



The loop-shaping problem above can be faced both in
first-principle and in data-driven modeling settings. In this
work, only the data-driven framework will be considered.

Assume then that a set of N input-output noisy data
{u(t),y(t)}, t = 1,..,N is available and that these data
are generated in open-loop operation according to the
system dynamics, i.e. y(t) = Go(g 1 )u(t) + v(t), where
v(t) = Ho(q 1)e(t), Ho(g™!) is an unknown stable filter
and e(t) is a zero mean white noise. Assume also that u is a
persistent exciting stationary signal. The standard (model-
based) approach for mixed-sensitivity Ha-Hoo data-driven
design is presented next.

MODEL-BASED ALGORITHM
(1) Choose a class of SISO LTI models

G = {G(q—l,e) L hecocC Rdim<9>} . (4)

(2) Identify a data-driven model of Go(g~') as G =
G(q1,0), where

é:argn%inHGo ~GO)|? ()

(3) Compute the optimal Youla-Kucera parameter Q as
the rational transfer function in H,, that minimizes
(1). This can be approximately done using a linearly
parameterized @ (see Boyd and Barratt [1991])..

(4) Compute the full-order controller in C that guarantees

the optimal sensitivity trade-off as C' = Q/(1 — QQ).
(5) Compute the stable reduced-order controller as K =

p = argmin Ji(p)
P

o) = ¢ - x| (6)

and the condition expressed in Theorem 1 is satisfied
with respect to Gy, i.e. {'(p) < 1.

In the following section, a suitable way to solve the
so-formulated data-driven loop-shaping problem without
identifying the plant model is proposed and analyzed. In
the proposed method, the stability constraint could also
be reformulated with less conservatism.

3. DIRECT DATA-DRIVEN APPROACH

Let the Youla-Kucera parameter be linearly parameter-
ized, i.e. Q(n) =T Bo(qt), where Bg(qt) is a vector of
orthonormal basis functions with the same dimension of
7; analogously, consider a linear parameterization of the
controller, i.e.

K(g ' p)=p"Br(q"), (7)

where B (q~1) is a vector of orthonormal basis functions
with the same dimension of p.

Consider now the tuning scheme in Figure 2. For each
value of the parameter vector, the signals z1(¢t,7), z2(t,n)
and z3(t,n) can be expressed as functions of u(t) and of the
output y(t), without including the real plant dynamics:

z1(n) = Ws (1 = GoQ(n)) u = Wsu — WsQ(n)y,

u + z
> > W, —»
v
+y T
> G > O(n) > W NS
z
» O(n) > W, —»

Fig. 2. Tuning scheme for the Youla-Kucera parameter.

z2(n) = WrGoQ(n)u = WrQ(n)y,
z3(n) = WuQ(n)u.

In a noiseless environment, i.e. when v(t) = 0, V¢, the
Ha- and ‘Hoo-norms of the generating functions G, (¢, )
of such signals, i.e. the functions such that z;(¢t,n) =
G., (g Y, n)u(t) , i = 1,2,3, can be estimated from data.
In detail, concerning the Hs-norm, it holds that, for N
that tends to infinity,

N

1 - 2.

~ 2 L@zt = G-l =123,
t=1

where the prefilter L(g™!) is such that |L(ej“’)’2

1/ (w) and &, (w) is an estimate of the spectrum of
u. An estimate of the Ho,-norm can be instead asymp-
totically derived via spectral estimates as suggested in
Van Heusden et al. [2007]. Formally, for N that tends to
infinity, it holds that

cpuzi (wka 77)

Doy (Wk)

max
Wi

- HGZL(,,])HCX} I Z: 17273a

where wy, = 2rk/(20+1), k=1,...,1+ 1 and D, (wi,n)
is an estimate of the cross-spectrum between u and z;. In
detail, such spectrum may be computed as

l
i)uzi (wkn 77) = Z Ruzi (T7 n)e_jﬂdk

T=—1

where R,.,(7,n) is an estimate of the cross-correlation
function between u and z;

Rus,(71) = - S ult = 1)zt )

In order to guarantee a consistent approximation of the
Heo-norm, the choice of [ must be such that | — oo
and /N — 0 (see Van Heusden et al. [2007]). Notice
that, since all signals are linear functions of 7 with the
parameterization of @) selected above, the (approximated)
Hs squared norm is quadratic and the (approximated)
Heo-norm is convex with respect to the parameter vector.
Therefore, in such noiseless setting, the problem of finding
7) minimizing (1) is converted in a convex optimization
problem, where the addends in the cost function, i.e the
weighted sensitivities that generate the z;-s, are directly
computed from data. In this way, points 1-2-3 of the
standard model-based algorithm (see again Section 2) are
reduced to a single identification step.

If v(t) is a generic zero-mean stochastic signal, the problem
of minimizing (1) turns out to be a standard errors-in-
variables (EIV) problem, where a model has to be identi-
fied starting from noisy input-data. In this case, different



solutions are available in the literature to make the proce-
dure insensitive to noise (see e.g. Soderstrom [2007]).

The same direct data-driven rationale can be used to
condensate points 4-5 of the model-based algorithm in
another data-based step, without identifying Go(¢~1). As
a matter of fact, the linearly parameterized reduced-order
controller K(q~!,p) can be directly identified from the
same data-set used for the computation of the Youla-
Kucera parameter. Moreover, it will be shown that the
bias due to presence of noise can be easily handled if the
problem is formulated using the correlation approach.
Consider Figure 3 where the tracking error ek (t,p) is
defined as

ex(p) = (1 = GoQ()) K(p)u — Q(7)u.
: so—» K(p)
V¥+y R J +¥e,
> G0 [ 0(h) B
> 0(n)

Fig. 3. Tuning scheme for the reduced-order controller.

Introduce now the instrumental variable vector ¢(t)
Ct) = [ut + 1), ... u(t), ..., u(t — )]

and the decorrelation criterion as
1 1
)Z[NZC(t)EK(tp] =Y ek (t.p) (8)
t=1 t:l

The following result holds for the formulation above in
both noiseless and noisy settings.

N,lj,
']k

Theorem 2. Consider the decorrelation criterion (8), where
ek (t,p) is generated by the hnearly parameterized con-
troller (7) and filtered with Lj(¢~!) such that

|Li(e7)] = 1/®uu(w). (9)

Then, as N,l; — oo and l;,/N — 0, the minimizer p of
J,iv 'k (p) is with probability 1 a minimizer of (6), where
C'=Q(n)/(1-Q(7)Go) and 7 is the data-driven minimizer
of (1).

Proof. Following the same procedure adopted for model-
reference criteria in Van Heusden [2010], the criterion can
be proved to statistically converge to a continuous function
of the cross-correlation indicators Ry, (1,p) = Elu(t —
T)ek(t, p)], i.e.

T=lg

Z Ruek (T’ p)2

T:*lk

N,l
lim J,™(
N—oo

Notice then that if K(¢g~!, p) is stable, (1 — Q(7)Go) K (p)—
Q(7) is stable and that the same holds if K(¢~!,p) con-
tains an integrator and @ has been constrained such
that Q( ) = 1/Gp(1). As a consequence, the squared
sum ZT_ 1, Ruc, (7,p)? and its limit 3777 Ry, (7, p)?
are bounded on the parameter set. Thus, as N, —
oo and Ix/N — 0, J,iv’l’“(p) converges uniformly to

S22 Rue (7, p)? (see Rockafeller [1970]). In frequency-

domain, the asymptotical value of J ,iv oL (p) can be rewrit-
ten by means of the Parseval theorem as

Z Rye, ( Tp /|<I>u5k | dw =

B iw / L (1 = GoQ() K (p) — Q(A)|* 7, (w)dw

If the data-prefilter is selected according to (9), it then
holds that (6) asymptotically tends to (1). It follows that,
since the convergence is uniform, the minimizers of the two
criteria coincide.

O

The stability constraint can be included in the design
problem in three different ways.

(1) Double-experiment procedure: a data-driven version of
the constraint in Theorem 1 can be formulated with
a second open-loop experiment, by feeding the plant
with y(t),_,  and collecting the output y'(¢),_; -

Let A(p) be the transfer function between u and a
signal za, i.e.

za(p) = (1= GoQ(D))) K(p)Gou — Q(7) Gou.
It follows that, in a noiseless environment,
za(p) = (1= GoQ(1))) K(p)y — Q(N)y =
= K(p)y — QUK (p)y' — Q(0)y,
that is za(p) can be computed as a function of known
data for each value of p. The Hoo-norm of A(p)
can then be asymptotically derived as suggested in
Van Heusden et al. [2007]. It should be mentioned
that if K(p) contains an integrator, the equality
constraint Q(1) = 1/Go(1) requires an additional
information on the static gain of the process, as an
estimate of the plant model is no more available.

(2) Single-experiment procedure: if a stabilizing minimum-
phase controller Cj is available, it is possible to avoid
ad-hoc experiments. Consider again Figure 1, by re-
placing C with C,. A different stability condition
depending on Cg can be straightforwardly derived
by following the same rationale in Theorem 1 and
requiring that

Go (K(p) — Cs)

AS(p): 1+GOCS

€ Hoo

and

() = [1As(P)]lo <1

In such case, Ag(p) can be seen as the transfer
function between a fictitious reference 7¢(t) and za,
(see again the closed-loop scheme in Figure 1), i.e.

Za, (p) _ Go (K(p) — Og)

1+GoC,
where 7 is given by

re(t) = Cy Mg M ult) +y(t).



The expression of za,(p) may be rewritten as

. ( ): G()K(p) - GOCS -
A= TG, T T Gl
GoC
_ —1 0Ls I —1 o
=CS K e a Y (Co'K(p) = 1)y

Therefore, za_ (p) is completely known from data and
the Hoo-norm of A(p) can again be asymptotically
derived as suggested in Van Heusden et al. [2007].
Notice that if K(p) contains an integrator, also Cj
must have it; analogously, Cs must be stable if K (p)
is stable. However, this is not difficult to achieve in
practical situations.

(3) Single-experiment procedure (trivial): if a stabilizing
minimum-phase controller Cy is not available, the
Small-Gain theorem can still be applied to the open-
loop transfer function without performing a second
experiment. In other words, another sufficient condi-
tion of internal stability for the closed-loop system
is

Ai(p) = GoK(p) € Hoo
and
G(p) = [Au(p)]l < 1.

As for the other criteria, A;(p) can be seen as the
transfer function between u(t) and za,, where

za,(p) = GoK (p)u = K(p)y

and the Ho,-norm of As(p) can be derived from
data. Notice that A, is practically Ag for Cs = 0;
nevertheless, in this approach stability of K(p) is
required and the closed-loop performance may be
significantly limited for the strong conservatism. On
the other hand, only one set of experimental data is
required and no stabilizing controllers are needed.

The above rationale is derived in a noiseless setting. Sev-
eral techniques for dealing with noisy data in spectral esti-
mation are available in the literature, see e.g. Van Heusden
et al. [2007].

Remark. As already said, the stability constraint de-
scribes a subset of all stabilizing controllers. In the two-
experiment methodology, the centroid of such subset is
exactly the optimal full-order controller C = @Q/(1 —
GoQ), whereas in second and third cases, the centroids
are respectively Cs and 0. It follows that it is generally
better to adopt the double-experiment procedure, since
it describes a set that contains controllers close to the
optimal one. A critical situation is illustrated in Figure
4. Notwithstanding this limit, the possibility of saving one
experiment may be a great advantage in a large variety of
practical applications.

The direct data-driven algorithm can be then summarized
in the following three points.

DIRECT DATA-DRIVEN ALGORITHM
(1) Choose a class of SISO LTI models

o={a@ ', nencrimmi. (1)

Double
Experiment
SET

- C

stabilizing
controllers

non-
stabilizing
controllers

Fig. 4. In the example, if the double-experiment proce-
dure is adopted, the reduced-order optimal controller
K, is included in the set of admissible controllers.
Otherwise, K, is surely substituted by another one,
further from the full-order optimal controller C', and
thus leading to worse performance.

(2) Identify a data-driven model of Q(q¢7!) as Q =
Q(qg71,7), where
7 = arg min Jy (n)
n

(11)

and Jy(n) can be any user-defined composition of
sample-based estimates of Ho- and Hs-norms of the
weighted sensitivity functions.

(3) Identify the data-based reduced-order controller as

K = K(q7 %, p), where
p = arg min Jév’l’“(p)
p

and one of the two proposed stability constraints is
statisfied.

4. COMPARISON

In this section, the new approach and the standard model-
based algorithm will be discussed and compared from
different points of view, in order to highlight advantages
and disadvatages of the two methods.

4.1 Asymptotic results in case of correct parameterization

Define the optimal value for the Youla-Kucera parameter
Qo and the optimal controller Ky respectively as

QO = argQéan%x J ; J = J(GOaQ),

_ @
1-GoQo’

Consider then the F.I.R. extension of the selected classes
of models, i.e. write

nag nQ
GO) = 0a", Q)= maq ™"
=0 =0

Ky

By assuming to counteract the effect of noise with In-
strumental Variable (IV) techniques (see Ljung and Ljung
[1987]), the following asymptotic result holds.



Theorem 8. Assume that Go € G in model-based proce-
dure and Qg € Q in direct data-driven case. Then:

(1) the reduced-order controllers guarantee the same
asymptotical loop-shaping performance in model-
based and in direct data-driven framework.

(2) if K belongs to the class of considered controllers, the
minimum of J(p) in model-based case and the mini-
mum of JV(p) in the data-driven algorithm coincide,
as N — ooc.

Proof. Let consider the moAdel—based Aapproach first. The
F.LR. estimate of Gy is G(#), where 0 is given by

i— |1y r
= | 2 viow

and ¥(t) = [u(t), u(t—1),...,u(t—ng+1)]. It is well known
(see Ljung and Ljung [1987]) that (12) can be written
as the sum of three different terms: the real value 6y, a
term due to undermodeling and a third addend depending
on noise variance. Since prediction error techniques are
used and Gy € G, it holds that, asymptotically, § — 6.
Consequently, Q — Q.

For what concerns the direct data-driven algorithm, the
same reasoning can be applied. In few words, since Qg € Q
by hyphoteses, Q — Qo as the number of data grows, if
instrumental variables are adopted. This means that the
Youla-Kucera parameter minimizing (1) is the same for
both the approaches if large data-sets are used. Starting
from the same expression for (), the unique difference
between (6) and (8) is the fact that (6) can be computed
by means of noiseless simulated data, obtained by feeding
G with u(t), whereas (8) must be minimized using the set
of input-output noisy data. However, the result shown in
Theorem 2 assures that, as N,l;, — oo and I, /N — 0, the
minima of two cost functions coincide (thesis 1). The same
result obviously holds if no order-reduction is required
(thesis 2).

1 1 N
¥ oo ()

O

4.2 Discussion about undermodeling

Theorem 3 states that both the approaches are consistent
if the right model-order is selected for G and @. This is
not the case in many real-world applications. As obvious,
a complete theoretical analysis of the differences between
the two approaches would be very complex in this set-
ting, since optimization results are strictly related to the
dynamic structure of the plant. Furthermore, in model-
based approach, undermodeling of G weighs on @ and
then the final value of (1) also depends on how the Youla-
Kucera parameter is calculated. However, it may be shown
by numerical simulations that sometimes the model-based
approach yield worse performance. One of these situations
is illustrated and discussed in Section 5.2.

Concerning undermodeling of the controller, a ticklish
aspect is the conservativeness of the stability constraint.
As explained in Section 2, in order to assure the internal
stability for the system with Gy the modeling error must
be taken into account. Moreover, the constraint ¢’(p) < 1

may affect closed-loop performance, if the optimal solution
is close to the boundary defined by the real constraint. A
simple situation where this fact may happen is presented
in Section 5.3.

It must be mentioned that the formulation (3) is only one
of possible solutions and that different results could be
achieved in different situations. In any case, if internal
stability for the real system has to be (asymptotically)
guaranteed, a fair comparison between the methods must
take into account a bound on the modeling error, by
introducing more conservativeness in the model-based
approach.

5. ILLUSTRATIVE EXAMPLES

Three numerical examples will be used to show, respec-
tively, the effectiveness of the method, a comparison with
the model-based approach in case of undermodeling and
the different conservativeness degree of the two algo-
rithms. All optimizations are implemented using Yalmip
and Sdpt3, available online.

5.1 Example 1.

Let the mixed-sensitivity Ha-loop-shaping problem be
min J (p) = min [WsS(p) 3 + [WrT (o)} + [Wo U(o)]3

where the plant and the weighting functions are
0.9592¢71(1 — 1.79¢~ ! + 0.8822¢~2)

Go(g™!) =
ola™) (1—0.8546¢~1)(1 — 1.867¢! + 0.9274¢2)’
—1 -2 —1 —2
q~ — 0.55¢q 10¢= — 9.5¢q
W = - W = W - 1.
ST 120051 0 T T 10550 0 Y

Such system dynamics are very typical in speed-control
problems of servomechanisms with elastic load. The most
critical aspect for control design is represented by the
couple resonance/anti-resonance, that in this case are low-
damped.

A PI controller is used to control the plant, i.e. p =
[po, p1]T, whereas @ is parameterized as a 50*"-order
F.I.R. filter. The set of input-output data is collected by
exciting the system with a maximum length PRBS. A
white noise disturbance has been added to the output
in order to get a Signal-to-Noise ratio (SNR) equal to
10. All signals are sampled at 2K Hz. Mixed-sensitivity
performance obtained by direct controller identification is
illustrated in Figure 5. Notice that performance is very
good in terms of closed-loop bandwidth and attenuation
of the control action; nevertheless, a resonant mode still
affects the sensitivity functions. In order to reduce this
effect, as in model-based approach, one possibility is to
increase the controller order. Otherwise, the weighting
functions can be suitably modified, e.g.:

g ' —0.6q2 _ 10g~! — 9.5¢72

W = W —
ST 1 -095¢ 1 0 T 1-06q !

Wy = 1.

This selection obviously yields slower closed-loop re-
sponses, but it allows the designer to leave the resonant
modes of the plant at higher frequencies. A comparison
between step responses in the two cases is illustrated in
Figure 6.
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Fig. 5. Closed-loop sensitivity functions after direct data-
driven synthesis (above) and magnitude diagrams of
the adopted weighting functions (below).
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Fig. 6. Time-responses to step excitation of the reference
signal: first choice (solid) and second choice (dashed)
of the weighting functions.

5.2 Example 2.

Let consider the oscillator system
-1

Golg™!) = 1
ol0™) = T 089114 1047054 2

and the Hs-loop-shaping problem defined in Example 1
where

g ' —0.2¢?

g ' —0.95¢2
1—-0.95¢71 ’

W =
o 1-0.2¢ "

T = , Wy =1

If the same experiment as Example 1 is performed, the
model-based and the direct data-driven procedures can
be applied, by simply selecting the order of models G
and @ and the controller structure. Figure 7 shows the
normalized value of the cost function J(p) for different
orders of the model plant and of the Youla-Kuc¢era param-
eter. In both the methods, it has been assumed that no
controller reduction occurs. The better behaviour of the

- H2—synthesis
data—driven
0.8+ 1
-
- 0.6F 1
(3]
N
© ] _
E
o 041 1
c
0.2t 1
0 A n n n
2 3 4 5
model order

Fig. 7. Mixed-sensitivity cost for decreasing undermodel-
ing degree.

direct data-driven approach may be explained by noticing
that the real plant is characterized by a pure autoregressive
part. It follows that, inside the cost function, an F.I.R.
structure for @ is sufficient to completely cancel all system
dynamics, if the number of parameters is at least equal
to the order of the system (recall that in sensitivity and
complementary sensitivity expressions, GGy is multiplied by
the Youla-Kucera parameter). On the contrary, an F.I.R.
approximation of the process is not accurate enough to
correctly fit the frequency response of G. This error in the
approximation of the process also influences the design of
@, that is consequently no more optimal for the Hsy-loop-
shaping criterion.

5.3 Example 3.

The aim of the following example is to show that different
conservativeness degrees of model-based and direct data-
driven approach can strongly affect optimization perfor-
mance even in very simple applications.
Let the system and the loop-shaping cost criterion be
1.2(1 - 0.87¢71)

1-04qg 1

J(p) = [IWsS(p)ll5 + IWuU(p)ll5

Go(g™") =

where
11— 0.4¢~1

We=—— "%
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Wy =0.5.

The controller K(p) = p is proportional and both the
adopted model structures for G and @ are characterized by
only one parameter, i.e. G(¢~1,0) = 0¢g~! and Q(n) = .
Assume that a data-set obtained via an open-loop ex-
periment analogous to the one described in Exercise 1 is
available.

The so-formulated problem is obviously affected by un-
dermodeling in any approach. As a matter of fact, Gy ¢ G
and the proportional @) is too simple to cancel the process
dynamics, as it would happen in spectral-factorization-
based computation of the Youla-Kucera parameter.

In model-based approach, the conservative stability crite-
rion in (3) is adopted and, specifically, the numerical value



0 = 1.536 of the modeling error is assumed to be known.
In Figure 8, the Ha-cost as function of p is shown. In
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Fig. 8. Loop-shaping cost function and stability radii
as functions of the proportional control action. The
symbol (+) indicates the result of the direct data-
driven synthesis with the double-experiment con-
straint, whereas the symbol (X) denotes the result
of the model-based design.

the same diagram, the stability radii for both the de-
sign approaches are illustrated: the model-based radius
(3) (dashed line), the direct data-driven constraint ob-
tained with two experiments (light dash-dotted line) and
the direct data-driven constraint deriving from a single
experiment without knowledge of stabilizing controllers
(dark dash-dotted line). Notice that the direct data-driven
constraint obtained by means of the trivial stabilizing
controller is more conservative than the one obtained with
two different experiments.

In the data-driven approach, it holds that the minimizer
p = 0.8457 does not correspond with the stationary point
of J(p). This is due to the fact that the optimization pro-
cedure passes through the identification of a reduced-order
Q. Notwithstanding this, p corresponds to Jy,;, = 1.315
and such value is better than any possible result of the
model-based procedure, in which p must belong to [0, 0.63]
and then J,,;, must be always greater than 1.357. It can
be concluded that the model-based approach may yield
worse performance for the different design procedures (see
again Example 2), but also for the higher conservativeness
degree due to the stability constraint.

6. CONCLUSIONS

A data-driven approach for controller design in mixed-
sensitivity Ho-Hoo loop-shaping framework has been pro-
posed. The method is based on convex optimization tech-
niques and it is limited to stable plants. The main idea
is to directly derive the Youla-Kucera parameter from
a set of input-output samples and to perform a second
identification step to identify a fixed-order controller from
the same data-set. The algorithm does not require to
identify the plant dynamics, but it still guarantees the
same asymptotic performance of a standard model-based

approach in case of correct parameterization. Internal sta-
bility of the closed-loop system with the resulting con-
troller is asymptotically achieved by means of a convex
Hoo-constraint. Furthermore, such stability constraints for
the proposed technique are generally less conservative than
the analogous one for the standard model-based approach.
Some numerical examples show the effectiveness of the
method and its potential in case of undermodeling.
Nonetheless, no theoretical results are available for com-
parison in case of Gy ¢ G or Qy ¢ Q. Properties of the
direct data-driven algorithm in these situations need to be
investigated, together with the extension of the methodol-
ogy to unstable plants.
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