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Abstract

The deployment of high power radio frequency waves in the ion cyclotron range (ICRF)
constitutes an important operational facility in many plasma devices, including ITER. Any
charged particle describes a helical motion around a given magnetic field line, the so-
called cyclotron motion. ICRF relies on the interaction between charged particles and an
injected Radio Frequency (RF) wave, tuned to be at the same frequency as the helical
cyclotron motion. It is applied not only for pure heating of the plasma, i.e. Ion Cyclotron
Resonant Heating (ICRH), but also for the generation of non-inductive current through
Ion Cyclotron Current Drive (ICCD). The numerical code package SCENIC has been de-
veloped for self-consistently simulating the effects of ICRH on the resonant ion species
within the plasma, the resulting changes in the plasma equilibrium, and finally the back
reaction onto the injected wave field. SCENIC is an iterated scheme, which advances the
resonant ions’ distribution function, the equilibrium and the wave field iteratively until a
converged solution, representing a steady state, is reached. The constituents of SCENIC
are the MagnetoHydroDynamic (MHD) equilibrium code VMEC,1 the full wave code LE-
Man2 and the Hamiltonian guiding centre drift following code VENUS.3 All of these codes
are capable of dealing with 3D geometries, and have recently been updated to handle
pressure anisotropy, where the energy density parallel and perpendicular to the mag-
netic field differ. This is important since the RF field resonates mainly with the particle’s
motion perpendicular to the magnetic field, thus creating pressure anisotropy. After the
introduction and description of the different codes and their interfaces, this work verifies
the consistency of the numerical results with expected results for simple cases, and a
benchmarking effort against the similar code package SELFO is shown. After this vali-
dation, SCENIC is applied to different heating scenarios, which are relevant to present
(Joint European Torus, JET) and future (ITER) devices. Low power heating simulations
with a 1 % helium-3 minority in background deuterium plasmas demonstrate that a pres-
sure anisotropy is induced. We show that the hot particle distribution function can be
adequately approximated with a particular bi-Maxwellian for the equilibrium and wave
field computations. For high power, 3 % hydrogen minority heating scenarios, the heating
scheme alters the background equilibrium state. This justifies one of the main novel-
ties introduced in this work, namely the inclusion of the equilibrium computation in the
self-consistent scheme. Effects due to asymmetric wave injection and different heating
locations on the hot particle distribution function, the hot dielectric tensor and the equi-
librium will be studied. Here, the emergence of a high energy tail in the minority species
distribution function is shown explicitly, and some of its exotic features are observed via
the RF driven current, the density and the pressure evolution.

Keywords: Plasma physics, Ion cyclotron range of frequencies, Ion cyclotron resonance
heating, Ion cyclotron current drive, Integrated modeling, Monte Carlo simulations



Version abrégée

L’injection d’ondes électromagnétiques à haute puissance dans la bande des fréquences
radio constitue un important outil opérationnel dans de nombreuses expériences, no-
tamment ITER. Cette technique se base sur l’interaction entre le mouvement naturel
hélicoı̈dal de toute particule chargée autour d’une ligne de champ magnétique donnée
(mouvement cyclotronique) et une onde radio dont la fréquence correspond à la fréquence
cyclotronique. Cette méthode n’est pas seulement appliquée pour le chauffage du plasma,
mais aussi pour la génération de courant non-inductif. Le code numérique SCENIC
a été développé pour simuler de manière cohérente les effets du chauffage par on-
des cyclotroniques sur les ions résonnants dans le plasma, les changements résultants
dans l’équilibre du plasma, et finalement les effets sur le champ d’onde lui-même. En
calculant l’évolution de la fonction de distribution des ions résonnants, de l’équilibre
ainsi que du champ d’ondes de manière itérative, SCENIC permet l’obtention d’une
solution convergeante vers un nouvel état d’équilibre. SCENIC est composé du code
d’équilibre MagnetoHydroDynamique (MHD) VMEC,1 du code d’ondes LEMan,2 et du
code Hamiltonien VENUS3 suivant les centre de guidage des particules chargées. Ces
trois codes sont capables de gérer des géométries tridimensionnelles et ont été mis à
jour récemment pour inclure l’anisotropie de la pression, état où la densité d’énergie
varie entre les directions parallèle et perpendiculaire au champ magnétique. L’intégration
de l’anisotropie est importante car le champ d’ondes radio résonne principalement avec
le mouvement des particules perpendiculaire au champ magnétique, créant ainsi une
anisotropie de la pression. Après l’introduction et la description des différents codes et de
leurs interfaces, la cohérence des résultats numériques avec les résultats attendus sera
vérifiée dans des cas simples, et une étude comparative avec le code similaire SELFO
sera présentée. Suite à cette validation, SCENIC sera appliqué à différents scenarii de
chauffage récurrents dans les expériences présentes (Joint European Torus, JET) et fu-
tures (ITER). Les simulations de chauffage à basse puissance avec une minorité de 1 %
d’hélium-3 dans un plasma de deuterium démontreront qu’une anisotropie de pression
est induite. Nous montrerons que la fonction de distribution des particules chaudes peut
être estimée de manière adéquate avec une bi-Maxwellienne particulière développée
pour le calcul de l’équilibre et du champ d’onde. Dans les cas de chauffage à haute
puissance avec une minorité de 3 % d’hydrogène, l’équilibre magnétique du plasma est
altéré. Cela justifie une des principales nouveautés présentés dans cette thèse, à savoir
le calcul cohérent de l’équilibre. Les effets d’un spectre asymétrique d’ondes sur la fonc-
tion de distribution des particules chaudes, sur le tenseur diéléctrique et sur l’équilibre
seront étudiés dans des cas d’injection d’ondes à des endroits différents dans le plasma.

Mots clés: Physique des plasmas, Ondes dans la gamme de fréquence ion cyclotron,
Chauffage par ondes cyclotroniques, Simulations numériques intégrées, Simulations Monte
Carlos





Notations used in this thesis

e Elementary charge e = 1.622× 10−19

Z Atomic number
Q Electric charge, Q = Ze for an ion, Q = −e for an electron
q Safety factor
m Particle mass
n Number density
B Magnetic field strength with B0 value at magnetic axis
E Electric field
E Energy
T Temperature
Ω Cyclotron frequency Ω = QB/m
ρL Larmor radius ρl = v⊥/Ω
Bc Critical magnetic field
ω Frequency of injected wave ω = QBc/m
ψ Poloidal flux function
Φ Toroidal flux function
χ Scalar potential
s Radial Boozer coordinate, related to toroidal flux
I Poloidal current flux
J Toroidal current flux
ϕ Toroidal angle
p Pressure
P Power
R Major radius with R0 location of magnetic axis
r Local minor radius
a Minor radius a = max(r)
E Dielectric tensor
ICRF Ion Cyclotron Range of Frequencies
ICRH Ion Cyclotron Resonance Heating
ICCD Ion Cyclotron Current Drive
RF Radio Frequency
LFS Low Field Side: R < R0
OA On Axis: R = R0
HFS High Field Side: R > R0
FLR Finite Larmor Radius

An electronic version is available for download at http://library.epfl.ch/theses/?nr=4912
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1. A few words about fusion

A few years ago, scientists working in fusion had difficulty showing why it is important to
move away from fossil fuels towards renewables and non-polluting ways of energy pro-
duction. Every thesis and presentation had to be started with historical atmospheric CO2

concentration plots, world primary resource consumption, etc. In the last few years, the
general attitude has changed a lot, especially since the recent change of administration
in the White House and Al Gore’s world tour showing exactly those plots every plasma
physicist had been showing in the introduction of every presentation for years. We will
therefore assume the reader understands that fossil fuels are problematic and that an-
other way of producing energy has to be found.

Virtually every renewable energy source’s efficiency depends on the environmental
conditions (geography, weather, etc) at the location where it is exploited. Obviously,
wind turbines need enough wind, solar panels sufficient radiation, water turbines large
amounts of water flow and so on, and thus research and development efforts have to be
split into the different ways of generating power, virtually each country developing what
is best for its latitudes, weather conditions and other geographic conditions. The intrinsic
non-universality of these sources of energy might well be one of the main reasons why
these technologies take a long time to develop and are still rather inefficient and expen-
sive. A second important difficulty is the storage of energy produced, as for instance solar
power is mainly generated during the summer, whereas more power is needed in winter
for heating. Another strategy for organising research in the field is to unite scientific ef-
forts internationally and use the resulting large financial and scientific resources to work
on something much more difficult but, once operational, beneficial for all countries in the
same way. Such a philosophy is the basis of one of the largest international scientific pro-
grams, the International Thermonuclear Experimental Reactor (ITER), being built at the
time of writing in Cadarache, France. The basic idea sounds very simple: The sun is con-
stantly producing vast amounts of energy. So why not try and create the same reactions
producing this energy directly on earth instead of recollecting tiny fractions of the sun’s
energy using solar panels? The reactions in the core of the sun are what we call ther-
monuclear fusion. Light chemical elements, mostly hydrogen, are being pressed together
and combine to create new, heavier elements (helium). None of these elements are poi-
sonous or radioactive and all are very common on earth - two of the biggest advantages
of these reactions. The total mass of the heavier element created is lower than the sum

1



2 1. A few words about fusion

Figure 1.1.: Fusing light elements releases energy just as splitting very heavy elements. The dif-
ference in binding energy between the initial and the final elements of reach reaction
can be seen as gained energy.

of its light constituents, and the mass difference is converted into energy after Einstein’s
famous formula E = mc2. It is worth noting that the conversion of mass into energy is
at the very heart of present nuclear fission power plants. Here, very heavy elements are
split into lighter elements, but the effect is exactly inverted: the sum of the masses of the
new lighter elements is lower than the mass of the initial heavy element, and the missing
mass is again converted into energy. One could also explain the energy gain using the
measured binding energies for all different elements, as schematically shown in Fig. 1.1.
The difference in binding energy between the initial (e.g. hydrogen, deuterium, tritium for
fusion, uranium for fission) and the final elements can be interpreted as energy gain from
the reaction.

Now, any nucleus of any element contains protons, i.e. positively charged particles.
Two positive charges repel each other. For fusion, this electromagnetic force has to be
overcome, which is why the pressure has to be very high for fusion to occur. In the sun,
its huge mass guarantees an enormous pressure due to gravitational forces. On earth,
the absence of this mass has to be compensated with even higher temperature. One can
expect that on earth a temperature of 100 million degrees has to be attained for fusion
to take place. At this temperature, any natural element is neither solid not liquid nor in
gas form, but in the fourth state of matter, plasma. In this state, the electrons are no
longer bound to the atomic nucleus (as in the case of a solid, fluid, or gas), but are free
to move away from the latter, now called ”ion” because of its net positive charge. The gas
(or plasma) is ionised, i.e. composed of particles carrying positive and negative electric
charges. Any particle that carries an electric charge is subject to electromagnetic forces,
which gives rise to a special kind of physical behaviour, described by plasma physics.
Any kind of research conducted for nuclear fusion has to be done in the frame of plasma
physics. Consequently, the rest of this thesis will entirely focus on plasma physics, and
the next chapter will introduce the mathematical tools and description needed.



2. Theoretical background

We have seen that the theoretical background for nuclear fusion has to come from plasma
physics. We will now introduce basic notions, principles and notations which will be used
throughout the thesis. Starting from a description of the most widely operated type of
machine, the tokamak, we will introduce the underlying equations describing the global
equilibrium, discuss the fundamental trajectories of the charged particles inside a plasma,
and establish a statistical description, the so-called kinetic description. We will conclude
the chapter with some details on wave physics, in particular in relation to the ion cyclotron
range of frequencies, which will be of great importance to this thesis.

2.1. Magnetic equilibrium

2.1.1. The tokamak

Consider for the time being we can create such a plasma with the required temperature
for fusion to be possible. What would a fusion power plant look like? Hot particles move
very fast, and the most important question is: How can we force these very fast particles
to stay where we want them long enough so that they can collide with other particles
and fuse? A deuterium ion with an energy equivalent to the required temperature of one
hundred million degrees (∼10 keV) moves at a speed of about one thousand kilometers
per second. Such a particle can be expected to have a collision with another particle
about every 100 milliseconds (for the densities considered in this thesis), such that the
deuterium ion would have to travel one hundred kilometers before colliding the first time
with another particle. Moreover, every particle has to suffer a high number of collisions
before an efficient collision causes two nuclei to fuse. We cannot even dream of building
devices long enough for that to happen. There is another way. Namely, we can build
closed loops, like donuts or tires, where the particles can move in circles and therefore
travel a virtually infinite distance without ever leaving the device. This is the idea of the
toroidal fusion devices, which have been in the centre of fusion research since the 1960s
(Fig. 2.1).

Such toroidally shaped devices can still differ quite a lot in size and form. If there is
no difference in toroidal direction (along the torus) in any of the quantities defining the
plasma, the plasma can be considered to be two dimensional, since we do not need to

3



4 2. Theoretical background
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Figure 1.5.2: Experimental arrangement for controlled nuclear fusion. In a Tokamak, two superimposed magnetic
fields enclose the plasma: The toroidal field generated by external coils and the field due to the
plasma current. In the combined field, the field lines run helicoidally around the torus centre, ensur-
ing the necessary twisting of the field lines to form the confining magnetic structure encapsulating
the plasma. The outer poloidal field coils position and shape the plasma in the container.

a set of Primary transformer coils: The continually increasing current flowing along the
torus in the central solenoid induces a toroidal electric field in the plasma, which drives
an inductive toroidal current Ip in the plasma (acting as a secondary transformer circuit
winding). On TCV, Ip ranges from 100 kA to 1 MA. The plasma current induces in turn
a poloidal magnetic field Bθ. The magnetic field lines resulting from the superposition of
Bφ and Bθ are therefore helicoidal. The toroidal magnetic field is dominating in tokamaks.
On TCV, Bθ is approximately one order of magnitude weaker than Bφ. The twisting of the
magnetic field lines compensates the particle drifts occurring if Bφ would have been applied
alone as each field line passes the upper and lower part of the torus. The net drift force,
obtained by integration along the path of circulating particles (following the magnetic field
lines), cancels out and there is thus no vertical drift motion.

a set of Poloidal field coils: In toroidal geometry the plasma current interacts with the
poloidal magnetic field, the latter is weaker at the outer side of the torus. This leads to
an outward hoop force acting on the particles. In order to maintain stability, a vertical
magnetic field Bv inducing a centripetal force IpBv of opposite direction must be applied.
Further poloidal coils ensure the desired plasma positioning and shaping.

This confinement is not perfect. 50 years of research on tokamaks have shown that various mag-
netohydrodynamical (MHD) instabilities, collisional transport or turbulent processes may cause
strong deterioration of confinement.

Turbulent ion heating in TCV tokamak plasmas Christian SCHLATTER, CRPP/EPFL

(a) Sketch of the current and magnetic field generation in a Tokamak. The central column (red) acts as a
transformer and creates toroidal current in the plasma, and thus also a poloidal magnetic field, whereas the
toroidal field coils (yellow) generate the toroidal magnetic field. The green coils are responsible for shaping
the plasma.

(b) Computer generated slice of the Joint European Torus (JET) plasma vessel, together with 3D imagery of
the inside of the vessel.

Figure 2.1.: Sketch of the outer coils of a tokamak (in reality there are many more field coils), and
an artist’s view of the Joint European Torus (JET), at present the largest fusion device
in the world. both figures from jet.efda.org



2.1. Magnetic equilibrium 5

Figure 2.2.: Numerical representation of the toroidal field coils in ITER and their 3D ripple effect
on the magnetic field strength inside the plasma. The coloring shows the magnetic
field strength in the plasma, showing the characteristic 1/R dependence of Eq. (2.1)
with the maximum (red) on the inside and the minimum (violet) on the outside of the
vessel. oakridgelabnews on flickr.com

consider the third dimension along the torus. In that case we call the device a tokamak.
We shall concentrate on such configurations in this thesis. In reality, however, even if we
intend to build such a device, it will never be perfectly symmetric, be it only because the
magnetic field coils are separated by a finite distance and the resulting toroidal magnetic
field can therefore not be completely constant, causing what is called magnetic ripple
effects, as illustrated in Fig. 2.2. More complicated devices are stellarators, where the
magnetic configuration is truly three dimensional in that the magnetic field is voluntarily
twisted. In such machines, one is forced to apply three dimensional theory for their de-
scription. Although the code package described in this thesis has been developed for
being able to treat such geometries, we will not consider stellarators, since computations
are much more time consuming and testing is more complicated due to the fact that the
results are less intuitive.

Hence, we come back to the tokamak, where (ideally) all parameters are constant in
the toroidal direction, i.e. along the torus. This direction is parametrised by the angle
ϕ. We have learned that the charged particles within the plasma basically follow the
magnetic field lines. Thus, if we want to make these particles circle around the torus in a
tokamak, the magnetic field must be along the toroidal direction, B ∼ Bϕ. However, the
toroidal field is created using toroidal field coils, as schematically highlighted in yellow in
Fig. 2.1(a) and in blue in Fig. 2.2. Especially the latter figure shows that due to the form of
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Z

R

φ

RoRo

r
θ

Figure 2.3.: The toroidal coordinates (R, ϕ, Z) make use of the fact that the tokamak is essentially
two dimensional. The dependence on the toroidal angle ϕ can be neglected and the
Cartesian coordinates (R, Z) are sufficient for the equilibrium description (right hand
side). R0 defines the magnetic axis of the torus. Another possible set of coordinates
are the polar coordinates (r, θ) as shown on the left hand side. θ is the poloidal angle,
r the local minor radius. The blue 3D line shows a magnetic field line with q ≈ 3
and the black line on the left side the corresponding flux surface in the (R, Z) poloidal
plane.

the torus, these magnetic coils are closer together on the inboard side, thus strengthening
the magnetic field on that side. As a result, the toroidal magnetic field strength decreases
with major radius R, which denotes the radial distance from the centre of the torus, as
can be seen from the coloring of the plasma inside the coils in Fig. 2.2, red denoting high,
violet low value. We can therefore write

Bϕ ≈ B0R0

R
, (2.1)

where R0 denotes the position of the centre of the toroidal volume, the magnetic axis, and
B0 the magnetic field strength at R = R0. The coordinates are illustrated in Fig. 2.3. B
is therefore not constant in the plasma, and in the presence of a gradient of the magnetic
field, the particles start drifting across the field lines. These drifts are responsible for the
particle orbits leaving given magnetic field lines (”drifting” through the magnetic field), with
characteristic velocities of

v∇B
D =

mαv2
⊥

2QαB3 (∇B× B) , (2.2)

with α denoting the particular species, mα the mass and Qα the particle charge. This term
is dependent on charge, and therefore electrons and ions move into opposite directions.
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The resulting charge separation results in an electric field E, corresponding to the electric
Coulomb force between particles of opposite charge. This electric field gives rise to
another drift velocity, which is independent of the charge of the particles, and therefore
ions and electrons move together in the same direction. The complete drift velocity is
then

vD =
E× B

B2 +
mαv2

⊥
2QαB3 (∇B× B) , (2.3)

We see from Eq. (2.1) that a magnetic field gradient, and therefore the particle drifts of
Eq. (2.3) are always present in a tokamak. In order to compensate those drifts, one can
add another component to the magnetic field, usually much weaker and this time in the
poloidal direction, i.e. along the angle θ. This gives the total magnetic field a helical
structure around the torus, similar to a screw driver in toroidal direction (blue 3D line
in Fig. 2.3). The particles, which are mainly following the magnetic field lines, are then
describing helical trajectories as well, and the drifts which are directed towards the plasma
edge on the upper half of the torus (”up”) are directed away from the edge on the lower
half of the torus (still ”up”) and vice versa. The most basic particle drifts can therefore be
avoided with this kind of magnetic field structure. As a result of the addition of a poloidal
component of the magnetic field, the field lines describe what is called magnetic flux
surfaces in the poloidal RZ-plane. One example is shown in Fig. 2.3, where the helical
field (blue 3D line) describes the flux surface at the minor radius r (black line, left). In
order to quantify the twisting of the field lines, the safety factor can be defined

q =
1

2π

∮ 1
R

Bϕ

Bθ
dl, (2.4)

where the integration is performed over one loop along a flux surface in the poloidal
cross section. The safety factor quantitatively stands for the number of toroidal loops
a magnetic field line performs to complete one poloidal loop. If that number is rational,
q = m/n, the magnetic field lines close after m toroidal and n poloidal loops. The name
safety factor then comes from the fact that if the magnetic field lines close on themselves,
any magnetic perturbation can easily grow into an instability since it can propagate along
the magnetic field lines and always come back to where it has been created, such that
global deformations of the field lines can arise. This is especially important for the regions
where q ≤ 1, i.e. where the field lines close on each other after less than one toroidal
rotation. Since for most of the particles the motion along the field lines is much faster than
across it, most of the characteristics of the plasma are approximatively constant around
one given flux surface, and their values can appropriately be represented as functions of
a radial variable proportional to the magnetic flux inside a given surface. In order to define
the magnetic flux, let us write the magnetic field in the contravariant representation as4

B = ∇ϕ×∇ψ +∇Φ×∇θ, (2.5)
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with ψ the poloidal and Φ the toroidal flux function. Indeed, the total poloidal flux is

ΨP(ρ) =
∫

AP

dσ ·B =
∫

Ap

√
gdρ′dϕ∇θ ·∇ϕ×∇ψ =

∫ 2π

0
dϕ

∫ ρ

0
dρ′

ψ(ρ′)
dρ′

= 2πψ(ρ),

(2.6)
where

√
g = (∇ρ×∇θ · ∇ϕ)−1 is the Jacobian and ρ an arbitrary radial variable. The

same reasoning yields the toroidal flux

ΨT(ρ) =
∫

AT

dσ · B =
∫ 2π

0
dϕ

∫ ρ

0
dρ′

Φ(ρ′)
dρ′

= 2πΦ(ρ). (2.7)

One popular radial coordinate is the normalised radius

ρp =

√
ψ

ψa
, (2.8)

where ψa is the poloidal flux function at the plasma edge. In this thesis, we will not use
the poloidal but rather the toroidal flux Φ enclosed by a given flux surface. We introduce
the radial coordinate

s =
Φ
Φa

(2.9)

in the numerical codes. The minor radius as defined in Fig. 2.3 is then approximately

r ≈ a
√

s, (2.10)

where a is the maximum minor radius of the machine. It follows that we can define the
normalised radius

ρ = r/a ≈ √s. (2.11)

This is only approximately true because, as one can see in Fig. 2.3, the plasma does in
general not have a circular cross section. Indeed, it is possible to shape the plasma in
the poloidal plane. One possible description of the shaping can be done when expanding
the coordinates (R, Z) into an infinite sum of shaping coefficients, reading

R = R0 + r cos θ − ∆(r) + ∑
m≥2

Sm(r) cos(m− 1)θ (2.12a)

Z = r sin θ − ∑
m≥2

Sm(r) sin(m− 1)θ, (2.12b)

where Sm(r) are the shaping coefficients and ∆(r) is the Shafranov shift and corresponds
to a displacement of the magnetic axis with respect to the geometric centre of the plasma.
This is an important quantity related to global stability of the plasma as we will see later
on. The expansion (2.12) is the expression which will be relevant for interpretation of
results and discussions related to stability. However, in the equilibrium code VMEC the
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coordinates are implemented differently.

R̄ = ∑
n≥0

R̄n(s) cos nθ (2.13a)

Z̄ = ∑
n≥1,

Z̄n(s) sin nθ. (2.13b)

The two expansions can be compared, such that the relation between the VMEC coor-
dinates (2.13) and the definition for the analytical studies (2.12) becomes more clearly
apparent, yielding

r(s) =
R̄1(s) + Z̄1(s)

2
, (2.14a)

R0 = R̄0(0), (2.14b)

∆ = R̄0(0)− R̄0(s), (2.14c)

S2 =
R̄1(s)− Z̄1(s)

2
, (2.14d)

Sm≥3 = R̄m−1. (2.14e)

One can, however, define other expansions. A popular alternative is mainly applied when
restricting shaping to elongation κ and triangularity δ as defined in Fig. 2.4. These defini-
tions of elongation and triangularity are well established, and the expansion then is of the
form

R = R̂0 + r̂ cos (θ + δ sin θ)) (2.15a)

Z = Ẑ0 + r̂κ sin θ. (2.15b)

Again, we can compare the different expansions, and find that the elongation κ and the
triangularity δ are related to the shaping coefficients in (2.12) as follows:

κ =
r− S2

r + S2
, (2.16a)

δ =
4S3

r
. (2.16b)

These relations are considered when setting the boundary conditions for the fixed bound-
ary version of the equilibrium code VMEC, given an elongation κ, a triangularity δ and a
magnetic axis at R0.
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Figure 2.3.3: Higher order moments of the poloidal plasma geometry.
(a) defines the elongation κ = b/a and
(b) the triangularity δ = d/a.

!"#"$%&
'"(%&$)&

(*+,,#
(%--%!

!*-$.+!)-%'
/!,0.-,&/*+%

1!*-#*1!*-#*
-%1*&*$&"0

234.5"(%&$%'.+)6/"7,&*$")62*4.8"#"$%'.+)6/"7,&*$")6

-$&"9%
1)"6$

Figure 2.3.4: Configuration of plasmas in a tokamak.
(a) A limiter scrapes the plasma off and defines the last closed flux surface (LCFS). On TCV the
walls are limiting the plasma in this configuration.
(b) In diverted configurations the LCFS is determined through additional magnetic coils that shape
the magnetic flux surfaces such as to create an X-point, where the poloidal magnetic field has a
null. The magnetic flux surface passing through this X-point is called the separatrix. The region
below the X-point may be loosely defined as the divertor. The points at which the separatrix strikes
the wall are known as the strike points.
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Figure 2.3.4: Configuration of plasmas in a tokamak.
(a) A limiter scrapes the plasma off and defines the last closed flux surface (LCFS). On TCV the
walls are limiting the plasma in this configuration.
(b) In diverted configurations the LCFS is determined through additional magnetic coils that shape
the magnetic flux surfaces such as to create an X-point, where the poloidal magnetic field has a
null. The magnetic flux surface passing through this X-point is called the separatrix. The region
below the X-point may be loosely defined as the divertor. The points at which the separatrix strikes
the wall are known as the strike points.

Turbulent ion heating in TCV tokamak plasmas Christian SCHLATTER, CRPP/EPFL

Figure 2.4.: Definitions of the elongation κ = b/a and triangularity δ = d/a for a shaped plasma.

2.1.2. Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is a combination of hydrodynamics and electromagnetism.
Instead of describing every particle separately, the whole plasma is treated as a fluid sub-
ject to the pressure and Lorentz forces. The connection to electromagnetism is done
through Ohm’s law, as we shall see later. The core of hydrodynamics is the momen-
tum or Euler equation, which is a form of Newton’s law. As it considers the complete
plasma as one fluid with macroscopic properties such as density or pressure, MHD is
very powerful in the description of plasma equilibria and global stability, since it does not
include complicated small scale behaviour, but treats the complete plasma as a whole.
The velocity v entering this equation is then not the velocity of one given particle but the
average velocity of all particles within a considered volume of mass m. The momentum
conservation in this model reads

mn
dv
dt

= mn
(

∂

∂t
+ v · ∇

)
v = j× B−∇ · P, (2.17a)

where n is the number density, j the current density, B the magnetic field and P the
pressure tensor. The left hand side (LHS) denotes the total fluid velocity time derivative,
being the sum of the partial time and the convective derivative, whereas the right hand
side (RHS) denotes the force applied to it. In general, the pressure tensor has diagonal
terms corresponding to pressure, and off-diagonal terms related to stress. In this thesis,
we will neglect stress terms, but consider pressure anisotropy, such that the pressure
tensor includes different pressures parallel and perpendicular to the magnetic field. We
will use the Chew-Goldberger-Low expansion5 and the pressure tensor then takes the
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form
P = p⊥(I− εij) + p‖εij. (2.17b)

I is the unit dyadic and εij = BiBj/B2. For isotropic pressures (p‖ = p⊥), this term
becomes simply ∇p, with the total pressure

p =
p‖ + 2p⊥

3
. (2.17c)

In this section, we will consider both anisotropic and isotropic pressures. The reason for
this lies in the set up of the numerical scheme developed in this thesis, which is described
in detail in Chapters 4-7. Namely, the equilibrium will contain two different plasma popu-
lations, one constituting the majority of the plasma, and considered thermal Maxwellian,
and thus isotropic, and one minority, which will resonate with the injected wave and be
considered bi-Maxwellian and anisotropic. This separation of the total pressure into a
parallel and a perpendicular contribution for the resonant plasma population will be an
important addition in this work as compared to using one scalar total pressure. The last
fluid-like equation is the continuity equation

∂

∂t
n +∇ · (nv) = 0, (2.17d)

and makes sure that the total number of particles is conserved. In order to close the
system of equations, equation of state yields a relation between the mass density and the
pressure,

d
dt

(
p

(mn)γ

)
= 0, (2.17e)

where γ is the ration of specific heats, usually taken to be γ = 5/3. For the electromag-
netic fields, the evolution is governed by Maxwell’s equations

∇ · E = 0 (2.18a)

∇× E = −∂B
∂t

(2.18b)

∇ · B = 0 (2.18c)

∇× B = µ0j (2.18d)

Finally, the electromagnetic fields and the fluid motion are linked by Ohm’s law,

E + v× B = ηj, (2.18e)

where we introduced the resistivity η. In the case of the so-called ideal MHD, where the
plasma is considered a perfect conductor, η = 0 and Ohm’s law states that, in the local
frame of the moving fluid, no electric field can exist. Eqs. (2.17 and (2.18) represent the
most basic description usually employed to model plasmas. It is nevertheless a closed
model and contains extremely rich physics. As we are interested in magnetic equilibria
without mean flow, total and partial time derivatives must vanish (∂t = 0 and v = 0).



12 2. Theoretical background

For anisotropic plasmas described in this thesis, one has to introduce an effective current
density K defined in such a way that Eq. (2.18d) writes4,6

∇× (σB) ≡ µ0K, (2.19a)

where

σ ≡ 1− µ0

B
∂p‖
∂B

∣∣∣∣
s
= 1− µ0

p‖ − p⊥
B2 (2.19b)

is related to the firehose stability criterion,6 which states that σ must be positive every-
where. The momentum equation (2.17a) yields then the force balance in equilibrium state
as

∂p‖
∂s

∣∣∣∣
B
∇s = K× B, (2.19c)

where the radial coordinate s has been defined in Eq. (2.9). We see from this that K ·
∇s = 0, stating that the effective current density lines lie on constant flux surfaces.
Finally, the equilibrium magnetic field has to satisfy

∇ · B = 0. (2.19d)

Equations (2.19) define the anisotropic MHD equilibrium. We will turn again to the isotropic
limit, since the background thermal plasma will always be treated isotropic, and it is also
more straightforward to derive some basic relations we will need for qualitative under-
standing later on in this thesis. In the isotropic case, σ = 1, and thus K = j, and the
pressure ∇ · P→ ∇p. In that case, Eqs. (2.17) and (2.18) reduce to

j× B = ∇p, (2.20a)

∇× B = µ0j, (2.20b)

∇ · B = 0, (2.20c)

From these equations we can derive some fundamental properties. For instance, in the
isotropic equilibrium the pressure and the current lie on magnetic flux surfaces, since
B · ∇p = 0 and j · ∇p = 0. In other words, in the isotropic limit, the surfaces on which the
field lines lie are also surfaces of constant pressure, and the current lies on these surfaces
as well. Inspecting Eqs. (2.20), the force balance in this model is quadratic in magnetic
field strength and linear in pressure as seen if we combine the first two equations of
Eqs. (2.19). This is why the parameter

β ≡ p
B2/2µ0

, (2.21)

giving information about the ratio between pressure and magnetic force, is very useful
for classifying any given magnetic equilibrium. It is not only an important parameter of
the equilibrium, but it also gives information about the efficiency of a given configuration,
since one wants to achieve high pressure p but the magnetic field B has to be generated,
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such that β to some extent gives the ratio of the obtained force (pressure in the plasma)
divided by the cost (in terms of magnetic field strength created by the external coils).
Eqs. (2.19) and also (2.20) show clearly that for any given configuration, the magnetic
field, the pressure and the current are linked. These equations are in vector form, such
that not only the amplitudes of these quantities are linked, but more generally their vector
components. One can therefore also find a relation between the current and the safety
factor defined in Eq. (2.4). One can define the local inverse aspect ratio

ε ≡ r
R0

, (2.22)

which in standard tokamaks can be considered small. Then, for a large aspect ratio, i.e.
ε � 1, and a circular cross section, the expression for the safety factor, Eq. (2.4) can be
simplified to read

q =
rBϕ

R0Bθ
. (2.23)

Then, defining the current inside the flux surface at r as

I(r) = 2π
∫ r

0
j(r′)r′dr′, (2.24)

one can find the relation between the current, the magnetic field and the safety factor
using Eqs. (2.20) as

q(r) =
2πr2Bϕ

µ0 I(r)R
. (2.25)

This relation shows that there is a direct relation between the current and the safety
factor, and this will be important for the results in this thesis. We will locally change the
current using wave-particle interactions, and therefore change the safety factor profile.
With a change in the safety factor profile the magnetic topology can be changed without
changing the amplitude of the field. Therefore, acting on the current within the plasma can
have an important direct effect on the equilibrium, and this is one of the motivations for
this thesis, i.e. for including the equilibrium evolution in the self-consistent computations.

The magnetic equilibrium is defined by the state which minimises the energy with the
given constraints of current and pressure profiles and the boundary conditions. In a
general three dimensional geometry, and the anisotropic pressure given by p⊥ and p‖,
the required energy functional is of the form7

W =
∫

V
dV

(
B2

2µ0
+

p‖(s, B)
Γ− 1

)
, (2.26)

where V is the real space volume of the plasma and Γ the adiabatic index (Γ = 0 in
all of this work). In a tokamak, this reduces to the generalised Grad-Shafranov equation
given e.g. in Ref. 8. Here we will only give the relations showing the effects of the
perpendicular pressure on the shaping coefficients and point the interested reader to the
above mentioned reference. The effect of the anisotropic pressure on the Shafranov shift
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and the shaping coefficients is defined by8

∆′′ +
(

2(r f1)′

r f1
− 1

r

)
∆′ − 1

R0
+

r( p̄⊥,2 + p‖,2)′

R0B2
0 f 2

1
−

rp′⊥,2,(2)

2R0B2
0 f 2

1
= 0 (2.27a)

S′′m,2 +
(

2(r f1)′

r f1
− 1

r

)
S′m,2 −

m2 − 1
r2 Sm,2

+
p⊥,2,(m+1)(m + 1) + p⊥,2,(m−1)

2R0B2
0 f 2

1 m
−

r
[

p′⊥,2,(m−1) − p′⊥,2,(m+1)

]
2R0B2

0 f 2
1 m

= 0. (2.27b)

The notations are as follows: f and g are the normalised poloidal and toroidal mag-
netic fields, using B = R0B0 [ f (r)∇ϕ×∇r + g(r, θ)∇ϕ], the numbered subscript corre-
sponds to the order in the inverse aspect ration expansion O(ε), prime denotes deriva-
tive with respect to r, and the perpendicular pressure has been Fourier expanded using
p⊥,2(r, θ) = p̄⊥,2(r) + ∑n≥1 p⊥,2,(n)(r) cos nθ. Sm are the shaping coefficients as de-
fined in Eq. (2.12). Note that this notation includes anisotropy in the way σB appears in
Eqs. (2.19), in that the toroidal magnetic field component g depends also on poloidal an-
gle θ. In isotropic equilibria, g is a function of minor radius r only. Eqs. (2.27) show that the
Shafranov shift ∆ and the shaping coefficients Sm, and thus the elongation and triangular-
ity, depend on the magnetic field strength and that the dependence on the perpendicular
pressure is much stronger than the dependence on the parallel pressure. Indeed, the
authors in Ref. 8 showed that when p⊥/p‖ ∼ ε−1, the poloidal derivative of the per-
pendicular pressure can be of the same order as the perpendicular pressure itself, i.e.
∂p⊥/∂θ ∼ p⊥. Thus, in the simulations in this thesis, the Fourier amplitudes p⊥,2,(n) in
Eqs. (2.27) can be quite large. The reason why perpendicular pressure is more important
than parallel pressure can be understood when considering the particle orbits, in particu-
lar the difference between what is called passing and trapped particles. We will therefore
turn to these orbits now.

2.2. Particle orbits

2.2.1. Gyro motion and cyclotron frequency

The equation of motion for a single charged particle in a homogeneous magnetic field
and without electric field is

m
dv
dt

= Qv× B, (2.28)

where m and Q are the particle’s mass and charge respectively. The term v × B is
responsible for the division of the motion into dynamics perpendicular and parallel to the
magnetic field, since in the parallel direction v× B|‖ = 0, and the particle does not
feel any force in that direction, and therefore v‖ = v0‖ = const. In the perpendicular
direction, however, there is an acceleration causing the particle to spin or gyrate around
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Figure 2.5.: A charged particle (an ion shown) moves along the magnetic field in a helical motion.
figure from jet.efda.org

a given magnetic field line, as illustrated in Fig. 2.5. Indeed, solving in (x, y, z), where
B = (0, 0, B), one can find evolution equations of the form

x(t) = ρL cos Ωt (2.29a)

y(t) = ρL sin Ωt (2.29b)

z(t) = v0‖t. (2.29c)

This describes the so-called cyclotron or gyro motion, defined by the cyclotron frequency

Ω =
QB
m

. (2.30)

and the Larmor radius
ρL =

v⊥
Ω

. (2.31)

There are two important points to be made. In this thesis, we will study wave-particle
interactions which take place when the cyclotron frequency of a given particle matches
the frequency of the injected wave, allowing for energy exchange between the particle and
the wave. The other effect is that one can average over this fast motion of the particles
and only consider the motion of the centre of the helix-like orbit, the so-called guiding
centre. The basic influence of the gyro motion will still be present through the so-called
magnetic moment of the particle, defined as

µ =
mv2
⊥

2B
. (2.32)

The magnetic moment is related to the charged particle describing a helical orbit, and
by doing so creating a current loop around the magnetic field line, and is an adiabatic
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invariant in the guiding centre description. The resulting guiding centre trajectories are
faster to solve, since instead of integrating the complete Lorentzian orbits, one retains
only the magnetic moment and evolves the average position of the particle in time. The
guiding centre orbits will be described in more detail in the following section, and are the
basis of the VENUS code, which is part of the numerical scheme developed in this thesis.

2.2.2. Guiding centre drifts

Trap cone

As we have already seen, particles mainly follow the magnetic field lines, and are bound in
their perpendicular motion by the cyclotron gyration. One constant of motion is of course
the particle energy E = 0.5mv2 = 0.5m(v2

‖ + v2
⊥). The already mentioned magnetic

moment is defined as µ = mv2
⊥/2B and is an adiabatic invariant. The magnetic field lines

are not straight in a tokamak, but assume a helical form, describing magnetic flux surfaces
in the poloidal plane. We also know from Eq. (2.1) that the magnetic field strength has
roughly a 1/R dependence. Thus, when a particle moves along the field line starting
on the low field side of the torus (R > R0) with a given constant energy and magnetic
moment, it will see the field increase as it moves over to the high field side, that is when
R decreases. With increasing B and constant µ and E, the parallel velocity

v2
‖ = 2(E− µB)/m (2.33)

decreases and can even vanish. But, v2
‖ ≥ 0, such that, when B = E/µ, the particle

cannot move on. The only possibility for the particle is then to reverse (i.e. change sign
of v‖). This is called the magnetic mirror, as the particles are reflected at B = E/µ. Such
particles are called trapped, since they are no longer free to move along the magnetic
field lines. The particles with low enough µ do not suffer the mirroring and are thus called
passing, as for those particles the mirror condition is never satisfied in the plasma, and
they can therefore continue to follow the magnetic field lines. Fig. 2.6 shows one example
of a trapped and a passing particle in three and two dimensions (i.e. in the poloidal plane).
In the poloidal cut to the right of Fig. 6.2, the colored shading shows the magnetic field
strength. The trapped particle describes in the two dimensional poloidal plane a banana-
like form, which is why trapped orbits are also called banana orbits. The equations of
motion for the guiding centre orbits will be given later in Chapter 6. Nevertheless, for the
description the following simple demonstration is adequate. One can define the trap cone,
which is the region in velocity space inside which the particles are trapped, and outside
which they are passing. The trapped-passing boundary at a given flux surface is given by
a ratio of v‖/v⊥ such that the parallel velocity just vanishes at the maximum field strength
on that flux surface. Explicitly, let us define the minimum (maximum) field strength along
a given guiding centre orbit as Bmin (Bmax). Now, we want to find the transition from
passing to trapped orbits in velocity space. Therefore, we consider a particle which is
exactly on that transition, the trapped-passing boundary. This means that the maximum
magnetic field is just strong enough to reflect the particle on the midplane, i.e. at θ = π.
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(a) Trapped particle or banana orbit. The particle has a large enough magnetic moment for it to
be reflected by strong B. One can clearly see the difference in toroidal angle between the two
passings of the orbit on the midplane θ = 0, corresponding to the toroidal precession.

(b) Passing particle orbit. The magnetic moment is low and the particle follows the magnetic field
lines closely around the complete orbit.

Figure 2.6.: A trapped and a passing particle orbit. The trapped particle describes a banana
shaped curve in the poloidal plane, hence the name banana orbit. The passing par-
ticle is following the magnetic field lines closely, which is why the orbit resembles the
mangetic field line in Fig. 2.3.
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We denote the perpendicular and parallel velocities at the minimum magnetic field, i.e. at
θ = 0, as v⊥,0 and v‖,0, whereas the parallel velocity vanished at the point of maximum
field strength, and we denote the perpendicular velocity v⊥,t. By virtue of conservation of
magnetic moment µ, we can then write

v2
⊥,t

Bmax
=

v2
⊥,0

Bmin
, (2.34)

since the mass if of course conserved as well. Since at the bounce point v‖,t = 0, the
conservation of energy implies

v2
⊥,t = v2

⊥,0 + v2
‖,0 ≡ v2

0, (2.35)

and therefore
v2

0
Bmax

=
v2
⊥,0

Bmin
. (2.36)

It follows that v2
‖,0 = v2

0(1− Bmin/Bmax) and v2
0 = v2

⊥,0Bmax/Bmin, and finally we obtain

v2
‖,0

v2
⊥,0

=
Bmax

Bmin
− 1. (2.37)

For a tokamak, we can approximate B ≈ B0R0/R, as seen before, R ≈ R0 + r cos θ, and
assume large aspect ratio, ε = r/R0 � 1, such that R0/R ≈ 1/(1 + ε cos θ). It follows
that Bmin = B(θ = 0) ≈ B0(1− ε) and Bmax = B(θ = π) ≈ B0(1 + ε). Eq. (2.37) then
gives v2

‖,0/v2
⊥,0 ≈ 2ε/(1− ε). If we invoke once again ε� 1, we see that

v‖,0
v⊥,0

≈
√

2ε. (2.38)

If we further assume an isotropic distribution (e.g. a Maxwellian), the fraction of trapped
particles is determined by v‖,0/v0 on the trap cone, and thus the fraction of trapped
particles for such distributions has the same dependence of

√
2r/R0. Thus, the further

away from the magnetic axis, the larger the fraction of trapped particles. Fig. 2.7 illustrates
the trap cone in velocity space for a better understanding. If, at the position of minimum
magnetic field strength along its orbit, a particle has a ratio of v‖/v⊥ which is smaller than
the one defined in Eq. (2.37), the particle is inside the trap cone, and it will be reflected,
i.e. describe a banana orbit. The lower the parallel with respect to the perpendicular
velocity, the closer Bmax and Bmin, which means that the particle is reflected at lower θ.
The extreme case where v‖,0 → 0, Bmax → Bmin is called stagnation orbit, since the
particle is not moving at all in poloidal direction, since the point of reflection coincides
with the point of departure. Such orbits will only move in toroidal direction. Particles with
rather low parallel velocity, such that Bmax is not far from Bmin, and thus the maximum
poloidal angle of the particle orbit is considerably smaller than π/2 are called deeply
trapped, and particles which are close to the trapped-passing boundary but still inside
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Figure 2.7.: Definition of the trap cone in velocity space. Particles with parallel and perpendicular
velocities inside the cone are trapped, outside the cone are the passing particles.

the trap cone are called barely trapped. Finally, particles close to the trapped-passing
boundary but outside the trap cone are barely passing and particles with almost vanishing
perpendicular velocity are deeply passing.

In later Chapters, contour plots of the distribution function as a function of v‖ and v⊥
will be an important tool for interpretation of the simulation results. We can then re-
call Eq. (2.37) in order to estimate where in these contour plots particles are trapped or
passing. The distinction is important, since trapped and passing particles do not have
the same effects. For instance, we will see that, since trapped particles have in general
higher µ and thus higher perpendicular velocity than passing particles, a high number of
trapped particles means a high perpendicular pressure and vice versa. Now, trapped par-
ticles cannot complete a poloidal circuit around a given flux surface, and thus the trapped
population cannot contribute to the fast equalisation of the characteristics along one given
flux surface. Therefore, one can expect that perpendicular pressure cannot be treated as
a flux surface quantity, and the poloidal dependence will have to be retained for consis-
tent computations. This is one important reason why the dependence of the Shafranov
shift and the shaping coefficients (2.27) on the perpendicular pressure is more important
than one the parallel pressure. We can already see why it will be important to retain the
anisotropic pressure (p⊥ , p‖) and the poloidal dependence of the macroscopic quanti-
ties in what follows.
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Finite orbit width

As can be seen in Fig. 2.6(a), trapped particles do not exactly follow the field lines, and
the inner and outer leg of the banana orbits do not lie on each other. The difference in
radius of the inner and the outer leg is called orbit width. For a simple explanation, we
again place ourselves into the axisymmetric tokamak geometry. Here, the symmetry in
toroidal ϕ direction implies, along the particle orbit, conservation of the canonical angular
momentum

Pϕ = Rmvϕ + Qψ, (2.39)

where as before R is the major radius, Q the particle’s charge and ψ the poloidal flux
function. Now, if we place ourselves at one given R and look at the orbit of a trapped
particle as in Fig. 2.6(a), we see that the sign of the velocity in toroidal direction changes
from the inner to the outer part of the orbit. This is of course no surprise, since the particle
is mirrored when v‖ → 0, and it simply moves back to where it came from. But then, the
toroidal moment Pϕ must be conserved, and therefore

ψ2 − ψ1 =
Rm
Q

(
v1

ϕ − v2
ϕ

)
. (2.40)

From our observations we expect that vϕ changes sign between points 1 and 2, and
therefore the right hand side of Eq. (2.40) is either negative or positive, but never zero
(except if the toroidal velocity is zero of course). This is the proof that a trapped particle
cannot have a zero orbit width. In the poloidal cut in Fig. 2.8(a) we chose the inner leg with
label 1 and the outer to have label 2, such that ψ2 − ψ1 > 0, and therefore v1

ϕ − v2
ϕ > 0.

Now, at the same position R, the magnetic field has approximately the same strength
at positions 1 and 2, and from the magnetic moment and energy conservation and what
we found before follows that 0 < v1

ϕ ≈ −v2
ϕ. Within this approximation, let us define

vϕ = v1
ϕ ≈ −v2

ϕ, such that we can write the orbit width δψ = ψ2 − ψ1 as

δψ ≈ 2
Rm
Q
|vϕ|. (2.41)

Trapped particles travel along the toroidal coordinate ϕ on the inner leg of a trapped orbit
(v1

ϕ > 0), and opposite ϕ on the outer leg (v2
ϕ < 0). In all simulations presented in this

work, the toroidal current is chosen in the direction opposite the coordinate ϕ. We can
therefore already state that in our simulations, trapped ions will move in counter-current
direction on the inner leg, and in the co-current direction on the outer leg. Furthermore,
the toroidal velocity vϕ → 0 at the turning points, and therefore the orbit width vanishes,
meaning that the average radial position of a trapped particle ψt corresponds to the posi-
tion at the turning points ψt.p.,

ψt = ψt.p.. (2.42)

These considerations will become important in the discussion of the RF induced current
in the following chapters. Eq. (2.41) shows that the orbit width scales with the toroidal
velocity, and thus with

√
E for a given pitch angle vϕ/v. Highly energetic particles have
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ψ1

ψ
2

(a) Poloidal trapped particle orbit. The trapped parti-
cle describes a banana orbit with a finite orbit width
∆ψ = ψ2 − ψ1 given by Eq. (2.41) for ψ1,2 at the
same major radius R (vertical line).

ψ1 ψ
2

(b) Poloidal passing particle orbit. The passing par-
ticle orbit can also depart form a given flux surface
as given in Eq. (2.45). For the here shown orbit with
vϕ < 0, the orbit is shifted to the right with respect
to the flux surfaces, for the opposite sign of vϕ the
shift is to the left in the poloidal plane.

Figure 2.8.: Finite orbit widths in a tokamak for passing and trapped orbits. The departure from
the flux surfaces depends on the toroidal velocity. The maximum orbit width at one
given flux surface, occurring on the trapped-passing boundary, is twice as large for
passing than for trapped particles. Grey lines show flux surfaces in the vicinity of the
respective orbits.
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larger orbit widths than thermal particles, which will be of great importance when we
discuss the orbits of the high energy particles heated with radio frequency waves. Also,
barely trapped particles (trapped particles which describe an almost complete poloidal
orbit) will have larger orbit widths than deeply trapped particles (particles which are almost
stationary and oscillate close to the midplane), since the toroidal velocity is usually greater
for the first than for the latter. For passing particles, the orbit does also depart from a given
flux surface. There is, however, an important difference, which is that the toroidal velocity
does not change sign. Hence, for a given major radius R and toroidal moment Pϕ, the
orbit always passes through the same point. However, there is a departure as a function
of poloidal angle, as the magnetic field still increases between θ = 0 and θ = π and
decreases for θ = π to θ = 2π. Again using the toroidal moment, and expressing the
poloidal flux function yields along the orbit

ψ =
Pϕ

Q
− Rm

Q
vϕ = C− Rm

Q
vϕ. (2.43)

This looks similar to the case of trapped particles, Eq. (2.41). However, the toroidal
velocity does not change sign, and we can define the orbit width of a passing particle as
the difference in ψ between Bmin and Bmax of a complete poloidal orbit, i.e. in the usual
tokamak configuration between θ = 0 and θ = π. Assuming that both the toroidal and
total magnetic fields depend on 1/R, we can compare the poloidal flux function at two
different values of R, say ψ1 = ψ(R1) and ψ2 = ψ(R2),

ψ2 − ψ1 = δψ =
m
Q

(
R1v1

ϕ − R2v2
ϕ

)
, (2.44)

Note that for a passing particle, the signs of v1,2
ϕ are the same, whereas for a trapped

particle, v2
ϕ = −v1

ϕ and at R1 = R2, and we obtain again Eq. (2.41). For a barely passing
particle on the trapped-passing boundary, and taking the major radii R2 = R = R(θ = 0)
and R1 = R(θ = π), we obtain the maximum orbit width for a passing particle with
vϕ = v2

ϕ and v1
ϕ → 0, namely

ψ1 − ψ2 = δψ =
mR
Q

vϕ, (2.45)

which is in absolute value exactly half the orbit width for a barely trapped particle on the
trapped-passing boundary, i.e. with the same vϕ, but the orbit width given by Eq. (2.41).
There is, however, another difference between passing and trapped particles. The orbit
width δψ, and thus the departure from the average radial position, depends on the sign
of vϕ. Fig. 2.8(b) shows a passing particle orbit with vϕ < 0. Choosing the subscripts as
in the derivation of Eq. (2.45), we see that ψ1 − ψ2 < 0, i.e. ψ1 < ψ2, meaning that in
the poloidal plane, the passing orbit is shifted to the right with respect to the flux surfaces.
Had we considered a particle with vϕ > 0, the passing orbit would have been shifted to
the left with respect to the flux surfaces. If we want to have a qualitative understanding of
the average radial position of a passing particle orbit, i.e. where along the orbit δψ = 0
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as for the trapped particles, we can consider a deeply passing particle, i.e. µ = 0. In this
case, vϕ ≈ v‖ = v, and the orbit width δψ is given by

δψ ≈ m
Q

vϕ(R1 − R2). (2.46)

If we further neglect flux surface shaping, such a deeply passing particle will describe a
circle with Rmin = R0 − ∆r and Rmax = R0 + ∆r, where ∆r is the radius of the circular
orbit. Now, if we choose R2 = Rmax, we see that the orbit width increases (in absolute
value) linearly with the distance |R1 − R2|, being exactly twice as large at R1 = Rmin
compared to R1 = R0, i.e. the magnetic axis. The average radial position of the deeply
passing orbit ψd.p. is therefore at

ψd.p. = ψ(R0) = ψ(θ = π/2). (2.47)

If we allow for finite perpendicular velocity, the average radial position will move towards
Rmin, and for barely passing particles (ψb.p.) and barely trapped particles (ψb.t.) at the
trapped passing boundary,

ψb.p. = ψb.t. = ψ(θ = π). (2.48)

We will come back to this discussion when we introduce the model bi-Maxwellian distribu-
tion function in Chapter 4 and the loading of the marker distribution in Chapter 6. There
are many other types of orbits than the standard two we have briefly shown here.9 In
particular, it is possible to have trapped particles encircling the magnetic axis or passing
particles which stay entirely on the low field side of the magnetic axis. The latter will be-
come important when we study the low field side heating cases in Chapters 11 and 12,
and the effect of non-standard orbits in ICRH scenarios has also been documented e.g.
in Refs. 10,11. An excellent review on orbit classification can be found in Ref. 12.

Another difference for trapped or passing particles is what is called toroidal precession.
One can very clearly distinguish a toroidal motion of the trapped particle in Fig. 2.6(a)
between the two passings through the midplane (θ = 0) in the section of the 3D plot
where the tokamak has been cut open. This difference in toroidal angle as the particle
orbit evolves is called toroidal precession drift and is present for passing particles as well.
But since the passing particles follow the magnetic field lines, the toroidal precession is
only a small contribution to the toroidal propagation of the particles. For trapped particles
however, the precession is the only cause for toroidal propagation of the particles, and
this inherent frequency of particle motion automatically present in the plasma can res-
onate with perturbations within the plasmas and it can therefore play an important role of
global stability of the plasma. We will study the characteristics of this motion in detail in
Chapter 8.
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2.3. Kinetic description

We have so far explained two different possible descriptions of a plasma. When deal-
ing with global quantities and equilibrium, looking at the plasma as one single fluid, thus
using MHD, is appropriate. If one wants to study in detail what happens to single par-
ticle orbits, one should consider a guiding centre drift description. There are, however,
phenomena where a great number of particles are involved, but each particle is affected
differently according to its position in the (x, v) phase space. For such phenomena, it
is much more appropriate to use a statistical approach, such as kinetic theory. Here,
it is necessary to know the distribution function in phase space, f (x, v, t), which gives
(depending on its normalisation) the total number of particles or unity when integrated
over the six-dimensional phase space. f must be a continuous function of its arguments,
positive and finite at any instant of time, and must tend to zero as the velocity becomes
infinitely large. For instance, in a highly collisional plasma, the thermal equilibrium state
takes the form of a Maxwellian distribution with density and temperature profiles n(s) and
T(s) of the form

fM(s, E) =
n(s)m

2πT(s)
e−E/T(s). (2.49)

Here, the normalisation is chosen such that the integral over velocity space yields the
density. The evolution equation for the distribution function is the Boltzmann equation

d f
dt

=
∂ f
∂t

+ v · ∇ f +
F
m
· ∂ f

∂v
=

∂ f
∂t

∣∣∣∣
c

, (2.50)

where the LHS denotes the total time derivative and the RHS dissipation due to colli-
sions. Again the force is the Lorentz force, F = Q(E + v × B). If there are different
species inside the plasma with different mass and charge, Eq. (2.50) has to be satisfied
for each species separately. However, the electromagnetic fields in the Lorentz force are
the same for all species, thus linking the state of the different species together into a set
of equations. Often, the collisional term is neglected, and the resulting equation is the
Vlasov equation

d f
dt

=
∂ f
∂t

+ v · ∇ f +
F
m
· ∂ f

∂v
= 0. (2.51)

An important difference to MHD is the distinction between particles with different ve-
locities. With the distribution function, the whole velocity range is covered, whereas the
fluid description only takes into account an average velocity of a fluid element (consisting
of many particles). The most striking difference is in the investigation of the stability of
different excitations, where the kinetic theory can ”resolve” instabilities due to a difference
in velocity of the particles within the plasma. The link between the two descriptions can
be made through the global quantities like density, pressure and current. In the kinetic
descriptions, these are defined as moments of the distribution function. Explicitly, we can
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write for every species i

ni(x, t) =
∫

fi(x, v, t)d3v, (2.52a)

ji(x, t) = Qi

∫
v fi(x, v, t)d3v, (2.52b)

pi(x, t) =
mi

3

∫
v2 fi(x, v, t)d3v, (2.52c)

p⊥i(x, t) =
mi

2

∫
v2
⊥ fi(x, v, t)d3v, (2.52d)

p‖i(x, t) = mi

∫
v2
‖ fi(x, v, t)d3v. (2.52e)

The factors of one third and one half in the definitions of the thermal and perpendicu-
lar pressures come from the fact that there are three indistinguishable directions in the
isotropic, and two perpendicular and one parallel directions in the anisotropic case.

The evolution of the system due to heating effects can only be dealt with using kinetic
theory, since the wave-particle interactions, and especially the so-called Landau damp-
ing, depend on the relative velocities of the particles with respect to the wave propagation.
As a consequence, the wave propagation and the time evolution of the system subject to
ICRF wave injection is computed using distribution functions. However, solving the Boltz-
mann equation (2.50) directly is very difficult, if not impossible, due to the large variety
of spatial and temporal scales involved. Usually, the drift kinetic approach is applied,
where the Boltzmann equation is averaged over the fast gyro motion. In velocity, space,
a spherical coordinate system is then introduced with (v⊥ cos α, v⊥ sin α, v‖), where α
is the gyroangle, over which the equation is averaged. Then, the distribution function is
usually expanded, separating terms of different spatial scales, where mostly the gyrora-
dius serves as small parameter compared to the orbit width.13,14 Especially for ICRF, the
wave-particle interactions take place on a scale of the order of the gyroradius, and codes
trying to solve the drift kinetic equation directly in terms of f therefore usually have to
make approximations in longer spatial scales, as for example neglecting finite orbit width
effects. However, these effects can be very important, and we therefore chose a different
approach. If we want to retain full finite orbit width effects, we have to follow the parti-
cles by integrating their equations of motion. However, the gyroradius is very small with
respect to the orbit scale, and in a first approach we have to neglect gyro motion effects,
and find equations of motion for the guiding centre. An unperturbed system will conserve
energy, if no electromagnetic fields (other than the equilibrium magnetic field) or collisions
are present. The wave kinetic equation for such systems reduces to15

v · ∇ f = 0, (2.53)

with the distribution function depending only on the constants of motion. The guiding cen-
tre trajectories can be described in the Hamiltonian formulation. However, the equations
of motion have to be in the correct form, such that the resulting drift velocity v satisfies
Liouville’s theorem. Thus, the evolution of the guiding centre drift orbits must be such
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that16,17

v =
v‖
B

σ
[
B +∇× (ρ‖σB)

]
1 + ρ‖µ0K · B/B2 , (2.54)

where ρ‖ = mv‖/QB is the parallel gyroradius and K and σ have been introduced in
Sec. 2.1.2. Most authors neglect the term ρ‖µ0K · B/B2, departing from the strict Hamil-
tonian formulation. Additionally, the retention of pressure anisotropy by retaining σ and K
is a complete novelty, and the isotropic relation can be found setting σ = 1 and K = j.
The corresponding equations of motion implemented in VENUS are given in Chapter 6.
Note that these equations of motion include terms related to electromagnetic perturba-
tions happening in the same time and length scales as the guiding centre orbits. This
represents a generalisation of Eq. (2.53), but those terms are not considered in this the-
sis. In order to solve for the evolution of the distribution function, we have to add the per-
turbations corresponding to the collisions and RF wave-particle interactions. This is done
using a Monte Carlo approach, which will simulate the Coulomb collisions, i.e. the RHS
of Eq. (2.50), and the action of the wave on the distribution, i.e. the term Q/mE · ∂ f /∂v.
The latter operator will link the dynamics on the gyro time and spatial scale to the evolution
on the orbit time scale, and will be derived in the frame of quasilinear theory in Chapter 6.
Finally, our approach will be to represent the distribution function by a certain number of
particles, then called markers, whereof each samples a part of the distribution function in
phase space. Then, we can evolve the marker or particles’ guiding centre orbits together
with the constraints coming from collisions with background plasma and wave-particle in-
teractions, and simulate in this way the evolution of the distribution function by retaining
full orbit width effects.

2.4. Electromagnetic waves

If we want to profit from the inherent cyclotron motion of charged particles as described
above, by injecting electromagnetic waves matching the cyclotron frequency, we need to
know more about creation, propagation and absorption of such waves. We have to deal
with the characteristics of the plasma in which the waves have to propagate, since the
waves will be influenced by the presence of the plasma and not propagate in the same
way as in a vacuum. Furthermore, an external antenna will have to be added, in which
a certain current is exciting the waves. The appropriate equations are then Maxwell’s
equations in a medium,

∇× E = −∂B
∂t

(2.55a)

∇× B = µ0

(
∂D
∂t

+ jant

)
(2.55b)

∇ ·D = ρant (2.55c)

∇ · B = 0 (2.55d)

Here, c is the vacuum speed of light. D is the so-called displacement field, and is directly
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related to the internal behaviour of the plasma. It equals the electric field in a vacuum.
jant is the antenna current and ρant its charge density, i.e. these terms are related to the
source of the electromagnetic fields. The excitation from the antenna is periodic, and we
can therefore write the temporal dependency as x(r, t) = x̂(r) exp(−iωt). We can then
define the vacuum wave number and use Eqs. (2.55a) and (2.55b) to obtain

∇×∇× E−ω2µ0D = iωµ0jant. (2.56)

Now, we need to introduce a relation between the displacement field D and the electric
field E. This is done introducing the dielectric tensor E such that

D = ε0E · E. (2.57)

Note that this is in general a dimensionless tensor, which equals the unit dyadic in a
vacuum. The constant ε0 then defines the vacuum permitivity. Now, the wave equation
for the electric field reads

∇×∇× E− ω2

c2 E · E = iωµ0jant, (2.58)

with c2 = 1/ε0µ0 the vacuum speed of light. This equation can be solved for finding the
electric field once we know the dielectric tensor. As said above, the latter describes the
action of the medium on the wave field, and we therefore have to derive the dielectric
tensor from the description of the plasma. In Eq. (2.55b) we separated internal and
external terms on the right hand side. If we now concentrate on the internal terms for
finding the dielectric tensor, we have to include an internal current just as we have added
the external current jant. Thus, the displacement field in Eq. (2.55b) contains a current
term

∇× B = µ0
∂D
∂t

= µ0

(
ε0

∂E
∂t

+ j
)

. (2.59)

Assuming again the exp(−iωt) dependence, we find

D = ε0E +
i
ω

j. (2.60)

We have already defined the dielectric tensor in Eq. (2.57), and looking at the last equa-
tion, we see that the current j has to be proportional to the electric field for our definition
of E to hold. We therefore define the conductivity σ as

j = σ · E, (2.61)

and then obtain

D = ε0

(
I +

i
ε0ω

σ

)
· E = ε0E · E, (2.62)
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such that the dielectric tensor now takes the form

E = I +
i

ε0ω
σ. (2.63)

If we further decompose the electric field into a sum of plane waves exp(−k · x− iωt),
Eq. (2.58) becomes inside the plasma (where jant = 0)

k× k× E +
ω2

c2 E · E = 0. (2.64)

Nontrivial solutions can be found by setting the determinant to zero, which yields

D(k, ω) = det
[

kk− k2I +
ω2

c2 E
]

= 0. (2.65)

This equation relates the wave vector k to the frequency ω. Such equations are called
dispersion relations. If we define without loss of generality the coordinates such that k is
in the xz plane, define the refraction index n = kc/ω and decompose Eq. (2.65) into the
parallel and perpendicular directions, we obtain

− ExyEyx(n2
⊥ − Ezz) + (n2 − Eyy)

[
n2
‖Ezz + (n2

⊥ − Ezz)Exx

]
= 0. (2.66)

If we know the dielectric tensor, the dispersion relation (2.66) yields the refraction index,
and thus the wave vector, and we can finally find the electric field with Eq. (2.64). It is
interesting to note a few properties of the dielectric tensor. First of all, the real part of
the dielectric tensor is related to the propagation of the wave, whereas the imaginary part
describes the absorption of the wave by the plasma. An intuitive way of seeing this is
its direct relation to the wave number in Eq. (2.66). Recalling that the electric field has a
dependence exp(ik · x), we see that the real part of k is related to a sinusoidal behaviour
(propagation), whereas the imaginary part of k will result in exponential growth, or rather
exponential decay, which is more physical since exponential growth needs infinite energy.
Decay of the wave inside the plasma means, by virtue of energy conservation, absorption
of the wave by the plasma, through the so-called Landau damping, which describes the
damping (decay) of the wave due to wave-particle interactions. Other interesting phenom-
ena take place in the limits where n → ∞ or n → 0. The first case is called resonance.
This is where most wave-particle interactions happen. The latter case is called cut-off,
and it means that the plasma is unable to support the wave. Propagation is impossible
and the wave is reflected.

If we want to find the dielectric tensor, we need to find the conductivity σ. By its defini-
tion, Eq. (2.61), we have to find the relation between the current and the electric field. This
can be done using the kinetic description, in particular the Vlasov equation, Eq. (2.51).
As described earlier, the electric field is contained in this equation through the Lorentz
force F = Q(E + v × B). This description is especially useful for finding the dielectric
tensor since the current is defined as the first moment of the distribution function f as
given in Eq. (2.52b). Indeed, the distribution function yields the description of the plasma
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and Eq. (2.61) together with the current defined as a moment of the distribution function
allow us to find the dielectric tensor, which in turn allows the resolution of the wave equa-
tion (2.58). We will show in the Chap. 5 and Appendix A the detailed computations for the
specific distribution function we implemented in the code.

2.4.1. The Ion Cyclotron Range of Frequencies (ICRF)

In order to heat the plasma to the needed temperatures for fusion devices, auxiliary heat-
ing (i.e. additional to the Ohmic heating generated by the toroidal plasma current) has to
be applied. One promising possibility is to profit from the cyclotron motion of the particles,
as described in Sec. 2.2.1, and couple an electromagnetic wave with a similar frequency
to the plasma. One advantage is that, as described in Sec. 2.1.1, the magnetic field
shows a dependence on the inverse of the major radius, B ∼ 1/R, and therefore the
cyclotron frequency of a given ion species (i.e. given charge over mass ratio) also has a
1/R dependence. An injected wave with a fixed frequency will therefore interact with the
resonant species at one given major radius, where ω ≈ Ω(R). A localised heating of the
plasma is therefore possible, which can be a great advantage.

In the ion cyclotron range of frequencies, ω ∼ Ωi = ZeBc/mi, the electrons can short
circuit the parallel electric field, since they move much faster than the wave, due to their
much lower mass. Here chose a system of coordinates where B = Bẑ and k = kx̂. The
dispersion relation (2.66) then simplifies to

n2
⊥ = Eyy − n2

‖ −
ExyEyx

Exx − n2
‖

, (2.67)

where in the cold approximation (i.e. no thermal contribution from the plasma)

Exx = Eyy = (E+ + E−)/2 (2.68a)

Eyx = −Exy = i(E+ − E−)/2 (2.68b)

E± = 1−∑
s

ω2
s

ω(ω±Ωs)
. (2.68c)

ωs and Ωs are the plasma and the cyclotron frequencies of species s. We consider
the cold approximation here just for obtaining a simple overview. The dielectric tensor
developed in this thesis containing the thermal effects of a strongly anisotropic population
will be shown later in Chapter 5. Stix18 has shown that the electric field polarisation, i.e. if
one decomposes the electric field into two circularly polarised fields E± = (Ex ± iEy)/2,
is given as

E+

E−
= −
Exx + iExy − n2

‖
Exx − iExy − n2

‖
= [cold approx.] = −

E+ − n2
‖

E− − n2
‖

. (2.69)

One can see that at the cyclotron resonance of any species in the plasma, E− → ∞,
and therefore E+ → 0. This is true for the cold approximation. In the warm approx-
imation, including finite temperature or pressure, E− remains finite, but the qualitative
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behaviour is similar. Unfortunately, the left handed component of the electric field E+

is the more important one, since it rotates in the same direction as the ions around the
magnetic field lines. Thus, if one tries to heat the plasma using cyclotron waves in a sin-
gle species plasma at ω ∼ Ω, the wave-particle interactions become very inefficient due
to the (nearly) vanishing of E+. However, there are two main solutions to the problem:
One is to apply a wave with a frequency of an integer multiple of the cyclotron frequency,
ω ∼ nΩ, so-called nth harmonic heating, or one can apply the heating at the fundamen-
tal harmonic (n = 1) to a small minority species, such that E+ can be sufficiently strong
at the resonance in the warm model. The first possibility has the disadvantage that at
high concentrations of a second ion species, the so-called ion-ion hybrid resonance ap-
pears besides the cyclotron resonance and, especially, a corresponding cut-off limits the
propagation of the injected wave. If the ion-ion hybrid resonance is reached, mode con-
version takes place, which is the transition of the initially injected wave into another type
of wave (like e.g. Bernstein waves). We will concentrate on minority heating, where no
mode conversion takes place, and no cut off exists in the plasma. Here, the left handed
component E+ will still show a slight local minimum along the cold resonance, but it will
also show a local maximum at the high field side of that layer (if injected from the low field
side). If the minority ions are warm, and thus show a non-zero Doppler shift proportional
to k‖v‖, maximum power deposition will be located slightly displaced from the cold res-
onant layer, on the high field side. We will show that this is the case, e.g. in Fig. 5.2.
One reason why we choose minority scenarios is that mode conversion can only be mod-
elled with finite Larmor radius models, whereas our wave code, LEMan, is limited to a
zero Larmor radius model. The advantage of minority heating is that the ion species, and
thus the charge over mass ratio, can be chosen, and therefore the choice of a cyclotron
resonance position ω ∼ ZeBc/m is possible not simply by choosing a wave frequency.
It might be enough to locally heat the minority species using rather low power wave in-
jection, e.g. for generating a localised current which acts on the safety factor profile as
described in Sec. 2.1.1. Note that even if the final goal is to heat the background plasma,
minority heating is a reasonable alternative, since once the power has been absorbed by
the minority species, the latter are describing large orbits, and are slowing down along
these orbits through Coulomb collisions with the background ions and electrons. It is then
possible to heat the background plasma indirectly, and in a much larger region than the
initial ion cyclotron power deposition. We will study both effects, i.e. Ion Cyclotron Current
Drive (ICCD) and Ion Cyclotron Resonance Heating (ICRH) in detail in this thesis.



3. Motivations for this work

3.1. Ion Cyclotron Range of Frequencies

In the introduction we have learned that temperatures of about one hundred million de-
grees have to be attained for fusion to be possible. But how can we obtain such high
temperatures? A first mechanism to exploit is Ohmic heating. In a tokamak, the poloidal
magnetic field is generated with a current inside the plasma column along the toroidal
direction. A current inside a resistive material generates heat automatically due to Ohm’s
law. In particular, heat comes from the dissipative effects of electric resistivity. One can
therefore exploit this feature not only to create the poloidal magnetic field, but also for
heating the plasma. The only problem with this is that Ohmic heating only works if the
medium carrying the current is resistive, and in a plasma the resistivity decreases with
temperature. Ohmic heating therefore becomes less and less efficient the higher the
temperature, and other possibilities have to be found. One very promising possibility is
to exploit the cyclotron motion of a charged particle around a given field line, and inject
an electromagnetic wave matching this inherent frequency. In this case, resonant wave-
particle interactions can occur at the position in the plasma where the Doppler shifted
wave frequency ω − k‖v‖ as seen by a given particle equals the eigenfrequency of the
particle, Ω = ZeB/m. We have already described this in Sec. 2.2.1. This type of heating
in the ion cyclotron range of frequencies (ICRF) has been and still is installed in major fu-
sion devices all over the world, and it is considered to be one of the major contributors to
additional heating in ITER.19 As noted before, ICRF is not only important for pure heating
of the plasma, i.e. Ion Cyclotron Resonance Heating (ICRH), but also for the generation
of non-inductive current through Ion Cyclotron Current Drive (ICCD). Applied to plasma
species with low concentrations (minority scheme), highly localised heating effects can be
generated, and ICCD can thereby be applied to control MHD instabilities, e.g. sawteeth
as in Ref. 20. The physics involved spans broad spectrum that encompasses MHD equi-
librium, wave propagation and absorption, kinetic effects from wave-particle interactions
and also wide orbit effects. As a result, observations include many mutual interactions
and the effects of single ingredients are difficult to filter out from measurements. It is
therefore important to develop numerical tools which include as many physical mecha-
nisms as possible to simulate Radio Frequency (RF) scenarios accurately.
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3.2. Self-consistency

Ion cyclotron resonant wave-particle interaction is the coupling of the rotating electric
fields E± and the charged particle’s gyro motion around the field lines. Both are purely
perpendicular to the magnetic field, and the interaction therefore takes place mainly in
that perpendicular plane. The only exceptions are a small change in parallel velocity for
satisfying momentum and energy conservation, and the pitch angle (the angle the velocity
vector describes with respect to the magnetic field) scattering on the background plasma.
These preferentially perpendicular interactions result in a distorted distribution function
of the resonant minority species, a distortion increasing the value in the perpendicular
direction, causing the distribution function to become non-Maxwellian.21,22

As discussed in Sec. 2.4, the form of the distribution function has a direct effect on the
dielectric tensor and thus the wave propagation and absorption. However, as discussed
in Sec. 2.3, the distribution function is affected by the electromagnetic field through the
Lorentz force in the Vlasov equation (2.51), and the system becomes nonlinear, since
the distribution function affects the fields, which in turn affect the distribution function. It
has therefore been understood that in order to solve this nonlinear problem, a numerical
description is crucial. And if one attempts to simulate ICRF scenarios numerically, a self-
consistent algorithm has to be found, such that the interconnections between fields and
distribution function can be resolved. Several such numerical schemes have been devel-
oped, each with its specialisations, advantages and, necessarily, deficiencies. Many re-
search groups have concentrated on the accurate development of the wave computations,
neglecting some of the essential particle orbit effects. For example, the full-wave code
TORIC23,24,25 has been developed to include higher order Finite Larmor Radius (FLR)
effects and can be applied to mode conversion scenarios and heating at higher harmonic
frequencies, (ω = nΩ with n ≥ 1). It has then been coupled to the Fokker-Planck code
SSFPQL26,27,28 for advancing the distribution function. The Fokker-Planck approach,
however, assumes zero orbit widths, and is therefore a very restricted model as we will
see in this thesis. A similar approach is the coupling of the wave code AORSA,29,30,31

where all orders in FLR are included, to the Fokker-Planck code CQL3D.32 Again, the
wave code is very developed, but the zero orbit width approximation in the Fokker-Planck
code is an important limitation. Accepting this, a new package has been developed very
recently, coupling AORSA to the guiding centre orbit following code ORBIT-RF.33 In this
new package, full harmonic ICRF can be modelled, and finite orbit width effects included.
Ref. 34 reports on the achievement of two iterations for a complete simulation of about
one slowing down time, which, depending on the chosen scenario, is not enough in both
number of iterations and total simulation time, as will we show here. Also, the RF in-
duced particle pinch, as discussed in Sec. 6.2.2, is not included since no change in
parallel velocity due to wave-particle interactions is included. A slightly different approach
has been adopted when coupling the wave code LION35,36 to the orbit averaged Monte
Carlo code FIDO,37,38 giving the code package SELFO.39,40,41,10 LION includes higher
harmonic resonances, and FIDO full orbit effects. The distribution function evolution is
simulated including full particle orbit effects and is described in the frame of the three
constants of motion in an axisymmetric torus. However, the guiding centre orbits are not
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followed in real space, but an orbit averaged scheme is implemented, allowing for much
lighter and thus faster computation. SELFO is based on fully centered and circular flux
surfaces, thus neglecting shaping and pressure effects like Shafranov shift.

Recalling the discussion in Sec. 2.3 about the different possibilities of solving the Boltz-
mann equation in the presence of radio frequency fields, we feel that a drift kinetic descrip-
tion, including finite orbit width effects, constitutes an adequate approach for integrated
modelling of ICRH heating. Neglecting finite orbit widths represents a severe restriction
to the applicability of such a model, whereas more sophisticated models such as gyroki-
netic or full Lorentzian approaches provide a small improvement in the physics description
compared to the much higher cost in terms of computational resources needed.

All of the above mentioned codes are built for 2D axisymmetric tokamaks. Even in a
tokamak, the toroidal magnetic field is not exactly axisymmetric in reality, since the mag-
netic coils are not perfect, and not continuous around the torus, as already shown in
Fig. 2.2. The resulting so-called magnetic ripple can have effects like toroidal trapping of
particles etc., which cannot be considered in these codes. Also, more advanced geome-
tries without Ohmic currents, so-called stellarators, have a fully developed three dimen-
sional structure. If we want to be able to study ICRH in such geometries, we need codes
which are built for non-axisymmetric plasmas. One code package consisting of the wave
code TASK/WM42 and the drift-kinetic code GNET43,44 has been developed for the Large
Helical Device (LHD), which is a three dimensional stellarator. Here, finite orbit width ef-
fects are included, but the dielectric tensor is based on the the cold approximation,45,46,47

which does not include warm effects such as the Doppler broadened resonance.
If we apply ICRF to a given plasma, we do this with the aim of changing at least the

resonant minority’s distribution function, either creating a hot tail (heating, ICRH) or asym-
metries with respect to the sign of the parallel velocity (current drive, ICCD) or both. In
any case, ICRF is applied to induce a change. If the applied power is sufficiently high,
the (mainly perpendicular) temperature of the resonant species will rise considerably and
might have the effect that the minority pressure (again, mainly perpendicular) becomes
important in the equilibrium computations, i.e. a change in magnetic equilibrium may be
the result of the applied heating. Furthermore, if the RF induced current is important
enough, the safety factor profile, and thus the magnetic shear defined as the radial safety
factor derivative, can change sufficiently to displace e.g. the q = 1 surface to move out
of the resonance layer, which is important for sawtooth control. In both cases, the mag-
netic equilibrium can be changed and it is therefore important to re-evaluate it during the
simulation. Additionally to a shift of the q = 1 surface, a changed equilibrium can have
the effect that the resonant layer, where the RF power is absorbed, moves in real space
due to variations in magnetic field strength (in turn due to increased pressure), and par-
ticle orbits can change drastically, if e.g. a magnetic well develops and particles become
trapped and describe non-standard orbits48 (see Sec. 8.2).

It is therefore important to account for the effects of applied RF power not only on
the distribution function of the resonant plasma species, and thus the dielectric tensor,
but also on the equilibrium. But once the equilibrium and/or the wave field change, the
distribution function of the heated species will change again, inducing further change in
equilibrium and wave field and so on. These non-linear effects can best be included in
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a numerical model using an iterated scheme, taking into account all changes due to the
applied power, and finding in that way a self-consistent solution of the chosen heating
scenario, including equilibrium, dielectric tensor and distribution function. This is the phi-
losophy we have chosen to pursue in this thesis by developing the new 3D self-consistent
ICRH code package SCENIC, where we couple the MHD equilibrium code VMEC49 to the
full-wave code LEMan2 and the guiding centre orbit code VENUS.3 As opposed to most
of the other existing code packages, the emphasis lies on correctly dealing with the orbits
of highly energetic orbits in three dimensions, and on the self-consistent generation of
the equilibrium. The limiting component is the wave code LEMan, which does not include
FLR effects. We will therefore be limited to fundamental minority heating scenarios. It
is important to note that within these scenarios where no mode conversion occurs, the
model is very extensive and accurate as we will show in what follows. We will start by
describing SCENIC in the next part containing Chapters 4 to 7.



SCENIC: Self-Consistent Ion Cyclotron

After introducing the subject, we will now turn to a basic description of the numerical
model. The new code package SCENIC has been created for self-consistent simula-
tions. Here, a converged result corresponds to a steady state, where the input RF power
absorbed by a heated minority species equals the power lost to the background plasma.
Self-consistency is achieved by updating the equilibrium and wave field a number of times
during the simulation, such that mutual effects between the wave field and equilibrium can
be included. Fig. 3.1 shows a schematic view of the code package. The three compo-

VMEC

LEMan

VENUS

Equilibrium

Antenna

Particles

Figure 3.1.: Schematic view of the code package SCENIC. Black arrows show dependencies for
one iteration, red arrows the re-creation of new inputs for the following iteration.

nents will be described in the following chapters. The discussion of VMEC and LEMan
will be rather brief because they have been developed and described mainly elsewhere
(except the new features involving anisotropy in LEMan), whereas most of the numerical
development of this thesis was concentrated on VENUS, and thus the section devoted to
its description will be somewhat longer.
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4. VMEC: Equilibrium

The plasma equilibrium is determined by a fixed boundary version of VMEC, which in-
cludes an anisotropic hot particle pressure. This version is described in detail in Refs.
50 and 49, and we will only describe the features which are important for this thesis.
VMEC uses Boozer coordinates (s, θ, ϕ), where the radial coordinate s has been intro-
duced in Eq. (2.9), and the poloidal and toroidal angles (θ, ϕ) are chosen such that the
magnetic field lines describe straight lines in that particular set of variables. VMEC is
based on magnetohydrodynamics (MHD) as described in Sec. 2.1.2 and finds magnetic
equilibria with nested flux surfaces (no magnetic islands) by minimising the energy func-
tional, Eq. (2.26). Within the description, two fluids are included, one with an isotropic
pressure p(s) and temperature T(s), which is based on a Maxwellian distribution. For
this thermal species, pressure and density are flux surface quantities. The second fluid
represents the hot, anisotropic species, with the pressure as defined in Eq. (2.17b). Here,
the underlying distribution function includes two different temperature profiles parallel (T‖)
and perpendicular (T⊥) to the magnetic field. From the Vlasov equation (2.51) one can
show that any equilibrium distribution function f has to satisfy B · ∇ f = 0 to lowest
order in Larmor radius. Now, if we were to consider a pure bi-Maxwellian of the form
exp

[
−mv2

⊥/2T⊥ −mv2
‖/2T‖

]
, it would violate that condition, since the perpendicular

and parallel velocities depend on the magnetic field strength as described in Sec. 2.2.2
and Eq. (2.33). It has been shown, e.g. in Ref. 21, that such a simple bi-Maxwellian has
important deficiencies if applied to RF heating scenarios. It is therefore imperative to find
another form of the bi-Maxwellian. If we recall that we will be interested in ICRH, where
the cold resonance is defined by a layer of one given value of magnetic field strength, we
can introduce a constant value of the magnetic field Bc, along which the (cold) resonance
will take place. The second requirement for a distribution function is that it shall be written
in terms of constants of motion. For unperturbed orbits, three constants are the energy
E = mv2/2, the magnetic moment µ = mv2

⊥/2B and the orbit averaged radial position
s̄. Note that we do not use the toroidal momentum Pϕ since this is not a constant of
motion if the axisymmetry along ϕ is broken, e.g. in a stellarator. We can then replace
mv2
⊥/2 → mv2

⊥Bc/2B = µBc and v2
‖ = 2m(E− µB) → 2m|E− µBc|. Note that for the

last term, the absolute value has to be taken, since the term can go negative, depend-
ing on Bc/B. Finally, our bi-Maxwellian model, which satisfies the Vlasov equation and
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represents a good model for anisotropic plasmas,22,51 reads

Fh(s̄, E, µ) = N (s̄)
(

mh

2πT⊥(s̄)

)3/2

exp

[
−mh

(
µBc

T⊥(s̄)
+
|E− µBc|

T‖(s̄)

)]
(4.1)

The great advantage of writing Fh in terms of the orbit averaged radial position s̄ is that in
this way, Fh includes finite orbit width effects, as we will see later in this thesis. Recalling
the orbit width discussion from Sec. 2.2.2, we define the average radial position by

s̄ ≡
∫

s(t)dt∫
dt

, (4.2)

where the integral is performed over one complete unperturbed poloidal orbit. Especially
for trapped particles, this temporal average is equivalent to a weighted spatial average,
where the turning points are more heavily weighted than the inner and outer legs of the
orbit, since the velocity vanishes and the particle spends more time at those points than
on any other point along the orbit. Thus, for trapped particles, s̄ ≈ s(θb), with the turning
points at θ = θb, whereas for passing particles, s̄ ≈ s(θ = π/2). This corresponds
to some of the considerations in Sec. 2.2.2, in particular Eqs. (2.42), (2.47), (2.48) and
Fig. 2.8.

A very important property of this particular distribution function is that the moments of
the distribution function, i.e. the macroscopic quantities like pressure and density, can be
obtained analytically in terms of B and other relevant parameters.51 These moments are
no longer flux surface quantities but functions of the radial variable s̄ and the magnetic
field strength B. In a 2D configuration like an axisymmetric tokamak, this description is
equivalent to using (s̄, θ). But since VMEC is capable of dealing with more complicated
3D geometries, B is more general. The density-like amplitude factor N is linked to the
physical hot particle density nh through

nh(s̄, B) = N (s̄)

√
T‖
T⊥
C(s̄, B), (4.3a)

with

C(s̄, B) =


B/Bc

1−T⊥/T‖(1−B/Bc)
, B > Bc

1 , B = Bc

B
Bc

1+T⊥/T‖(1−B/Bc)−2[T⊥/T‖(1−B/Bc)]3/2

1−[T⊥/T‖(1−B/Bc)]2 , B < Bc

(4.3b)

The total parallel and perpendicular pressures p‖, p⊥ are (where p(s̄) denotes the ther-
mal pressure)

p‖(s̄, B) = p(s̄) +N (s̄)T‖(s̄)H(s̄, B) (4.4a)
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with

H(s̄, B) =


B/Bc

1−T⊥/T‖(1−B/Bc)
, B > Bc

1 , B = Bc

B
Bc

1+T⊥/T‖(1−B/Bc)−2[T⊥/T‖(1−B/Bc)]5/2

1−[T⊥/T‖(1−B/Bc)]2 , B < Bc,

(4.4b)

and

p⊥(s̄, B) = p‖(s̄, B) + B
∂p‖
∂B

∣∣∣∣
s

. (4.4c)

Now, we introduce the hot parallel pressure amplitude ph(s̄), such that

N (s̄)T‖(s̄) = p(s̄)ph(s̄) (4.5)

and from (4.4a), the hot parallel pressure reads

ph
‖(s̄, B) = p(s̄)ph(s̄)H(s̄, B) (4.6)

The input profiles for VMEC are now the flux surface quantities p(s̄), ph(s̄), T⊥/T‖(s̄), Bc
and either the total toroidal current enclosed in a given flux surface J(s̄) or the inverse
safety factor ι(s̄) = 1/q. Two omnipresent quantities related to pressure anisotropy are
the in Eq. (2.19b) already introduced σ and

τ ≡ ∂(σB)
∂B

∣∣∣∣
s
= 1 +

µ0

B
∂p⊥
∂B

∣∣∣∣
s

. (4.7)

These quantities will appear e.g. in the equations of motion (6.4). In the equilibrium, they
are useful to monitor the firehose and the mirror stability criteria6 σ > 0 and τ > 0. If
one or both of them are negative, the determined equilibrium from VMEC should not be
considered physical. Especially if τ < 0, the equilibrium problem is no longer elliptic.4

Note that in the isotropic limit T⊥ = T‖, τ = σ = 1.
The equilibrium is of course the basis of the numerical model. VMEC’s output is read

by both LEMan and VENUS and the scenario is almost completely chosen by fixing the
inputs for VMEC. Indeed, with the choice of the critical magnetic field Bc, even the location
of the resonant layer is defined by Rc = B0R0/Bc in the large aspect ratio approximation.
The only other free parameters left are the minority species (i.e. its mass and charge),
the toroidal wave spectrum and the deposited power. Bc, the mass and the charge of the
minority species then define the antenna frequency through ω = qBc/m. Fig. 4.1 shows
symbolically VMEC’s role in the package: define the plasma geometry and the magnetic
equilibrium. Fig. 4.2 shows three example outputs in poloidal plots. The magnetic field
strength as shown in Fig. 4.1, and the perpendicular pressure for two different scenar-
ios, one with the resonant layer (white line) on the high field side of the magnetic axis
(Fig. 4.2(b)) and one with the resonant layer on the low field side of the magnetic axis
(Fig. 4.2(c)). For the latter two plots an anisotropy of T⊥/T‖ = 10 was assumed.

The first component of the package is introduced, and we will now turn to the second
input required by VENUS, the radio frequency wave field.
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Figure 4.1.: VMEC computes the equilibrium, and is thus defining the machine we are looking at,
and to a large extent even the complete simulated scenario. The poloidal cut to the
left shows the magnetic field strength.

(a) Magnetic field strength B. (b) P⊥ for a high field side reso-
nance (Bc > B0, white line).

(c) P⊥ for a low field side reso-
nance (Bc < B0, white line).

Figure 4.2.: Main VMEC outputs: 3D Magnetic field and pressures, constructed from the input pro-
files and external plasma shape. We show here examples of perpendicular pressure,
once for Bc > B0 and once for Bc < B0.



5. LEMan: Radio frequency wave field
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code was initially developed for

the study of Alfvén wave propagation computations.2 Recently, it has been extended to
work in the ion cyclotron range of frequencies,52 including a hot dielectric tensor based
on the bi-Maxwellian (4.1) model employed here.53 The derivation of the latter is part of
this thesis, and we will therefore start this chapter giving its analytical expression. For
the Monte Carlo operators implemented in VENUS, the parallel and perpendicular wave
numbers have to be passed from LEMan to VENUS. This computation had to be added
specifically for SCENIC. Although the parallel wave number is used in LEMan, it is not the
same definition of k‖ which is needed in VENUS, and k⊥ is not present at all in LEMan.
This is why we will describe the form of these wave numbers in this chapter before moving
on to the description of VENUS.

5.1. Dielectric tensor

In principle, we can find the dielectric tensor by finding the distribution function f solving
the Vlasov equation (2.51), integrating the function for finding the current, solving for the
conductivity using j = σ · E and finally the dielectric tensor using (2.63). Then, once
we found the dielectric tensor, we can find the electric field solving the wave equation
(2.58). There is, however, a problem: The solution of the distribution function depends
on the electric field in the first place. In order to solve this problem, one either has to
implement a self-consistent calculation just for finding the electric field, or one assumes
a certain distribution function and can then solve for the dielectric tensor and the electric
field accordingly. Since the equilibrium is already based on the bi-Maxwellian distribution
function Fh given in Eq. (4.1), and our numerical model already is rather sophisticated and
computationally demanding, the second possibility seems by far the more appropriate.

Following Refs. 54 and 55, we have derived the dielectric tensor for the fast particles
modelled by the distribution function (4.1) to zeroth order in both εe = ρL/L and εp =
ρL/λ⊥, where ρL is the Larmor radius defined in Eq. (2.31), L a characteristic length
scale of the stationary plasma and λ⊥ a characteristic wave length of the perturbing
electromagnetic field in the direction perpendicular to the equilibrium magnetic field. An
example of the detailed calculations can be found in Appendix A and we will give here
only the final expressions, which are different for B ≥ Bc and B < Bc. They read
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• For B ≥ Bc:

Enn = 1− 1
2ω

√
T‖/T⊥
C+

∑
k

(Z̃‖1 + Z̃‖−1) (5.1aa)

Enb = − i
2ω

√
T‖/T⊥
C+

∑
k

(Z̃‖1 − Z̃‖−1) = −Ebn (5.1ab)

E‖‖ = 1 +
2

(k‖v‖T)2

√
T‖/T⊥
C+

∑
k

(
ω̃2

p −ωZ̃‖0
)

, (5.1ac)

• For B < Bc:

Enn = EB≥Bc
nn − 1

2ω

C+ − C−
C+C− ∑

k
(Z̃⊥1 + Z̃⊥−1) (5.1ba)

Enb = EB≥Bc
nb − i

2ω

C+ − C−
C+C− ∑

k
(Z̃⊥1 − Z̃⊥−1) = −Ebn (5.1bb)

E‖‖ = EB≥Bc
‖‖ − C+ + C−

C+C− ∑
k

(√
Bc − B

Bc
ω̃2

p −ωZ̃⊥0

)
, (5.1bc)

Here, v2
‖T = 2T‖/m is the fast particles’ thermal parallel velocity and

C± =
Bc

B
± T⊥

T‖

(
1− Bc

B

)
(5.2a)

ZSh(z) =
z√
π

∫ ∞

−∞

1
z− x

e−x2
dx, Imz > 0 (5.2b)

Z̃‖l =
ω̃2

p

ω− lΩc
ZSh

(
ω− lΩc

k‖v‖T

)
(5.2c)

Z̃⊥l =
√

Bc − B
Bc

ω̃2
p

ω− lΩc
ZSh

(√
Bc

Bc − B
ω− lΩc

k‖v‖T

)
, (5.2d)

and ω̃2
p = Q2

kNk/ε0mk the plasma frequency of species k. The subscripts n, b and ‖
denote the normal, bi-normal and parallel components relative to the magnetic field. In
addition to the discussion in Ref. 53, we can highlight a few observations: First of all,
one can see that we exactly recover the zeroth order results obtained in Refs. 55 and
54 (Maxwellian distribution) in the limit where T⊥/T‖ → 1 and Bc → 0 (i.e. Fh → FM).
However, the additional parameter Bc in the distribution function has the effect that, even
if we consider the isotropic case T⊥ = T‖, some of the additional terms proportional to Bc
(, 0) do not vanish and introduce poloidally dependent corrections to the dielectric tensor.
This reflects the speciality of ICRF interactions, where the resonance lies mainly along
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one layer of constant major radius, and thus cuts through the flux surfaces. This naturally
introduces poloidal dependences. Finally, the plasma frequency ω̃p in expressions (5.2)
does not involve the physical density but rather the density factor N (s) defined in the
distribution function (4.1) and related to the physical density through Eq. (4.3), which can
be considerably higher than the physical density if T⊥/T‖ � 1.

5.2. Wave numbers for VENUS

Besides the wave field, parallel and perpendicular wave numbers have to be passed to
VENUS for the quasilinear diffusion coefficients. The perpendicular wave number is not
used in any of the computations of LEMan. But also the parallel wave number passed
to VENUS does not necessarily coincide with the parallel wave number determined for
the internal computations of LEMan. In the latter, an iterative method assures that the
consistent parallel wave number is computed for every toroidal and poloidal mode pair,
and all modes present in the plasma are treated correctly.53,56 In contrast, the Monte
Carlo operators in VENUS, simulating the wave-particle interactions and described in the
next Chapter, are derived for the interaction of one wave with one value for k‖ and k⊥ for
each toroidal mode number nϕ (including all poloidal modes) in the axisymmetric case, or
for the complete toroidal and poloidal mode spectrum in the three dimensional case. We
will therefore have to find equivalent wave numbers which represent the complete wave
field present in the plasma, but take only one value at one given place in real space. In
many numerical codes, the solution of the problem is simply to neglect the poloidal modes
for one given toroidal mode, and approximate the parallel wave number by k‖ ≈ nϕ/R.
This may be an acceptable approximation in a 2D geometry like a tokamak, where the
different toroidal modes decouple and can therefore be treated independently. But, if
the condition nϕ � mq (with m the poloidal mode and q the safety factor) does not
hold, this approximation has its deficiencies. In SCENIC, we not only want to be able to
treat 3D cases, but we also want to include the so-called upshift, which is the correction
to the parallel wave vector due to poloidal modes. If we recall that the wave vector k
in the dispersion relation corresponds to a differential operator (in Fourier space), we
can find a form of k‖ and k⊥ which is closer to its original nature. We adopted in this
thesis the solution that we directly differentiate the scalar potential for finding the wave
numbers. The derivation of the new relations for finding the parallel and perpendicular
wave numbers is given in Appendix B. The final form of the parallel wave number passed
to the Monte Carlo operators in VENUS reads

|k‖| =
∣∣∣∣ 1
χB
√

g

(
ψ′

∂χ

∂θ
+ Φ′

∂χ

∂ϕ

)∣∣∣∣ . (5.3a)

√
g is the Jacobian and gss the first metric element. I and J are the poloidal and toroidal

current fluxes, the prime denotes the derivative with respect to the radial variable s, and
all other notations are as defined earlier in this thesis. For k‖, only derivatives with re-
spect to the poloidal and toroidal angles are present. Thus, for every toroidal and poloidal
mode pair, a parallel wave number can be computed at the end of each LEMan sim-
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ulation, by directly differentiating the corresponding scalar potential. Then, a weighted
summation over all modes (again, for axisymmetric cases over all poloidal modes for one
given toroidal mode), where the weight of each mode is proportional to the correspond-
ing Fourier amplitude, is performed, yielding one mean parallel wave number. As for the
parallel wave number, we have derived a new way of determining the perpendicular wave
number based on differentiating the scalar potential χ. The details of the computation are
given in Appendix B as well, and the perpendicular wave number passed from LEMan to
VENUS is

|k⊥|2 =
∣∣∣∣gss

(
1
χ

∂χ

∂s

)∣∣∣∣2 +
∣∣∣∣ 1
gss

[
1

χσB
√

g

(
µ0 J

∂χ

∂ϕ
+ µ0 I

∂χ

∂θ

)]∣∣∣∣2 . (5.3b)

Note that due to the radial derivative in this relation, it is not possible to perform an av-
erage over all modes as for the parallel wave number. Here, we perform the differentia-
tion once on the complete scalar potential, thus finding an effective perpendicular wave
number for the total wave field in the plasma. Most other codes determine k⊥ with the
dispersion relation for the fast magnetosonic wave,

ω2 =
k2

2

[
v2

s + v2
A +

√(
v2

s + v2
A

)2 + 4v2
s v2

A cos2 θ

]
, (5.4)

with the sound speed v2
s = γp/ρ, where γ = 5/3, p is the pressure and ρ the mass

density. The Alfvén velocity is defined by v2
A = c2/(1 + ω2

pi/Ω2
i ) ≈ B/(µ0nimi), where

c is the speed of light, ωp the plasma frequency, and subscript i denotes the background
ions. θ is the angle spanned between the magnetic field and the total wave vector, such
that k2

‖ = k2 cos2 θ. As this dispersion relation is an approximation, the value for k⊥
cannot be precise, and it is even possible that k2

⊥ < 0 due to the approximations made.
Therefore, the form of the wave numbers given in Eqs. (5.3) are implemented for passing
k‖ and k⊥ to the Monte Carlo operators in VENUS. With the wave code added to the
numerical model, we have now not only an equilibrium, but also the means of heating the
plasma and deposit power coming from radio frequency field. The artist’s view is given in
Fig. 5.1 and a representation of the newly added information in Fig. 5.2 All that is left to
add is a means of computing the change of the minority distribution function as a result
of the applied heating and the slowing down on the background plasma. This is what we
will describe next in the chapter about VENUS.
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Figure 5.1.: LEMan adds the radio frequency field to the equilibrium defined by VMEC. Shown is
the torus as in Fig. 4.1 with the additional 3D power deposition and <(E+) computed
by LEMan.

(a) Deposited power (b) <(E+) (c) k⊥

Figure 5.2.: LEMan computes the deposited power, wave fields E+ and E− and the wave vec-
tors k⊥ and k‖ for VENUS’ Monte Carlo operators. As described in Sec. 2.4.1, the
left handed electric field E+ has a local minimum along the resonant layer, and the
maximum power deposition is therefore slightly to the high field side (left) of the cold
resonance.





6. VENUS

Most of the work of this thesis was devoted to further developing the single particle Hamil-
tonian code VENUS. It has initially been developed as a transport δf code3 and was
transformed into a full-f ICRH code for this thesis. Thus, the particle loading had to be
changed, the equations of motion have been extended for including additional terms de-
rived in Ref. 17, Monte Carlo operators for the wave-particle interaction were added as
well as statistics modules for the integration of the distribution function and for the cre-
ation of new inputs to VMEC and LEMan for the iterated scheme. We will in this chapter
describe the workings of VENUS during the temporal integration of the particle orbits,
whereas the statistics modules will be dealt with in the next chapter.

6.1. Equations of motion

The equations of motion are based on a Hamiltonian formulation of the orbits of charged
particles in an electromagnetic field. They have been derived in Refs. 17 and 4 and
only the main results will be shown here. For guiding centre particles, the relativistic drift
Hamiltonian (written for Boozer coordinates) reads

H = γm0c2 + Qχ(s, θ, ϕ, t), (6.1)

where, as always, Q and m0 is the particles charge and rest mass, c the speed of light
and χ is the electrostatic potential. Denoting the magnetic moment µ and the momentum
parallel to the magnetic field P‖, we can write γ as

γ =

√√√√1 +
2µB
m0c2 +

P2
‖

m2
0c2

. (6.2)

Note that for our simulations of ions, relativistic corrections are negligible and the Hamil-
tonian is H = 2µB + P2

‖ + Qχ. The equations of motion are, however, also valid for
(relativistic) electrons, and we show therefore the general form of the equations of mo-
tion. In the vector potential, we can deal with a parallel perturbation, Υ, and still retain the

47
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canonical structure of the variables. We thus write

A = Φ(s)∇θ − ψ(s)∇ϕ + ΥσB, (6.3)

with the standard notations of this thesis. For practical reasons, the equations of motion
are not written in terms of the canonical variables (θ, ϕ, Pθ , Pϕ) but in terms of (s, θ, ϕ, ρ‖),
where we introduced the parallel gyroradius ρ‖ = P‖/(QσB):

ṡ = +
µ0 I(s)

D

[
∂χ

∂θ

∣∣∣∣
s,ϕ,t

+
1
γ

(
µ

Q
+ στΩ0ρ2

‖

)
∂B
∂θ
− Ω0

γ
σ2Bρ‖

∂Υ
∂θ

∣∣∣∣
s,ϕ,t

]

+
µ0 J(s)

D

[
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s,θ,t

+
1
γ

(
µ

Q
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‖

)
∂B
∂ϕ
− Ω0

γ
σ2Bρ‖

∂Υ
∂ϕ

∣∣∣∣
s,θ,t

]
(6.4a)

θ̇ =− µ0 I(s)
D

[
∂χ
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∣∣∣∣
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+
1
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(
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Q
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]
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]
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]
(6.4b)

ϕ̇ =− µ0 J(s)
D
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]
(6.4c)
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ρ̇‖ =− ∂Υ
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(6.4d)

with Ω0 = QB/m0 and

D = ψ′(s)J(s)−Φ′(s)I(s)+ (ρ‖+ Υ)
[

J(s)I′(s)− I(s)J′(s) + I(s)
∂(σBs)

∂θ
+ J(s)

∂(σBs)
∂ϕ

]
.

(6.5)
The terms containing σBs assure the canonical properties and are, together with the
factors σ and τ related to anisotropy, neglected in all other codes to our knowledge.
However, they ensure that the drift velocity satisfies Liouville’s theorem by matching the
required drift velocity, Eq. (2.54), and they can make a difference as shown in Fig. 6.1.
In this figure, the particle orbit is integrated using the exact same initial conditions, once
with the newly introduced terms, once without. The differences are especially important
for tight aspect ratio and high pressure (high β). Even though Eqs. (6.4) are implemented
in VENUS, we will, as already indicated, concentrate on 2D configurations in this the-
sis. Furthermore, the interactions with the RF field are implemented using Monte Carlo
operators described in the next section and these fields are therefore not present in the
equations of motion. We will not consider electromagnetic perturbations other than the
RF fields. Thus, all terms containing Υ, χ, and derivatives with respect to ϕ will be zero.

With the equations of motion (6.4) and the equilibrium, we can already study single
particle orbits, as shown in Figs. 6.1 and 6.2. This is the configuration implemented for a
first physical study in Chapter 8, where we look at one single particle orbit and derive the
effect of pressure gradients on the toroidal precession drift.

For integrated modeling as shown in Fig. 3.1, interactions with the background plasma
and the injected wave field have to be added. Since all of these parts are applied to the
particle orbits in phase space, they are included in VENUS and described here. Fur-
thermore, the modules for creating new inputs for VMEC and LEMan must be included.
These are needed at the end of every VENUS run, once the orbits have been advanced
in time. They represent an interface to VMEC and LEMan and are therefore separately
treated in the next chapter.
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conv
sig Bs

(a) One poloidal orbit.

conv
sig Bs

(b) Many orbits.

Figure 6.1.: Orbit difference with (red) and without (blue) the terms in σBs plotted for a tight aspect
ratio high β tokamak (B0 = 5.6 T,R0 = 1.1 m, a = 0.9 m, δ = 2.5) with β = 19 % and
a 10 MeV trapped particle.17

Figure 6.2.: VENUS can be run without any interaction operators for independent single particle
studies. It reads the equilibrium from VMEC and integrates the equations of motion in
time. The orbit is sometimes not very smooth because not every integration time step
is plotted.
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6.2. Monte Carlo interaction operators

We now want to include in the trajectories of the hot particles the effects of Coulomb
collisions and the injected electromagnetic field. While we know everything we need for
the followed particles, we do not have the information of the speed, pitch angle and exact
position of each and every one of the 1019 or so background particles present in every
cubic meter. In addition, if we wanted to know the exact phase of every particle’s gyro
motion with respect to the RF field at the time of wave-particle interaction, we would have
to follow the full Lorentzian particle orbits instead of the guiding centre orbits, which would
be much too expensive. However, such interactions take place in great numbers, and we
can therefore rely on statistical methods to model the mentioned interactions in a way
which gives physically correct results. Furthermore, from a physical point of view, the
wave-particle interactions introduce a non-reversible component into the evolution of the
particle orbit. This is included in the dielectric tensor through the Z-functions defined in
Eq. (5.2), and it has to be included in the particle orbits. The numerical modules de-
scribing the wave-particle interactions implemented in VENUS contain therefore random
numbers, such that irreversibility is ensured. These methods are summarised under the
term Monte Carlo method. Here, we apply many times per simulation operators in phase
space with random components, and choose these operators such that they do indeed
model the physical processes. In mathematical terms, we need to model the right hand
side of the Boltzmann equation (2.50), namely the term ∂ f /∂t|c, and the non-linear wave-
particle interactions in the force term. We write these two contributions on the right hand
side of the equation as one term coming from the Coulomb collisions with the background
ions and electrons, denoted C, and one due to the wave-particle interactions with the RF
field. The latter will have a quasilinear form and we introduce therefore the symbol QL.
The evolution equation of the distribution function takes now the form of the Fokker-Planck
equation (

∂

∂t
+ v · ∇

)
f = C + QL. (6.6)

The first term (C) will be described next, and QL in Sec. 6.2.2.

6.2.1. Coulomb collisions

Coulomb collisions describe the energy diffusion (slowing down) and change of direction
(deflection) of the simulated particles due to the Coulomb force originating from back-
ground charged particles (thermal ions and electrons). As usual, we denote the test
particle’s mass m and charge Q, the background particle’s mass m1 and charge Q1.
The characteristic time scales for these processes are derived e.g. by Stix57 and can be
written58

τs =
v2

th,1v
(1 + m/m1)ADΨ(x)

(6.7a)

τd =
v3

AD [Er(x)−Ψ(x)]
, (6.7b)
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where we defined

AD =
n1Q2Q2

1 ln Λ
2πε2

0m2
(6.8)

x =
v

vth,1
(6.9)

Er(x) = erf(x) ≡ 2√
π

∫ x

0
e−y2

dy (6.10)

Ψ(x) =
Er(x)− xEr′(x)

2x2 (6.11)

Fig.6.3 shows the deflection and slowing down times as functions of the test particle’s
energy for a helium-3 or hydrogen ion on deuterium background ions and electrons with
Te = 5 keV, TD = 1.8 keV, nD = 3.3× 1019 m−3. We can note a few important points
from these plots: For low energy, collisions on ions are more important, whereas for high
energies, slowing down on electrons is dominant. The differences are greater for larger
test particle mass, which has the effect that the switch between slowing down on ions
and electrons is at lower energy for hydrogen than for helium-3. Also, deflection can be
negligible at very high energies and thus pressure anisotropy is expected to be more
important the higher the energy.

With these time scales we can construct our Monte Carlo Coulomb collision operators
in energy and pitch angle. They are written in terms of collision frequencies

νd = ∑
f

ν
f
d = ∑

f

1

τ
f

d

(6.12a)

νs = ∑
f

ν
f
s = ∑

f

1

τ
f

s
, (6.12b)

where f denotes the background ion species or electrons, applied at every time step, and
take the form59

λn+1 = λn(1− νdτ) +R
√

(1− λ2
nνdτ) λ ≡ v‖/v (6.13a)

En+1 = En − (2νsτ)
[

En −
(

3
2

+
En

νs

dνs

dE

)
Tp

]
+ 2R

√
TpEnνsτ. (6.13b)

We wrote λ ≡ v‖/v for the pitch angle, τ for the time step, Tp for the background (thermal)
temperature and n enumerates the time steps. R is a random number with zero mean
value and unity variance.
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Figure 6.3.: Coulomb slowing down (t s,s.d.) and deflection (t d,def.) times of He3 (top) and H
(bottom) ions on background electrons (e-) and background deuterium ions (i+). The
electron temperature is Te = 5 keV.
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6.2.2. ICRH operators

Ion Cyclotron Resonant Heating consists of launching an electromagnetic (EM) wave
(radio frequency wave) into the plasma. The frequency of this wave is chosen to be a
multiple of the ion cyclotron frequency at a given magnetic field for a given ion population
in the plasma. Ions (positive charge) and electrons (negative charge) have opposite sign
in the definition of the cyclotron frequency (2.30). Physically, this means that in a right-
handed system, ions are rotating clockwise and electrons counter-clockwise around the
magnetic field lines. This will become important later on in this section. First, we want to
see how the electric field from the EM wave interacts with the particles in the plasma.

Single particle dynamics

Following Stix’57,18 derivation, or similarly the overview of Ref. 60, we can include the
effect of the microwave on single particles in the plasma. Some of these computations
are not very illuminating and therefore given in Appendix C. We introduce a system of
coordinates where the magnetic field is B0(z)ẑ and x̂, ŷ are perpendicular to that direc-
tion. For the passage through a cyclotron resonance (given by a sinusoidal wave field
with frequency ω), the equations of motion write

dvx

dt
− QB0(t)

m
vy =

Q
m

A cos(−ωt) (6.14a)

dvy

dt
+

QB0(t)
m

vx =
Q
m

B sin(−ωt) (6.14b)

One can write B0(t), since v‖ is approximately constant along B0(z) and we can thus
substitute t for z using z ≈ v‖t. The cyclotron frequency of the particle is now a function
of time, and we Taylor expand it around tres, the time at which the particle crosses the
resonance, i.e. the time at which Ω = ω:

Ω(t) ≡ QB0(t)
m

= ω + (t− tres)Ω′ + ... (6.15)

Let us further introduce the velocity u and electric field amplitude E±

u = vx + ivy (6.16)

E± =
1
2
(A± B), (6.17)

such that the equations of motion combine into one equation, namely

du
dt

+ iΩ(t)u =
Q
m

(
E+e−iωt + E−e+iωt

)
. (6.18)
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We are dealing with a resonance with the ions, and neglect thus for this illustration the
non-resonant E−. The solution to this differential equation is

u(t) exp
[

i
∫ t

t0

dt′Ω(t′)
]
� u(t0) +

Q
m

E+e−iθ

√
2π

|Ω′| , (6.19)

where θ = ωt0 + Ω′
2 (tres − t0)2 − π

4 sgn(Ω′). Note that for the case of v‖ → 0 (turning
point), Ω(t) has to be expanded to second order, which makes an Airy function appear.57

We can now easily find the average change of (perpendicular) energy per transit

W⊥ =
m
2
〈u(t)u(t)∗ − u(t0)u(t0)∗〉 =

m
2

∣∣∣∣Ze
m

∣∣∣∣2 ∣∣E+∣∣2 2π

|Ω′| , (6.20)

with Q = Ze. The rate of power absorption given to 〈mv2
⊥/2〉 per unit volume can be

written as

P⊥ =
πZ2e2

m|k‖|
∣∣E+∣∣2 nres

(
x, vres
‖
)

, (6.21)

where nres is the density of resonant particles.

Note that for these simplified considerations we did not include the Doppler shifted
frequency of the field the particle sees. Indeed, one should include the Doppler shift
such that the frequency in Eqs. (6.14) ω changes to ω − k‖v‖. This Doppler shift will be
included in the next section, since it will be rather important in what follows.

Quasilinear electromagnetic theory

After this first study of single particle dynamics, which gives a first approximation to the
problem, we derive the quasilinear operators more consistently (still following Stix57,18),
i.e. using the Vlasov equation

∂ f
∂t

+ v · ∇ f + Q∇p · [(E + v× B) f ] = 0, (6.22)

with ∇p = ∂/∂p. Passing into Fourier space (with k = k⊥cosθx̂ + k⊥ sin θŷ + k‖ẑ) and
linearising as well as averaging over the gyroangle α yields

∂ f0

∂t
= − lim

V→∞
Q
∫ d3k

V

∫ 2π

0

dα

2π
∇p · [(Ek + v× Bk) f−k] , (6.23)

with V the volume in k space. The average over the gyroangle can be done using Bessel
functions of the first kind Jn:

∂ f0

∂t
= lim

V→∞
πQ2

n=+∞

∑
n=−∞

∫ d3k
V

Lp⊥δ(ωkr − k‖v‖ − nΩ)|ψn,k|2 p⊥L f0, (6.24a)
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with

L =
(

1− k‖v‖
ωkr

)
1

p⊥
∂

∂p⊥
+

k‖v⊥
ωkr

1
p⊥

∂

∂p‖
(6.24b)

ψn,k =
1
2
(
Ekx + iEky

)
e−iθ Jn−1(z) +

1
2
(
Ekx − iEky

)
eiθ Jn+1(z)

+
p‖
p⊥

Ekz Jn(z), (6.24c)

ωkr the real part of the frequency ωk and the argument of the Bessel functions z =
k⊥v⊥/Ω. If we now remember that v‖ effects are of order k‖v‖/Ω ∼ k‖ρL → 0 and that
the parallel Ez effects are negligible, we can write Eqs. (6.24) as

∂ f0

∂t
�

πQ2

2|k‖|
n=+∞

∑
n=−∞

1
p⊥

∂

∂p⊥
p⊥
∣∣E+ Jn−1 + E− Jn+1

∣∣2 δ

(
v‖ −

ω− nΩ
k‖

)
∂ f0

∂p⊥
, (6.25a)

with

E± ≡ 1
2
(
Ex ± iEy

)
e±iθ , Ex,y ∈ C. (6.25b)

By definition, the diffusion coefficient in perpendicular velocity relates the temporal deriva-
tive of f0 to its second derivative with respect to perpendicular velocity,

∂ f0

∂t
= QL⊥

∂2 f0

∂v2
⊥

, (6.26)

and one can extract the diffusion coefficient from Eqs. (6.25) as

QL⊥ =
π

2
Q2

m2

∣∣E+ Jn−1 + E− Jn+1
∣∣2 δ

(
ω− k‖v‖ − nΩ

)
. (6.27)

Since we are following particle orbits, we are interested in the change of perpendicular
velocity during a time t, which is given by

(∆v⊥)2 = 4tQL⊥ = 2πt
Q2

m2

∣∣E+ Jn−1 + E− Jn+1
∣∣2 δ

(
ω− k‖v‖ − nΩ

)
. (6.28)

If we apply the change in velocity (6.28) only where the resonance condition ω = k‖v‖ −
nΩ is satisfied, we can approximate t ∼ τ and δ

(
ω− k‖v‖ − nΩ

) ∼ τ/2π, with τ the
interaction time of the particle with the wave. For the construction of the Monte Carlo
operator, we need a mean value and standard deviation of the perpendicular velocity,
which follow directly from (6.28) and can be written45

〈∆v2
⊥〉 = α

Q2

m2 τ2|E+ Jn−1 + E− Jn+1|2 (6.29a)

〈∆v⊥〉 =
〈∆v2

⊥〉
2v⊥

. (6.29b)
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The constant factor α depends on the definition of E± and will automatically be adjusted
during the simulation for a constant deposited power and will be described further in
Sec. 9.1.2. From this, we get the operator45,61

∆v⊥ =
〈∆v2

⊥〉
2v⊥

+R
√

2〈∆v2
⊥〉 (6.29c)

where R is a random number with zero mean value and unity variance. Introducing the
phase

ν(t) ≡
∫ t

(ω− k‖v‖ − nΩ)dt′, (6.30)

the interaction time τ corresponds to the phase integral62,63,64

τ =
∫ t

dt′eiν. (6.31)

We can expand the phase around the resonance (when ν̇ = ω − k‖v‖ − nΩ = 0) and
write

τ ≈
∫ ∞

−∞
dt exp i

(
ν +

1
2

ν̈t2 +
1
6

...
ν t3
)∣∣∣∣

ν̇=0
, (6.32)

where a dotted variable is a derivative with respect to time. In most cases, the expansion
to the second order is sufficient, yielding

τ1 =

√
2π

|ν̈| . (6.33a)

However, when ν̈→ 0, one has to retain the third order term in (6.32), and one obtains62

τ2 = 2π

(
2
...
ν

)1/3

Ai
(
− ν̈2

22/3...
ν 4/3

)
, (6.33b)

where Ai is the Airy function. τ1 is the default interaction time, but τ2 has to be used
when ν̈ → 0, in which case τ1 → ∞. More precisely, one can show that (τ2/τ1)2 = 1 if
...
ν 2 = 69.65ν̈3, so that we switch to τ2 if

...
ν 2 > 69.65ν̈3.

As noted by Stix, one can show that the operator L in Eq. (6.24) acts on F = v2
⊥ +

(v‖−ω/k‖)2 such that LF = 0. Thus, one can understand L as a gradient along the line
in phase space where

v2
⊥ +

(
v‖ −

ω

k‖

)2

= const. (6.34)

One can see this as a local description of the conservation of energy during the wave-
particle interaction, and is known as the Kennel-Engelmann constraint.65 The variation in
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perpendicular velocity then reads,

∆
(
v2
⊥
)

= −∆

(
v‖ −

ω

k‖

)2

, (6.35)

which yields for a small change

2v⊥∆v⊥ = −2

(
v‖ −

ω

k‖

)
∆v‖, (6.36)

such that

− v⊥∆v⊥
v‖ −ω/k‖

= ∆v‖. (6.37)

But, at the resonance (at which this operator is only applied), v‖ = (ω−Ω)/k‖, and we
can finally write our Monte Carlo operator for the parallel velocity

∆v‖ =
k‖
Ω

v⊥∆v⊥ (6.38)

Eqs. (6.29), (6.33) and (6.38) are the operators implemented in VENUS. These operators
are valid for fundamental harmonic heating, and they neglect the instantaneous radial
displacement of the guiding centre due to the change in perpendicular velocity and the
resulting variation in Larmor radius. More general Monte Carlo operators have been de-
rived in Ref. 78, including both higher harmonics and the instantaneous radial guiding
centre displacement. Those operators are, however, rather complicated and need fur-
ther development for direct application in VENUS. The operators are applied every time a
particle crosses the Doppler shifted resonance ω = k‖v‖ + Ω. It is important to include
the change in parallel velocity ∆v‖ in the wave-particle interactions, even if the interaction
is mainly in the perpendicular direction. First of all, it corresponds to a conservation of
energy and should therefore not be omitted. But, more importantly, the change in parallel
velocity changes the particle orbit in that it induces a RF-induced radial transport of res-
onant particles. The corresponding theory has been derived in Ref. 66 and observations
reported in Ref. 67. If we look at the case of an axisymmetric tokamak, we can make
use of the conservation of toroidal momentum Pϕ defined in Eq. (2.39) to understand
the workings of this drift. Indeed, the change in parallel velocity during the wave-particle
interaction induces a change in toroidal momentum as

∆Pϕ = (Rmvafter
ϕ + Qψ)− (Rmvbefore

ϕ + Qψ) ≈ RmBϕ∆v‖/B, (6.39)

This displacement is small and usually included by invoking the conservation of toroidal
momentum in axisymmetric geometries, and it is not clear how one should include it in
the general three-dimensional case. After the interaction, the new toroidal moment is
conserved along the unperturbed orbit, and its change due to the previous interaction
means that, considering a trapped particle, at the turning points the poloidal flux (∼ radial
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variable)

∆ψt =
∆Pϕ

Q
≈ RmBϕ

QB
∆v‖, (6.40)

such that the turning points move in real space proportionally to the change in parallel
velocity due to the RF interactions. We can express this drift in terms of energy change
by using the Kennel-Engelmann constraint (6.34) or (6.38) and ∆E = 0.5m∆(v2

⊥ + v2
‖),

giving

∆ψt ≈ RBϕ

QBω
k‖∆E. (6.41)

Recall that a positive parallel wave vector, i.e. in the direction along the toroidal variable
ϕ, means counter-current injection. Since we apply the RF waves for heating, ∆E will be
positive on average, such that sgn(∆ψ) = sgn(k‖), and thus, there will be a net inward
drift for co-current wave injection (k‖ < 0), and a net outward drift for counter-current
injection (k‖ > 0). These RF induced particle pinches cannot be included if one neglects
the change in parallel velocity. We will come back to this drift in later chapters.

6.3. Initial loading of marker distribution

The model distribution function (4.1) is defined using an orbit averaged radial position,
whereas the guiding centre orbits in VENUS are complete and the particles have to be
loaded somewhere well defined in phase space. Thus, for attributing the correct weights
to each particle when loading the distribution, the code needs to know the average radial
position s̄ of the unperturbed orbit, given the initialised position in phase space. For
this, VENUS can be run in a different mode, allowing for the creation of a lookup table.
Figure 6.4 shows a passing or trapped orbit respectively (blue and solid line), each with
the corresponding s̄ flux surface (red and dashed). This lookup table will then give the
average radial position of an orbit as a function of the pitch angle λ = v‖/v, energy E,
and the three-dimensional position in real space. The creation of this lookup table works
as follows:

(i) Load many particles uniformly distributed in complete phase space

(ii) Save initial s0, θ, ϕ, λ and E

(iii) Run every particle for one orbit and determine average radial position using Eq. (4.2)

(iv) Create lookup table of the form

s0 θ ϕ λ E s̄
...

...
...

...
...

...

Once the lookup table is created, we can load the particles by choosing s̄, θ, ϕ, λ and
E according to Fh given in Eq. (4.1), and then determine the initial radial position s0 by
inverting the lookup table. A step by step description would be
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(a) Finding s̄: Passing particle. (b) Finding s̄: Trapped particle.

Figure 6.4.: Finding s̄: The orbit of a passing (trapped) particle in blue and solid, with the corre-
sponding s̄ flux surface in red and dashed. For passing particles, orbits cross the s̄
flux surface close to θ = π/2, for trapped particles, s̄ ≈ s(θb).

(i) Load according to Fh by choosing s̄, θ, ϕ, λ and E.

(ii) Invert lookup table and determine initial s0

s̄ θ ϕ λ E s0
...

...
...

...
...

...

(iii) Start the particle at (s0, θ, ϕ)

Although the particle distribution function in terms of the constants of motion Fh(s̄, µ, E),
and for a given set (s̄, µ, E.σ), where σ = sign(v‖), the corresponding particle orbit is
defined, it is more practical to load the particles in terms of s̄, θ, ϕ, λ and E, and then
invert the lookup table for finding s0. Indeed, with this choice we can load s̄ ∈ [0, 1], θ ∈
[0, 2π], ϕ ∈ [0, 2π] and λ ∈ [−1, 1]. Then, we can determine s0 and finally µ = E(1−
λ2)/B(s0, θ, ϕ). Moreover, if we were to construct the lookup table in terms of µ, E, σ
instead of θ, ϕ, λ, E, the poloidal and toroidal positions of the actual orbit (corresponding
to s0 and the constants of motion) would not be determined.

Note that for axisymmetric cases, the toroidal angle ϕ does not have any effect on
s̄. Furthermore, this loading procedure has to be executed only once at the beginning
of any given self-consistent simulation. Every subsequent iteration, VENUS reloads the
particle distribution exactly as it was at the end of the previous iteration. In this way, we
make sure that no approximation is done to the distribution contained in VENUS. Although
only needed once per simulation, this lookup table is also very useful for comparing the
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Figure 6.5.: Artist’s view of the SCENIC package, including the equilibrium from VMEC (repre-
sented by the magnetic field,left), the wave field from LEMan (E+, right) and a particle
orbit including power deposition from VENUS (red orbit, 2D and 3D power deposition).

model distribution function with the distribution from VENUS, in order to check if the bi-
Maxwellian is an appropriate model. We will perform such comparisons in Chapters 11
and 12, and show that the inclusion of the finite orbit widths through s̄ is indeed a crucial
improvement with respect to other analytical models.

Fig. 6.5 shows an artist’s view of the package described so far. VMEC provides the
equilibrium and geometry, represented as the shape of the confined plasma and the mag-
netic field strength on the left poloidal cut, LEMan then computes the wave field (orange
2D plots within the cross section), and VENUS follows particle orbits including Coulomb
collisions on the background (not represented) and ICRH heating (green, showing re-
gions of power deposition). We now are able to complete one iteration of the SCENIC
package. What remains to be described is the re-creation of inputs at the end of every
iteration for the self-consistent iterated scheme to be working. We have finished building
the package for one complete iteration VMEC-LEMan-VENUS. The only missing part is
then the generation of new input files for VMEC and LEMan for the next iteration. This
will be described in the next chapter.





7. Self-consistency modules

Once the Monte Carlo operators are implemented, we need tools to interpret the resulting
distribution of particles. All Monte Carlo operators have been derived from the Fokker-
Planck equation (6.6) and yield thus first of all the evolution of the underlying distribution
function. There are two different kinds of output to construct at the end of every VENUS
run: One for the iteration of the model VMEC-LEMan-VENUS-VMEC-etc, and one for the
physical quantities we are interested in, e.g. for diagnostics purposes or physical studies.

7.1. Mean energy

In order to check if the iterative method achieves convergence and to determine when the
simulation can be stopped, a criterion which is easy to implement and observe has to be
identified. Preferably it would be a global quantity, which does not depend on any position
in phase space but which shows when a steady-state has been achieved. A steady-state
is reached when the deposited power by the RF field is balanced by the power loss of the
minority species to the background species. When that happens, the total energy content
of the minority species will remain constant. Therefore, a relevant quantity to observe is
the total energy content of the minority species, or, equivalently, the mean energy

〈E〉 ≡ 1
N

∫
V

1
2

mv2 f dV, (7.1)

where f is the minority distribution function in VENUS and V is the total phase space
volume, dV = d3xd3v, and N =

∫
V f dV. We will still concentrate on only one iteration,

i.e. describe here how VENUS re-creates new inputs to VMEC and LEMan at the end of
one given run. We will study the convergence of the SCENIC model with respect to the
number and length of the iterations when we will do iterated simulations in Chapter 11.

63
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7.2. Splitting mechanism

The background electron and ion profiles (density and temperature) are considered static,
i.e. constant in time during the simulation. Only the simulated minority is dynamically
changing. But out of this minority population, especially for low to moderate heating
power scenarios, only a certain portion is effectively heated to higher energies, depend-
ing on background profiles, heating location, type of minority etc. It is then convenient
to divide the minority population into a thermal and a hot species, and compute the mo-
ments of the distribution function for each of these two separately. Then, the thermal
minority species can be treated as second isotropic species in the dielectric tensor, and
the thermal minority pressure added to the background pressure in the equilibrium. Only
the energetic minority population is treated as hot and therefore bi-Maxwellian in VMEC
and LEMan. Table 7.1 introduces a nomenclature which will be used throughout this the-
sis, denoting the different populations present in the simulation. We note that depending
on the injected RF power, a large part of the minority species will become energetic, and
thus a δf scheme would not be appropriate anymore, since the condition δf�f would not
be satisfied. This is why we chose a full-f description in VENUS, and indeed, we will show
simulations where the hot tail is as high as almost 50 % of the total minority.

One way of determining the thermal and hot parts of the minority distribution is to
create the total distribution, and determine the thermal Maxwellian temperature by dif-
ferentiating the distribution with respect to energy. Indeed, inspecting the Maxwellian
(2.49), it is easy to see that ∂E fM(s, E) = − fM(s, E)/T(s). Once the temperature profile
is found, the radial derivative can give the density profile as ∂s ln fM(s) = ∂s ln n(s) −
∂s ln T(s)[1− E/T(s)]. With density and temperature the Maxwellian is determined and
one can subtract that distribution from the total distribution in VENUS, leaving only the
non-Maxwellian parts. This approach has, however, some practical deficiencies. First of
all, all operations occur on the distribution at the lower energy range. We know that a
Monte Carlo scheme can be rather noisy, and therefore operations on the distribution di-
rectly are at least as noisy as the distribution itself. Moreover, we are interested in the tail
of the distribution, using more markers in that region than in the less interesting thermal
part, decreasing the exactness of statistical measures on the thermal part. Furthermore,
we do not actually need to resolve the exact distribution function itself in SCENIC, but only
the integrated moments like density, current and pressure. In the above outlined scheme,
these quantities would be found by integrating the approximated Maxwellian instead of
the actual distribution as it is in VENUS. We now propose another automated splitting of
the distribution function, which is simpler, less noisy and uses the non-approximated raw
distribution function from VENUS.

The basic idea can be understood from Fig. 6.3, where the slowing down and deflec-
tion times are plotted against the particle energy. Deflection means randomisation of the
pitch angle, which is why this process is usually called pitch angle scattering, and leads to
isotropic distributions. The higher the deflection time, the lower the deflection frequency
and thus the weaker the isotropisation, and the more anisotropic the distribution. For low
energies, the deflection time is lower than the slowing down time, and it is dominated by
ion-ion collisions. For intermediate energies, ion-ion collisions still dominate, but the pitch
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Designation Population Species Model Evolution
Background Majority plasma D & e− Maxwellian static
Thermal Minority, E < Ec(s) He3 or H Maxwellian dynamic
Hot Minority, E > Ec(s) He3 or H bi-Maxwellian dynamic

Table 7.1.: Nomenclature of the different populations present in all simulations.

angle scattering is equally important as slowing down. For high energies, however, slow-
ing down on electrons becomes dominant before the pitch angle scattering and slowing
down on ions, and anisotropy will not be equalised as efficiently as for lower energies.
The passage from the regime where ion-ion collisions are dominant to the regime where
ion-electron collisions are more important coincides with the passing from equal pitch an-
gle scattering and slowing down to slowing down dominated, and is defined by the critical
energy58

Ecrit(s) = 14.8
Ah

A2/3
i

Te(s), (7.2)

where Ai,h is the atomic number of the background and hot ions respectively, and Te(s)
the electron temperature. This critical energy is defined as follows: for particles with
energy below Ecrit, pitch angle scattering is important and the pitch angle distribution is
equalised, whereas for particles above this energy, slowing down is dominant, such that
the pitch angle distribution remains anisotropic. For hydrogen or helium-3 in deuterium,
E(H,He3)

crit = (9.3, 28)Te, and the example case shown in Fig. 6.3, Te = 5 keV, giving
critical energies of 46 keV and 140 keV respectively. These values correspond to the
intersection of the green and blue curves in Fig. 6.3. Now, we do not want to split the
distribution into thermal and hot parts based entirely on the nature of the Coulomb colli-
sions. While this certainly gives us a good indication of how it could be done based on
physical processes, it is clear that even a thermal Maxwellian, with electron temperature
Te, will contain some high energy particles, with energies above Ecrit. Furthermore, if we
only consider the particles with energy E > Ecrit, it might be that the hot parallel temper-
ature will be estimated too low, since the very highly energetic particles are the resonant
ones, interacting strongly with the RF field in the perpendicular direction. We apply the
splitting mechanism to each particle in the simulation instead of the distribution function,
but retain a maximum flexibility in the splitting of the distribution function. We achieve this
by introducing a critical energy Ec and constructing the splitting criterion

Ec(s) = xTe(s)
if particle energy E < Ec(s) ⇒ thermal (7.3)

else ⇒ hot,

with s the particle’s radial position and x a coefficient generalising Eq. (7.2). The param-
eter x, and its consequences, will be explored in Chap. 9, and Fig. 7.1 give a schematic
view of splitting the distribution function in to a thermal part and a hot tail. This test is
applied to every particle at the end of any VENUS simulation. If the particle is consid-



66 7. Self-consistency modules
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Figure 7.1.: Schematic view of the splitting mechanism. The total minority distribution function
(black line) is split into an isotropic thermal (blue) and an anisotropic hot (red) minority
part according to Eq. (7.3).

ered thermal, it will be considered in the integration of the thermal (isotropic) moments,
if not its contribution will be included in the (anisotropic) hot moments. The details of
the integration are given in the next section. Here we already state that the computed
moments are then nh

th, nh, ph
th, ph

⊥ and ph
‖, where the subscript th means that it is due to

the minority population, but contains only contributions from particles with a lower energy
than Ec(s). Quantities without that subscript are computed with the particles having an
energy E > Ec only. Note that the induced currents, jt (trapped) and jp (passing), have to
be taken from the complete distribution, since the total toroidal current has to be passed
to VMEC. As stated above, this is a straightforward means of splitting the distribution
function, and makes sure that the complete distribution in VENUS is being considered.
Moreover, the Monte Carlo scheme’s inherent noise is reduced to a minimum, since only
the integrated moments are needed for the iterative scheme of SCENIC.

7.3. Computing the distribution function and its moments

For computing the distribution function and its moments, a standard particle-in-cell (PIC)
procedure is implemented. Each particle is initialised at the start of the first iteration with
a weight wp, corresponding to the value of the model distribution function at the position
in phase space at which the particle is loaded. If the particle is loaded according to the
exact bi-Maxwellian from the equilibrium, the weight is unity. If not, it is determined by
the ratio of that bi-Maxwellian over the distribution function after which the particles are
loaded. At the end of each run, the integrals for the moments of the distribution function
are approximated by sums over all particles inside a given cell in phase space. In what
follows, we denote J the Jacobian, ∆x the bin width in variable x, ip ∈ ∆x means that
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particle i is located inside the bin ∆x. In particular, ∆V = ∆s× ∆θ × ∆ϕ. The integrated
moments then are

• Density

nh
th(s) = 2π ∑

ip∈∆s
Ep<Ec

1
wp

J ∆s2π2π
(7.4aa)

nh(s, θ, ϕ) = 2π ∑
ip∈∆V
Ep>Ec

1
wp

J ∆s∆θ∆ϕ
(7.4ab)

• Toroidal current density

jh
ϕ(s) = Ze2π ∑

ip∈∆s
v‖

Φ′(s)
σB(s, θ)

wp

J 2∆s2π2π
(7.4b)

• Pressures

ph
th(s) = 2π ∑

ip∈∆s
Ep<Ec

v2

3
wp

J ∆s2π2π
(7.4ca)

ph
‖(s, θ, ϕ) = 2π ∑

ip∈∆V
Ep>Ec

v2
‖

wp

J ∆s∆θ∆ϕ
(7.4cb)

ph
⊥(s, θ, ϕ) = 2π ∑

ip∈∆V
Ep>Ec

v2
⊥
2

wp

J ∆s∆θ∆ϕ
(7.4cc)

We write these quantities in terms of (s, θ, ϕ), not (s, B). Although (s, B) has been used
in Chapter 4 and reduces the number of variables to two even in the general 3D cases,
we found that writing it in terms of (s, θ, ϕ) is more intuitive to understand. Moreover, in
the two dimensional case (tokamak), using (s, θ) and ∆ϕ = 2π is exactly equivalent to
(s, B). As noted above, with this procedure, the (potentially noisy) Monte Carlo distribution
function is not directly used for the iterations, but rather the integrated moments. This
represents an initial smoothing of the distribution function. One can smooth the obtained
profiles additionally with an appropriate interpolation mechanism if required.
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7.4. Iteration outputs

As described in Sec. 4 and Ref. 50, the inputs to the equilibrium code VMEC are p(s̄),
ph(s̄), T⊥/T‖(s̄), Bc and either the toroidal current J(s̄) or the inverse safety factor
ι(s̄) ≡ 1/q(s̄). In order to create new inputs to VMEC and LEMan, we have to pass
from the radial position of the particles s to the orbit averaged radial variable s̄ as defined
in Eq. (4.2). Without Monte Carlo interaction operators, the distribution function does not
evolve in time, and, equivalently, the particle orbits do not change in shape. In this case,
finding the moments in terms of the orbit averaged radial position is equivalent to time
averaging the integrated moments (7.4) over many orbit revolutions. Therefore, at the
end of a given VENUS run, we switch the action of the Monte Carlo interaction operators
off, and perform the time average of the integrated moments. Note that for this, all bins
in phase space are kept constant during this averaging, and thus ∆s → ∆s̄, and finally
s → s̄ in Eqs. (7.4). Density and pressure from the thermal contribution of the minority
population, Eqs. (7.4aa) and (7.4ca), can be directly passed to VMEC and LEMan. The
thermal pressure is added to the background pressure in VMEC, whereas the density
and temperature (using p = nT for Maxwellian distributions) are read by LEMan as sec-
ond (warm Maxwellian) background species. We are left with the computation of the hot
parallel pressure amplitude ph(s̄), the anisotropy T⊥/T‖(s̄) and the total toroidal current
J(s̄) for VMEC. For LEMan, the density-like factor N (s̄) and the hot parallel temperature
have to be found additionally.

From the relations given in Ref. 50 and Section 4, we can find the quantities we are
looking for in a straightforward way. First, we find the anisotropy A(s̄) ≡ T⊥/T‖(s̄)
(denoted A in what follows for simplicity) from the integrated moments of the distribution
function:

ph
⊥(s̄, θ, ϕ)

ph
‖(s̄, θ, ϕ)

= M(s̄, A, B), (7.5a)

where

M(s̄, A, B) =

A B
Bc

[1− A (1− B/Bc)]
−1 , B > Bc

A B
Bc

[1+A(1−B/Bc)]
2−5[A(1−B/Bc)]

3/2+[A(1−B/Bc)]
7/2

{1−A2(1−B/Bc)2}{1+A(1−B/Bc)−2[A(1−B/Bc)]
5/2} , B < Bc

(7.5b)

ph
⊥(s̄, θ, ϕ) and ph

‖(s̄, θ, ϕ) are known from the distribution function, B(s̄, θ, ϕ) is known
from the equilibrium, and Bc is an input parameter. For the regions where B > Bc, the
anisotropy A(s̄) can be computed directly, whereas a root finding algorithm has to be
applied in the case B < Bc. In VENUS a simple secant method is implemented to that
end. The second quantity to be determined is the hot parallel pressure amplitude ph,
which can be found using the definition in Eq. (4.6). The hot parallel pressure is known
from (7.4c) and the thermal pressure from the background, so that we can simply invert
the equation for the hot parallel pressure to find ph(s̄). For the density-like amplitude
factor N (s̄), Eq. (4.3) gives the relation to the physical density found in Eq. (7.4a) which
can again be inverted once the anisotropy has been found. The hot parallel temperature



7.4. Iteration outputs 69

T‖(s̄) is finally found using its relation to the previously foundN (s̄), ph(s̄) and the thermal
pressure p(s̄), Eq. (4.5). As a summary and for more clarity, we give the explicit relations
once more with the geometrical factors C(s̄, B) and H(s̄, B) given in Eqs. (4.3b) and
(4.4b):

ph(s̄) =

〈
ph
‖(s̄, θ, ϕ)

p(s̄)H(s̄, B)

〉
(7.6)

N (s̄) =
〈√

A(s̄)
nh(s̄, θ, ϕ)
C(s̄, B)

〉
(7.7)

T‖(s̄) =

〈
ph
‖(s̄, θ, ϕ)

N (s̄)H(s̄, B)

〉
. (7.8)

The angular brackets 〈·〉 have been added for the following reason: Eqs. (7.5) to (7.8)
are fitting the arbitrary distribution function from VENUS onto the bi-Maxwellian imple-
mented in VMEC and LEMan. Indeed, in the frame of the bi-Maxwellian (4.1), the factors
ph
‖(s̄, θ, ϕ)/H(s̄, B), nh(s̄, θ, ϕ)/C(s̄, B) and A(s̄) in Eq. (7.5) do not depend on any vari-

able other than s̄. But, since the pressures and density are not evaluated on the basis
of the bi-Maxwellian, this is not true. The fitting is done in such a way that A(s̄), ph(s̄),
N (s̄) and T‖(s̄) are computed in each poloidal and toroidal cell for one given radial cell,
and a poloidal and toroidal average is performed (thus the angular brackets). As a result,
the radial profiles needed for the equilibrium and wave computations correspond to the
analytical model implemented in the corresponding codes. Finally, the current computed
as in Eq. (7.4b) does not include the reaction of the background ions and electrons. This
reaction has to be included in the equilibrium computations. Indeed, the accelerated fast
ions drag electrons with them due to the charge separation and the resulting electric field.
Also, if more fast ions are circulating in one toroidal direction than into the other, total
angular momentum conservation has to be invoked. This has the effect that bulk ions will
move in the inverse direction. Both of these effects diminish the effective current and have
to be considered for the equilibrium current. Momentum conservation and quasi-neutrality
and the balance of collision rates then yield,68,69

jRF
VMEC = jRF

VENUS

[
1− Zh

Zeff
− mh ∑i Zini(1− Zi/Zeff)

Zh ∑i nimi

+ 1.46
√

r
R0

A(Zeff)
(

Zh

Zeff
− mh ∑i niZ2

i
ZhZeff ∑i nimi

)]
, (7.9)

where the 1− Zh/Zeff term comes from the electron drag, and the third term from the
bulk ions moving in the opposite way. Both effects are diminished by the fraction of
trapped particles, which is proportional to

√
r/R0 as discussed earlier in Eq. (2.37). The

RF induced current density (7.9) can be integrated over space and added to the Ohmic
toroidal current, allowing for a change in the safety factor profile due to ICCD. Obviously,
we choose thus the total toroidal current J(s) as input, and determine the corresponding
safety factor profile from VMEC.
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Eqs. (7.5) to (7.9) are implemented in VENUS for finding new inputs to VMEC and
LEMan at the end of each iteration. The resulting radial profiles are then smoothed out
over s using an advanced cubic spline.70 For refining the statistical results even further,
the spatial binning can be adjusted, as explained in the following section.

7.5. Spatial binning

For more useful binning, several advancements have been introduced into the way VENUS
treats the bins for the statistics. In the poloidal direction, the binning is in the interval
[−π, π] instead of [0, 2π], such that if one chooses an odd number of poloidal bins
nbinspol, the center of bin number (nbinspol+1)/2 is exactly along θ = 0. This is
especially useful when one wants to look at the distribution function at θ = 0, which
is traditionally the case. In the radial direction, a linear binning in s would be nonlinear
in r and thus in terms of r not be very precise towards the magnetic axis (recall that
s ∼ r2). A coefficient α has therefore been introduced, such that the radial interval bor-
ders sb(0 : nbinsrad) for s are at

sb(0) = s0
b (7.10)

sb(n) = s0
b + (snbinsradb − s0

b)
( n
nbinsrad

)α
(7.11)

Every time the statistics module is called, these interval borders are used (fixed in the
beginning once and for all) for the radial binning. The value of s(n) is then computed
every time as the mean value of all the particles’ radial position s counted within that bin.
This means that s(n) is not exactly at the mid-value between sb(n − 1) and sb(n), but
at the position weighted by the density variation within the bin. Also, the Boozer poloidal
grid is not equidistant in real poloidal angle. The LFS has indeed (much) less poloidal
grid points than the HFS. In order to correct that, the number of poloidal grid points has
been made dependent of the radial position in the following way:

Nθ(n) =
[
nbinspol

β
+ nbinspol(1− 1/β)

n− 1
nbinsrad− 1

]
(7.12)

where [·] denotes integer part. It now follows that, for β > 1 (β < 1), there are fewer
(more) poloidal bins in the centre (Nθ(1) = nbinspol/β, Nθ(nbinsrad) = nbinspol),
which can enhance statistics by ensuring large enough bins, and therefore enough parti-
cles per bin, (good resolution) also in the centre. Fig. 7.2 shows the effect of the param-
eters α and β on the 2D grid. For simplicity, we chose α = β for these plots, but the two
parameters are of course independent.
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(a) α = β = 2.0 (b) α = β = 1.5 (c) α = β = 1.0 (d) α = β = 0.75 (e) α = β = 0.5

Figure 7.2.: Effect of the binning exponent α and the poloidal parameter β on the 2D grid in the
poloidal plane. α = β = 1 follows the Boozer coodinates, α = 2 yields equidistant
minor radius grid. Here, nbinsrad=36, nbinspol=55.





Numerical simulations

After the description of the numerical model, we now use SCENIC for numerical simu-
lations. First of all, single particle dynamics will be studied in Chapter 8. LEMan is not
required in this chapter, and the simulated particles in VENUS are considered free of any
interaction, such that the orbits are constrained purely to the equations of motion (6.4).
This chapter allows for a study of how the equilibrium alone can act on the particle or-
bits, and as an example, the toroidal drift frequency of trapped particles is determined.
Also, the power of VENUS can be made clear explicitly showing non-standard orbits, here
represented by so-called tear drop orbits due to poloidal variation of the magnetic field.

Starting with Chapter 9, the newly introduced operators will be tested. Benchmark-
ing against SELFO in Chapter 10 will represent the final tests and first results, before
applying SCENIC independently to low and high power scenarios in Chapter 11 and 12
respectively. Here, we will be in a position to study the effects of ion cyclotron heating on
the equilibrium and dielectric tensor, taking full advantage of the code package.
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8. Single particle dynamics

As a first application, we consider the combination VMEC-VENUS, where all interaction
operators in VENUS have been turned off. This allows for a detailed study of how the
equilibrium influences the unperturbed particle orbits. In particular, we will show how the
perpendicular pressure gradient acts on the toroidal drift frequency of trapped particles.
The latter is an important quantity for MHD stability, besides the effect of the current,
which will be studied in later chapters. Finally, non-standard orbits will be visualised at
the end of the chapter in the form of tear drop orbits.

8.1. Toroidal drift frequency

Regions of unfavourable curvature can lead to instabilities such as collisionless trapped-
electron modes, fishbones and many others. The stability of these modes is largely deter-
mined by the toroidal precession drift of trapped particles. Rosenbluth and Sloan71 have
shown that such modes can be affected in regions of bad curvature through plasma dia-
magnetism (i.e. the effect of the pressure gradient on the magnetic field strength), which
can inverse the sign of the precession drift frequency ωD of a single particle. Further-
more, Beer et al.72 have shown the importance of the toroidal drift on trapped electron
modes using a s− α model and concentrated on the effects of the local and global shear
on ωD in enhanced reverse-shear discharges, where it was found that the dominant sta-
bilising effect was the reversal of the toroidal precession drifts of barely trapped electrons.
We note here that for a large aspect ratio, low to moderate β equilibrium, the local shear
is defined by the second derivative of the Shafranov shift. Furthermore, a few years
earlier, Wu et al.73 studied the effects of trapped alpha particles on internal kink and
fishbone modes, including shaping, local and global shear. It was found that elongation
and the Shafranov shift can significantly reduce the magnitude of the precessional drift
frequency and enhance the trapped particle drift reversal domain in pitch angle space.
Finally, Connor et al.74 investigated the effects of pressure gradients self-consistently by
considering the diamagnetic well effect together with the effect of local and global shear.
The latter study is nevertheless essentially restricted to equilibria which do not contain
a significant auxiliary heated fast ions energy content. Indeed, the authors stress that a
consistent treatment of the effect of finite β from energetic ions on the toroidal precession
drift should in general involve an anisotropic pressure equilibrium.
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In this section, we will concentrate on the effects of pressure anisotropy, both parallel
dominated and perpendicular. Clearly this is also motivated by the fact that ICRH heating
creates anisotropic equilibria where p⊥ > p‖, while another well established heating pos-
sibility, tangential Neutral Beam Injection (NBI) heating, typically has parallel anisotropy
p⊥ < p‖. Deposition can be strongly localised, creating large gradients in local beta val-
ues (β = 2p/B2), which in turn gives rise to a reduction or even reversal in the toroidal
drift precession.

We know that in isotropic plasmas the effect of the pressure on the precession drift
frequency enters through a local shear and a magnetic well effect.74 The local shear is
proportional to r∆′′, where ∆ denotes the Shafranov shift as defined in Eq. (2.12), and
the effect of pressure on ∆′′ is given in Eq. (2.27). The latter equation can be integrated
to give75,51

∆′(r) =
r

R0

(
li
2

+ 〈βp〉+ βA
ph

)
, (8.1)

with βA
ph = 2µ0q2〈ph cos 2θ〉, ph = (ph

‖ + ph
⊥)/2,li = (2q2/r4)

∫ r
0 dr3/q2 is the internal

inductance, and 〈βp〉 = −(2µ0q2/B2
0ε2)

∫ r
0 dr(r/r1)2× d〈p〉/dr the local poloidal beta.

Angular brackets mean flux surface average. Thus, using the standard notation for this
thesis, Eq. (2.27) is an equation for ∆′′ only and reads

R0∆′′ = (2ŝ− 3)
(

li
2

+ 〈βp〉
)
− 2r〈βp〉′ + (2ŝ− 1) βA

ph + rβA′
ph. (8.2)

with the magnetic shear ŝ = (r/q)dq/dr. The magnetic well effect in an isotropic plasma
is described through the ballooning mode parameter

α = −2R0q2

B2
0

dp
dr

, (8.3)

with standard notations. Given that we will study anisotropic pressure equilibria, it is
convenient in this study to define a new parameter

α⊥ = −2R0q2

B2
0

∂p⊥
∂r

, (8.4)

thus depending only on the perpendicular pressure component. Note that in the isotropic
limit, α = α⊥, since p‖ = p⊥ = p.

In the following, we define a JET-like equilibrium with a major radius of R0 = 3.16 m,
edge minor radius a = 1 m, elongation κa = 1.4 and triangularity δa = 0.4. The q-profile
was chosen to be q = q0 + ∆q(r/r1)2, with q0 = 0.7, ∆q = 1− q0 and r1 = 0.4. For the
calculation of the drift frequency, we followed a test ion of 10 eV close to the location of
maximum pressure gradient. We chose a rather low energy in order to ensure negligible
banana orbit width. At each time step, local α and α⊥ are calculated and in the end
averaged over the total simulation time. This gives a weighted orbit average of α⊥ similar
to the computation of s̄ for the equilibrium, where the turning points count more heavily
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than the rest of the banana orbit, since the particle spends more time at those points than
elsewhere. Mathematically, this corresponds to

〈α⊥〉 =
∫

α⊥(θ)dt∫
dt

≈ α⊥(θb). (8.5)

At the end of the simulation, the average toroidal drift frequency is calculated using the
trivial relation

〈ϕ̇〉 =
ϕe − ϕi

ttot
, (8.6)

where ϕe is the value of the toroidal angle ϕ at the last passing of the midplane, ϕi
the toroidal angle at the first passing and ttot the total simulation time in-between the
first and the last passing of the particle at the midplane. Note that the toroidal angle
is not restricted to the interval [0, 2π] but can have any value on the real axis. Follow-
ing Ref. 74, and generalising its expression for the drift frequency to include pressure
anisotropy, Ref. 48 could show that the finite β correction to the drift frequency is of the
form

ωD = ω
(β=0)
D −ω′

(
r∆′′G3(θb) +

〈α⊥〉
2q2

)
, (8.7)

where ω′ = qE/rR0mΩc, Ωc = eB0/m, cos(θb) = 1− 2k2 and k2 = ((1− µB0)/ε + 1) /2.

The drift frequency excluding pressure effects ω
(β=0)
D has been defined in e.g. Ref. 74

and reads
ω

(β=0)
D = ω′

[
G1(k2) + 2ŝG2(k2)

]
. (8.8)

The factors G1−3 are defined using the elliptic integrals of the first and second type,
K(k2) =

∫ π/2
0 dω [1− k2 sin2 ω]−1/2 and E(k2) =

∫ π/2
0 dω [1− k2 sin2 ω]1/2 to give,

G1(k2) = 2E(k2)/K(k2)− 1 (8.9a)

G2(k2) = 2E(k2)/K(k2) + 2(k2 − 1) (8.9b)

G3(k2) =
4
3
[(2k2 − 1)E(k2)/K(k2) + (1− k2)]. (8.9c)

We recognise the first term within the parenthesis of Eq. (8.7) as the local shear effect, the
second representing the diamagnetic effect. In the following sections, the approximation
of Eq. (8.7) will assist qualitative comparisons between different regimes.



78 8. Single particle dynamics

(a) T⊥/T‖ = 1/10. (b) T⊥/T‖ = 1. (c) T⊥/T‖ = 10.

Figure 8.1.: The perpendicular pressure in the RZ plane for the different considered anisotropic
cases. The white lines denote the locations of B = Bc.

8.1.1. Local shear effect

We first concentrate on the local shear effect, the term proportional to r∆′′ in Eq. (8.7).
We compare four equilibria, one with β = 0, and the other three having the same profile
for the flux surface averaged α,

ᾱ = −R0q2

B2
0

∫
(p′‖ + p′⊥)dθ∫

dθ
, (8.10)

which at its peak (at r/a = 0.4, where all the simulations are done) is ᾱ ≈ 1.03. The latter
three cases however differ with respect to their values of T⊥/T‖, and are shown in Fig. 8.1
to have T⊥/T‖ = 1/10, 1 and 10. In each it is seen that the hot particle deposition layer is
chosen to pass close to the magnetic axis, i.e. Bc ≈ B0 ≈ 3.1 T. Fig. 8.1(c) demonstrates
the clearest departure from isotropy. It is seen that the pressure peak is elongated along
the resonant layer B = Bc. This is due to the fact that hot particle deposition at that
location generates preferential banana orbits with tips close to θ = ±90◦. Despite such
spatial dependencies in Fig. 8.1, it turns out that by keeping ᾱ(r) the same for all cases
in Fig. 8.1, the profile for the Shafranov shift is almost the same for β , 0,8 as shown in
Fig. 8.2(a), where we plot r∆′′. The only contrasting profile is that of the case with zero
β. It follows that the local shear effect should lead to the same offset in ωD for the three
cases relative to the β = 0 case. The magnetic drift frequencies corresponding to the four
equilibria, normalised to ω′, are shown in Fig. 8.2(b). The differences between the lower
three curves can be identified with the offset due to the diamagnetic effect (last term in
Eq. (8.7)), and will be described in the next section. We can however most easily identify
the local shear effect by comparing the top two curves in Fig. 8.2(b), i.e. the case with
zero β, and the case with T⊥/T‖ = 1/10. The reason for this is that both of the latter
cases have small α⊥, the corresponding diamagnetic effect giving a small and almost
constant offset for all bounce angles, the value being that of the differences of the curves
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(a) Profiles of r∆′′ for the four equilibria.
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(b) The precession drift frequencies as functions of
the bounce angle.

Figure 8.2.: The toroidal precession drift frequencies are different from one another, even if the
local shear has the same effect in all cases. The line in (a) shows the radial location
of the orbits. Starred (*) and magenta: p = 0, crosses (x) and blue: T⊥/T‖ = 1/10,
dots and black: T⊥/T‖ = 1, circles (o) and red: T⊥/T‖ = 10.

at θb = 0◦ or θb = 180◦ (since then G3 = 0). Hence, the local shear effect is seen to
reduce the drift for intermediate pitch angles, as is clear if one plots G3 as a function of
θb. If at the same time α⊥ is sufficiently large, the local shear effect can enable a wider
region of pitch angle space where the direction of ωD is reversed. This is the case for the
isotropic finite β curve, and the T⊥/T‖ = 10 curve in Fig. 8.2(b). Nevertheless, we see
that the finite β effect in the perpendicular anisotropy case and the isotropic finite β case
is dominated by the diamagnetic effects, and these are described next.

8.1.2. Diamagnetic effect

Figure 8.3 shows the same frequencies as before, though not including the β = 0 case,
but now compared to the values of 〈α⊥〉 instead of r∆′′. One can clearly see a bump
appearing in the drift frequency for the case of perpendicular anisotropy (T⊥/T‖ = 10),
located at same bounce angle as the maximum of 〈α⊥〉. Also, ωD is considerably higher
for parallel anisotropy (T⊥/T‖ = 1/10), where 〈α⊥〉 is much lower. Note that for the three
different cases T⊥/T‖ = 10, 1 and 1/10, the flux surface averaged parameter ᾱ at r/a =
0.4 was a constant value ᾱ ≈ 1.03. From this, three different conclusions can be drawn:
First, the diamagnetic effect is more important than the local shear effect for T⊥/T‖ ≥ 1
and q ∼ 1. Second, the diamagnetic effect can also lower the toroidal precession drift
frequency of deeply trapped particles, such that the frequency can be negative for all pitch
angles. Third, anisotropy can introduce an important poloidal dependence of ωD through
a poloidal dependence of α⊥, i.e. of the perpendicular pressure and its gradient.

With off-axis heating, it is possible to shift the maximum pressure gradient in the RZ
plane. Fig. 8.4 shows the pressure surfaces for high field side (HFS) and low field side
(LFS) heating. As stated above, the deposition location can be chosen via the value of
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(b) Toroidal magnetic drift frequency

Figure 8.3.: The toroidal drift frequency depends on the parameter α⊥ = −2R0q2/B2
0(p′⊥), which

has a strong poloidal dependence.

the parameter Bc in the equilibrium code VMEC. Note that the peak of the pressure profile
is not exactly at the locations of B = Bc. For all of the equilibria generated in this chapter,
a sharp pressure gradient was imposed at the radial location r/a = 0.4. Outside this
surface, the pressure is very low. The effect of LFS heating on the poloidal variation of
p⊥ is very strong, since in that case the deeply trapped particle fraction is higher than
for HFS heating, where more barely trapped particles are created. More barely trapped
particles tend then to average out a poloidal variation in p⊥. The shifting of the pressure
peak towards the inboard side (HFS heating) results in a shift in the maximum pressure
gradient towards θ = π, whereas the shifting of the pressure peak towards the outboard
side (LFS heating) results in a shift in the maximum pressure gradient towards θ = 0.
As a result, one can see in Fig. 8.5 that the bump in precession drift frequency is shifted
in the exact same way. For LFS heating, the toroidal drift frequency is even negative for
deeply trapped particles, whereas it goes negative for large bounce angle in the case of
HFS heating.

With these studies it becomes evident that the important parameter for determining the
magnetic precession drift frequency is not the conventional diamagnetic term proportional
to α, but rather its perpendicular analogue α⊥(θb) weighted close to the bounce angle θb.

8.1.3. Large orbit width relative to gradient length scales

If we now allow for an increase in the banana orbit width, we can study the case where the
characteristic length scale of the pressure gradient is of the order of the banana width,
Lp ∼ ∆r. Fig. 8.6 shows the effect on the case shown in Fig. 8.5 (LFS heating), but
this time with an energy of 300 keV, such that the banana width is about the same as
the pressure gradient length. The strong dependence on the bounce angle for deeply
trapped particles can be understood as follows: For less deeply trapped orbits (higher
θb), the particle sees a lower average pressure gradient, since its large banana width
leads it into regions with lower α⊥, whereas deeply trapped particles do not see these
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(a) Pressure surfaces for HFS heating. (b) Pressure surfaces for LFS heating.

Figure 8.4.: p⊥ in the RZ plane with resonant heating on (a) the HFS and (b) the LFS. In both
T⊥/T‖ = 10, and they can be compared with the reference equilibrium shown in Fig.
1(a), which has the resonant heating through the magnetic axis.

regions, since their orbit widths are much smaller, and thus their orbit averaged 〈α⊥〉 is
considerably larger. A second effect is the poloidal variation of α⊥ with perpendicular
anisotropy (as already seen above), which is responsible for the plateau in 〈α⊥〉 (red line)
between 30 and 60 degrees. It is interesting to note that while the greatest effect is for
perpendicular anisotropy, it is still considerable for the isotropic case, where α⊥ more than
doubles.

8.2. Tear drop orbits

A particle is trapped if its parallel velocity vanishes due to high magnetic field strength, as
can be seen in the relation

v‖
v

= ±
√

1− µB
E

, (8.11)

where µ and E are constant along an unperturbed orbit, such that v‖/v depends exclu-
sively on the magnetic field strength. In a large aspect ratio isotropic plasma, the poloidal
variation of B is given by B ∼ 1/R, so that trapping is up-down-symmetric, and thus the
particle passes through the outer midplane θ = 0. If however B is non-monotonic with
respect to |θ|, particles can be locally trapped in the corresponding magnetic well. Two
examples of non-monotonic B profiles are shown in Fig. 8.7 and will be described later.
The trajectories of such trapped particles differ from conventional trapped orbits in that
they stay either on the upper (0 < θ < π) or lower half (π < θ < 2π) of the plasma,
and thus do not pass through the outer midplane. Such kinds of orbits are then called
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(a) HFS heating: 〈α⊥〉 as a function of the bounce
angle.
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(b) HFS heating: Toroidal magnetic drift frequency
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(c) LFS heating: 〈α⊥〉 as a function of the bounce
angle.
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(d) LFS heating: Toroidal magnetic drift frequency

Figure 8.5.: As the peak in 〈α⊥〉 shifts to smaller or larger bounce angles for respectively LFS or
HFS heating, the form of the drift frequency changes accordingly. The dependence
on θb should be compared with the on-axis heating case of Fig. 8.3.
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(a) LFS heating with wide banana orbits. Bounce
averaged 〈α⊥〉 as a function of the bounce angle.
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Figure 8.6.: Larger particle energies, and wider orbits, modify the magnetic drift frequency in equi-
libria with highly localised pressure gradients.

tear drop orbits, because of their trajectory in the RZ plane (see Fig. 8.9(a)). In isotropic
plasmas, such orbits occur only in tight aspect ratio, because the toroidal and poloidal
magnetic fields are of the same order. Nevertheless we point out that the localised trap-
ping can be enhanced with perpendicular pressure anisotropy.

Having the possibility of poloidal dependence in the pressure and magnetic field due
to anisotropy, we can enhance the variation of the magnetic field strength in the poloidal
angle, as e.g. shown in the isotropic and anisotropic cases of Fig. 8.7. The corresponding
perpendicular pressure for the latter two equilibria are shown in Fig. 8.8. In this part of
our work, we considered a tight aspect ratio configuration with R0 = 1.16 m, a = 0.9 m
and an elongation of κa = 2.5 at the edge. This was chosen such that tear drop orbits
already can occur in the isotropic case as described above. The triangularity was zero
and the safety factor profile unchanged from the previous section. For both the anisotropic
and isotropic case, the volume averaged beta 〈β〉 ≈ 1% was kept constant and the flux
averaged ᾱ was similar with ᾱ ≈ 0.68 for T⊥/T‖ = 10 and ᾱ ≈ 0.75 for T⊥/T‖ = 1.
However, as can be seen in Fig. 8.8, due to the LFS deposition employed, there are two
sharp peaks in the anisotropic case compared to the isotropic equilibrium. These two
sharp peaks are responsible for a deepened magnetic well shown Fig. 8.7. In the latter
figure, the curves show the magnetic field strength as a function of poloidal angle at the
radial location of the pressure peaks. The blue (upper) curve is the isotropic and the
red (lower) curve is the anisotropic case. With the deepening of the magnetic well, i.e.
lowering the minimum field, trapped particles at the well minimum achieve higher parallel
velocities according to Eq. (8.11). Thus the particle orbits in isotropic and anisotropic
equilibria are different in three dimensional space, and especially in the toroidal direction,
as shown in Fig. 8.9. Here we show that the difference in the RZ plane (tear drop orbits)
is rather small, whereas it is considerable in the toroidal angle, as shown by the s-like
trajectory of the orbit in the 3D plot of Fig. 8.9(b) (red curve). This can be seen as an
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Figure 8.7.: Poloidal dependence of the pressure results in a stronger poloidal dependence of the
magnetic field strength. The (upper) blue curve corresponds to T⊥/T‖ = 1, the lower
(red) curve to T⊥/T‖ = 10.

indication that following the particle orbits in three dimensions can be crucial even in two
dimensional equilibria. Note that the orbits were chosen in such a way that the turning
points are at the same location (poloidally and radially) in both cases.

This concludes single particle orbit studies, and we will turn towards the study of the
effect of ion cyclotron heating on equilibrium, dielectric tensor and distribution function for
the rest of this thesis.
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(a) Isotropic case: pressure is a flux surface quan-
tity.

(b) Anisotropic case: pressure has now a poloidal
dependence.

Figure 8.8.: Strong poloidal dependence of the pressure due to anisotropy and off-axis heating.

(a) Tear drop orbit in RZ: almost no differ-
ence.

(b) In 3D: one can clearly see a difference in toroidal di-
rection.

Figure 8.9.: The deepened magnetic well has an impact mainly on the toroidal direction.





9. Testing with many particles

9.1. Monte Carlo operators

9.1.1. Coulomb collisions

After introducing the Monte Carlo operators described in Sec. 6.2, we will have to check
their validity before putting too much confidence in the results. The Monte Carlo method
is based on statistical behaviour including many particles. Thus, we will now have to
increase the number of particles in the simulations. The Coulomb collision operators
have to relax the hot particle distribution function to a Maxwellian with a temperature
equal to that of the thermal background particles in the expected time scale. Fig. 9.1(a)
shows the relaxation of the hot particle distribution function to a distribution equal to that
of the thermal particles. In order to keep the problem as simple as possible, the initial hot
particle distribution was chosen to be a Maxwellian (Bc < B and T⊥/T‖ = 1 everywhere)
but with a temperature (constant in space) which was ten times higher than that of the
thermal particles. The latter too where distributed with a constant temperature in space.
The slight changes in temperature after saturation at about four slowing-down times can
be explained with the fact that only 1’000 particles where used for this simulation and thus
the integral of the distribution function cannot be expected to have a greater precision.

Another test of the Coulomb collision operators is to verify that the system becomes
isotropic after an initially anisotropic state. Fig. 9.1(b) shows the evolution of the energy
as before and the evolution of the radial profile of the anisotropy T⊥/T‖ is plotted in
Fig. 9.1(c). The same equilibrium as before was used, with the difference that the parallel
hot particle temperature was the same as the thermal temperature, whereas the perpen-
dicular temperature was ten times higher in the beginning of the simulation. We can see
in Figs. 9.1(b) and 9.1(c) that the anisotropy needs about five slowing-down times to sat-
urate at the final (and expected) constant value of unity. The simple reason is that the
relevant time scale here is not the energy-relaxation (i.e. slowing-down) time, but rather
the typical time scale of Coulomb pitch angle scattering, which is longer at higher energy
(as is the case for the starting energy in this simulation. See Fig. 6.3).
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(a) The hot particle distribution relaxes to a Maxwellian with the
same temperature as the background thermal distribution.

50 1 2 3 4

6

0

1

2

3

4

5

t/t_s

<T>/T_th

(b) Temperature evolution when initialised with
T⊥ = 10T‖ = Tth.
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(c) Anisotropy T⊥/T‖ profile evolution when ini-
tialised with T⊥ = 10T‖ = Tth.

Figure 9.1.: Coulomb collisions have the effect that any minority distribution function will become
isotropic and have the same temperature as the background species. Anisotropy
denotes the factor T⊥/T‖. The simulations were conducted using one million particles
on a 36x55 grid.
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Figure 9.2.: Orbit evolution due to ICRH. Blue and dashed: Starting passing orbit. Black and dash-
dotted: Banana orbit after 80 ms. Red and solid: Banana orbit after 300 ms. Note the
alignment on the unshifted resonance (black vertical line) at R = Rc as defined in
Eq. (9.1). In grey a few selected flux surfaces.

9.1.2. ICRH operators

Particle orbit

A first check of the ICRH operators can be done by looking at one single particle orbit.
From theory we expect that a trapped single particle’s orbit changes due to the ICRH
kicks in such a way that a passing particle (with a pitch angle not too far away from being
a trapped particle) is first ”converted” into a deeply trapped particle and from there its
tip points move in real space towards the resonance and stay there, spending most of
their time at the turning points along the resonance.76 Fig. 9.2 shows an example of such
an orbit under the effect of ion cyclotron heating. The resonant layer is at the magnetic
axis, i.e. Bc = B0, and the particle is initialised with a pitch angle of µBc/E = 0.48 and
an energy of 130 keV, which defines in this case a passing orbit. During the simulation,
the particle interacts with the background electrons and ions (Coulomb scattering) and
receives random kicks in perpendicular and parallel velocity (ICRH interaction). Due to
these interactions, after 300 ms, the particle energy reaches 1 MeV and describes a large
banana orbit with a pitch angle of µBc/E = 1, i.e. with tip points aligned with the resonant
layer. For this orbit, 5 MW of absorbed power was assumed, and a symmetric wave
spectrum was injected with average (over all kicks and particles) parallel wave numbers
on the resonance of k‖ ∼ ±8 m−1, and the average perpendicular wave number was
k⊥ ∼ 38 m−1.
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Doppler shift

The resonance is Doppler shifted due to the parallel wave length and the particle’s parallel
velocity. Indeed, for fundamental ICRH, the resonance condition is ω = Ω + k‖v‖, where
we recall that ω = qBc/m is the RF field frequency and Ω = QB/m the local cyclotron
frequency at the particle’s position. Now, in large aspect ratio tokamaks, one can approx-
imate the magnetic field dependency with B ≈ B0R0/R as described in Sec. 2.1.1, and
define the (unshifted) resonant major radius using ω = Ω as

Rc =
QB0R0

mω
=

Ω0

ω
R0, (9.1)

with Ω0 the cyclotron frequency at the magnetic axis. The resonance condition then takes
the form

1
Rc
− 1

R
=

mk‖
QB0R0

v‖ =
k‖v‖
Ω0R0

, (9.2)

where R denotes the major radius where the Doppler shifted resonance takes place.
Defining a the maximum minor radius, the left hand side of Eq. (9.2) has extreme values
±1/L ≡ a/(R2

0 − a2), such that if we multiply Eq. (9.2) by L, its values will be within the
interval [−1, 1] and (all other quantities fixed) depend linearly on v‖. A straightforward
test is then if for one given parallel wave vector the resonance is indeed linearly shifted as
a function of v‖. Fig. 9.3 shows this linear dependence of the shift on parallel velocity, as
obtained by extracting the needed information from the Monte Carlo operator in VENUS.
Note that the slight asymmetry in the y-axis (shift) comes from the fact that the unshifted
resonant layer in the realistic magnetic equilibrium and the approximated Rc for creating
the plot do not have exactly the same value, since Bc = B0R0/Rc is not exact.

Power deposition

LEMan only needs to provide VENUS with the wave vector and the electric fields. How-
ever, it also computes the deposited power, and it is therefore possible to compare the
power deposition of LEMan and the power deposition within VENUS. First, we can com-
pute the total energy gained by all the particles inside the plasma during a certain amount
of time. Then, this total gained energy by the hot ions in VENUS must equal the total de-
posited power on the fast population needed for a given simulation (and given as input),
multiplied by that same amount of time. This is a very quick and easy check and it can
in fact be used as a regulator in VENUS: After regular time intervals ∆t, the code checks
the total absorbed power and compares it with the wanted absorbed power. If there is
a difference, the electric field can be rescaled such that for the next time step the ab-
sorbed power should be closer to the expected value. This procedure ensures the correct
normalisation of the electric field, and defines the parameter α in Eq. (6.29a).

Second, we can save the location and amplitude of the power deposition each time
a kick is given in the Monte Carlo operator. At the end of the run, one can create a
two dimensional plot of the deposited power and compare that to a similar plot from
LEMan. This is done in Fig. 9.4 with flat temperature (T = 5 keV) and density (nD =
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Figure 9.3.: Verification of the Doppler shifted resonant layer (9.2) as a function of v‖. nϕ = −27
and L = (R2

0 − a2)/a.

4× 1019 m−3) profiles and a minority heating scenario of 2 % hydrogen in deuterium. The
two dimensional power deposition plots and the power density profiles are very similar.

9.2. The statistics module

9.2.1. Splitting mechanism

In Chapter 7 we described how VENUS deals with the fact that the minority population
is not entirely heated but evolves into a thermal part and a heated tail. Namely, a critical
energy is defined, below which particles are considered Maxwellian (thermal), and above
which they are considered bi-Maxwellian and hot, as described in Eq. (7.3). Fig. 9.5
shows a scan of the coefficient x in Eq. (7.3), i.e. different multiples of the electron
temperature as critical energies. We chose to plot the energy distribution in terms of
f (E)

√
E, corresponding to the number of particles at a given energy (i.e. integrated over

real space and pitch angle). The energy is represented in a logarithmic scale, such that
the thermal part and the tail are visible as two distinct local maxima. The black curve
shows the initial (thermal) distribution and profile (same temperature as background and
isotropic).

In Fig. 9.5(a), one can see that a critical energy of two and three times the electron
temperature is too small. Too large a fraction of the thermal minority component (solid
line) is assigned to the hot part, which is peaked far away from the tail (which is around
100 keV in that case). In that plot, a factor of five seems to be the correct choice for
representing the thermal minority part. This is confirmed by the second plot, Fig. 9.5(b),
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Figure 9.4.: Power deposition comparison between the wave code LEMan and the Monte Carlo
code VENUS.
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(b) The resulting thermal temperature profiles.

Figure 9.5.: Changing the critical energy for splitting the distribution function. Conditions (7.3) are
used for the splitting and in the legends the value of the coefficient x indicated.
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Figure 9.6.: VENUS output of the tail (dotted lines) compared to resulting analytical bi-
Maxwellian. Clearly the factor of ten (green,triangles) is closer than the factor of five
(brown,circles).

where the temperature profile for the factor of five is closest to the electron temperature
(black). However, the main goal of this splitting is to be able to represent the tail as
accurately as possible with the bi-Maxwellian model. As one can see from Fig. 9.5(a), the
tail is peaked inside the initial thermal curve when using a factor of five, and representing
the tail (outside the black curve) will be difficult with this splitting. This is what is shown
in Fig. 9.6: The line representing the case of Ec = 5Te (brown,circles) incorporates a
significant number of thermal particles (dotted line), and the analytical modeling for VMEC
and LEMan (continuous lines) is further away from the form of the VENUS tail than the
case Ec = 10Te (green,triangles). It becomes clear that choosing the value of Ec is a
trade-off between keeping the thermal part at the same temperature as the background
and trying to get the analytical model to agree as much as possible in the tail. It is
important to remember here that the particle distribution in VENUS is not modified with
the splitting and is re-loaded at every iteration the way it was at the end of the previous
iteration (i.e. non-Maxwellian). With that, the exact choice of the critical energy is not as
crucial as it seems, since the real minority distribution in VENUS is not changed. It is only
the model distribution function applied to VMEC and LEMan which changes. Another
note to make is that these checks were done for low power. For higher power, the tail
will be more clearly separated from the bulk, and the choice for the critical energy should
become much more obvious.
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Figure 9.7.: Scan using different number of particles in VENUS. The density factorN (s) has been
recreated directly after initial loading and compared to the input value N0(s). The
scan is performed from 105 to 8×106 particles with a grid size of 72x55.

9.3. Numerical behaviour of VENUS

9.3.1. Number of particles

The number of particles required in VENUS depends to a large extent on the chosen
simulation. Depending on the heating scenario, pressure and density profiles (and thus
also T⊥/T‖ and all other derived quantities) can show strongly localised maxima in both
radial and poloidal direction. It is thus helpful to have a rather high number of grid points,
up to 96x75 (radial x poloidal). Additionally, when iterating between the codes, smooth
profiles are needed at every iteration. This asks for a high number of particles. However,
when studying a low power scenario, or a case where broad maxima can be expected in
the profiles, fewer grid points can be used, decreasing the required number of particles.
Fig. 9.7 shows a scan over the number of particles using a 72x55 grid. For this check,
we loaded the particles and directly created the VENUS outputs, without advancing the
orbits in time. The resulting outputs should be equal to the inputs. Fig. 9.7 then gives the
relative difference between input and output of the density factor N (s) as an example,
and we do not consider the values of the radial variable s > 0.6 for more clarity. The
relative error diminishes for higher particle number, but the the curves of four and eight
million particles are rather close to each other and not much different from two million,
suggesting a certain saturation.
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Figure 9.8.: Speedup of the VENUS code from 256 to 4096 processors (strong scaling). The
straight line shows perfect scaling.

9.3.2. Scaling

Advancing the distribution function is the most time consuming part of SCENIC. Indeed,
a two dimensional equilibrium takes a few seconds on one single processor for VMEC to
compute. LEMan needs several minutes using two multicore compute nodes to add the
wave field information. In contrast, VENUS requires of the order of tens of thousands of
CPU hours for a converged solution (multiple iterations included), depending of course on
the number of markers needed. In a typical run, five million markers had to be used and
a total converged simulation took about 30’000 CPU hours. It is therefore important that
VENUS scales well on high performance computers up to thousands of processors. The
markers within VENUS do not interact with each other and thus the code is trivially paral-
lelised by simply distributing the total number of markers among the processors. However,
the simulation can of course not be done completely without communication among the
processors. In the beginning, the equilibrium and wave field have to be read by all the pro-
cessors. At the end of every VENUS simulation, the self-consistency modules (described
in the next section) need the information of all the markers for integrating the distribution
function and re-creating new inputs for VMEC and LEMan. Here, all information needed
is given to the master processor and treated by the latter only. Again, the parts not par-
allelised use a few minutes of wall clock time compared with the tens of hours of the bulk
of the simulation. Fig. 9.8 shows the speedup of parallelisation over thousands of pro-
cessors and proves very satisfactory strong scaling. The reason why scaling is slightly
deviating from perfect is that during the simulation, diagnostics are run at constant time
intervals. These diagnostics involve communication among the processors, slowing down
the simulation a little for the benefit of diagnostics information.



10. Benchmarking against SELFO

As described in Chapter 3, there are several other code packages developed for the nu-
merical study of ICRH. An important test for a new code is always the comparison to
other, well established codes, as a means of validation. SELFO39 comprises a combina-
tion of the wave code LION35,36 and the Monte Carlo code FIDO,37 and has been applied
to modelling JET experiments for many years. Its ability to deal with non-standard orbits
of the highly energetic resonant ions has proved to be an essential part of its success.
The similarity of the treatment of the particle orbits, including the Monte Carlo approach,
makes that code package the perfect candidate for a benchmark of SCENIC.

10.1. SELFO vs. SCENIC

Even if the Monte Carlo and particle orbit approaches are similar, there are still differences
between the two code packages SELFO and SCENIC. Three dimensional geometries can
of course not be treated by SELFO, and we will only discuss differences for axisymmetric
cases. Besides the fact that SCENIC is the only code evolving the equilibrium in the
self-consistent loop, even the treatment of the initial equilibria is different from SELFO. In
particular, SELFO is based on an axisymmetric, circular equilibrium with concentric flux
surfaces without Shafranov shift, i.e.

RSELFO = R0 + r cos θ (10.1a)

ZSELFO = r sin θ, (10.1b)

compared to the shaping expansion in Eq. (2.13). Therefore, if we want to create similar
equilibria in SCENIC and SELFO, we will have to assume circular boundary conditions,
and consider scenarios with small pressure gradients. Moreover, we will adjust the safety
factor profile in order to minimise the Shafranov shift and higher order shaping coefficients
as defined in the shaping expansion and the equilibrium relations (2.27). Another approx-
imation in the SELFO equilibrium is that B = B0R0/R, such that the lines of constant
magnetic field (and thus also the resonant layer) are exactly vertical in RZ coordinates.
When it comes to the wave field calculations, the wave code LION included in SELFO
contains Finite Larmor Radius (FLR) effects and can compute all higher harmonic reso-
nances. Here, the coupling between LION and FIDO has been achieved in such a way

97
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that the Monte Carlo code FIDO, which contains the full distribution function, treats the
dielectric tensor kinetically, i.e. makes use of the full distribution function together with
the parallel and perpendicular wave numbers to compute the warm dielectric tensor as
described in Ref. 39. The value of the dielectric tensor is then fed to LION for updating
the wave fields. Here, a parallel wave vector without upshift, k‖ = nϕ/R is employed to-
gether with the dispersion relation of the fast magnetosonic wave, Eq. (5.4). With this, all
harmonics can be included, i.e. the competition of multiple ion species with resonances
at different harmonics is considered. However, LION does not include mode conversion,
such that e.g. the ion-ion hybrid resonance cannot be modelled. For this reason, SELFO
is, just as SCENIC, limited to minority (besides intrinsically inefficient fundamental major-
ity) heating scenarios, where the ion-ion hybrid resonance does not appear. The inclusion
of higher harmonic heating is, however, a feature which is not included in LEMan, and we
will therefore limit this benchmark to fundamental minority heating. Finally, the Monte
Carlo code FIDO does not follow the guiding centre orbits, but uses an orbit-averaged
scheme with the three constants of motion E, µ, Pϕ. Indeed, every point in this constants
of motion space, plus the sign of v‖, represents one orbit, and it is therefore not required
to follow these orbits. The interactions with the background and the waves are then intro-
duced with orbit-averaged operators,77,78,37 acting on the three constants of motion, and
assuming the simplified equilibrium given by Eq. 10.1). In order to treat realistic axisym-
metric and non-axisymmetric shaped plasmas, VENUS instead follows guiding centre
orbits. Pϕ is not considered a constant of motion, since it is linked to the symmetry in
toroidal direction, and not a constant of motion if one breaks axisymmetry. Moreover, the
Monte Carlo operators are used in their local form, as described in Chapter 6. We will
therefore in all stages have to check the results of the two code packages, instead of
simply generating final results for comparison.

10.2. Finding an equilibrium

The magnetic equilibrium is the basis of everyone of our simulations. It not only defines
the unperturbed particle orbits, but also the wave propagation and absorption. In order
to compare simulation results from SCENIC and SELFO, we therefore need to define a
suitable equilibrium. We have to find an equilibrium which is simple, and compares well
between SELFO and SCENIC. For simplicity, the density and temperature (and thus the
pressure) profiles are chosen to be constant, and thus the only free parameter to minimise
the Shafranov shift is the safety factor. The numerical values are ne = 4× 1019 m−3 and
Te = Ti = 5 keV. With the given pressure, the best safety factor was found to vary only
very little from q = 3 on axis to q = 2.7 at the edge, such that the internal inductance
contribution to the Shafranov shift is negligible. Note that we can only fix the values of
q on the magnetic axis and at the plasma edge to be the same, but not the complete
profile, due to a different treatment in the equilibrium calculations. The magnetic field
strength is B0 = 3.45 T on axis. Note that the equilibrium is also described in Appendix
D.1. With these profiles, the Shafranov shift in VMEC was ∆(a) = 4 cm. We use a low
field side (LFS) heating scenario and match the magnetic axis and the complete LFS of
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Figure 10.1.: Comparison between the second and third derivatives of the phase ν defined in
Eq. (6.30) and entering the interaction times τ1 and τ2 defined in Eqs. (6.33a) and
(6.33b). The x-axis is the pitch angle Λc ≡ µBc/E. The second derivatives are
almost exactly equal, whereas the third derivative in VENUS is more noisy due to
the variable time steps.

the equilibrium. The equilibrium for SELFO is concentric with R0 = 3 m and minor radius
a = 1 m, such that the midplane edges are located at Rmin = 2 m and Rmax = 4 m. With
the Shafranov shift of 4 cm in VMEC, the magnetic axis at R0 = 3 m and the outer edge
at Rmax = 4 m, the minor radius is a = 1.04 m and Rmin = 1.92 m. The bulk plasma is
composed of deuterium and a 2 % hydrogen minority heating scheme is investigated.

10.3. Monte Carlo RF operators

FIDO comprises orbit averaged operators as defined in Ref. 78, whereas VENUS includes
the local operators defined in Sec. 6.2.2, and it is prudent to compare the elements of
these operators. For these comparisons, the magnetic field strength has been multiplied
by a factor of ten, i.e. B0 = 34.5 T in order to diminish the orbit widths, since we want
to compare the operators at one given radial position. Of course, also Bc and the RF
frequency have been multiplied by a factor of ten. However, the wave codes have not
been applied to this scaled equilibrium, but, in order to further simplify the comparison, the
wave numbers and electric field have been set to constant values. Explicitly, we employ
k‖ = nϕ/R with nϕ = −27, k⊥ = 30 and E± = 1 V/m. Fig. 10.1 shows the comparison
of the second and third time derivatives of the phase defined in Eq. (6.30), with the first
derivative being ν̇ = ω − k‖v‖ − nΩ. The second and third derivatives appear in the
computations of the interaction times τ1,2 defined in Eqs. (6.33). For these comparisons
we loaded all particles at one given radial position, ρ ≈ √s = 0.3 and ρ ≈ √s = 0.7
for VENUS and R = 3.312 m and R = 3.755 m for FIDO, and on the outboard midplane
θ = 0. We also fixed the particle energy to 1 MeV. The pitch angle was chosen at
random and no actual heating was applied. The values of ν̈ and

...
ν are plotted in Fig. 10.1

as functions of the pitch angle Λc = µBc/E, which equals unity at the resonant layer.
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Figure 10.2.: Comparison between the interaction time τ as defined in Eqs. (6.33a) and (6.33b).
The x-axis is the pitch angle Λc ≡ µBc/E. Coloring is the same as in Fig 10.1, but
the results match so well that not all curves can be seen. The lower (red) curve is
the interaction time for the ρ = 0.7 radial position, where only the tip points require
the Airy function close to Λc = 1. The upper curve shows the interaction time for
ρ = 0.3, where the Airy function has to be applied more often. In particular, around
Λc = 0.1, where a tangent resonance of passing particles forces ν̈ to vanish.

The match is very good, even if the values of
...
ν are rather noisy in VENUS. The latter is

mainly due to the variable time step, which makes precise second derivatives of ν̇ very
difficult. We can then compare the interaction time τ defined in Eq. (6.31), which is done
in Fig. 10.2. Here, the match is almost exact and it is difficult to distinguish the VENUS
and FIDO curves in the figure. The upper (green) curve corresponds to the inner radial
position (ρ = 0.3), the lower (red) curve the outer position (ρ = 0.7). This shows why it is
important to consider both radial positions: the outer position has one region where the
Airy function has to be used, that is around Λc = 1, where the tip points of the resonant
trapped particles are aligned with the resonant layer. The inner position, however, shows
a distinct feature around Λc = 0.1, where a tangent resonance of passing particles arises,
and the Airy function has to be employed as well. By tangent resonance we mean that a
particle’s orbit just satisfies the Doppler shifted resonance condition ν̇ = 0 at one point on
the orbit, namely at θ = 0. There, the resonant layer is exactly tangent to the orbit, hence
the name. This shows clearly that the Airy function does not only have to be applied at
the turning points, but also when tangent resonances appear.
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Figure 10.3.: Comparison between the bounce times in FIDO and VENUS for 1 MeV particles. In
FIDO, only resonant particles are considered for this plot, whereas VENUS shows
the bounce times for all particles at the given radial position, i.e. also non-resonant
deeply trapped particles on the LFS of the resonance. This is why the VENUS
pitch angle Λc = µBc/E extends to higher values. For the resonant particles,
the bounce times match reasonably well, and main differences are at the trapped-
passing boundary, where the real bounce time goes to infinity. In FIDO, too large
bounce times at the trapped-passing boundary are prevented artificially, explaining
parts of the discrepancy.

10.4. Bounce time

For the orbit averaged operators of FIDO, the bounce time has to be determined. The
bounce time is the time a particle takes to complete one poloidal orbit, and it is found in
FIDO by solving analytic expressions in terms of the constants of motion µ, E, Pϕ. These
expressions can be solved exactly, if the magnetic field is of the form B = B(R), as
assumed in the SELFO equilibrium. We can check the validity of the approximation in the
magnetic field (or, equivalently, the match of the two equilibria), by checking the bounce
times determined by FIDO and VENUS. VENUS follows the full guiding centre orbits,
and the bounce time can be computed by saving the time it takes a particle for one
poloidal revolution. Fig. 10.3 shows a comparison of the evaluated bounce times as
a function of the pitch angle. Note that the FIDO results show only the bounce time
for resonant particles, while the VENUS plots include the bounce time for all particles
regardless of whether they interact with the wave. Hence the values of Λc are larger
for the VENUS curves, representing deeply trapped particles on the low field side of the
resonant layer, never seeing the resonance during their evolution. The bounce times
fit well, except at the trapped-passing boundary, where the real bounce time becomes
infinite, and FIDO’s algorithm prohibits too large values. Small differences in equilibrium
might account for the rest of the differences, since the trapped passing boundary is very
sensitive to the magnetic field strength, and small deviations might result in a passing
or a trapped particle. In terms of fraction of particles, this region is very small in a full
simulation, and these differences should not affect the final results significantly.
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(a) LION (b) LEMan

Figure 10.4.: Electric fields |E+| in the two codes LION and LEMan. The black solid boundary
sketches in both plots the VMEC boundary.

10.5. The wave codes

If we want to add the wave fields computed by the wave codes instead of using constant
values as in the previous section, we shall first compare the outputs of the wave codes.
We use again the magnetic field of B0 = 3.45 T as mentioned in the equilibrium descrip-
tion. The antenna is placed on the low field side, extending in poloidal direction up to
θant = ±26◦ in geometrical angle (not Boozer angle). The toroidal mode number is again
chosen to be nϕ = −27, i.e. co-current injection. Note that in LION, the antenna is placed
at a certain distance from the plasma, with a vacuum separating them, whereas in LE-
Man, the antenna touches the plasma. The resulting left hand polarised electric fields are
given in Fig. 10.4. The important features for the heating are very similar. Both fields have
a local minimum just to the right of the resonant layer (black/white line), and two distinct
maxima are visible just to the left of the resonance. The more twisted form of the wave
field from LEMan is probably due to a difference in the safety factor profile. The result-
ing power deposition is plotted in Fig. 10.5. Both codes show two main local maxima of
power deposition in the poloidal cuts. The most important one just inside, the secondary
just outside the resonant layer. The deposition in LEMan is a little broader, and an addi-
tional distinct maximum is visible a bit further from the centre, around (ρ = 0.4), which
is missing in LION. This is consistent with the differences in the wave fields of Fig. 10.4.
The radial power density profiles are normalised to match the maximum value of the two
codes, which is why there are no unit indications on the y-axis. In these radial plots, one
can see that the profiles of LEMan and LION are displaced by about half a wave length,
such that the marked peak in LION is in fact distributed among the two maxima in LEMan
just inside and just outside the peak of LION around ρ = 0.2. This explains also why in
the radial profile from LION three different local maxima are present, whereas in LEMan
only two are distinguishable. This difference could be due to either the difference in safety
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Figure 10.5.: Power deposition in the two codes LION and LEMan.

factor profile, the B = B(r) approximation in SELFO, or, more likely, the differences in
how the antennas are modelled in the two codes.





11. Low power simulations

After the previous tests of the operators, the statistics module and examining the nu-
merical behaviour, we are ready to apply SCENIC to ICRF cases. As first examples we
will consider 1 % helium-3 (He3 ) minority heating in a deuterium (D) plasma, and apply
3 MW of power. With this choice, the energetic tails will not be very large, and we will be
able to check the consistency of the code package without going to its limits. The equilib-
rium is JET-like, with major radius R0 = 2.99 m and magnetic field on axis B0 = 2.94 T. A
detailed description of the equilibrium is given in Appendix D.2. This equilibrium is similar
to JET shot 76189, where He3 minority heating has been applied at the q = 1 surface
(r/a ≈ 0.25) for sawtooth control in Refs. 20 and 79. The latter are our motivation to
choose this particular scenario, since we know what to expect. However, we do not try to
directly compare the results from our simulations to the experimental and numerical data
described in those references.

As stated above, we concentrate on this low power scenarios mainly to asses the fea-
sibility of the iterated scheme of SCENIC by using a scenario where we know what kind
of results to expect from experiment. An important part of this section is devoted to the
comparison between the raw distribution function evolving in VENUS and the analytical
model bi-Maxwellian on which the equilibrium and wave field calculations are based.

For avoiding confusion, we introduce the term ±90 ◦ phasing of the injected wave field.
Here, +90 ◦ phasing will always mean co-current injection, i.e. nϕ < 0 and k‖ < 0. −90 ◦
then denotes cases where the RF wave is injected in the counter-current direction, i.e.
nϕ > 0 and k‖ > 0. Again, the signs of the toroidal mode and parallel wave vector are
opposite the Ohmic current, which is why we introduce the new labelling.

11.1. Iterated scheme

As stated in Sec. 7.1, the main diagnostics for the convergence of the iterated scheme is
the mean energy per particle defined in Eq. (7.1). Before looking at the converged results,
we will check if iterations are indeed needed, and if so, whether the result depends on
the number of iterations and the length of each iteration. The above mentioned scenario
is employed, with the resonant layer on the high field side of the magnetic axis. Fig.11.1
shows the evolution of the mean energy as a function of time, normalised to the electron
slowing down time, for the simulation, but with different number of iterations. In all cases,
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Figure 11.1.: Convergence of the iterated scheme. Comparison of simulations without iterating
(one iteration) and several iterations shows that even if they both reach equilibrium,
the final results are different.

the system reaches a steady-state after a few (electron) slowing-down times. However,
Fig. 11.1 shows clearly that iterations are indeed necessary, since the final results differ.
The difference is obvious in Fig. 11.1, and it is also visible in the integrated moments
of the distribution function. Confirming the difference in energy content of the minority
species, Fig. 11.2 gives the difference in the energy distribution f (E)

√
E, i.e. the num-

ber of particles at a given energy. For the chosen scenario, two iterations are enough,
since convergence is attained against simulations with more and shorter iterations. One
requires more iterations for higher power simulations. The splitting parameter is x = 10
in both plots, and clearly the simulation with two and more iterations shows a high energy
tail (red, squares) peaked at higher energy than the simple simulation with just one itera-
tion. The difference in power deposition can be seen in Fig. 11.3. While the deposition is
rather narrow along the resonant layer for one iteration (Fig. 11.3(a)), it becomes some-
what wider at the end of the converged simulations using several iterations (Fig. 11.3(b)).
Here,the difference between one iteration and several iterations may be attributed to the
Doppler broadening of the resonance at higher energies and a change in electric field
polarisation during the iterated simulations. Also, the radial deposited power density in
Fig. 11.3(c) reflects the difference in local maxima of Fig. 11.3, and this plot will give an
explanation for the difference in hot particle density, Fig. 11.4(b).

Fig. 11.4 illustrates the differences occurring in the profiles of pressure and density.
For the cases using multiple iterations, the pressure is generally higher than for the case
with one iteration, confirming the higher energy content proportional to the surface under
the curves of Fig. 11.2. The density plot with one iteration clearly shows local maxima,
separated by a regular distance. It is important to remember that for these plots, only the
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Figure 11.2.: Comparisons of the energy distribution f (E)
√

E. The tail of the iterated simulations
is peaked just above 100 keV, whereas the tail in the simple simulation with one
iteration has its maximum well below this mark.

resonant particles with energies higher than Ec are considered. A direct relationship be-
tween the hot particle density (Fig. 11.4(b)) and the radial power deposition (Fig. 11.3(c))
should be expected, since particles are heated where the power is absorbed. In the be-
ginning of the simulation, the minority is thermal and its density in the resonant region
rather low. Single pass absorption is therefore not very important, and the RF wave takes
on the structure of a standing wave. The initial power density profile of Fig. 11.3(c) is
indeed characteristic for a standing wave. The important heating around r/a = 0.25 in
the beginning of the simulation (during the complete simulation for one iteration) creates
a main hot particle density peak. The changed density then changes (together with the
action of enhanced anisotropy) the power deposition after the initial iteration, enhancing
single pass absorption. Thus, the standing wave patterns disappear , resulting in the
shown differences between one and multiple iterations. These plots thus demonstrate
that an iterated scheme is necessary for finding consistent solutions when performing ion
cyclotron heating simulations.

After these convergence considerations, we will now concentrate on the converged
iterated results for low and high field side application of 3 MW power.

11.2. Distribution function

At the heart of the self-consistent simulations in SCENIC is the evolution of the fast parti-
cle distribution function. We will therefore first investigate the changes induced in the lat-
ter and compare the original distribution obtained in VENUS to the bi-Maxwellian model
distribution from the equilibrium and wave field computations.



108 11. Low power simulations

(a) One iteration. (b) Last of 16 iterations.
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(c) Radial (poloidally averaged) deposited power density. Note that the grid points for
the two curves are not at the same positions.

Figure 11.3.: Power deposition in VENUS. The power deposition becomes broader, and the single
maxima along the resonance of (a) are less isolated in (b). The sharp border in (b)
is due to the limited diagnostics grid size.
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Figure 11.4.: Comparing integrated moments of the distribution function for pressure and density
between one (red) and 2-16 (blue) iterations. Higher pressure is consistent with
higher energy content in Fig. 11.1. The difference in density profiles (only the hot
particle density is plotted) is directly linked to the difference in power deposition in
Fig. 11.3.

11.2.1. Energy distribution

A convenient way of representing the distribution function where a high energy tail devel-
ops is the distribution in terms of energy, f (E)

√
E, vs. log 10(E), which corresponds to

a histogram showing the relative number of particles at a given energy. Fig. 11.5 shows
such plots for the four scenarios of Low Field Side (LFS), High Field Side (HFS), co-
(+90 ◦) and counter-current (−90 ◦) wave injection. The minority distribution function is
divided into a thermal and a hot part as described in Sec. 7.2, with Ec = 10Te. The
hot part is shown in red/squares, the thermal in blue/triangles. The model (green/hollow)
shows how well the obtained bi-Maxwellian agrees in the high energy tail. The thermal
part of the distribution function is modelled Maxwellian, but we concentrate on the mod-
elling of the hot anisotropic tail. The latter is one of the specialities of SCENIC and we
therefore do not discuss the Maxwellian thermal part in further detail. In general, the
VENUS tail is broader than the bi-Maxwellian model, but the differences are rather small.
The tails for LFS heating are more pronounced than for the HFS cases, with peaks well
above 100 keV, whereas the HFS tails peak at 20− 30 keV (remember that the x-axis
is in logarithmic scale). Also, +90 ◦ injection is more efficient than −90 ◦ in terms of the
quantity of hot against thermal population.



110 11. Low power simulations

   2 3 4 5 6

0.9

0

0.3

0.6

log10(E) [eV]

energy distribution [au]
total
thermal
hot
model

(a) HFS, +90 ◦, 16 % hot

   2 3 4 5 6

0.9

0

0.3

0.6

log10(E) [eV]

energy distribution [au]

total
thermal
hot
model

(b) HFS, −90 ◦, 11 % hot
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Figure 11.5.: Comparison of the energy distribution f (E)
√

(E), i.e. the distribution integrated
over space and pitch angle multiplied by the Jacobian. The hot minority is defined by
the particles having an energy higher than 10Te(s) for any given radial position. The
largest tail arises for LFS +90 ◦, the lowest for HFS−90 ◦. The model (green,hollow)
corresponds to Eq. (4.1) for the hot minority.
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11.2.2. Velocity distribution

Plotting the distribution as a function of v‖ and v⊥ at a given position in space can provide
a somewhat more detailed view of the effects of the RF field. An isotropic Maxwellian
would simply draw circles in such a plot, and it is therefore very straightforward to see the
difference between the distribution function generated by VENUS and a pure Maxwellian
in such a plot. The bi-Maxwellian model implemented in SCENIC, Eq. (4.1), however,
is not as simple, and we need to compare the plots directly in order to quantify to what
extent the analytical model represents an approximation. Considering Eq. (4.1), we recall
that we can model asymmetries in parallel velocity, v‖ → −v‖, in the limit where they
correspond to finite orbit widths. For the contour plots, a spatial position has to be chosen.
This is in general on the outboard midplane, θ = 0. If we use the poloidal flux function as
radial variable for convenience, we can write the distribution function in terms of ψ, v‖0 =
v‖(θ = 0), and v⊥0 = v⊥(θ = 0) as

Fh(ψ, v‖0, v⊥0) = N (ψ)
(

mh

2πT⊥(ψ)

)3/2

exp

− mv2
⊥0

2T⊥(ψ)
Bc

B(ψ0, θ = 0)
−

m
∣∣∣v2
‖0 + v2

⊥0 (1− Bc/B(ψ0, θ = 0)]
∣∣∣

2T‖(ψ)

 . (11.1a)

Recalling the discussion about finite orbit widths in Sec. 2.2.2, and in particular Eqs. (2.42)
and (2.47), we can show that the distribution function at the average radial position ψ
contains contributions from all orbits with radial positions ψ0 and orbit width ∆ψ defined
by

ψ = ψ0 + ∆ψ ≈ ψ0 +


m
Q

[
R(ψ0, θ = 0)v‖0 + R0v‖(ψ0, θ = π/2)

]
, passing

m
Q R(ψ0, θ = 0)v‖0 , trapped

(11.1b)
If we write the distribution function (11.1)) in terms of ψ = ψ0 + ∆ψ(v‖0), and assume
small orbit width, we can Taylor expand around ψ0 to get

Fh(ψ) ≈Fh(ψ0) + ∆ψ(v‖0)
∂Fh

∂ψ

∣∣∣∣
ψ=ψ0

=Fh(ψ0) + ∆ψ(v‖0)

[
Fh(ψ0)
N (ψ0)

∂N
∂ψ

∣∣∣∣
ψ=ψ0

+
Fh(ψ0)
T⊥(ψ0)

(
b

T⊥(ψ0)
− 3

2

)
∂T⊥
∂ψ

∣∣∣∣
ψ=ψ0

+
Fh(ψ0)
T‖(ψ0)

c
T‖(ψ0)

∂T‖
∂ψ

∣∣∣∣
ψ=ψ0

]
, (11.2)

where b = mv2
⊥0Bc/2B(ψ0, θ = 0) and c = m|v2

‖0 + v2
⊥0 (1− Bc/B(ψ0, θ = 0)] |/2.

From the definition of ∆ψ(v‖0) in Eq. (11.1b), the asymmetry in v‖ of the distribution
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function Fh(ψ) can now be attributed to the velocity dependence (including the sign) of the
radial excursion ∆ψ. It is proportional to the orbit width ∆ψ(v‖0) and the radial derivatives
of N , T⊥ and T‖. Consequently, thanks to the way of writing the distribution function in
terms of an orbit averaged radial variable, currents due to finite orbit width effects can be
captured in the model distribution. On the other hand, processes which create a large
excess of co- or counter-passing ions, independently of their orbit width, are not included
in the model. The most important example of such a process is undoubtedly the Fisch
currents.69 If a wave with an asymmetric toroidal spectrum is injected into the plasma,
particles with a parallel velocity having the same sign as the wave number will interact
with the wave. As a result, more particles moving in the same direction as the wave
are heated than particles moving in the opposite direction. Particles with higher energy
suffer fewer Coulomb collisions due to the energy dependency of the collisionality, and
the distribution function becomes asymmetric with respect to parallel velocity. As a result,
currents are generated with the same sign as the wave vector. Hence, if we inject one
co-current propagating wave into the plasma, we would expect positive passing current
to develop, whereas for a counter-current propagating wave, the passing current would
be negative. Another example is asymmetric detrapping of resonant ions due to wave-
particle interactions. We will show that more co-passing particles are generated if the
heating is applied on axis or on the low field side, resulting in a potentially large passing
current. This chapter confirms these effects and that in such cases, the induced currents
will not be consistent with the model distribution function. This is an important reason why
the toroidal current is directly fed to VMEC, without the fitting to the model distribution.
Recall that the sign definition is such that RF induced current is positive if it is in the same
direction as the Ohmic current and negative otherwise. Thus, the contour plots f (v‖, v⊥)
have been created by changing the sign of v‖ corresponding to a negative Ohmic current.
In order to consistently include the finite orbit width effects in the bi-Maxwellian in these
comparisons, we use the lookup table described in Sec. 6.3 for reloading the marker
distribution in VENUS according to Eq. 11.1) at the end of each converged simulation.
Figs. 11.6 and 11.7 show the contour plots at the outboard midplane at r/a = 0.25. For
the HFS cases, this is exactly opposite the heating location, at the same distance from the
magnetic axis, but B , Bc at that location, so that the characteristic ear-shaped contours
can be seen. For the LFS, the plots are exactly at the position the heating is applied, i.e.
B = Bc, and we expect more oval contours. These features are described in more detail in
Ref. 50. In both cases, the maximum anisotropy can be expected to be located around the
position chosen for the plots. Note that the model plots have not been created analytically,
but by reloading all the particles in VENUS using the model distribution function. From
the VENUS distributions Figs. 11.6(a) and 11.6(c) we see again what we discussed when
considering the energy distribution, namely that the high energy tail for +90 ◦ phasing is
larger than for −90 ◦ phasing. The asymmetries of the VENUS contours are missing in
the model at that particular radial position, and considerably higher current due to passing
particles is present in the VENUS distribution function. Nevertheless, the characteristic
ear-shaped contours can be seen in all HFS plots of Fig. 11.6, and the elongated oval
shaped contours in the LFS plots of Fig. 11.7. Such contours can only be described
analytically by a bi-Maxwellian containing a poloidal dependence, explicitly made visible
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Figure 11.6.: Contour plots of the distribution functions coming from VENUS and modelled by the
bi-Maxwellian (4.1) for HFS heating at r/a = 0.25. The spatial position was chosen
to be at the same distance from the magnetic axis as the heating location, but on
the LFS, such that the ear-shaped contours emerge. The dashed lines denote the
trapped passing boundary, and the velocities are normalised to the local thermal
velocity vth = 4.2× 105 m/s.
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Figure 11.7.: Contour plots of the distribution functions coming from VENUS and modelled by
the bi-Maxwellian (4.1) for LFS heating at r/a = 0.25. The spatial position was
chosen to be at the same location as the heating location (r/a = 0.25), such that the
contours are oval instead of the ear-shapes. The dashed lines denote the trapped-
passing boundary, and the velocities are normalised to the local thermal velocity
vth = 4.2× 105 m/s.
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Figure 11.8.: Pressure profiles for the HFS heating scenarios. Co-current injection (+90 ◦)
produces higher pressure than counter-current (−90 ◦), which is consistent with
Fig. 11.5, and the −90 ◦ pressure profile is broader. Note the scale difference be-
tween the two plots.

in terms of Bc/B in Eq. (11.1) . We can conclude that the model distribution represents
indeed a very satisfying approximation if one keeps in mind the discussed features which
cannot be included. We will now turn to some of the integrated moments of the distribution
function, and also compare the VENUS outputs to the model.

11.3. Moments of the distribution function

11.3.1. High field side heating

The higher energy content in Fig. 11.5(a) compared to Fig. 11.5(b) can be seen in the
resulting pressure profiles, Fig. 11.8. Indeed, the maximum pressure of the HFS +90 ◦
case is about five times higher than for the HFS −90 ◦ case, and the −90 ◦ pressure
profile is not only lower, but also broader than the +90 ◦ profile. This is in agreement with
the findings in Ref. 67, where it was shown experimentally that the radial pressure profile
is larger in amplitude and more peaked for +90 ◦, and lower and broader for −90 ◦. This
effect is due to the RF particle pinch in the presence of toroidally propagating waves, as
shown in Eqs. (6.40) and (6.41). Note how well the bi-Maxwellian models the parallel and
perpendicular currents. The slight deviations in peak perpendicular pressure are mostly
due to the applied smoothing to the radial profiles fed to VMEC and LEMan. Especially
in the +90 ◦ case, anisotropy has been prevented from peaking too much. We chose
a conservative profile smoothing to make sure that the effects are rather under- than
over-estimated.

The total toroidal current is directly fed into the equilibrium without approximations due
to the model distribution function, as described in Sec. 7.4. We can plot the current den-
sities due to passing and trapped particles, allowing for more detailed physical studies.
This is shown in Fig. 11.9. As mentioned before, the model distribution function is formu-
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Figure 11.9.: Current profiles for HFS heating scenarios. Trapped particle current is mainly due
to finite orbit effects, which can be modelled to a large proportion. However, the
passing current is dominating, created through detrapping of resonant particles.

lated in terms of orbit averaged radial position, allowing for finite orbit width effects. We
can therefore plot the current densities the model allows for, but it is important to keep
in mind that these model currents are not required for any computations in SCENIC. The
currents coming from VENUS show high (dominating) current due to passing particles,
which changes sign when the phasing of the RF field changes. This passing current can
be attributed mainly to the above discussed Fisch currents, which are expected to be
in the direction of wave propagation, and is exactly what we see in Fig. 11.9. Another
(smaller) contribution can be assigned to the particles located just below the passing-
trapped boundary in Fig. 11.6, i.e. it is coming from detrapping resonant trapped particles.
For HFS scenarios, detrapping is symmetric with respect to the resonant layer position,
with k‖v‖ > 0 for B < Bc and k‖v‖ < 0 for B > Bc (due to the Doppler shifted resonance
ω = Ω + k‖v‖).80 The result is co- (counter-) passing current with v‖ < 0 (v‖ > 0) inside
the resonant layer (since then B < Bc along the complete flux surfaces) for co- (counter-)
injection, i.e. k‖ < 0 (k‖ > 0). The model does not contain the Fisch currents or detrap-
ping, but the finite orbit width effects. Therefore, we expect the bi-Maxwellian to include
the trapped particle current, and the current from barely passing particles. This is why the
passing current is much lower in absolute values and does not change sign when going
from +90 ◦ to −90 ◦. The trapped particle current, however, is due to finite orbit widths,
and does not change sign between the co- or counter-current phasing cases. This is to
be expected, since trapped particles always propagate co-current on the outer leg, and
counter-current on the inner leg, resulting in negative current inside and positive current
outside the resonance.80 Indeed the trapped particle currents of the VENUS outputs and
the model are very similar. This gives confidence in the bi-Maxwellian model, since we
are representing the tail of the distribution function well, because these currents come
from wide orbits, and thus highly energetic particles.
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Figure 11.10.: Evolution of an initially counter-passing low energy particle into a LFS co-passing
high energy particle.

11.3.2. Low field side heating

For LFS heating, detrapping is asymmetric and generates almost exclusively co-passing
orbits inside the resonant layer.81 Fig. 11.10 shows an extreme example of an initially
counter-passing particle, which is being trapped while being heated to very high energy,
and eventually detrapped into a co-passing non-standard orbit. In fact, this non-standard
passing orbit stays on the LFS of the magnetic axis, between the latter and the reso-
nant layer. Note that this example is very high up in the energetic tail, and for the low
power scenarios, only very few particles describe such orbits. Nevertheless, the currents
in Fig. 11.12 are dominated by co-passing particles, and the result is independent of
whether the wave is propagating parallel or anti-parallel to the Ohmic current. Clearly, the
Fisch currents, which switch sign and were dominant for the high field side heating cases,
are not dominant anymore. The asymmetric detrapping is indeed more important than
the Fisch currents for low field side heating.

Once the particles detrapped into co-passing orbits inside the resonant layer, the only
difference between the +90 ◦ and −90 ◦ simulations is the sign of the parallel wave num-
ber. In the +90 ◦ case, k‖ < 0, and therefore the resonance condition ω = Ω + k‖v‖ with
R < Rc, and thus Ω > ω, yields that only counter-passing orbits continue to interact with
the RF field on the high field side of the resonance (R < Rc). Therefore, the detrapped
co-passing particles do not interact with the wave anymore and are slowing down. In
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Figure 11.11.: Pressure profiles for the LFS heating scenarios. Non-standard orbits dominate
the hot population and more efficient co-passing detrapping for −90 ◦ create more
peaked pressure.

the −90 ◦ case, k‖ > 0, and the inverse is true, i.e. the detrapped co-passing particles
can still resonate. As a result, for low field side heating, the currents are dominated by
co-passing particles, and are larger for −90 ◦ than for +90 ◦. This is the exact contrary to
the high field side case.

The non-resonant detrapped particles are slowing down. While doing so, the orbits
move towards the magnetic axis, where they become trapped again.12 This allows the
now trapped particles to interact with the wave again, and increase their perpendicular
energy, which is why the perpendicular pressure in Fig. 11.11(a) is still considerable inside
the resonant layer. Fig. 11.11 also shows that +90 ◦ perpendicular pressure is broader
but lower than the perpendicular pressure. It is important to note that the total energy
content of the plasma, which is slightly higher for +90 ◦ in the energy distribution plots of
Fig.11.5 represents a volume integral of these pressure profiles. Therefore, even if the
+90 ◦ pressure profile is lower, it is at the same time broader and the volume integral has
the effect that the energy content is still higher for the +90 ◦ case than for the −90 ◦: The
co-current heating is still more efficient in terms of total power deposition on the minority
population, although in contrast to the HFS cases the pressure profiles are flatter. We
can also observe that the model distribution generates very similar pressure profiles as
the raw integrated pressures from VENUS. The amplitudes of the trapped currents are
larger than in the HFS cases, since the resonant particles are deeply trapped and not
barely trapped as before, and are therefore less easily detrapped. Even so, as in the
HFS case, the trapped currents in Fig. 11.12 are very well modelled by the bi-Maxwellian.
Since asymmetric detrapping generates an excess of co-passing particles, the passing
current profiles are lower from the analytical model, similar to the HFS scenarios before,
where Fisch currents were dominating. We can note again that although the−90 ◦ current
density is smaller in amplitude than for +90 ◦, the surface integral reveals a slightly higher
total toroidal current for the co-current injection. We do not show here the effects on the
equilibrium, since in these low power scenarios no significant changes can be observed,
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Figure 11.12.: Current profiles for LFS heating scenarios. Again, passing current is much more
important than trapped current, although trapped current is larger than for the HFS
cases. The model distribution is able to model the trapped currents quite precisely.

and the importance of the iterative scheme lies in the updating of the dielectric tensor.
We will concentrate on the equilibrium change in Chapter 12, where we apply high power
and a change in equilibrium can indeed be observed.

11.4. Effect of hot particles on the dielectric tensor

11.4.1. Numerical study

It is difficult to directly see the effects of temperature and anisotropy in relations (5.1). Only
the effect of the density factor N (s̄) is rather obvious, since all terms depend linearly on
this quantity. The latter is therefore chosen to be constant in what follows. The anisotropic
dielectric tensor is applied to the minority population, which will be called hot population,
even if it is at the same temperature as the background ions for this particular study.
It is important to note that the background is treated with a warm dielectric tensor as
well, but based on a Maxwellian distribution function. The equilibrium is circular with flat
profiles and a magnetic field on axis of 3.45 T, and described in more details in Appendix
D.1. For a comparison between the background and the hot dielectric tensor, the RF
frequency was chosen to be 33 MHz, which allows for a resonant layer of the helium-3
minority on the Low Field Side (LFS) around Rc = 3.19 m and a second resonance for
the background D on the High Field Side (HFS) around R = 2.4 m. It is thus possible
to directly compare the values of the dielectric tensor of the background (Maxwellian)
and hot (bi-Maxwellian) species. Since N (s̄) is chosen to be 1 % of the D density, we

can expect that the amplitude of the hot dielectric tensor will be about 100/
√

T⊥/T‖
smaller than the amplitude of the background ion tensor. Fig. 11.13 shows a comparison
between the components of the dielectric tensor for a case where THe3

‖ = 9.1 keV (i.e.
about twice the D temperature) and T⊥/T‖ = 10. One can see from the color bars on
the plots that there is indeed a factor of ∼30 between the maxima of the background and
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the hot dielectric tensor amplitudes (Figs. 11.13(c) and 11.13(d)), confirming the scaling
in density.

If one compares the power deposition by species, Fig. 11.14(a) shows that more power
is going to the hot species than to the background ions. This is mainly due to the high
single pass absorption on the minority He3 , such that the fields are much weaker at the
HFS, where the resonance for the background deuterium lies. Comparing Figs. 11.13(c)
and 11.13(d) with 11.14(c) and 11.14(d) illustrates how the deposition of the power is
along the respective resonances and maxima of the dielectric tensor.

We now turn our attention towards the newly derived hot anisotropic dielectric tensor as
given in Eq. 5.1), and try to determine what effect a change in temperature and anisotropy
has on its real and imaginary parts. Here, we do not compare the complete dielectric
tensors, but, for simplicity, only the terms in the sum of Eqs. (5.1aa) and (5.1ba) corre-
sponding to the chosen species (electrons, background ions, minority ions). It is important
to define which parameter is changed and which held constant, since it is impossible to
change parallel, perpendicular temperature and anisotropy (denoted A) independently.
First, we want to know if the pressure has an effect and thus we kept the average pres-
sure constant together with the density, such that for the scan in Fig. 11.15(a) T‖ + T⊥
was held constant. The values were chosen for having equal hot and thermal beta. In all
plots of Fig. 11.15 same color means same scenario, continuous line real and dashed line
imaginary parts of the dielectric tensor. It shows the profiles of the hot dielectric tensor on
the midplane Z = 0. Fig. 11.15(a) shows considerable differences between the different
cases, even if the pressure is kept constant, suggesting that it is the temperatures and
the density having distinct effects rather than the pressure as macroscopic quantity. In
the case of Fig. 11.15(b), the perpendicular temperature was kept constant at 91 keV.
Evidently, when going from (T‖ = 9.1 keV,A = 10) to (T‖ = 910 keV,A = 1/10), the
dielectric tensor becomes much flatter, going from being very localised around the res-
onance to almost constant over the whole plasma. Also, the imaginary part is not only
more localised and higher amplitude for lower T‖ and higher A, but also less symmetric
at the LFS and HFS of the resonance. From here, one can conclude that the dependence
is not explicitly on T⊥ either, and the differences must lie in the parallel temperature and
the anisotropy. Therefore, we keep the parallel temperature constant, T‖ = 91 keV and
vary the anisotropy. The amplitudes are now very similar (Fig. 11.15(c)) and the only
clear difference is the asymmetry to the left and the right of the resonance for A = 10, an
asymmetry which is almost completely missing if A ≤ 1. The last scan in Fig. 11.15(d) is
then to keep the anisotropy constant at A = 10 and to vary the temperatures. One can
see that the asymmetry in the imaginary part, including the peaking at the resonance,
is conserved for all values of the temperature, only the amplitudes of the curves vary.
Introducing the physical density along the resonant layer, nc(s̄) ≡ nh(s̄, B = Bc), we

conclude that the dielectric tensor is proportional to the density factor N = nc

√
T⊥/T‖

(i.e. proportional to the density and the square root of anisotropy), inversely proportional
to the parallel temperature T‖ and that the form of the imaginary part of the dielectric ten-
sor depends on the anisotropy A = T⊥/T‖, peaking more for stronger anisotropy. As a
result, we expect a larger impact on the hot particle contribution to the dielectric tensor as
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(a) Total |Enn|. (b) Electron contribution.

(c) Background ion contribution. (d) Hot contribution.
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Figure 11.13.: The Enn element. 2D plots represent absolute values. The background ion con-
tribution is by far the largest, about four orders of magnitude larger than electron
contribution, and about 100/

√
T⊥/T‖ larger than the hot contribution. On the pro-

files (along the midplane Z = 0), the variation of Enn due to the hot population can
be estimated.
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(a) Total power deposition. (b) Electron contribution.

(c) Background ion contribution. (d) Hot contribution.

Figure 11.14.: 2D plots of the power deposition. The location of power deposition corresponds to
maximum dielectric tensor, but more power is deposited on the minority hot popu-
lation than on the background ions.
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Figure 11.15.: Effect of temperature and anisotropy on hot dielectric tensor. Profiles along the
midplane Z = 0. The resonant layer is at Rc = 3.19 m, the axis at R0 = 3 m.
Continuous lines represent the real part, dashed lines the imaginary part.
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(a) Background ions. (b) Thermal minority. (c) Hot minority.

Figure 11.16.: HFS −90 ◦: Absorbed power. Same scale used for all plots. Deposition on hot He3

is broader but lower than on the thermal He3 .

N (s̄) is increased. This will be largest for off-axis heating on the LFS, and will increase
with minority concentration.

11.4.2. Simulation results

The study in the previous section suggested that the hot anisotropic dielectric tensor is
proportional to nc

√
T⊥/T‖ and inversely proportional to T‖. We will now turn to the more

realistic simulations of Secs.11.2 and 11.3 to see if the emergence of anisotropy together
with the particle diffusion towards the resonance are strong enough to compensate the
effect of the higher parallel temperature and effectively make the hot minority population
more important in terms of dielectric tensor than the thermal minority or even the back-
ground ions. For illustration we picked the −90 ◦ cases, one on the HFS and one on the
LFS. For HFS (LFS), Figs. 11.16 (11.19) show the deposited power on the background
deuterium, thermal and hot He3, (the coloring being the same scale), Figs. 11.17 (11.20)
the corresponding absolute values of the first dielectric tensor element |Enn| (for thermal
and hot He3 same scale is used), and Figs. 11.18 (11.21) the thermal and hot He3 densi-
ties, the resulting hot density factor N (s̄) and the absolute values of the dielectric tensor
contributions. For HFS heating, one can see the broadening of the power deposition
(and dielectric tensor maximum) for the hot relative to the thermal He3 population, but
most of the power (79 %) is absorbed by the thermal population. Fig. 11.18 demonstrates
that although the hot density factor N (s̄) is of the same order as the thermal density
along the resonance (due to anisotropy), the hot dielectric tensor contribution is much
lower than the thermal contribution, the latter being of the order of the background value
in the region of maximum power deposition.

A very different picture is drawn in the case of LFS heating: The high localisation
of the resonant particles results in the hot particle density being locally higher than the
thermal He3 density (even if the total hot population is only as large as 16 % of the minority
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(a) Background ions. (b) Thermal minority. (c) Hot minority.

Figure 11.17.: HFS−90 ◦: Dielectric tensor |Enn|. For He3 same scale is used. Again, we observe
Doppler broadening for hot part, but with a lower amplitude.
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(a) Densities along the resonance Rc ≈ 2.7 m.
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Figure 11.18.: HFS −90 ◦: Density and dielectric tensor along the resonant layer. Even though
maximumN (s̄) is comparable to thermal density, T‖ is high enough to diminish the
amplitude of the hot dielectric tensor.
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(a) Background ions. (b) Thermal minority. (c) Hot minority.

Figure 11.19.: LFS−90 ◦: Absorbed power. Same scale is used for all plots. Deposition is broader
and larger for hot than for thermal He3. Also, it is more localised around the mid-
plane for the hot part.

(a) Background ions. (b) Thermal minority. (c) Hot minority.

Figure 11.20.: LFS −90 ◦: Module of dielectric tensor element |Enn|. For He3 same scale is used.
Again, we observe broader and more localised features for hot He3.
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Figure 11.21.: LFS −90 ◦: Density and dielectric tensor along resonant layer. Hot density is com-
parable to thermal density thanks to RF induced particle diffusion. Anisotropy
makes N (s̄) much larger, creating a localised peak in the hot dielectric tensor,
surmounting even the value of the background around the midplane.

species) and the large number of (deeply) trapped particles drive anisotropy high enough
to make the hot dielectric tensor dominant over both thermal minority and background ion
contributions (Fig. 11.21). Here, the effect of anisotropy is important enough to outweigh
the 1/T‖ dependence in the dielectric tensor. Resultingly, the hot dielectric tensor has a
larger amplitude than the thermal dielectric tensor (Fig. 11.20) and the power is deposited
to 85 % to the hot minority. Not that this is a very localised phenomenon, and the hot
dielectric tensor is only large at the resonant layer and around the midplane.

After these low power He3 simulations, we will in the next chapter apply four times more
power, i.e. 12 MW. Also, due to the charge/mass ratio of helium-3, the highly energetic
tails are not going to be very large, and it will therefore be more interesting to consider
hydrogen. We will then be able to see if the equilibrium does indeed evolve during the
self-consistent calculations.





12. High power simulations

In this chapter, we will base the simulation on the same JET-like equilibrium as in the low
power simulations of the previous chapter. However, we consider now a 3 % hydrogen (H)
minority, having the exact same initial temperature and density profiles as the background
deuterium . A more detailed description of the equilibrium is given in Appendix D.2. The
reason why we switch from a He3 to a H minority is that we can expect higher tails in the
distribution for the lighter hydrogen minority. Here, heating with a given amount of power
will result in higher particle velocities due to the lower mass, resulting in a lower critical
energy as defined in Eq. (7.2). Therefore, slowing down will be predominantly on the
electrons, and pitch angle scattering will be less important, resulting in higher pressure
anisotropy. We will again inject two waves, one co- and one counter-passing. One reason
is to verify the RF induced particle pinch as described in Eq. (6.41), both for validating
the code and showing why it is important to include variations in parallel velocity in the
RF Monte Carlo operators. Another reason is to minimise the Fisch currents,69 which
we have seen in the high field side simulations of the low power simulations in the last
chapter. The interest in this is to remove the directly induced toroidal momentum and
therefore current which exists even when orbit widths are small. Without this, only finite
orbit width effects remain in the current, and these are inherent in the model distribution.
The toroidal wave numbers are nϕ = ±17, and we will study the evolution for heating
on the High Field Side (HFS), On Axis (OA) and on the Low Field Side (LFS). The RF
wave frequencies are 52.6 MHz (HFS), 48.5 MHz (OA) and 38.7 MHz (LFS), with a total
deposited power of 12 MW. The resonant layers are shown in Fig. 12.1

12.1. Asymmetric wave spectrum

For studying the RF induced particle pinch,66,67,82 we have run the HFS case not only us-
ing two waves with nϕ = ±17, but also one simulation per wave, i.e. one with nϕ = −17
and one with nϕ = +17. As before we try to avoid confusion due to sign conventions,
and will therefore continue naming the two cases +90 ◦ and −90 ◦ phasing respectively.
As a reminder, Eq. (6.41) states that we expect a net inward drift of resonant particles for
+90 ◦ phasing and a net outward drift for −90 ◦. As a result, +90 ◦ phasing produces nar-
rower but larger peaks inside the tangent resonant layer of density and pressure, whereas
−90 ◦ phasing produces wider peaks outside the tangent resonant layer.78 This is con-

129
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Figure 12.1.: Locations of the resonant layers for HFS (red,left), OA (green,middle) and LFS
(blue,right). These are the locations of B = Bc, marking the cold resonances, and
the true resonances are Doppler broadened.

firmed in Figs. 12.2(a) and 12.2(b), where the density and most of all the perpendicular
pressure shows a sharp peak inside the resonant layer (solid vertical line) for the +90 ◦
case, whereas the profile is much broader and peaked outside the resonant layer for
−90 ◦ phasing. Having assessed that this particle drift due to interactions with the wave
are included and important enough to be visible, we will be able to include this mecha-
nism in the interpretation of the results in the subsequent sections. We can also verify
the projection made earlier in Eq. (11.2), which states that the asymmetry in v‖ of the
distribution function can be expected to be proportional to the density and temperature
gradients (to lowest order in orbit width). This asymmetry is the source for the RF induced
currents, and we can therefore compare the total current densities in Fig. 12.2(c) with the
density and pressure profiles. Even if the currents are computed directly in VENUS with-
out the application of the bi-Maxwellian model, these plots agree well with the analytical
projection from in the previous chapter. We have chosen to place the resonance on the
high field side for this study, since for on axis and low field side heating, non standard
orbit effects become important, as we will see later in this chapter. We will now turn to
symmetric wave spectra, in order to minimise Fisch currents and concentrate on finite
orbit width effects, and apply the heating both on the low field side, on axis, and on the
high field side.
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Figure 12.2.: The RF induced particle pinch causes density and pressure profiles to be peaked
sharply inside (broadly outside) the tangent resonant layer for co- (counter-) current
wave injection. +90 ◦ corresponds to co-current injection. The solid line marks the
tangent resonant layer, located on the HFS.
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Figure 12.3.: Temporal evolution of the mean energy, Eq. (7.1). On axis heating is about twice as
efficient as HFS heating in terms of total minority energy content, LFS another 25 %
more efficient than OA. Note also that the higher the final energy content, the longer
the total simulation needs to be for reaching steady-state.

12.2. Temporal evolution

At the end of every iteration, we can read the stored data in order to study the temporal
evolution. Fig. 12.3 shows the evolution of the mean energy per particle of the minority
species as defined in Eq. (7.1). For the High Field Side (HFS) case, we ran 16× 15 ms
simulations, for the On Axis (OA) case, 25× 15 ms simulations, and the Low Field Side
(LFS) heating needed 22× 25 ms iterations. In the plots in Fig. 12.3, the time on the x-
axis has been normalised to the electron slowing down time of 210 ms. The mean energy
comprises the thermal and the hot parts, i.e. the total minority species. Therefore, the
energies shown in Fig. 12.3 are much lower than the tail temperatures. We will discuss
the effective tail temperatures later in this section, and they are plotted in Fig. 12.8.

In terms of heating the minority species, LFS and OA heating is more efficient than HFS
heating, since the mean energy (and thus the total energy content) of the hydrogen is
higher at the end of the simulation (about twice as high for LFS compared to OA). Now, in
all three cases, the simulation converges when the absorbed RF power equals the slowing
down power, and the RF power is kept constant at 12 MW. Then, the lower energy
content for the HFS heating can be translated into the information that if the resonance
is on the HFS, the slowing down on background is more important than for the other
cases. Indeed, the resonant particles of the HFS case are mainly at the trapped-passing
boundary, completing almost one full poloidal rotation before interacting again. Also, the
orbits are wider for barely trapped particles than for the deeply trapped resonant particles
in the LFS case, and thus the resonant particles spend more time out of resonance,
and lose more energy to the background than the resonant particles of the other cases.
Therefore, more power is going to the background, and the steady state is achieved at
lower energies. We will study the power balance at steady state more in detail at a later
point in this chapter.
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In Figs. 12.4(a) to 12.4(c) we show the temporal evolution of the total perpendicular
pressure in the HFS heating scenario, which is initially dominated by the background
pressure. We show the initial and an intermediate state together with the final state after
iteration 16. The colors are to the same scale in all figures of one given case (i.e. hor-
izontally). Perpendicular pressure builds up rather quickly along the resonant layer, and
the hot (minority) pressure becomes locally more important than the background pres-
sure, even if the thermal volume averaged beta is always larger than its hot equivalent.
Figs. 12.4(d) to 12.4(f) show the same plots but for the on axis heating case. The colors
are to the same scale, which is why the initial pressure plot differs from Fig. 12.4(a), even
if it shows the exact same absolute values. As before, an elongated feature appears in the
total perpendicular pressure along the resonant layer. However, as opposed to the HFS
heating, it is much more local and at the magnetic axis, where the initial pressure already
is maximum before the RF interaction. Finally, the LFS case in Figs. 12.4(g) to 12.4(i) is
similar to the on axis case, in that the final peak perpendicular pressure is larger than the
initial pressure, and it is localised around the outboard midplane. The main difference is
that the final pressure maximum is not so much along the cold resonant layer, but rather
halfway between the magnetic axis and the tangent layer. We will discuss this last item
later on.

Possibly the most interesting example of radial profiles is the current induced by Ion
Cyclotron Current Drive (ICCD), Fig. 12.5. For the HFS case, a simple dipolar structure
forms initially around the resonant layer at r/a = 0.5, a structure which is growing and
changing shape during the evolution. This dipole is due to finite orbit widths, and the fact
that trapped particles always move in the counter-current direction on the inner and in the
co-current direction on the outer leg of the orbit. As the wave spectrum is symmetric, Fisch
currents are expected to be negligible, and the parallel current is following the trapped
current, as symmetric detrapping causes the parallel current to be similar to the trapped
current. The current due to detrapping is the dominant for the on axis (OA) and low
field side (LFS) heating cases, Figs. 12.5(d) to 12.5(f) and 12.5(g) to 12.5(i). For OA
and LFS heating, the passing current does not show the dipolar structure we have seen
for HFS heating. These results are of course similar, though stronger in amplitude, to
the results discussed in the last chapter. However, the higher energies for these high
power scenarios have the effect that non-standard orbits such as potato orbits are more
abundant for these scenarios. Especially when depositing power on the low field side,
the turning points move inwards for negative wave numbers (+90 ◦), after Eq. (6.41),
and the counter-current inner leg of the trapped orbits becomes smaller and smaller as
the turning points move towards each other. By the time the two turning points merge
and a passing orbit forms, only the co-current outer leg of the orbits is left.11 For −90 ◦,
the turning points move outwards, but the orbits are still non-standard due to the fact
that the turning points of the initially standard trapped orbits lie on the low field side of the
magnetic axis. As the turning points slide along the resonance outwards and the particles
gain further energy, the particles start describing potato orbits. Detrapping, although due
to collisions and not the meeting of the turning points on the midplane, has then the same
effect as for −90 ◦.80,81 As a result, preferentially co-passing particles are produced, and
we see a large positive passing current forming, whereas the trapped particle current still
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(a) HFS Initial. (b) HFS Iteration 3. (c) HFS Iteration 16.

(d) OA Initial. (e) OA Iteration 4. (f) OA Iteration 25.

(g) LFS Initial. (h) LFS Iteration 6. (i) LFS Iteration 20.

Figure 12.4.: Evolution of the total perpendicular pressure for HFS, OA and LFS heating. The
iteration for the centre figure has been chosen for the best illustration the temporal
evolution. Color scaling is constant for each given resonance position.



12.2. Temporal evolution 135

10 0.25 0.5 0.75

150

-250
-200
-150
-100
-50

0
50

100

r/a

current density [kA/m2]
HFS ±90º

passing
trapped

(a) HFS Iteration 1.
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(b) HFS Iteration 3.
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(c) HFS Iteration 16.
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(d) OA Iteration 1.
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(e) OA Iteration 4.
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(f) OA Iteration 25.
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(g) LFS Iteration 1.

10 0.25 0.5 0.75

1000

-500

-250

0

250

500

750

r/a

current density [kA/m2]
LFS ±90º

passing
trapped

(h) LFS Iteration 6.
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(i) LFS Iteration 20.

Figure 12.5.: Evolution of the RF induced current density for HFS, OA and LFS heating.
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Figure 12.6.: Evolution of the total minority distribution function for HFS, OA and LFS heating.
Shown is f (E)

√
E, and the percentage denotes the fraction of hot particle density

compared to total minority density.

assumes the dipolar structure we have seen before. A slight speciality in the evolution of
the current density for the LFS case is that trapped particle current is dominant at first,
since the resonance on the low field side produces deeply trapped particles which are not
de-trapped as easily as the orbits for the high field side heating. The final currents are
most important for LFS heating, which is in agreement with the highest energy content of
Fig. 12.3.

We can also show the evolution of the distribution function. In Fig. 12.6, the building
of the high energy tails is visualised for the three cases. The critical energy for splitting
the distribution function defined in Eq. (7.3) is set to Ec = 10Te, and the percentages in
the plots denote the fraction of hot particle density compared to the total minority density.
The high energy tail is created rather quickly, and except for the HFS case, only small
changes occur after an initial phase. One can note that the highest percentage of hot
particles is found for the HFS case. In the latter case, however, the tail is centered around
about 100 keV, which is considerable lower than e.g. in the LFS case. Therefore, even
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Figure 12.7.: Energy distribution functions with tails in the MeV range for the HFS, OA and LFS
cases.

if more particles are considered hot, the total energy content of the hydrogen minority
is lower. It is also interesting that in the on axis case, the tail is rather flat, but spans
over a wide area in energy space. Also, a distinct feature above 1 MeV is clearly visible,
creating a secondary MeV tail within the distribution. Something similar, although less
detached, develops in the LFS case. In Fig.12.6(h), a secondary tail starts forming just
below 1 MeV, but in this case it gets almost absorbed by the primary tail which builds up
at more comparable energies.

If we then turn towards the final converged state, we can look at the high energy tails in
a bit more detail. Fig. 12.7 shows the distribution functions without the Jacobian. log f (E)
is plotted against a linear scale in energy, focusing on the regions with the highest energy.
The tails for on axis (OA) and low field side (LFS) heating are more energetic than the
tail of the high field side (HFS) resonance. Again, we find the distinct feature just below
1 MeV for the LFS and around 2 MeV for the OA case, which is due to a secondary
tail forming for the highest energies. In all three cases, particles in the MeV range are
present, which gives another confirmation of the importance of including finite orbit effects
in such computations. In Fig. 12.8, the effective temperature has been defined as

Teff = −
(

d ln f (E)
dE

)−1

, (12.1)

and is plotted together with the average temperatures determined by VENUS. These
average temperatures are neither the perpendicular nor the parallel temperatures, since
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Figure 12.8.: Effective tail temperatures as defined in Eq. (12.1) for the HFS, OA and LFS cases.
The dotted lines show the average temperature (12.2) coming from the integrated
moments. Maximum effective temperatures are 775 keV for OA and LFS, and
450 keV for HFS.

those have radial profiles. The dotted lines in Fig. 12.8 have been created computing

〈T〉 =
〈 p⊥ + p‖

n

〉
, (12.2)

where the average is over the radial variable. This is done only to give an order of magni-
tude for an effective temperature based on the integrated moments of f , since the latter
are the quantities passed on in the iterative scheme of SCENIC. The effective tempera-
tures are not constant, reflecting the fact that the tails are indeed not Maxwellian. Never-
theless, the average temperatures confirm that the representation of the high energy tails
with the implemented algorithms is indeed accurate. Even more so if we recall that the
tails are in SCENIC represented by different parallel and a perpendicular temperatures,
and that the latter can vary in radial direction. This is of course all included in the varying
effective temperatures in Fig. 12.8, but not in the constant average temperatures.

Finally, we investigate the secondary tails in the distribution functions of Figs. 12.6(f)
and 12.6(i) in a little more detail. The local peak is very clear for the OA case, and we will
therefore especially concentrate on this case, where this tail contains about 5 % of the mi-
nority particles. Compared to the total 33 % of the hot minority, that means that 15 % of the
hot particles are in this secondary tail (recall Table 7.1 for species designation definitions).
If we only consider particles in this peak, which are in fact particles having an energy of
about four hundred times the electron temperature and energies around 1.6 MeV, we
get the density and pressure profiles shown in Fig. 12.9. Density and pressure profiles
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(b) Pressure profiles of the particles in the secondary tail of
Fig. 12.6(f). To be compared to total hot pressure in Fig. 12.15(d).
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Figure 12.9.: Density, pressure and current density profiles of the secondary tail in the OA distri-
bution function. Perpendicular pressure is much larger than parallel pressure, and
the total passing current density from Fig. 12.5(f) is entirely dominated by these
contributions.
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Figure 12.10.: The contour plots for the three positions of the local maxima and minimum show
that the particles in the secondary tail are dominated by highly energetic particles
on the passing-trapped boundary.

are clearly peaked towards the magnetic axis and thus the resonant layer. Fig. 12.10
shows the distribution function contours at the radial positions of r/a = 0.04, 0.14 and
0.20, which correspond to the two local maxima and the local minimum of the two pro-
files. Almost all the particles at this high energy are situated along the trap cone in
all three positions. The typical banana width in the large aspect ratio limit is approxi-
mated by12 qv⊥/Ω

√
ε, with the standard notations as defined in this thesis. If we take

a characteristic perpendicular velocity from the contour plots, say v⊥ ∼ 15× 106 m/s,
a safety factor close to unity and with r = 0.2a = 0.23 m the outer maximum position,
we get a banana width estimation of about 20 cm. Fig. 12.11 shows example orbits of
particles in the secondary tail. Two are trapped, one passing, all three having an orbit
width of about 30cm, which is much closer to the estimation of the potato orbit width12

(qv⊥/Ω0R0)2/3R0 ≈ 32 cm. In fact, the results for the OA and LFS cases shown in this
chapter are largely dominated by non-standard orbits such as potato orbits, similarly to
what we have observed in the low field side low power scenario described in Chapter 11.
In particular, the passing current density of Fig. 12.5(f) is completely dominated by the
current density from these non-standard orbits, shown in Fig. 12.9(c).

12.3. Power deposition

The wave-particle resonance is satisfied if ω = nΩ + k‖v‖. The Doppler shift k‖v‖
is responsible for a broadening of the power deposition at high parallel temperatures.
This is shown in Fig. 12.12, where the initially thin deposition along the resonant layer
is broadened by the RF heating, and especially for on axis heating power is deposited
almost up to the plasma edge.

Resonant particles describe trajectories whereof only a small portion is located in the
resonant region. Typically, a trapped particle interacts four times, a passing particle twice
during a full poloidal revolution. The Coulomb interactions with the background ions and
electrons, however, are continuous. As a result, the power deposition on the background,
i.e. the power lost by the minority ions, is expected to define a broader region than the RF
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Figure 12.11.: Three examples of orbits in the secondary tail of the OA heating case. The orbit
widths are about 30cm, which compares well with potato orbit width estimations for
these 1.6 MeV particles.
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(a) HFS initial power deposition. (b) OA initial power deposition. (c) LFS initial power deposition.

(d) HFS final power deposition. (e) OA final power deposition. (f) LFS final power deposition.

Figure 12.12.: Doppler broadening of the resonant layer. Shown is the deposition in the RF oper-
ators in VENUS at the end of the simulation.
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power deposition. In steady state, the power absorbed by the minority from the RF wave
balances the power lost to the background in total, but there are regions in the plasma
where one process is dominant over the other. Fig. 12.13 shows the steady state radial
power density profiles, with the sign convention that positive power means absorbed by
the minority from the wave, PICRH, negative meaning lost by the minority to the back-
ground, PCoul. The red curve is the sum of the two, and green shading denotes regions of
net heating (|PICRH | > |PCoul |), whereas regions of net slowing down (|PICRH | < |PCoul |)
are indicated in blue shading. These regions have to balance each other when integrated,
such that ∫

(PICRH + PCoul + Ploss) d2x = 0, (12.3)

where Ploss incorporates the power absorbed but not yielded to the background due to
particle losses. As expected, the region of net slowing down (shaded blue) is broader
for the HFS than for the other cases, since the resonant particles describe larger orbits,
resulting in lower energy content of the minority species. As a conclusion, if the goal is to
heat the background plasma, HFS heating is preferable, since the minority is heated less
and the background is heated in a broader region. But before investigating the effects on
the equilibrium, we want to check whether the bi-Maxwellian model in the equilibrium and
wave field calculations represents a good approximation.

12.4. Model bi-Maxwellian

As in the last chapter, we will compare the distribution function from VENUS with the bi-
Maxwellian model. These two chapters used the same equilibria, but the resonant layer
was chosen slightly further from the magnetic axis for HFS and LFS heating. For the
contour plots f (v‖, v⊥), we chose again the flux surface of the resonant layer, and at
θ = 0 on the outboard midplane. For on axis heating, we decided to show the contours at
r/a = 0.25, since there is no special position with respect to B/Bc except the magnetic
axis, where we do not have any grid points for statistics. At the chosen point. however, the
currents from VENUS and the model are similar (see Fig. 12.17(b) which will be described
later), such that we expect a good match between VENUS and the model at that position.
In Fig. 12.14, the ear-shaped features for the HFS can very accurately be reproduced by
the model, with the tips along the (dashed) trapped-passing boundary, suggesting high
number of barely trapped/passing particles as expected. For the on axis (OA) case, the
ears are inside the trapped-passing boundary, meaning that a large population is be-
ing trapped. The model shows slightly less extreme ears than VENUS, containing more
deeply trapped particles (v‖ ≈ 0) than the distribution function from VENUS. However,
the same asymmetries appear in both contours, with somewhat more trapped particles
for negative parallel velocity and more co-passing particles. The LFS contours show both
the characteristic oval shapes, with a slightly more important asymmetry in the VENUS
distribution. This might again be attributed to the secondary tail in the VENUS distribu-
tion function, which is less separated from the primary tail than in the OA case. Overall,
Fig. 12.14 confirms that the model distribution is indeed a very adequate approximation
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(b) OA. Net heating inside r/a = 0.36, net slowing down outside.

10 0.25 0.5 0.75

3

-2

-1

0

1

2

r/a

ICRH
Coulomb
sum

power density [MW/m2]

(c) LFS. Net heating between r/a = 0.32 and ρ = 0.46, net
slowing down inside.

Figure 12.13.: Radial power densities, showing regions of net heating (red shaded) and net slow-
ing down (blue shaded). Note that the integral of the resulting (red, thick) curve plus
the small losses is zero in steady state. The thin dashed lines show the electron
and ion contributions to the total slowing down.
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of the raw self-consistent distribution function from VENUS. For the equilibrium, we need
the model to match integrated moments of the distribution function, most importantly the
density and pressure profiles as discussed in Sec 7.4. In Fig. 12.15, hot particle den-
sity and pressures are compared between the distribution function in VENUS and the
profiles resulting from the model. As already mentioned in the previous chapter, the
analytical model only knows about the smoothed profiles passed to VMEC and LEMan
from VENUS. The smoothing has been implemented in such a way that the anisotropy
is under-estimated rather than over-estimated, and therefore its peak value is lower than
in the VENUS distribution. This is the main difference between the raw distribution and
the model, with a deviation of about 20 % in anisotropy (∼ p⊥/p‖) at the resonance for
HFS and OA resonance. For the LFS, anisotropy in VENUS is very large, most of all
towards the centre, and therefore the difference in perpendicular pressure is somewhat
larger. For the same scenario, the hot particle density gradient is very large, which has
been mitigated in the model distribution. For the OA case, we can compare the total hot
density and pressures from VENUS with the same quantities coming from the secondary
tail only, Fig. 12.9. First of all, the relative contribution from the secondary tail is most
important in the perpendicular pressure, suggesting that the importance of this feature in
the distribution function is mainly in the perpendicular temperature. Indeed, the perpen-
dicular pressure comes in the relevant region inside r/a = 0.25 to about 64 % from the
secondary tail, whereas only about 23 % of the density can be attributed to the latter in
the same region.

While the density and pressure profiles can be compared between VENUS and the
model, no such comparison is possible for the dielectric tensor. Nevertheless we can
compare the initial and final form of the real and imaginary parts of the hot dielectric
tensor in LEMan. In Fig. 12.16 the Doppler broadening can be observed by the regions
of maxima and minima, which are much larger at the end of each simulation. Also, the
maxima assume a certain poloidal dependence, which is due to the pressure anisotropy.
The reason the maxima are not extending up to the wall in the final state is that the
resonant particle density is vanishing faster after applying RF than in the initial state,
thus decreasing the amplitude of the dielectric tensor. Even if the total energy content is
highest for the LFS case, the Doppler broadening is not as extreme. The reason lies in
the fact that most of the energy density is stored in perpendicular direction, which does
not contribute to the Doppler shift.

Fig. 12.17 compares the current densities from VENUS with the currents contained
in the model. Recall that this comparison is done purely out of interest, since the cur-
rents are directly fed to the equilibrium from VENUS, without modelling. The high field
side trapped current is again similar. The passing current, however, is mainly generated
through detrapping, and is therefore different in VENUS and the model. The on axis and
low field side cases are dominated by asymmetric detrapping into co-passing particles,
and non-standard orbits. Therefore, the model currents are further away from the raw
currents than e.g. the density, pressures, or even the currents in the low power scenarios
from the previous chapter. This shows clearly the importance of feeding the current di-
rectly from VENUS to VMEC, whereas Fig. 12.15 yields very satisfying results for density
and pressure. We are therefore confident that setup of the model and the linking of the
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Figure 12.14.: Comparison between VENUS and the model. Both the ear-shaped and the oval
characteristic forms are present in VENUS and the bi-Maxwellian. The strong
asymmetries in (c) correspond to the secondary tail in the distribution and are not
included in the model. The dotted lines show the trapped-passing boundary as de-
fined in Eq. (2.37). The parallel and perpendicular velocities have been normalised
to the thermal velocity vth = 5.4× 105 m/s(7.3× 105 m/s) for r/a = 0.5(0.25).
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Figure 12.15.: Comparison of the first and second moments from VENUS and the model distri-
bution function. The upper curve in the pressure plots shows perpendicular, the
lower parallel pressure. hot particle density from the model is used in LEMan for
the dielectric tensor, the pressure profiles are read by VMEC for the equilibrium
computations.
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(a) HFS initial. (b) HFS final.

(c) OA initial. (d) OA final.

(e) LFS initial. (f) LFS final.

Figure 12.16.: E⊥⊥ elements as defined in Eq. (5.1) in the beginning and the end of the simula-
tions. The maxima (and minima) broaden considerably around the cold resonance.
They are not extended up to the wall anymore due to the hot particle density van-
ishing more rapidly at the end of simulation. For the HFS case, the color scale is
one order of magnitude lower for the final plots, whereas the scale is comparable
for the OA case and exactly equal for LFS.
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Figure 12.17.: Comparison of the RF driven currents from VENUS with the currents contained in
the analytical model distribution function. Trapped particle current can be modeled
more accurately since its origin lies in finite orbit width effects. Lighter lines always
denote trapped particle current, more solid lines passing current. Note that the
current is fed directly from VENUS into the equilibrium, as defined in Sec. 7.4 and
Eq. (7.9). and not the current coming from the model.
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codes in the package SCENIC is very well suited for simulating ICRH scenarios. The next
step is therefore to investigate the effects of the hot particles on the equilibrium in the next
section.

12.5. Effects on the equilibrium

The changes in pressure and current can have effects on the equilibrium, such as the
safety factor and the Shafranov shift as discussed in Sec. 2.1.2. In Sec. 6, we described
that the current from the VENUS simulations does not include the reaction of the back-
ground ions and electrons, and has to be diminished by the drag current, Eq. (7.9), for
the equilibrium computations. Fig. 12.18 shows the current density from VENUS together
with the corrected current density fed to VMEC, and the effect on the safety factor profile
at the end of each simulation. For these simulations, we did not consider any impurities,
such that Zeff = Zh = 1 and mi = 2mh, and the drag current formula simplifies a lot to

jRF
VMEC = jRF

VENUS1.46
√

r
R0

A(1)0.5 (12.4)

This means that the effective current in VMEC is underestimated with respect to a more
realistic case with Zeff > 1, and the RF current effect on the safety factor would be
greater in reality. This is why we have added the safety factor using the ”raw” RF current
density, without drag current, in Fig. 12.18(f) in order to show the maximum effect at
Zeff → ∞. Even with the drag current, one can see that the q−profile does change
in these simulations. The change is rather low for the LFS scenario, which has to do
with the fact that

√
(r/R0) becomes very small towards the axis, where the RF induced

current is largest, so almost cancelling its effect. Indeed, due to the drag current without
impurities, the HFS case is more effective in terms of altering the safety factor profile than
the LFS case, even if the total energy content is considerably smaller. The effect on the
Shafranov shift ∆, defined in Eq. (2.12), is shown in Fig. 12.19 together with its second
derivative. As shown in Chapter 8, the latter plays an important role in the toroidal drift
frequency and related MHD stability. Here, the pressure building up has its full effect on
the magnetic flux surfaces, and the Shafranov shift varies between 2 % and 9 %, whereas
∆′′(r) shows a very localised variation for the LFS case, which is due to the localised
pressure of Fig. 12.4(i).

For the High Field Side (HFS) case, the hot volume averaged beta increased from
3 % to 30 % of the thermal beta during the simulation. For On Axis (OA) heating, the
final hot minority contribution was 60 %, and for the Low Field Side (LFS) heating the
final hot beta reached 50 % of the thermal beta. The values of hot beta is shown in
Fig. 12.20, where the local values of β(R, Z) = µ0P(R, Z)/2B2(R, Z) are plotted to
same scale. Surfaces of constant beta are changed locally in all three cases with respect
to the initial state. Whereas for HFS the region of intermediate beta values (between
0.1 % and 0.2 %) is wider than initially, the OA and LFS contours show that the peak
value increased, and for LFS heating, the latter moved slightly towards the resonance.
The maximum local beta value changed from initially 0.28 % to 0.34 % for the LFS case,
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Figure 12.18.: Direct RF and corrected current densities together with the resulting initial and final
safety factor profiles. The higher current densities from the OA and LFS cases
are more diminished by the drag current than in the HFS case. The ”raw” curves
indicate the maximum change in safety factor if the drag current is neglected.
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Figure 12.19.: Changing of the Shafranov shift and its second derivative.
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(a) Initial (b) HFS (c) OA (d) LFS

Figure 12.20.: Total beta surfaces initially and for the three converged solutions. Coloring is to
scale on all plots.

(a) Initial (b) HFS (c) OA (d) LFS

Figure 12.21.: Total α⊥ as defined in Eq. (8.4) initially and for the three converged solutions. Note
the difference in scale.

which represents a relative increase of about 20 %. As already seen in Chap. 8, one
important quantity for MHD stability is the perpendicular ballooning parameter α⊥ directly
related to the perpendicular pressure gradient, defined in Eq. (8.4). This parameter is
plotted in Fig. 12.21 for the initial conditions and the three converged solutions. For a
more detailed view, the colors are not to scale, and the plots show rather different effects
for each of the chosen heating locations, except that most changes happen along the
resonant layer. The pressure peaking along the resonant layer for the off-axis scenarios,
shown in Fig. 12.4, has the consequence that the ballooning parameter becomes negative
between the resonant layer and the magnetic axis, with a minimum along the resonance,
but inside the flux surface tangent to the resonance. On the opposite side of the resonant
layer, outside the tangent flux surface, are the maximum values, with the effect that local
variations of α⊥ can be extreme. Similar to what we found when discussing other physical
quantities, we find that for the HFS these effects are located all along the resonant layer,
whereas they are very localised at the outboard midplane, and more extreme, for the LFS
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case. The OA case shows two symmetrically localised maxima along the resonant layer,
without the regions of α⊥ < 0 observed in the off-axis cases. Whereas initially, α⊥ is very
small except towards the plasma edge, with values around α⊥ ≈ 0.05, the very localised
maximum in the LFS case shows amplitudes of α⊥ ≈ 0.8. This is sixteen times higher
than the initial value. More importantly, it is large enough that we can expect effects on
global MHD stability. The latter has not yet been investigated, but it is expected that the
very large local changes in ∆′′ and α⊥ will have a very important effect. This is especially
true for the internal kink mode, Mercier and ballooning modes.

12.6. Inclusion of the equilibrium in the iterative scheme

In SCENIC, the equilibrium calculations are fully included in the iterative scheme, and the
equilibrium is updated from iteration to iteration. We now want to determine whether this
inclusion is important or if it would be sufficient to base the wave and particle iterations,
and their saturated solution, on an unchanged equilibrium. The final equilibrium could be
constructed, including the hot particle effects in pressure and current, once a converged
solution with unchanged equilibrium is obtained. We have repeated the simulations for
the LFS case, keeping the equilibrium constant during the complete simulation, but still
updating the wave fields with the thermal and hot minority contributions from VENUS. An
immediate difference is in the number of iterations needed. Whereas the LFS simulation
discussed in the previous sections required twenty-two iterations with a total duration of
about two and a half slowing down times, the simulation without the equilibrium evolution
had to be iterated thirty times with a total duration of three and a half slowing down times
to achieve convergence. But most importantly, the high energy tails of the converged
solution are lower, as can be observed in Fig. 12.22(a) Clearly, more minority particles
remain thermal and do not contribute to the anisotropic high energy tail. As a result,
the effects on the equilibrium are substantially underestimated, as shown in Fig 12.22(b).
We show as an example the values of the ballooning parameter α⊥, which is a factor
of two lower if one omits the equilibrium calculations in the iterative scheme during the
simulations. Similar behaviour is visible on all equilibrium relevant quantities: They show
the same general features, but the effects due to energetic particles are smaller if we omit
the equilibrium evolution in the simulations. As a last example we plot the dielectric tensor
element Enn, where the colors in Fig. 12.22(c) are to scale with Fig. 12.16(f), allowing
for direct comparison. Clearly, the maxima of the dielectric tensor are less localised in
poloidal angle if we omit the equilibrium calculations, due to lower pressure anisotropy. To
conclude this study, we can state that the equilibrium has to be included in self-consistent
computations of ICRH, and has to be part of the self-consistent scheme, as variations of
the equilibrium during the simulation alter e.g. the particle orbits, as discussed in Chap. 8.
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Figure 12.22.: Comparison of the final states for the low field side simulations with and without
updating the equilibrium at the end of each iteration. For the simulation without
updating, the equilibrium has been re-computed once the simulation including LE-
Man and VENUS converged. Clearly, the results are different, with a smaller high
energy tail for the case without inclusion of the equilibrium. As a result, equilibrium
quantities such as α⊥ differ substantially.
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13.1. Conclusions

In this thesis, the new code package SCENIC has been designed, tested and applied to
relevant cases. The package is the first to include the equilibrium in self-consistent com-
putations of wave injection in the Ion Cyclotron Range of Frequencies (ICRF). SCENIC in-
cludes the MHD equilibrium code VMEC, the full wave code LEMan and the guiding centre
orbit following code VENUS. In all codes, further improvements with respect to other exist-
ing numerical tools for ICRF computations have been included. In particular, all codes are
capable of full 3D geometries, and include the effects of pressure anisotropy (T⊥ , T‖)
as well as correct treatment of the spatial localisation of the cyclotron resonance. In the
equilibrium and wave field computations, this is achieved by using a bi-Maxwellian for the
resonant particles, which includes different parallel and perpendicular temperatures, finite
orbit widths and the critical magnetic field strength Bc, defining the cyclotron resonance
and allowing for poloidal dependences in pressure and dielectric tensor. In the evolution
of the distribution function, represented by following guiding centre orbits, there is no re-
striction of an analytical model. Non standard orbits and preferential detrapping, together
with the effects of a Doppler broadened resonant layer are included.

As a first application, it was possible to study the effects of shaping and pressure on
the toroidal drift frequency of fast particles, which is an important quantity for MHD sta-
bility. Here, it was shown how the second radial derivative of the Shafranov shift and
the radial derivative of the perpendicular pressure (perpendicular ballooning parameter)
influence the drift frequency as a function of pitch angle, demonstrating significant re-
duction, or even sign reversal, of the toroidal drift frequency. After extensive testing and
starting benchmarking efforts against SELFO, SCENIC has been applied to different Ion
Cyclotron Resonance Heating (ICRH) scenarios, including low and high power heating
of hydrogen or helium-3 minorities in deuterium background plasmas. By exploring low
power cases, the general development of anisotropic pressure has been illustrated. The
effects of anisotropy on the dielectric tensor were studied. While the parallel temperature
is directly related to the Doppler broadening of the resonant region, the anisotropy (in-
creasing perpendicular with constant parallel temperature) can result in a dominant hot
dielectric tensor even if the hot particle density is considerably lower than that of the ma-
jority. Furthermore, geometric effects (poloidal variations) are important when anisotropy
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is large. For the same low power simulations, the applicability of the bi-Maxwellian model
could be confirmed, by showing both the convergence of the iterative scheme and the
difference in the final distribution compared to the non-iterative case. The latter has been
achieved in the high power simulations as well, where additionally the effects on the
equilibrium could be highlighted. Large local perpendicular pressure affects the shap-
ing mainly through enhanced Shafranov shift, and the resulting strong local variations in
ballooning parameter and local shear indicate important changes in global stability. More-
over, the effect of the RF induced current on the safety factor profile could be quantified.
Finally, the RF induced particle pinch could be verified. All of the results shown suggest
that the newly developed code package SCENIC can be applied successfully to minority
ICRH scenarios, and the inclusion of the equilibrium in the self-consistent computations
is a great improvement in the research related to ion cyclotron resonance.

13.2. Outlook

For the future, many possible applications can be explored. We have limited our stud-
ies to fixed boundary equilibrium computations. The application of heating can cause
the boundary shape to change through the enhanced Shafranov shift and possibly also
through the impact of pressure anisotropy. It would therefore be interesting to exchange
the fixed boundary with an anisotropic free boundary version of VMEC.49 Furthermore,
the studies conducted have indicated that ICRH could directly affect MHD stability. Ap-
plying the results from SCENIC to a stability code presents one logic application of the
code. In particular, the stability code TERPSICHORE is already linked to the equilibrium
code VMEC, including the bi-Maxwellian fast particles, and it would be straightforward to
use this tool for studying the effects of ICRH on stability. Furthermore, the same code can
pass perturbed fields to the equations of motion of the guiding centre drifts in VENUS, and
therefore the effects of field perturbations on the distribution function can be studied with-
out further code development. All of these studies can also be done in three dimensions,
so another possible use of SCENIC would of course be to investigate self-consistently 3D
effects in relation to ICRF. Here, the only development work to be performed would be to
generalise the implemented statistics modules in VENUS from the axisymmetric (s, θ) to
the general (s, B), which is a relatively undemanding task. With this, the effects of mag-
netic ripple and self-generated internal 3D magnetic structures83 in tokamaks or general
simulations in stellarator geometries become possible. Yet another possible extension of
SCENIC is to add the NBI and anomalous transport modules implemented in VENUS by
M. Albergante,84 in order to include Neutral Beam injection and turbulent transport in the
computations. Again, three dimensionality would come as a free asset.



A. Computation of the anisotropic dielec-
tric tensor

As said in Chapter 5, we consider the bi-Maxwellian distribution function Fh from Eq. (4.1)
in order to find the dielectric tensor analytically. As the calculations are rather tedious,
we shall only show the computation of E‖‖, as the principles are the same for finding the
other components. We will start from the Vlasov equation (2.51). Then we linearise this
equation around the equilibrium state f = F + f̃ , E = E, B = B0 + B̃ and v = v, where F
and B0 are the equilibrium quantities and f̃ , E, B̃ and v are small perturbations. Retaining
only first order perturbation terms, the linearised Vlasov equation reads

∂

∂t
f̃ + v · ∇ f̃ +

Q
m

B0 · ∂

∂v
f̃ +

Q
m

E · ∂

∂v
F = 0. (A.1)

As explained in Sec. 5.1, we will only retain terms of 0:th order in the small parameters
εe = ρ/L and εp = ρ/λ⊥, such that the latter equation simplifies further to[
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where we adopted the cylindrical velocity coordinates v = v⊥(cos αên + sin αêb) + v‖ê‖,
with α the gyro angle, and Ω = QB0/m. The derivative with respect to velocity takes the
form
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and it follows that
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To zeroth order in Larmor radius, ∂F/∂α = 0, and only the first line has to be computed.
The perturbed distribution function can also be considered periodic in gyro angle, such
that we can further decompose

f̃ =
∞

∑
l=−∞

f̃leilα. (A.5)

Since there are terms with the same exponential form on the right hand side of Eq. (A.2),
explicitly given in Eq. (A.4), only three terms in the expansion of f̃ will contribute, namely
for l = {−1, 0, 1}. We will only consider one frequency for the injected wave, such that
we can further expand f̃l using an exponential dependence in time, exp(−iωt), and we
also assume one parallel wave vector k‖. Note that for every mode in the plasma, k‖
differs, and thus the value of the dielectric tensor differs. We can now write
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yielding
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Only the perturbed distribution function f̃ has to be considered in the current, since the
equilibrium electric field is zero, and as j = σE, the equilibrium current is zero as well.
The parallel current then reads
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and
j‖ = σ‖nEn + σ‖bEb + σ‖‖E‖, (A.9)

such that only the middle term has to be included for the calculation of σ‖‖. In fact, one
can show that all other terms are zero, but this does not matter for finding σ‖‖. The wanted
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conductivity element then reads
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The equilibrium distribution function F is the bi-Maxwellian from Eq. (4.1), which can be
written in terms of v‖ and v⊥ as
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where v2
⊥th = 2T⊥/m and v2

‖th = 2T‖/m.

For B > Bc, we can remove the absolute value in the argument of the exponential and
the derivative takes the form
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We can then integrate the distribution
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For this integral, we change variables x = v‖/v‖th and define z0 = ω/k‖v‖th, such that
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We can now compute the second integral
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dx︸              ︷︷              ︸
=z0
√

π

−
∫ ∞

−∞
xe−x2

dx︸            ︷︷            ︸
=0

+
∫ ∞

−∞

z2
0

z0 − x
e−x2

︸                 ︷︷                 ︸
=z2

0ZSh(z0)
√

π/z0


=

v‖thω

k2
‖

√
π

(
ZSh

(
ω

k‖v‖th

)
− 1

)
, (A.20)

where ZSh
0 is defined in Eq. (5.2). Putting together Eqs. (A.13), (A.14) and (A.20), and

introducing the notations defined in (5.2) yields

EB>Bc
‖‖ = 1 +

i
ωε0

σBc>B
‖‖ = 1 +

2
(k‖v‖th)2

√
T‖/T⊥
C+

(
ω̃2

p −ωZ̃‖0
)

, (A.21)

which is Eq. (5.1ac) for one species.

For B < Bc, one has to split the integral over the perpendicular velocity into two con-
tributions, one for 0 < v⊥ < v‖/

√
Bc/B− 1 and one for v‖/

√
Bc/B− 1 < v⊥ < ∞,

because of the absolute value in the exponential. Since the principle of the computations
is the same but the algebra is rather tedious, we satisfy ourselves with the computations
for the case B > Bc. The case B < Bc is shown in the Appendix of Ref. 53.



B. Wave number computation

B.1. Basis vectors.

es = ∇s (B.1)

eθ = ∇θ (B.2)

eϕ = ∇ϕ (B.3)

es =
√

g (∇θ ×∇ϕ) (B.4)

eθ =
√

g (∇ϕ×∇s) (B.5)

eϕ =
√

g (∇s×∇θ) (B.6)
with √

g =
1

∇s · (∇θ ×∇ϕ)
.

Magnetic field components in Boozer coordinates.

Bs = 0 (B.7)

Bθ = ψ′/
√

g (B.8)

Bϕ = Φ′/
√

g (B.9)

Bs = Bs (B.10)

Bθ = µ0 J/σ (B.11)

Bϕ = −µ0 I/σ (B.12)

with I the poloidal current flux, J the toroidal current flux, ψ the poloidal and Φ the toroidal
flux functions. Prime denotes the derivative with respect to s. We will always compute the
wave numbers using the scalar potential.
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164 B. Wave number computation

B.2. Alternative basis

For the computation of the wave vectors, let us define new basis vectors as

es = ∇s (B.13)

eb = (b×∇s) (B.14)

e‖ = b ≡ B
B

(B.15)

es =
√J (eb × e‖) (B.16)

eb =
√J (e‖ × es) (B.17)

e‖ =
√J (es × eb) (B.18)

The Jacobian is

√J =
1

∇s · (b×∇s× b)
=

1
∇s · ((b · b)∇s− (b · ∇s)b)

=
1

∇s · ∇s
, (B.19)

which is as expected since es ⊥ eb ⊥ e‖ and es · es , 1. Now,

es =
√J (eb × e‖) =

√J ((b×∇s)× b) =
√J∇s =

√J es

eb =
√J (e‖ × es) =

√J (b×∇s) =
√J eb

e‖ =
√J (es × eb) =

√J (∇s× (b×∇s)) =
√J (∇s · ∇s︸     ︷︷     ︸

1/
√J

)b− (∇s · b︸   ︷︷   ︸
0

)∇s = e‖.

B.3. Perpendicular wave number k⊥

By definition of the coordinates,

k2
⊥ = ksks + kbkb,

with

ks =
1
χ

es · ∇χ =
1
χ
∇s · ∇χ =

1
χ

(
∂χ

∂s
∇s +

∂χ

∂b
∇b +

∂χ

∂ ‖∇ ‖
)

=
1
χ

(∇s · ∇s)
∂χ

∂s
=

1
χ
√J

∂χ

∂s
(B.20)

ks =
1
χ

es · ∇χ =
1
χ

√J es · ∇χ =
√J ks =

1
χ

∂χ

∂s

⇒ ksks =
1√J
(

1
χ

∂χ

∂s

)2

, (B.21)
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and

kb =
1
χ

eb · ∇χ =
1
χ

(b×∇s) · ∇χ =
1

χB

[(
µ0 J
σ
∇θ − µ0 I

σ
∇ϕ

)
×∇s

]
· ∇χ

=
1

χσB
[µ0 J(∇θ ×∇s)− µ0 I(∇ϕ×∇s)] ·

[
∂χ

∂s
∇s +

∂χ

∂θ
∇θ +

∂χ

∂ϕ
∇ϕ

]

=
1

χσB

µ0 J (∇θ ×∇s) · ∇ϕ︸                  ︷︷                  ︸
−1/

√
g

∂χ

∂ϕ
− µ0 I (∇ϕ×∇s) · ∇θ︸                  ︷︷                  ︸

1/
√

g

∂χ

∂θ

 (B.22)

kb =
√J kb = −

√J
χσB
√

g

(
µ0 J

∂χ

∂ϕ
+ µ0 I

∂χ

∂θ

)
⇒ kbkb =

√J
[

1
χσB
√

g

(
µ0 J

∂χ

∂ϕ
+ µ0 I

∂χ

∂θ

)]2

(B.23)

Explicitly, using
√J = 1/gss,

k2
⊥ = gss

(
1
χ

∂χ

∂s

)2

+
1

gss

[
1

χσB
√

g

(
µ0 J

∂χ

∂ϕ
+ µ0 I

∂χ

∂θ

)]2

(B.24)

B.4. Parallel wave number k‖

Since e‖ = e‖, there is no difference between the co- and contravariant components:

k‖ =
1
χ

e‖ · ∇χ =
1
χ

b · ∇χ =
1

χB
[
ψ′(∇ϕ×∇s) + χ′(∇s×∇θ)

] · ∇χ

=
1

χB
[
ψ′(∇ϕ×∇s) + χ′(∇s×∇θ)

] · [∂χ

∂s
∇s +

∂χ

∂θ
∇θ +

∂χ

∂ϕ
∇ϕ

]

=
1

χB

ψ′ (∇ϕ×∇s) · ∇θ︸                  ︷︷                  ︸
1/
√

g

∂χ

∂θ
+ χ′ (∇s×∇θ) · ∇ϕ︸                  ︷︷                  ︸

1/
√

g

∂χ

∂ϕ

 (B.25)

That is (k‖ = k‖),

k‖ =
1

χB
√

g

(
ψ′

∂χ

∂θ
+ χ′

∂χ

∂ϕ

)
(B.26)





C. Solution for a single wave-particle reso-
nance passing

Starting from Eq.6.18, we develop

u(t) exp
{

i
∫ t

t0

dt′Ω(t′)
}
− u(t0) =

Q
m

E+e−iωt0

∫ t

t0

dt′ exp
{

i
∫ t

t0

dt′′
[
Ω(t′′)−ω

]}
+

Q
m

E−e+iωt0

∫ t

t0

dt′ exp
{

i
∫ t′

t0

dt′′
[
Ω(t′′) + ω

]}
(C.1)

Now, using the Taylor expansion of Ω(t) from (6.15),

Ω(t′′) ≈ ω + (t′′ − tres)Ω′ (C.2)

Ω(t′′)−ω ≈ (t′′ − tres)Ω′ (C.3)

Ω(t′′) + ω ≈ 2ω + (t′′ − tres)Ω′ (C.4)

One can now see that the contribution proportional to E− will not be resonant due to the
2ω term. We will therefore neglect it from here on. Then,

∫ t′

t0

dt′′
[
(t′′ − tres)Ω′

]
=

[
t′′2

2
Ω′ − tresΩ′t′′

]t′′=t′

t′′=t0

=
1
2
(
t′′2 − t2

0
)

Ω′ − (t′ − t′0)tresΩ′

=
Ω′

2
[
t′2 − 2trest′ + 2trest0 − t2

0
]

=
Ω′

2
[
(t′ − tres)2 − (tres − t0)2] (C.5)
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168 C. Solution for a single wave-particle resonance passing

Let us now assume that the cyclotron frequency only changes slowly with time (due to
slow change in magnetic field), i.e.

tres − t0 � 1√
Ω′

(C.6a)

t− tres � 1√
Ω′

(C.6b)

The RHS of (C.1) becomes then∫ t

t0

dt′ exp
{

i
∫ t

t0

dt′′
[
Ω(t′′)−ω

]}
= exp

{
−i

Ω′

2
(tres − t0)

2
} ∫ t

t0

dt′ exp
{

i
Ω′

2
(
t′ − tres

)2
}

→ exp
{
−i

Ω′

2
(tres − t0)

2
} ∫ +∞

−∞
dt′ exp

{
i
Ω′

2
(
t′ − tres

)2
}

= exp
{
−i

Ω′

2
(tres − t0)

2
} √

2π

−iΩ′

= exp
{
−i

Ω′

2
(tres − t0)

2
} √

exp
{

i
π

2
sgn(Ω′)

} 2π

|Ω′|

= exp
{
−i

Ω′

2
(tres − t0)

2 + i
π

4
sgn(Ω′)

} √
2π

|Ω′| . (C.7)

With this, we get relation (6.19)

u(t) exp
[

i
∫ t

t0

dt′Ω(t′)
]
− u(t0) �

Q
m

E+e−iψ

√
2π

|Ω′| , (C.8)

with ψ = ωt0 + Ω′
2 (tres − t0)2 − π

4 sgn(Ω′). The average change of energy per transit is
the result of simple direct calculations and gives directly Eq. (6.20),

W⊥ =
m
2
〈u(t)u(t)∗ − u(t0)u(t0)∗〉 =

m
2

∣∣∣∣Ze
m

∣∣∣∣2 ∣∣E+∣∣2 2π

|Ω′| . (C.9)

In order to find from this the rate of perpendicular power absorption per unit volume, P⊥,
we define the number of resonance crossings per unit volume and time, ν(x, v⊥, v‖), and
write

P⊥ = ν(x, v⊥, v‖)W⊥(x, v⊥, v‖) (C.10)
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Let x denote the direction of the guiding centre orbit, with vg(v⊥, v‖) the guiding centre
velocity. If now x changes by ∆x, the average number of resonance crossings per time is

〈ν〉∆V = 〈ν〉∆x∆A

= ∆A
∫ u+|∆u|

u︸     ︷︷     ︸
resonantptclesonly

dv‖
∫ ∞

0
|vg|︸︷︷︸

#ptclespersec

f (x, v)2πv⊥dv⊥ (C.11)

We introduced the velocity u = vres
‖ = (ω − Ω(x))/k‖, with ∆u = ∆xdvres

‖ /dx =
−∆x/k‖ · dΩ/dx. We will also use Ω′ = dΩ/dt = vgdΩ/dx. We can now simplify

P⊥ = 〈νW⊥〉 =
1

∆V︸︷︷︸
perunitvolume

∆A|∆u|
∫ ∞

0
|vg|W⊥ f (x, v⊥, vres

‖ )2πv⊥dv⊥ (C.12)

Explicitly,

|∆u||vg|W⊥ =

∣∣∣∣∣∆x
k‖

dΩ
dx

∣∣∣∣∣ |vg|m2
∣∣∣∣Ze

m

∣∣∣∣2 ∣∣E+∣∣2 2π∣∣∣vg
dΩ
dx

∣∣∣ , (C.13)

and thus

P⊥ =
∆A∆x

∆V︸    ︷︷    ︸
=1

πZ2e2

m|k‖|
∣∣E+∣∣2 ∫ ∞

0
f (x, v⊥, vres

‖ )2πv⊥dv⊥︸                                 ︷︷                                 ︸
≡nres(x,vres

‖ )

, (C.14)

which is exactly Eq. (6.21).





D. Detailed scenario description

D.1. Equilibrium for benchmarking against SELFO and
dielectric tensor studies

2 % hydrogen in deuterium background. The Shafranov shift of 4cm in VMEC is not
included in SELFO, and we decided to match the LFS of the plasma, since this is where
the heating resonance was chosen. The magnetic axis is at R0 = 3 m and the LFS edge
at R = 4 m, giving a minor radius of a = 1.04 m. The plasma was circular, i.e. elongation
κ = 0 and triangularity δ = 0. The magnetic field on axis is B0 = 3.45 T. For simplicity,
all profiles are chosen constant with Te = Ti = 5 keV and ne = 4× 1019 m−3. The total
toroidal current is 2.6 MA. The heating is chosen on the LFS at Bc = 3.23 T, resulting in
a frequency of 49.3 MHz. The toroidal mode number is nϕ = 27.

D.2. Equilibrium based on JET shot 76189

The equilibrium is based on JET shot 76189 described in Refs. 79 and 20. It is a JET-like
D-shaped equilibrium with major radius R0 = 2.99 m, minor radius a = 1.17 m, elongation
on edge κa = 1.4 and triangularity on edge δa = 0.4. The magnetic field strength on axis
is B0 = 2.94 T. The background consists of Deuterium and electrons with a temperature
on axis of Te

0 = Ti
0 = 3.5 keV and the electron density on axis ne

0 = 3.38× 1019 m−3.
This yields a volume averaged thermal beta of 〈βth〉 = 0.13 %. The profiles are given in
Fig. D.2.

D.2.1. Low power simulations

In Chap. 11, a 1 % helium-3 minority is considered, yielding a deuterium density of nD
0 =

0.98ne
0 and an initial minority density on axis of nHe3

0 = 0.01ne
0. For both low field side

(LFS) and high field side (HFS) heating, the resonant layer is defined by the q = 1 surface,
i.e. r1/a = 0.25. This gives for the two cases

• Low Field Side: Bc = 2.73 T, yielding f LFS
RF = 27.2 MHz

• High Field Side: Bc = 3.18 T, yielding f HFS
RF = 32.4 MHz
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172 D. Detailed scenario description
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Figure D.1.: Safety factor profile. The density and temperature profiles are constant.

D.2.2. High power simulations

In Chap. 12, a 3 % H minority is considered, yielding a deuterium density of nD
0 = 0.97ne

0
and an initial minority density on axis of nH

0 = 0.03ne
0. For both low field side (LFS) and

high field side (HFS) heating, the resonant layer is approximately defined by r/a = 0.5.
This gives for the three cases

• Low Field Side: Bc = 2.54 T, yielding f LFS
RF = 38.7 MHz

• On Axis: Bc = 2.94T, yielding f OA
RF = 48.5 MHz

• High Field Side: Bc = 3.45 T, yielding f HFS
RF = 52.6 MHz
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Figure D.2.: Background profiles. The minority species initially has the same temperature and
normalised density profiles. For the low power studies in Chap. 11, the heating is
applied at r/a = 0.25, where q = 1. For the high power studies in Chap. 12, the
heating is applied at r/a = 0.5.
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