
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Hersch, président du jury
Prof. S. Süsstrunk, directrice de thèse

Prof. P. Fua, rapporteur
Prof. B. Macq, rapporteur

Prof. M. Salzmann, rapporteur

Finding Objects of Interest in Images using Saliency and
Superpixels

THÈSE NO 4908 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 13 JANVIER 2011

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE COMMUNICATIONS AUDIOVISUELLES 2

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Radhakrishna Achanta

Contents

Abstract v

Résumé vii

Acknowledgments ix

1 Introduction 1
1.1 Objects of interest . 3
1.2 Applications . 5
1.3 Goals of this thesis . 5
1.4 Overview of the thesis . 5

1.4.1 Chapter 2: State-of-the-art . 7
1.4.2 Chapter 3: Saliency detection 7
1.4.3 Chapter 4: Applications of Saliency detection 9
1.4.4 Chapter 5: Database saliency 9
1.4.5 Chapter 6: Superpixel segmentation 12
1.4.6 Chapter 7: Conclusions . 13

2 State of the art 15
2.1 Saliency Detection Techniques . 15

2.1.1 Biological model based approaches 16
2.1.2 Purely computational approaches 16
2.1.3 Hybrid approaches . 17
2.1.4 Limitations and common criticisms 18

2.2 Frequency domain analysis of saliency detection techniques 19
2.2.1 Spatial frequency content of saliency maps 19
2.2.2 Other algorithmic properties of the methods 24

2.3 Object scale and frequency cut-offs . 25
2.4 Superpixel Segmentation Techniques 26

2.4.1 Graph-based algorithms . 27
2.4.2 Gradient-ascent-based algorithms 28
2.4.3 Limitations of superpixel algorithms 28

2.5 Clustering . 29

i

ii Contents

2.5.1 k-means clustering . 29
2.5.2 Mean shift clustering . 30
2.5.3 Graph-based image segmentation 31
2.5.4 Source-sink graph-cuts . 32
2.5.5 Geodesic distance computation 32

2.6 Summary of the chapter . 33

3 Saliency Detection 35
3.1 Requirements for a saliency map . 35
3.2 Saliency detection algorithm - I . 36

3.2.1 Saliency using bandpass filtering 36
3.2.2 Parameter selection . 36
3.2.3 Intuitive understanding of the choice of parameters 38
3.2.4 Computing saliency . 39
3.2.5 Various interpretations . 39

3.3 Saliency detection algorithm - II . 40
3.3.1 The surround assumption of IGS 40
3.3.2 New surround assumption . 40
3.3.3 Saliency computation . 42

3.4 Spatial frequency content of IGS and MSSS 45
3.5 Comparison with state-of-the art . 47

3.5.1 Precision and recall . 52
3.5.2 Comparison by thresholding . 53

3.6 Discussion . 55
3.7 Summary of the chapter . 55

4 Applications of Saliency Detection 59
4.1 Salient object segmentation . 59

4.1.1 Segmentation by adaptive thresholding 60
4.1.2 Salient region segmentation using graph-cuts 63
4.1.3 Salient region segmentation using geodesic paths 64
4.1.4 Discussion . 64

4.2 Automatic Image Re-targeting . 69
4.2.1 Visual Importance Maps . 69
4.2.2 Seam carving . 71
4.2.3 Improved seam carving . 72
4.2.4 Noise Robustness . 80

4.3 Summary of the chapter . 85

5 Database Saliency and Image Summaries 87
5.1 Ranking images . 87

5.1.1 Image clusters and database saliency 87

Contents iii

5.2 Choosing images for creating a summary 92
5.3 Image summaries . 93

5.3.1 Variable tile size image mosaics 93
5.3.2 Automatic image collages . 98

5.4 Summary of the chapter . 100

6 Superpixel Segmentation 103
6.1 Introduction . 103
6.2 SLIC superpixel algorithm . 105

6.2.1 Distance measure . 105
6.2.2 Algorithm . 106
6.2.3 Post processing . 108
6.2.4 Complexity . 109

6.3 Comparison . 111
6.3.1 Algorithm Parameters . 111
6.3.2 Under-segmentation error . 111
6.3.3 Boundary recall . 118
6.3.4 Computational and memory efficiency 118
6.3.5 Discussion . 118

6.4 Superpixel Applications . 121
6.4.1 Object class recognition . 121
6.4.2 Superpixel-graph-based segementation 122
6.4.3 Mitochondria segmentation . 122

6.5 Supervoxel segmentation . 124
6.6 Pretty superpixels . 126

6.6.1 Euclidean versus geodesic distance 126
6.6.2 Geodesic distance based superpixels 126
6.6.3 Post-processing using geodesic distances 128
6.6.4 GSLIC comparison with state-of-the-art 128

6.7 Summary of the chapter . 128

7 Conclusions 133
7.1 Thesis summary . 133
7.2 Some reflections and future research 135

A Text Detection 137
A.1 Introduction . 137
A.2 Approaches in text detection . 137

A.2.1 Adaboost . 138
A.2.2 Text Detection and AdaBoost 138

A.3 Text recognition using AdaBoost . 139
A.3.1 AdaBoost approach . 139

iv Contents

A.3.2 Features . 141
A.3.3 Cascade . 141
A.3.4 Training set . 143

A.4 Text region detection and localization 143
A.5 Text region binarization . 144
A.6 Combining text detection and generic saliency detection 144
A.7 Summary of the chapter . 147

B Object scale and Gaussian filtering 149
B.1 Gaussian filtering in practice . 150
B.2 The relation between sigma and cut-off frequency 150

C Mitochondria Segmentation using SLIC Superpixels 151
C.1 Segmenting objects in Electron Microscope imagery 151
C.2 Mitochondria detection and segmentation 152
C.3 Mitochondria segmentation using SLIC supervoxels 153

Bibliography 156

Curriculum Vitae 169

Abstract

The ability to automatically find objects of interest in images is useful in the areas of
compression, indexing and retrieval, re-targeting, and so on. There are two classes
of such algorithms - those that find any object of interest with no prior knowledge,
independent of the task, and those that find specific objects of interest known a
priori. The former class of algorithms tries to detect objects in images that stand-
out, i.e are salient, by virtue of being different from the rest of the image and
consequently capture our attention. The detection is generic in this case as there
is no specific object we are trying to locate. The latter class of algorithms detects
specific known objects of interest and often requires training using features extracted
from known examples. In this thesis we address various aspects of finding objects
of interest under the topics of saliency detection and object detection.

We present two saliency detection algorithms that rely on the principle of center-
surround contrast. These two algorithms are shown to be superior to several state-of-
the-art techniques in terms of precision and recall measures with respect to a ground
truth. They output full-resolution saliency maps, are simpler to implement, and are
computationally more efficient than most existing algorithms. We further establish
the relevance of our saliency detection algorithms by using them for the known
applications of object segmentation and image re-targeting. We first present three
different techniques for salient object segmentation using our saliency maps that
are based on clustering, graph-cuts, and geodesic distance based labeling. We then
demonstrate the use of our saliency maps for a popular technique of content-aware
image resizing and compare the result with that of existing methods. Our saliency
maps prove to be a much more effective replacement for conventional gradient maps
for providing automatic content-awareness.

Just as it is important to find regions of interest in images, it is also important to
find interesting images within a large collection of images. We therefore extend the
notion of saliency detection in images to image databases. We propose an algorithm
for finding salient images in a database. Apart from finding such images we also
present two novel techniques for creating visually appealing summaries in the form
of collages and mosaics.

Finally, we address the problem of finding specific known objects of interest in
images. Specifically, we deal with the feature extraction step that is a pre-requisite

v

vi Abstract

for any technique in this domain. In this context, we first present a superpixel
segmentation algorithm that outperforms previous algorithms in terms quantitative
measures of under-segmentation error and boundary recall. Our superpixel seg-
mentation algorithm also offers several other advantages over existing algorithms
like compactness, uniform size, control on the number of superpixels, and compu-
tational efficiency. We prove the effectiveness of our superpixels by deploying them
in existing algorithms, specifically, an object class detection technique and a graph
based algorithm, and improving their performance. We also present the result of
using our superpixels in a technique for detecting mitochondria in noisy medical
images.

Keywords: saliency, segmentation, object detection, superpixels, medical image
segmentation.

Résumé

La capacité à trouver automatiquement les objets intéressants dans une image est
très utile dans les domaines de la compression, de l’indexation et de la recherche,
du redimensionnement etc.. Il existe deux types d’algorithmes, ceux qui trouvent
les objets d’intérêt sans connaissances préalables, indépendamment de la tâche et
ceux qui trouvent des objets d’intérêt spécifiques déjà connus à priori. La première
catégorie d’algorithmes essaie de détecter les objets qui ressortent de l’image, c’est-
à-dire qu’ils sont saillants, car différents du reste de l’image et donc attirent notre
attention. La détection dans ce cas est générique car il n’y a pas d’objet spécifique
que nous essayons de localiser. La deuxième catégorie d’algorithmes détecte des
objets d’intérêts connus spécifiques et nécessite souvent un entraînement utilisant
les caractéristiques extraites d’exemples connus. Dans cette thèse nous abordons
différents aspects de recherche des objets d’intérêts avec comme sujets la détection
de saillance et la détection d’objet.

Nous présentons deux algorithmes de détection d’objets saillants qui reposent sur
le principe de contraste centre périphérie. Nous montrons que ces deux algorithmes
sont supérieurs à de nombreux algorithmes de pointe en terme de précision et de
rappel mesurés par rapport à une référence. Ils donnent des cartes de saillance en
pleine résolution, sont plus simples à implémenter et sont plus efficaces à calculer
que la plupart des algorithmes existants. Nous établissons ensuite la pertinence
de notre algorithme de détection de saillance pour des applications connues. Nous
montrons l’usage de notre algorithme de détection de saillance en segmentant des
objets saillants. Pour cela nous présentons trois techniques différentes basées sur les
groupements, les graph-cuts et les distances géodésiques. Nous utilisons aussi nos
cartes de saillance pour l’application populaire de redimensionnement d’images en
fonction du contenu et comparons le résultat avec ceux des méthodes existantes. La
carte de saillance d’une image est l’alternative la plus efficace par rapport à la carte
de gradients conventionnelle pour la reconnaissance automatique de contenu.

Il est tout aussi important de trouver les régions d’intérêt dans des images que
de trouver les images intéressantes a l’intérieur d’une large collection d’entre elles.
Nous étendons à cet effet la notion de détection de saillance indépendamment de la
tâche d’une image aux bases de données d’images. En plus de trouver ces images
nous présenterons aussi deux nouvelles techniques pour créer des résumés d’images

vii

viii Résumé

visuellement attractifs sous la forme de collages et de mosaïques.
Pour finir, nous abordons le problème de la détection d’objets d’intérêt spéci-

fiques et connus. Plus précisément, nous traitons de l’étape d’extraction de carac-
téristiques qui est un pré-requis pour n’importe quelle technique dans ce domaine.
Dans ce contexte, nous présentons d’abord un algorithme de segmentation par su-
perpixels qui dépasse les performances de tous les algorithmes précédents en terme
de mesures quantitatives des erreurs de sous-segmentation et de rappel des bords.
Notre algorithme de segmentation par superpixels offre aussi plusieurs avantages sur
les algorithmes existants comme la compacité, la taille uniforme, le contrôle sur le
nombre des superpixels et l’efficacité de calcul. Nous prouvons l’efficacité de nos
superpixels en les déployant dans des algorithmes existants de détection de classes
d’objets et d’algorithmes basés sur la théorie des graphs tout en augmentant leurs
performances. Nous présentons aussi une technique utilisant nos superpixels pour
détecter les mitochondries dans des images médicales bruitées.

Mots clés: saillance, segmentation, détection d’objets, superpixels, segmentation
d’images médicales.

Acknowledgments

I have had a wonderful time at EPFL and in Switzerland. I am indebted to several
people who contributed directly or indirectly during the last few years on my way
to realizing this thesis. I take this opportunity to thank as many of them as I can.

I would like to thank my supervisor Prof. Sabine Süsstrunk for providing me the
opportunity to work in EPFL and for her guidance and support. In September 2005
I had a meeting with Sabine that perhaps lasted ten minutes and at the end of which
she accepted me into her lab. I later realized I was quite lucky to be selected so
easily. She gave me the freedom to choose the projects that interested me and made
sure I delivered on time. Working with her has helped me significantly improve the
quality of my work.

It was an honor to have as thesis committee members Prof. Roger Hersch, Prof.
Pascal Fua, Prof. Benoit Macq, and Prof. Matthew Salzmann. I am grateful to them
for taking time off their busy schedules to evaluate my work and for providing me
with useful feedback.

I would like to thank the students I worked with on various projects: Patrick
Zbinden, Patricia Wils, Olivier Küng, Patrick Shoenmann, Patrick Hammer, and
Andrea Guidi. They gave me the opportunity to learn new things and experiment
with things I did not have time for.

My thanks also go to Jocelyne Plantefol and Jacqueline Aeberhard for their less
noticed but crucial role in making our labs run like well-oiled machines. Thanks also
to Simon Hiscox for taking care of the computer infrastructure and accompanying
me for a tea almost every morning of the last couple of years.

I would like to thank some extremely smart people I collaborated with and
co-authored papers with. I thank Paco who has been both a jolly friend and an
advisor. I thank Prof. Sheila Hemami whom I had the opportunity to collaborate
with. During her short stint of three months in our lab I learnt and lot and produced
some interesting results that are part of my thesis now. I also collaborated with Appu
Shaji who is one of the most knowledgeable and helpful people I have come across.
Every idea flies with him. I am thankful to him for being a friend and an advisor.
Soon after joined EPFL I also got the opportunity to collaborate with Pascal Fua,
Aurelien Lucchi, and Kevin Smith, all of whom I am very thankful to.

A special thanks Stefan Winkler whom I met in Singapore and who put me in

ix

x Acknowledgments

touch with Sabine, which then unfolded the rest of my life as PhD student. Thanks
also to Thomas Lochmatter and his parents whom I stayed with when I came to
visit Sabine the first time. I met Thomas in Singapore and it was he who first gave
me the idea of doing a PhD at EPFL. It was Jacques-Albert and his parents who
took care of me when I came to start my Phd program. He also helped me find a
temporary place to stay with two charming ladies Madeleine and Marianne, who call
themselves my ‘mammans suisses’, and later some friends like Sverre and Isabelle
who me feel at home as soon as my life in Switzerland started.

I am grateful to my friends and colleagues who enriched my life during the PhD
program. A few I can mention here are Francisco Pinto, Luciano Sbaiz, Christof
Faller, Patrick Vandewalle, Laurence Meylan, Daniel Tamburrino, Joanna Marguier,
Ali Hormati, Ivana Jovanovic, Olivier Roy, Engin Tola, Mustafa Özuysal, Andrea
Fosatti, German Gonzales, Vincent Lepetit, Michael Colander, Masoud Alipour,
Cristian Carmeli, Francois Roy, and Jim Pugh. Among my friends, Roberto Costan-
tini has been a mainstay support during my thesis. He voiced his opinion when I
most needed it, and has always been there when I needed him. I thank him from
the bottom of my heart.

Celine, my wife, the best thing that ever happened to me, came into my life when
I was still a PhD student, occasionally lacking confidence, morbidly preoccupied
with my research, living in a 27 square meter apartment. Her unconditional love
and unflinching confidence in me made me a stronger person and added so much
richness to my life in ways I could not imagine. Magically, my first paper got
accepted after I met her, and my research just got better and better. It is only after
I met her, I looked up suddenly and realized that my life is much bigger than my
thesis. I will be thanking her and my lucky stars for the rest of my life. Thanks to
her I have a whole new family in Europe. Her parents, siblings, grandparents, and
relatives have all been very supportive.

My sister Lavanya, my brother Prakasam, his wife Neha, have been a constant
source of support and love to me in every walk of my life. They often look up to me
and make me think better of myself when I am in doubt. It is always my brother
that I turn to whenever I need advice in my life. Though younger to me, it never
ceases to amaze me how he quickly he grasps what I have to say and how he tells
me exactly what I need to hear. I can never sufficiently express my gratitude for
them.

The ones I will be forever indebted to are my parents. They are the very reason I
am here doing whatever I am. They have taken pride in everything I have ever done,
provided me with help, support, confidence, and love. I would strive to pass on what
they gave me to our children, beginning with our daughter Sanjana. I dedicate this
thesis to my parents.

Chapter 1

Introduction

Modern day life is rife with digital image and video capturing devices. The low
cost of these devices and their compactness have led to their use in almost any
sufficiently sophisticated electronic gadget. According to a comprehensive study by
the Consumer Electronics Association [31], 77% of American households now own
at least one digital camera. Most digital camera owners snapped an average of 72
digital photographs at the most recent event they attended and shared 51% of them.
For sharing the pictures, 55% use email, 48% use personal computers, and 40% rely
on sites such as MySpace, Facebook, Photobucket, and Snapfish. Cameras have also
become the default add-on feature for mobile phones and their resolution is steadily
rising. Consumer cameras are but one source of image data. There is also plenty of
image data generated by security and surveillance cameras, geo-stationery satellites,
reconnaissance aircrafts, medical imagery devices, infrared and ultraviolet cameras.

This growth in image data has led to new challenges in compression, transmis-
sion, storage, browsing, retrieval, organizing, and image data mining. Apart from
this, we also need tools and techniques to deal with problems arising from digital
image data and the technology associated with it. Trademark and copyright vio-
lation of images needs to be checked on the Internet. Email often contains image
based messages that are used to circumvent text-based spam filters and need effi-
cient blocking. Internet users desire tools to help them find the images they want,
or conversely, avoid offensive images and advertising. Image and video archives con-
taining years of news media recording that is languishing on magnetic tapes need to
be digitized and indexed for preservation and ease of future use.

Compression and transmission needs are usually being met by current standards
and technologies, thanks to lowering cost of memory devices and increasing network
bandwidths. But effective storage, intelligent retrieval, and extracting information
about image content are problems that do not have reliable solutions yet. This is
because addressing these tasks requires a human-like comprehension of such data.
This is proving quite difficult and the technology that can provide such capabilities is
lagging far behind what is desired. The work of Enser [41, 42, 12] reveals the yawning

1

2 Chapter 1.

gap between user needs and the capabilities of technology. To cite an example, a
real world query to look for an image may look like: “Pretty girl doing something
active, sporty in a summery setting, beach - not wearing lycra, exercise clothes -
more relaxed in tee-shirt. Feature is about deodorant so girl should look active -
not sweaty but happy, healthy, carefree - nothing too posed or set up - nice and
natural looking”. A human being might retrieve Fig. 1.11 from some photograpic
archives in response to such query, but it is far beyond the prowess of any technology
to automatically extract information from images well enough to associate such a
query with one.

Figure 1.1: An image a human being may retrieve from stock footage in response to a
complex query that is beyond a machine’s capability to understand.

Humans have an unsurpassed capacity to locate objects in an image, recognize
them instantly, understand the context, match the image with another one, catego-
rize the image, give it titles and tags, have an emotional response to an image, like
or dislike it, and so on. What we need is for machines to be able to understand, like
our vision allows us to. Computer vision is the science and technology of making
machines understand visual information. It deals with the theory and practice be-
hind artificial systems that extract information from images that is meaningful to
us.

The intriguing aspect of our ability to see and comprehend the images of the
world is that we have limited understanding of how we do so. It is the continuing

1Unless explicitly stated, all images in this thesis are from two publicly available databases: the
Berkeley Segmentation Database [132] and MSRA Salient Object Database [103]

1.1. Objects of interest 3

endeavor of computer vision algorithms to match, at least in part if not entirely, the
incredible ability of humans to perceive images. These algorithms focus on problems
such as object recognition, motion analysis, scene reconstruction, image restoration,
and so on, all with the aim of describing the content of images as well as unraveling
the workings of the human visual system. Looking at the situation, where on one
hand there is a relentless deluge of digital visual content and on the other hand
computer vision algorithms are far from adequate to meet our needs, it seems there
has never been a better time to be a computer vision scientist!

1.1 Objects of interest

Quoting Marr [101], “vision is the process of discovering from images what is present
in the world, and where it is.” One specific problem of computer vision algorithms in
extracting information from images is to find objects of interest. Animate or inan-
imate objects present in our environment capture our attention for various reasons
like, being new or unusual, being or having something we want, and causing us to
fight or flee. Fig. 1.2 shows some examples of objects of interest.

Humans have an uncanny knack of spotting objects of interest almost instan-
taneously in a scene. Such objects capture our attention whether we are aimlessly
gazing at scene or whether we are searching for something specific. Sometimes, ob-
jects in the visual scene ‘pop-out’ because of their distinctiveness with respect to
the rest of the environment in terms of their shape, symmetry, color, brightness,
etc.. Such objects are noticed involuntarily by virtue of their relative contrast. This
perceptual quality of an object, person, or pixel, which makes it stand out relative
to its neighbors and thus direct our attention is called saliency. On the other hand,
there are specific objects in a scene that we might be looking for. This could be
a key we have dropped in a field, or a friend in a crowd. Such objects grab our
attention because we are specifically searching for them. They are noticed by us
even when there are other distracting visual inputs in the vicinity.

Human visual attention results both from bottom-up visual saliency of the retinal
input that is task-independent and fast, as well as from slower, top-down, memory
and volition-based processing that is task-specific [108]. Treisman and Gelade [128]
demonstrated that visual attention in still images is comprised of a pre-attentive
step, which is fast and unconscious, and an attentive, conscious, saccade-based image
analysis, which is slower. The faster part of the attention grabbing mechanism
responds to saliency while the slower one responds to finding a match with a known
object in memory.

4 Chapter 1.

Figure 1.2: Examples of objects that grab our attention in the image because we like
them, hate them, fear them, need them, or just find them odd and interesting.

1.2. Applications 5

1.2 Applications

Automatically finding objects of interest has direct benefits in numerous applica-
tions, especially those that require content awareness. Video compression is one
such area. In scenarios like web-chats, network bandwidth savings can be achieved
by adaptively assigning more bits to faces, which are more important as opposed to
background. Domestic robots and autonomous vehicles can identify objects in their
environment for navigation and collision avoidance. Another area is that of auto-
matic image re-targeting, which is the task of changing aspect ratios of images to
suit different display devices without distorting the important content of the image.
Surveillance and security applications can benefit from automatic intruder detec-
tion. Automatic number plate detection in vehicle image databases can safeguard
the privacy of owners or help automated parking systems. Medicine and biology
can vastly benefit from automatic detection of tumors or cellular structures. Image
and video database and indexing systems can profit immensely from knowledge of
image content. Evidently, almost all aspects of our modern lives that involve digital
images can take advantage of automatically finding objects of interest.

1.3 Goals of this thesis

The focus of this thesis is on one of our visual capabilities - finding objects of interest
in images. Some examples of finding objects of interest are presented in Fig. 1.3.
There are two main facets of this problem - finding an unknown salient object and
finding a specific known object. In this thesis, we name the first problem of finding
an unknown object of interest saliency detection and the second one of detecting
a known object of interest task-specific object detection or simply object detection.
For the former, we develop saliency detection algorithms. For the latter, which is
a vast topic of research on its own, we focus on the step of feature extraction and
show how it may be used for object detection.

1.4 Overview of the thesis

We first address the problem of saliency detection. In literature, saliency detection
is done using a wide range of techniques and most of them suffer from several
drawbacks. We take a look at several state-of-the-art algorithms from a frequency
domain perspective to get an insight into their workings and shortcomings. We then
devise an algorithm, which despite being simple, outperforms the state-of-the-art
algorithms in terms of precision and recall as well as computational complexity. The
algorithm overcomes many of the drawbacks of existing algorithms. It relies on the
hypothesis that when the scale of an object in an image is unknown, as is usually the
case, it is best to assume the largest scale. We then present an improved algorithm
that takes a cue from the image borders to guess the scale. This leads to better

6 Chapter 1.

Figure 1.3: Examples of automatic detection of objects of interest. The images on
the left contain object(s) of interest. The ones on the right show the corresponding
detection using computer vision algorithms.

1.4. Overview of the thesis 7

saliency detection as shown by quantitative comparison. It additionally overcomes
the drawback of the previous algorithm of incorrectly detecting the background as
salient in certain images where the object is too large or the background is complex.
We present applications of these two algorithms in salient object segmentation and
image re-targeting.

We then extend the concept of task-independent saliency detection to image
databases. We present an algorithm for finding salient images from a database.
Such an algorithm is useful in applications that summarize the database. We present
two novel ways of summarizing image databases in the form of image mosaics and
collages.

We then address the problem of detecting specific objects of interest. In this
connection we present a superpixel segmentation algorithm that is used as the ba-
sis for extracting features. The superpixel algorithm is extensively compared with
state-of-the-art algorithms. Our algorithm is shown to be superior to the existing
algorithms according to the measures of under-segmentation error and boundary
recall with respect to a publicly available ground truth. Our superpixel algorithm
is also computationally the most efficient and offers much better control over the
number of superpixels and their compactness using fewer parameters. Applications
of our superpixels are shown in improving a couple of existing algorithms and in
detecting mitochondria in noisy medical images.

A visual overview of the thesis is provided in Fig. 1.4. In the sub-sections that
follow, we provide an overview of the content of the thesis and its contributions with
the aim of aiding the reader to understand the flow of the dissertation. Each chapter
is briefly introduced in a sub-section, some example images are presented, and the
contributions associated with the chapter are listed.

1.4.1 Chapter 2: State-of-the-art

This chapter presents a review of existing literature on task-independent saliency
detection and superpixel segmentation. For the former, a broad classification is
provided for the techniques in existing literature. This is followed by listing their
main drawbacks. Then we take a frequency domain point of view and analyze some
of these techniques. This provides an insight into the workings of these techniques
and how to address the requirements of a saliency map. For the latter, we present
the literature review relevant to superpixel segmentation. We classify the state-
of-the-art techniques into two main categories - graph based and gradient based.
Following this, we present a review of the clustering techniques that are used in
later chapters of this thesis.

1.4.2 Chapter 3: Saliency detection

In this chapter we present two saliency detection algorithms. The frequency-domain
analysis of the previous chapter permits us to identify the cause of some of the

8 Chapter 1.

Finding objects of interest

Chapter 2 State-of-the-art in saliency detection and superpixel
segmentation, and review of clustering techniques

Chapter 7 Conclusions and future work

Superpixel segmentation

Chapter 6

Superpixel segmentation algorithm
 Application of superpixels
 Object class detection improved
 Pixel graph-based segmentation improved
 Mitochondria detection

Saliency detection

Chapter 3 Saliency detection algorithms

Chapter 4

Database saliency computation
 Applications of database saliency
 Mosaic based summary
 Collage based summary

Chapter 5

Chapter 4
Applications of saliency detection
 Salient object segmentation
 Image re-targeting

Figure 1.4: A visual overview of the contents and structure of thesis.

1.4. Overview of the thesis 9

drawbacks of existing saliency detection algorithms. Based on what we learn, we
develop two saliency detection algorithms that overcome these drawbacks.

The main assumption of the first of these algorithms is that in the absence of a
priori knowledge of the salient object’s scale, the largest scale should be assumed.
The second algorithm challenges this premise and varies the scale assumption with
respect to the position of the pixel relative to the image borders.

For both saliency detection algorithms we perform a quantitative comparison
with existing methods in literature. Our saliency maps demonstrate better precision
and recall as compared to existing methods with respect to ground truth data. They
are also computationally more efficient than most methods. Fig. 1.5 provides a visual
comparison of our method as compared to the state-of-the-art.

Contributions

• Two saliency detection algorithms, which are quantitatively shown to signifi-
cantly outperform several existing algorithms.
• Publicly available code (C and MATLAB) as well as ground truth database of
1000 images for comparison.

1.4.3 Chapter 4: Applications of Saliency detection

In this chapter we present some of the applications of saliency detection. We first
present the use of saliency maps in segmenting salient objects. We present three
techniques for this purpose, one using clustering and adaptive thresholding, another
using graph-cuts, and a third using geodesic distances. Fig. 1.6 shows examples of
objects segmented automatically using their saliency maps. In all three cases we
compare segmentation results obtained using our saliency maps with those obtained
using state-of-the-art saliency detection techniques. This further provides evidence
of the effectiveness of our saliency detection techniques in object segmentation.

We then present the application of our saliency maps in the task of image re-
targeting (see Fig. 1.6). Specifically, we focus on the re-targeting technique of seam
carving, where we replace conventional gradient based energy maps with our saliency
maps. The re-targeting results are qualitatively compared with other image re-
targeting techniques to prove the effectiveness of our approach.

Contributions

• Three algorithms for segmenting salient objects using saliency maps.
• Improved seam carving using our saliency maps.

1.4.4 Chapter 5: Database saliency

In this chapter the idea of image saliency is extended to image databases. We claim
that just as certain regions of the image are more salient than others, in databases,

10 Chapter 1.

Input image Our saliency maps

Saliency maps from state-of-the-art algorithms

Figure 1.5: Visual comparison of saliency maps of several state-of-the-art saliency de-
tection techniques. Our methods produce saliency maps that have well-defined borders,
highlight whole object regions, and suppress the background better than most methods
even in the presence of complex backgrounds or when the salient object is very large.

1.4. Overview of the thesis 11

Top row shows input images. Bottom row shows objects segmented automatically
using their saliency maps.

Input 80% width 120% width

Figure 1.6: Applications of saliency maps. The first set of images above show how
segmentation can be done automatically. The second set of images below show how the
aspect ratio of an image can be altered without changing the important content of the
image.

12 Chapter 1.

certain images are more conspicuous than others. To find them, we group the
images into a desired (as required by the application) number of clusters and pick
those images from each cluster that are the farthest from all the cluster centers. For
clustering images we introduce a new image saliency based feature. Having found
salient images of the database we use them to create summaries in the form of image
mosaics and collages. An example of each of these summaries is shown in Fig. 1.7.

(a) (b)

Figure 1.7: Finding salient images in a database and creating summaries. (a) A
summary in the form of a mosaic. (c) A collage based image summary.

Contributions:

• Algorithm for summarizing databases by clustering images using a novel saliency
based image descriptor.
• Application of creating image summaries using a novel image mosaics.
• Application of creating collage based image summaries.

1.4.5 Chapter 6: Superpixel segmentation

The focus of the chapter is a superpixel segmentation algorithm (see Fig. 1.8) that
can be applied in feature extraction, which can in turn be used for object detection.
Superpixels are clusters of spatially connected pixels, i.e segments of an image that
share similar properties. We first present our superpixel segmentation algorithm. We
then compare our superpixel segmentation algorithm to the existing ones in terms
of under-segmentation error and boundary recall. We show how our superpixel
segmentation can improve the accuracy and speed of existing algorithms. One such
example is shown in performing object category recognition. Finally, we show the

1.4. Overview of the thesis 13

use our superpixels to detect and segment mitochondria from noisy medical images.
An example of the detection is presented in Fig. 1.8(d).

(a) (b)

(c) (d)

Figure 1.8: (a) Input image. (b) Segmentation into superpixels of three different sizes.
(c) Mitochondria in noisy medical images. (d) Detection of mitochondria.

Contributions:

• Superpixel segmentation algorithm that outperforms state-of-the-art algorithms.
• Application in detection of mitochondria in medical images.

1.4.6 Chapter 7: Conclusions

In this chapter we present a summary of the thesis and discuss its contributions. We
point towards the possibilities for improvement and the directions for future work.

14 Chapter 1.

Chapter 2

State of the art

The focus of this chapter is to give an overview of existing research relevant to
the contributions made in this thesis. The literature survey consists of three main
parts. The first part presents a broad classification of saliency detection techniques
and their general limitations. The second part presents an overview of superpixel
segmentation techniques, which are often used as a precursor to feature extraction
for applications like object detection. On more than one occasion we use certain clus-
tering algorithms in this thesis. The third part of this chapter therefore introduces
the clustering techniques we use.

2.1 Saliency Detection Techniques

The term saliency was used by Tsotsos et al. [131] and Olshausen et al. [110] in their
work on visual attention, by Sha’ashua and Ullman [122], and by Itti et al. [72] in
their work on rapid scene analysis. It is widely accepted that unconscious human
visual attention is guided by saliency. Saliency is known to be the consequence of
contrast, unpredictability, rarity, or surprise [131, 98, 74, 70, 100].

Saliency estimation methods can broadly be classified as biologically based,
purely computational, or a combination. The goal of any method, in general, is to
detect properties of contrast, rarity, or unpredictability in images, of a central region
with its surroundings, either locally or globally, using one or more low-level features
like color, intensity, and orientation. Biological model based methods [72, 140, 50]
attempt to mimic known models of the visual system for detecting saliency. Purely
computational methods predominantly rely on principles of information theory, spec-
tral domain processing, or signal processing to achieve this objective.

Some of these algorithms detect saliency over multiple scales [72, 4], while others
operate on a single scale [98, 68]. In some cases individual feature maps are created
separately and then combined to obtain the final saliency map [71, 98, 68, 50], while
in some others, a combined-feature saliency map is computed [98, 4].

15

16 Chapter 2.

2.1.1 Biological model based approaches

Itti et al. [72] base their technique on the biologically plausible architecture proposed
by Koch and Ullman [77]. They determine center-surround contrast using a Differ-
ence of Gaussians (DoG) approach. Walther and Koch [140] base their work on the
model of Itti et al. [72] and extend it to infer the extent of proto-objects [115, 114]
at the attended locations. This is similar to the later work of Han et al. [61] and
Ko and Nam [76], who use their saliency maps to segment salient objects. Frintrop
et al. [50] present a method inspired by Itti’s method, but they compute center-
surround differences using Difference of Boxes (DoB) filters, and use integral images
to speed up the calculations.

2.1.2 Purely computational approaches

Most other methods are either purely computational, or partly rely on biological
principles. Zhang et al. [149] present a Bayesian saliency model that combines target-
independent bottom-up saliency and target-dependent top-down saliency. They fo-
cus on the bottom-up saliency part, which is independent of any knowledge of the
target class and is computed as the self-information at a given point with respect to
its features. Their model implies that the rarer a feature is, the more it will attract
our attention. Self-information is also the basis of the bottom-up saliency work of
Bruce and Tsotsos [24], Oliva et al. [109], Torralba and Oliva [126], and Mancas
et al. [100], although the features used by these methods differ. Bruce and Tsot-
sos [24] employ features that were learned from natural images using independent
component analysis (ICA), while Oliva and colleagues [126] use biologically inspired
linear filters of different orientations and scales (steerable filters). Oliva et al. [109],
and Torralba and Oliva [126] rely on the scene gist to compute saliency. This is
equivalent to the method of maximizing self-information of Bruce and Tsotsos [24]
if the neighborhood considered is the entire image. On similar lines, Mancas et
al. [100] treat global rarity as the primary criterion for saliency and compute it as
self-information using the histogram of local pixel-neighborhood means and vari-
ances. They show an application of their saliency detection in anisotropic filtering
of images.

Zhang et al. [149] show two different methods of computing bottom-up saliency
each of which uses a different set of features. The first method uses DoG outputs
of color and luminance channels over four scales. The second method uses ICA
features obtained from training image patches, similarly as Bruce and Tsotsos [24].
The two methods compute saliency as a linear sum of 12 DoG and 362 ICA features
responses, respectively.

Gao et al. [54, 56, 55] propose a unified framework for top-down and bottom-up
saliency as a classification problem with the objective of minimizing the classification
error. They first apply this framework to object detection [56] in which a set of
features is selected such that a class of interest is best discriminated from all other

2.1. Saliency Detection Techniques 17

classes, and saliency is then computed as the weighted sum of features that are
salient for that class. Gao et al. [54] define bottom-up saliency using the idea
that pixel locations are salient if they are distinct from their surroundings. They
use DoG and Gabor filters to compute features, and measure the saliency of a
point as the Kullback Leibler (KL) divergence between the histogram of the filter
responses at the point and the histogram of the filter responses in the surrounding
region. Mahadevan and Vasconcelos [99] applied this bottom-up saliency detection
to background subtraction in highly dynamic scenes.

Ma and Zhang [98] compute contrast at a location in an image with its sur-
rounding region as a cumulative sum of color distances of the center region with
surround regions. They use fuzzy growing on their saliency maps to confine segment
rectangles containing the salient regions. Achanta et al. [4] estimate saliency us-
ing center-surround feature distances. Instead of using the more popular Difference
of Gaussians (DoG) filters, they use a DoB approach using integral images (like
Frintrop et al. [50]), which results in lower computational costs despite filtering full
resolution images. Hu et al. [68] estimate saliency by applying heuristic measures on
initial saliency estimates obtained by histogram thresholding of feature maps. Seo
and Milanfar [120] present a method of saliency detection in images and video that
measures similarity of feature descriptors at a location in an image (or video) with
the surrounding descriptors.

Rosin [116] uses an edge-based scheme to compute image saliency for grayscale
images. Simple gradient detection is performed on the input image using an operator
like Sobel. The resulting gray level gradient map is thresholded at several gray level
to produce a set of binary edge images. A distance transform is applied to each of
the binary edge images to propagate the edge information. The resulting outputs
are averaged to obtain the saliency map. A salient region is then extracted from the
saliency map using a binary thresholding algorithm [130].

The first spectral domain approach for detecting saliency is due to Hou and
Zhang [67], who compute saliency as the residual difference between the perceived
spectrum and characteristic spectrum (termed spectral residual) of greyscale images.
In their algorithm the phase component is not taken into account. Guo et al. [60]
found that simply taking the inverse Fourier transform of the phase spectrum alone
and discarding the amplitude produced equivalent results. This method was further
simplified by Bian and Zhang [21] so that phase separation and multiplication with
an exponential term before inverse transform are not needed. Both Guo et al. [60]
and Bian and Zhang [21] extend their saliency detection models to color using the
quaternion fourier transform [40].

2.1.3 Hybrid approaches

The third category of methods are those that incorporate ideas that are partly
based on biological models and partly on computational ones. For instance, Harel

18 Chapter 2.

et al. [62] create feature maps using Itti’s method but perform their normalization
using a graph-based approach. Bian and Zhang [21] explain the biological plausibility
of their spectral domain saliency detection method. Similarly, for the techniques of
Torralba et al. [126] and Zhang et al. [149], which rely on global scene context
and natural image statistics, respectively, the authors allude towards the biological
plausibility of their models.

2.1.4 Limitations and common criticisms

The saliency maps generated by several methods have low resolution [72, 98, 62, 50,
67]. Itti’s method produces saliency maps that are just 1/256th the original image
size in pixels, while Hou and Zhang [67] output maps of size 64× 64 pixels for any
input image size. There are few saliency detection schemes [100, 4] that output
saliency maps with original input resolution.

Some methods tend to highlight textured regions as more salient regardless of
their context or surround [73, 55, 24]. Zhang et al. [149] explain that this is often
the consequence of using distributions of local oriented filters responses.

Depending on the salient region detector, some maps additionally have ill-defined
object boundaries [72, 62, 50], limiting their usefulness in certain applications. This
arises from severe downsizing of the input image, which reduces the high frequency
content in the original image considered in the creation of the saliency maps. Other
methods highlight the salient object boundaries, but fail to uniformly highlight the
entire salient region [98, 67, 100], or alternatively, better highlight smaller salient
regions than larger ones [4, 67, 21]. These shortcomings result from the limited
range of spatial frequencies retained from the original image in computing the final
saliency map as well as the specific algorithmic properties.

As pointed out by Rosin [116], in certain methods such as those of Itti et al. [72]
and Walther and Koch [140], finding and justifying appropriate parameters for the
number, types, and sizes of the filters, normalization schemes etc, can be prob-
lematic. This is also the case with the approach of Aziz and Mertsching [18] that
combines properties of orientation, color, size, symmetry, and eccentricity of regions
obtained by their segmentation algorithm into a single measure of saliency.

Since most of the saliency detection algorithms compute pre-attentive saliency,
i.e. fast bottom-up saliency, they should preferably be computationally inexpensive.
The algorithms by Itti et al. [72] and Harel et al. [62], for instance, are computa-
tionally quite expensive, which can restrict the usefulness of such saliency detection
algorithms.

2.2. Frequency domain analysis of saliency detection techniques 19

2.2 Frequency domain analysis of saliency detection tech-
niques

While the features used for saliency detection, and the linear and non-linear opera-
tions differ from model to model, interestingly, the appearance of most of the output
saliency maps can be explained to a large extent from a unified frequency-domain
perspective. In this section we examine the spatial frequency content retained from
the original image in the creation of the saliency maps of nine state-of-the-art meth-
ods. We “designed” the frequency-analysis scheme previously [5] to assess the state-
of-the art from a unified point of view. These methods are as follows: the classic
multi-scale DoG based scheme of Itti et al. [72], the cumulative neighborhood con-
trast scheme by Ma and Zhang [98], the graph-based saliency scheme by Harel
et al. [62], the scheme of attention using information maximization by Bruce and
Tsotsos [25], the method of Mancas et al. [100] of self-information of local means
and variances, the spectral residual scheme by Hou and Zhang [67], the scheme of
saliency using natural statistics by Zhang et al. [149], the color and intensity based
difference of boxes (DoB) scheme by Achanta et al. [4], and the spectral whitening
using quaternion transform by Bian and Zhang [21]. These methods hereby are re-
ferred to as IT98, MA03, GB06, GR07, AIM07, SR07, SUN08, AC08, and SWQ09
respectively.

The choice of these algorithms is motivated by the following reasons: citation
in literature (the classic approach of IT98 is widely cited), recency (GB06, GR07,
AIM07, SR07, SUN08, AC08, SWQ09, are recent), and variety (IT98 and STB06
are biologically motivated, MA03 and GR07 are purely computational, GB06 is a
graph-based hybrid approach, AIM07 uses an information maximization approach,
SUN08 relies on natural image statistics, SR07 and SWQ09 estimate saliency in the
frequency domain, and GR07 and AC08 output full-resolution maps).

2.2.1 Spatial frequency content of saliency maps

To analyze the properties of the nine saliency algorithms, we examine the spatial
frequency content from the original image that is retained in computing the final
saliency map. We provide the following analysis in one dimension and specify ex-
tensions to two dimensions when necessary. A summary of the frequency ranges as
well as some other attributes of these methods is presented in Table 2.1.

IT98

In method IT98, a Gaussian pyramid of 9 levels (level 0 is the original image)
is built with successive Gaussian blurring and downsampling by a factor of 2 in
each dimension. In the case of the luminance image, this results in a successive
reduction of the spatial frequencies retained from the input image. Each smoothing
operation approximately halves the normalized frequency spectrum of the image. At

20 Chapter 2.

the end of 8 such smoothing operations, the frequencies retained from the spectrum
of the original image at level 8 range within [0, π/256]. The technique computes
differences of Gaussian-smoothed images from this pyramid, resizing them to size of
level 4, which results in using frequency content from the original image in the range
[π/256, π/16]. In this frequency range the DC (mean) component is removed along
with approximately 99% ((1 − 1

162) × 100) of the high frequencies for a 2-D image.
As such, the net information retained from the original image contains very few
details and represents a very blurry version of the original image (see the bandpass
filtered image of Fig. 2.1). This is similarly the case with the model by Walther and
Koch [140] for finding proto-objects that extends the model of Itti et al. [72].

MA03

In method MA03, a low-resolution image is created by averaging blocks of pixels and
then downsampling the filtered image such that each block is represented by a single
pixel having its average value. The averaging operation performs low-pass filtering.
While the authors do not provide a block size for this operation, we obtained good
results with a block size of 10× 10 pixels, and as such the frequencies retained from
the original image are in the range [0, π/10].

GB06

In method GB06, the initial steps for creating feature maps are similar to IT98,
with the exception that fewer levels of the pyramid are used to find center-surround
differences. The spatial frequencies retained are within the range [π/128, π/8]. Ap-
proximately 98% ((1 − 1

82) × 100) of the high frequencies are discarded for a 2D
image. As illustrated in Fig. 2.1(d), there is slightly more high frequency content
than in 2.1(b).

AIM07

The saliency model of AIM07 relies on estimating the distribution of each of bases of
ICA (Independent Component Analysis) projection of random image patches across
an image. Several thousand patches of size 7×7 pixels are used to compute the ICA
bases. In the default mode of operation, the input image is not resized. However, the
use of patches (or averaged blocks as in MA03) implicitly limits the high frequency
content that makes it into the final saliency maps. The larger the patch size, the
more high frequency content gets discarded. So the frequency content of AIM07 is
roughly in the range of [0, π/7]. This explains why the salient objects have thick
borders and they appear larger than in the input images.

2.2. Frequency domain analysis of saliency detection techniques 21

GR07

The technique of GR07 bases saliency on the criterion of global rarity of a given
feature. As features, they use the mean and variance values in 3× 3 local neighbor-
hoods. According to the authors, the size of this neighborhood has little impact on
the final result. In the default mode of operation the image is not resized. As such,
the method uses the entire bandwidth of [0, π]. However, the averaging of the two
saliency maps computed using mean and variance values results in suppressing low
frequencies in the output saliency map.

SR07 and SWQ09

In method SR07 (as well as PFT and PQFT [60], and SWQ09 [21]), the input image
is resized to 64 × 64 pixels (via low-pass filtering and downsampling) based on the
argument that the spatial resolution of pre-attentive vision is very limited. The
resulting frequency content of the resized image therefore varies according to the
original size of the image. For example, with input images of size 320 × 320 pixels
(which is the approximate average dimension of the images of our test database),
the retained frequencies are limited to the range [0, π/5]. As seen in Fig. 2.1(g and
j), higher frequencies are smoothed out. Obviously, if the input images are larger,
even more high frequency content will get discarded when resizing them to a size of
64× 64 pixels.

SUN08

SUN08 [149] uses four scales of DoG (with surround σ = 4, 8, 16, or 32 pixels) on
each of the three channels, leading to 12 feature response maps. In the default mode
input images are downsampled by 2 along both dimensions. In this case the largest
possible range of spatial frequencies retained is [π/100, π/2].

AC08

In method AC08 [4], a difference-of-boxes filter is used to estimate center-surround
contrast. The lowest frequencies retained depend on the size of the largest surround
filter (which is half of the image’s smaller dimension) and the highest frequencies
depend on the size of the smallest center filter (which is one pixel). As such, method
AC08 effectively retains the entire range of frequencies (0, π] with a notch at DC.
All the high frequencies from the original image are retained in the saliency map
but but the low frequencies get suppressed in the final saliency map as a result of
averaging the filter output (see Fig. 2.1(h)).

22 Chapter 2.

M
et
ho

d
Fr
eq
.
ra
ng

e
R
es
ol
ut
io
n

C
om

pl
ex
ity

C
om

pu
ta
tio

na
la

pp
ro
ac
h

C
at
eg
or
y

Fe
au

tu
re
s

IT
98

[π
/2

56
,π
/1

6]
S
/
25

6
O

(k
I
T

98
N

)
C
en
te
r-
su
rr
ou

nd
,D

oG
B
io
lo
gi
ca
l

C
ol
or
,I
nt
en

sit
y,

an
d
or
ie
nt
at
io
n

M
A
03

[0
,π
/1

0]
S
/
10

0
O

(k
M
A

03
N

)
C
en
te
r-
su
rr
ou

nd
C
om

pu
ta
tio

na
l

C
ol
or

an
d
in
te
ns
ity

G
B
06

[π
/1

28
,π
/8

]
S
/
64

O
(k
G
B

06
N

4 K
)

G
ra
ph

-b
as
ed

H
yb

rid
C
ol
or
,I
nt
en

sit
y,

an
d
or
ie
nt
at
io
n

G
R
07

[0
,π

]
S

O
(k
G
R

07
N

)
Se

lf-
in
fo
rm

at
io
n

C
om

pu
ta
tio

na
l

In
te
ns
ity

A
IM

07
[0
,π
/7

]
S

O
(k
A
I
M

07
N

)
In
fo
rm

at
io
n
m
ax

im
iz
at
io
n

H
yb

rid
IC

A
ba

se
s
of

in
te
ns
ity

pa
tc
he

s

SR
07

[0
,π
/5

]
64
×

64
O

(k
S
R

07
N

)
Sp

ec
tr
al

do
m
ai
n

C
om

pu
ta
tio

na
l

In
te
ns
ity

A
C
08

(0
,π

]
S

O
(k
A
C

08
N

)
C
en
te
r-
su
rr
ou

nd
,D

oB
C
om

pu
ta
tio

na
l

C
ol
or

an
d
in
te
ns
ity

SU
N
08

[π
/1

00
,π
/2

]
S
/
4

O
(k
S
U
N

08
N

)
Se

lf-
in
fo
rm

at
io
n

H
yb

rid
IC

A
ba

se
s
of

in
te
ns
ity

pa
tc
he

s

SW
Q
09

[0
,π
/5

]
64
×

64
O

(k
S
W
Q

09
N

)
Sp

ec
tr
al

do
m
ai
n

H
yb

rid
C
ol
or

an
d
in
te
ns
ity

Ta
bl
e
2.
1:

A
co
m
pa
ris
on

of
1-
D

fre
qu

en
cy

ra
ng

e,
sa
lie
nc
y
m
ap

re
so
lu
tio

n,
an
d
co
m
pu

-
ta
tio

na
le

ffi
cie

nc
y.
S

is
th
e
in
pu

t
im

ag
e
siz

e
in

pi
xe
ls.

Al
th
ou

gh
th
e
co
m
pl
ex
ity

of
al
l

m
et
ho

ds
ex
ce
pt

GB
06

is
pr
op

or
tio

na
lt
o
N
,t

he
op

er
at
io
ns

pe
r
pi
xe
li
n
th
es
e
m
et
ho

ds
va
ry

(k
M
A

03
<
k
S
R

07
<
k
A
C

08
<
k
G
R

07
<
k
S
W
Q

09
<
k
A
I
M

07
<
k
S
U
N

08
<
k
I
T

98
<

k
G
B

06
).

GB
06

ha
s
an

ov
er
al
lc

om
pl
ex
ity

of
O

(k
G
B

06
N

4 K
),

de
pe
nd

in
g
on

th
e
nu

m
be
r

of
ite

ra
tio

ns
K
.

2.2. Frequency domain analysis of saliency detection techniques 23

In
pu

t
IT

98
[7
2]

M
A
03

[9
8]

G
B
06

[6
2]

G
R
07

[1
00

]
A
IM

07
[2
5]

SR
07

[6
7]

A
C
08

[4
]

SU
N
08

[1
49

]S
W
Q
09

[2
1]

[
π 25
6,

π 16
]

[0
,
π 10

]
[
π 12
8,

π 8
]

[0
,π

]
[0
,
π 7

]
[0
,
π 5

]
(0
,π

]
[
π 10
0,

π 2
]

[0
,
π 5

]

Fi
gu

re
2.
1:

O
rig

in
al
im

ag
e
ba
nd

pa
ss

fil
te
re
d
wi
th

cu
t-
off

fre
qu

en
cie

sg
iv
en

in
Ta

bl
e
2.
1.

Th
e
sp
at
ia
lf
re
qu

en
cy

co
nt
en
tr
et
ai
ne
d
ex
pl
ai
ns

th
e
fin

al
ap
pe
ar
an
ce

of
th
e
sa
lie
nc
y
m
ap

in
m
os
t
of

th
e
ca
se
s.

Fo
ri
ns
ta
nc
e,

IT
98

ca
n
on

ly
sh
ow

bl
ob

by
sa
lie
nt

re
gi
on

s
sin

ce
th
e

m
et
ho

d
di
sc
ar
ds

a
lo
to

fh
ig
h
fre

qu
en
cy

in
fo
rm

at
io
n.

M
A0

3
an
d
GB

06
us
ua
lly

hi
gh

lig
ht

ob
je
ct
s,

es
pe
cia

lly
lar

ge
on

es
,n

ea
rt

he
ob

je
ct

bo
un

da
rie

s.
GR

07
an
d
AC

08
re
ta
in

m
os
t

of
th
e
hi
gh

fre
qu

en
cy

co
nt
en
t
an
d
th
er
ef
or
e
ha
ve

we
ll-
de
fin

ed
ob

je
ct

bo
un

da
rie

s.

24 Chapter 2.

2.2.2 Other algorithmic properties of the methods

This section touches upon other aspects of some of the techniques presented in the
previous section. This provides further insight into the properties of the saliency
maps generated by these algorithms. The reader may want to consult the visual
comparison of the saliency maps given in Figures 3.8 to 3.12.

MA03

In MA03, the saliency value at each pixel position (i, j) is given by:

S(x, y) =
∑

(m,n)∈N
d[p(x, y),q(m,n)] (2.1)

where N is a small neighborhood of a pixel (in the resized image obtained by 10×10
box filtered and downsampled image) at position (x, y) and d is a Euclidean distance
between CIELUV pixel vectors p and q. In our experiments explained in Section 3.5,
we choose N to be a 3× 3 neighborhood. The method is fast but has the drawback
that the saliency values at either side of an edge of a salient object are high, i.e
the saliency maps show the salient object to be bigger than it is, which gets more
pronounced if block sizes are bigger than 10 × 10. In addition, for large salient
objects, the salient regions are not likely to be uniformly highlighted.

SR07

In SR07, the spectral residual R is found by subtracting a smoothed version of
the FFT (Fast Fourier Transform) log-magnitude spectrum from the original log-
magnitude spectrum. The saliency map is the inverse transform of the spectral
residual. The FFT is smoothed using a separable 3× 3 mean filter. Examining this
operation in one dimension, this is equivalent to forming the residue R(k) as:

R(k) = ln|X(k)| − f ∗ ln|X(k)| (2.2)

with f = [1
3 ,

1
3 ,

1
3], and ∗ denoting convolution. A simple manipulation of this

equation demonstrates that the (1-D) spectral residue R(k) can be written as:

R(k) = 1
3 ln

[
|X(k)|2

|X(k − 1)||X(k + 1)|

]
(2.3)

When this is performed in two dimensions on the 2-D FFT coefficients, only 3
low-frequency AC coefficients are divided by the DC (mean) value (if the FFT
coefficients are circularly extended for the filtering, then the 3 highest-frequency
FFT AC coefficients are also divided by the mean). On the other hand, in SW [21]
each FFT coefficient is divided by its own magnitude. In comparison to these two

2.3. Object scale and frequency cut-offs 25

methods, contrast measures typically normalize all FFT AC coefficients by the mean
value [64].

AC08

In method AC08, center-surround contrast is computed as a Euclidean distance
between average Lab vectors of the center and surround regions. The saliency value
at pixel position (x, y) is given as:

S(x, y) = 1
3 [FH

2
(x, y) + FH

4
(x, y) + FH

8
(x, y)]

Ft(x, y) = d(c(x, y), st(x, y)) (2.4)

where feature map value Ft(x, y) is found as a Euclidean distance d between the
CIELAB pixel vector c(x, y) (center) and the average CIELAB pixel vector st(x, y)
in window t (surround). The square surround region is varied as t = {H2 ,

H
4 ,

H
8 },

assuming H, the height of the image, to be smaller than the width W of the image.
Objects that are smaller than a filter size are detected (i.e. highlighted in the

saliency map) completely, while objects larger than a filter size are only partially
detected (closer to edges). Smaller objects that are well detected by the smallest
filter are detected by all three filters, while larger objects are only detected by the
larger filters. Since the final saliency map is an average of the three feature maps
(corresponding to detections of the three filters), small objects will almost always
be better highlighted.

Such averaging of band pass filtered images is also done in the DoG version of
SUN08 [149] saliency detection method and consequently the low frequencies that
are used in the making of the saliency map get suppressed.

2.3 Object scale and frequency cut-offs

To summarize, low frequency content is essential if the salient regions need to be
uniformly highlighted (and not just at the object borders). The more high frequency
content is retained, the sharper are the boundaries, and the better-defined is the
extent of the salient object in the saliency map. The low frequency content from the
input image that should be exploited depends on how large the salient objects are,
i.e. what their scale is.

Object scale and the low-frequency cut-off of bandpass filtering are closely re-
lated. The larger the scale of the object, the lower should be the low-frequency
cut-off of the filter in order to completely detect, i.e., highlight it. For the purpose
of edge detection, which is finer scale information, the low-frequency cut-off value is
high [101]. This obviously narrows down the bandwidth since the difference between
the low and high cut-offs is small. Similarly, for corner and interest point detection
a narrow bandwidth is used [91, 95].

26 Chapter 2.

The scale of a symmetric convex object can be detected using local scale space
maxima [91, 89]. However, for large objects of elongated and irregular shapes it is
harder to detect the characteristic scale. A way to circumvent this is to segment
objects of interest a priori but this itself is an ill-posed problem with no reliable
solution yet.

If the scale of the object of interest in an image is not known a priori then
preferably all of the low frequency content should be used. Similarly, the amount of
high frequency that should be used should depend on how well-defined the salient
object boundaries should be, and how much high frequency detail (i.e. noise, or
image substructures like texture, small objects, etc.) is to be discarded.

2.4 Superpixel Segmentation Techniques

In computer vision, image segmentation refers to the process of partitioning an image
into groups or clusters of spatially connected pixels, which share similar properties
like intensity, color, and texture. Each of the clusters is called a segment of the image.
It is for this reason that for images, clustering and segmentation are often used
synonymously. The goal of segmentation is usually to simplify the representation of
an image such that it is more meaningful and easier to analyze.

Most computer vision problems like depth estimation, object recognition etc.
often require image abstraction in the form of segmentation since pixel level infor-
mation is too fine grained and often unwieldy. Popular image segmentation algo-
rithms [45, 30] try to segment images in a semantically meaningful way. But this
is an ill-posed problem, and such segmentation algorithms generally output too few
or too many segments. The former problem is called under-segmentation, and the
latter, over-segmentation.

A practical way of circumventing semantic limitations of segmentation for cer-
tain applications is to allow over-segmentation and build upon the output. Over-
segmented images have been used for depth estimation [65, 66], user-guided image
segmentation [86, 63], and so on. The segments of an over-segmented image are
termed superpixels [113]. Superpixel segmentation is a specific case of the general
problem of image segmentation.

In this section, we specifically review the state-of-the-art in superpixel segmen-
tation techniques. Not all of the techniques were designed initially for the specific
purpose of generating superpixels and therefore often lack the ability to control the
size, number, and compactness of the superpixels. We include such techniques in
our discussion nonetheless as they were used in literature for the purpose of gener-
ating superpixels. We broadly classify superpixel algorithms into graph-based and
gradient-ascent-based algorithms. Our survey, summarized in Table 2.2, considers
the quality of segmentation, and the ability of these algorithms to control the size
and number of superpixels.

2.4. Superpixel Segmentation Techniques 27

Graph-based Gradient-ascent-based

Properties GS04 NC05 SL08 WS91 MS02 TP09 QS09

Superpixel No. Ctrl. No Yes Yes No No Yes No

Compactness Ctrl. No Yes Yes No No Yes No

Complexity O(.) N logN N3/2 N2 logN N logN N2 N dN2

Parameters 2 1 3 1 3 1 2

Table 2.2: Comparison of state-of-the-art superpixel segmentation algorithms. N is
the number of pixels in the image. GS04 and QS09 do not offer explicit control of the
number of superpixels. SL08 complexity given in this table does not take into account
the complexity of the boundary map computation. GS04 is O(N logN) complex and is
quite fast in practice while TP09, which is O(N) complex, is about 10 times slower than
GS04 for 481 × 321 pixel images. In the case of QS09, d is a small constant (refer to
[134] for details). The number of parameters listed in the table is the minimum required
for typical usage.

2.4.1 Graph-based algorithms

In graph-based algorithms, each pixel is treated as a node in a graph and the edge
weight between two nodes is set proportional to the similarity between the pixels.
Superpixel segments are extracted by effectively minimizing a cost function defined
on the graph.

The Normalized cuts algorithm [121], recursively partitions a given graph using
contour and texture cues, thereby globally minimizing a cost function defined on
the edges at the partition boundaries. It is the basis of the superpixel segmentation
scheme of [113] and [107] (NC05). NC05 has a complexity of O(N

3
2) [83], where N

is the number of pixels. There have been attempts to speed up the algorithm [32],
but it remains computationally expensive for large images. The superpixels from
NC05 have been used in body model estimation [107] and skeletonization [82].

Felzenszwalb and Huttenlocher [45] (GS04) present a generic graph-based image
segmentation scheme that has been used to generate superpixels. This algorithm
performs an agglomerative clustering of pixel nodes on a graph, such that each
segment, or superpixel, is the shortest spanning tree of the constituent pixels. GS04
has been used for depth estimation [65]. It is O(N logN) complex and is quite fast
in practice as compared to NC05. However, unlike NC05, it does not offer an explicit
control on the number of superpixels or their compactness.

A superpixel lattice is generated by Moore et al. [106] (SL08) by finding optimal
vertical (horizontal) seams/paths that cut the image, within vertical (horizontal)
strips of pixels, using graph cuts on strips of the image. While SL08 allows control

28 Chapter 2.

of the size, number, and compactness of the superpixels, the quality and speed of
the output strongly depend on pre-computed boundary maps.

2.4.2 Gradient-ascent-based algorithms

Usually starting from an initial rough clustering, during each iteration gradient as-
cent methods refine the clusters from the previous iterations until some convergence
criterion is reached.

Mean shift [30] (MS02) is a mode-seeking algorithm that generates image seg-
ments by recursively moving to the kernel smoothed centroid for every data point
in the pixel feature space, effectively performing a gradient ascent. The generated
segments/superpixels can be large or small based on the input kernel parameters,
but there is no direct control over the number, size, or compactness of the resulting
superpixels.

Quick-shift [134] (QS08) is also a mode-seeking segmentation scheme like mean
shift, but is faster in practice. It moves each point in the feature space to the
nearest neighbor that increases the Parzen density estimate. The algorithm is non-
iterative, and like mean shift, does not allow to explicitly control the size or number
of superpixels. Superpixels from quick-shift have been used in applications like
object localization [52] and motion segmentation [17].

We include two other segmentation methods in the category of gradient ascent
algorithms: Watersheds [136] (WS91) and Turbopixels [83] (TP09). General water-
shed algorithms perform gradient ascent from local minima in the image plane in
order to obtain watersheds, i.e. lines that separate catchment basins. Vincent and
Soille [136] propose a fast version based on queuing of pixels. Lazy Snapping [86]
applies graph cuts to the graph built on the superpixels output by this algorithm.

TP09 generates superpixels by progressively dilating a given number of seeds in
the image plane, using computationally efficient level-set based geometric flow. The
geometric flow relies on local image gradients, and aims to distribute superpixels
evenly on the image plane. Unlike WS91, superpixels from TP09 are constrained to
have uniform size, compactness, and adherence to object boundaries.

2.4.3 Limitations of superpixel algorithms

A strong requirement of superpixels is to adhere well to object boundaries. Some
techniques, like NC05 [121] do not do this very effectively. GS04 [45] for instance
shows better adherence to object boundaries but this comes with other drawbacks
like non-uniform superpixel sizes.

In certain applications, local features are extracted superpixels of the image. In
particular, if such features are region based, like SIFT [95] or SURF [20], the fea-
tures are more meaningful and discriminative if the superpixels are compact (i.e. low
perimeter to area ratio) and of roughly similar sizes. Algorithms like NC05 [121] and
TP09 [83] provide compact and roughly equally sized superpixels. However, both

2.5. Clustering 29

these algorithms exhibit poorer adherence to object boundaries. QS09 creates com-
pact superpixels but the sizes are not uniform, which makes it difficult to compute
local features that strongly depend on this feature of superpixels.

Algorithms like NC05 [121] and TP09 [83] are computationally far more expen-
sive than competing algorithms. These algorithms are therefore less suitable when a
large number of images need to be processed or when the image resolution is greater
than a million pixels. GS04 [45] is computationally very efficient but it provides
unevenly sized superpixels and an unpredictable number of them.

It is worth mentioning that there appears to be a trade-off between how visually
appealing the superpixel output is and how well the superpixels adhere to object
boundaries. Usually, visually pleasing superpixels, arguably those generated by
NC05 [121] and TP09 [83], show poorer performance in this respect as apposed to
their ‘uglier’ counterparts like GS04 [45] and QS09 [134].

2.5 Clustering

Clustering is an operation we extensively use in this thesis. It appears as a key step
in salient object segmentation application and is at the heart of the SLIC superpixel
segmentation algorithm (Section 6.2). Clustering is a vast area of research and
in this section we only discuss those algorithms that are employed in subsequent
chapters. A comparative summary of the clustering algorithms we discuss in this
section is given in Table 2.3.

2.5.1 k-means clustering

Given a set of data vectors (x1,x2, ...,xN) in a d-dimensional space, the k-means
clustering algorithm aims to partition the N data vectors into k clusters (k < N)
C = {C1, C2, ..., Ck} so as to minimize the intra-cluster variance:

arg min
C

k∑
i=1

∑
xj∈Ci

‖xj − µi‖22 (2.5)

where µi is the mean of the points in Ci.
The k-means algorithm, also referred to as the Lloyd’s algorithm [94] proceeds

by alternating between the steps of assignment and update. Initially, a set of seed
cluster centers is chosen, either randomly or using specific algorithms (like the k-
means++ algorithm [13]). During the assignment step, each data vector is assigned
to the nearest cluster center. During the update step, the cluster centers are updated
to be equal the mean of all the data vectors belonging to each cluster. These two
steps are repeated in succession until the cluster centers no longer change or change
minimally. These two steps can be stated formally as follows:
Assignment: Assign each data vector to the cluster with the closest mean at

30 Chapter 2.

iteration t.

C
(t)
i =

{
xj : ‖xj − µ(t)

i ‖2 ≤ ‖xj − µ
(t)
i∗ ‖2 ∀i

∗ = 1, ..., k
}

(2.6)

Update: Calculate the new mean vectors to be the centroid of the data vectors in
the cluster for the t+ 1th iteration:

µ
(t+1)
i = 1

|C(t)
i |

∑
xj∈C(t)

i

xj (2.7)

where |.| gives the number of data points in the cluster. The update can easily be
derived from Eq. 2.5 if the distance measure used is Euclidean. The algorithm is
considered to have converged when the assignments or the intra-cluster variances
no longer change. While there is no guarantee the algorithm will converge to the
global optimum, and that the result may depend on the choice of the initial cluster
seeds [13], in practical applications the algorithm converges to a minimum in a small
number of iterations that is much less than the number of data points [37].

2.5.2 Mean shift clustering

Mean shift is a non-parametric clustering technique. Unlike the k-means clustering
approach it makes no assumptions about the shape of the distribution or the number
of clusters. It is used for image segmentation and feature tracking in videos. The
mean shift procedure was originally presented by Fukunaga and Hostetler [51]. The
algorithm was extended by Cheng [28] for image analysis and was popularized for
image segmentation by Comaniciu and Meer [30].

The idea behind mean shift clustering is to treat the data points in a given
d-dimensional feature space as a probability density function where dense regions
correspond to the local maxima or modes of the underlying distribution. For each
data point in the feature space, a gradient ascent procedure is applied on a locally
estimated density until convergence. The stationary points of this process represent
the modes of the distribution. All the data points associated with a given stationary
point are considered members of the same cluster. The iterative clustering process
is as follows:

• Given n data points xi ∈ Rd and a radially symmetric kernel K (usually
Epanechnikov or Gaussian kernel) of radius h, compute the mean shift vector

m(x) =
∑n
i=1 xiK

(∥∥x−xi
h

∥∥2)
∑n
i=1K

(∥∥x−xi
h

∥∥2) − x (2.8)

at a data point x.

• Translate the density estimation kernel by m(x).

2.5. Clustering 31

• Iterate the first two steps until convergence.

The most computationally expensive part of the mean shift procedure is to identify
the neighbors of a point in space. This is cumbersome for high dimensional feature
spaces. Another limitation is that the value of the kernel radius parameter h needs
to be set experimentally.

2.5.3 Graph-based image segmentation

An image based graph is generally represented as G = (V, E) where each node
pi ∈ V corresponds to a pixel in the image and the edges E connect certain pairs
of neighboring pixels (with 4 or 8 connectivity). The weight of each edge joining
any two nodes pi and pj is given by w(pi, pj) and is often computed as a similarity
measure between the two pixels.

Felzenszwalb and Huttenlocher [45] proposed a technique that segments an image
by agglomerative clustering of pixels on such an image based graph. The method
is very similar to the Kruskal’s shortest spanning tree algorithm where the tree is
formed by choosing edges in increasing order of their weight. The main difference is
that goal is not to create a single spanning tree cluster but several subtree clusters
by introducing stopping criteria during tree formation. This is done with the help
of the strongest edge weight, or the maximum internal weight Int(C), which is kept
track of as each subtree component C grows by adding more edges. The steps of
the segmentation technique are as follows:

• Compute all edge weights as the Euclidean distance between the RGB vectors
of pixels connected by the edges.

• Sort the edge weights in increasing order.

• In the beginning, each pixel is a component on its own. The maximum internal
weight of each component Int(C) set to a constant Kd, input by the user. As
soon as a component is bigger than one pixel, this internal weight value is
updated to Int(C) + T

|C| , where |.| gives the cardinality of the component, and
T is a constant that is either set by the user or made a function of Kd (usually
T = Kd/10).

• For every next edge weight in the sorted list, join any two components Ca and
Cb along the edge that joins them if its weight is less than min(Int(Ca), Int(Cb)).

Prior to performing the segmentation, the image is Gaussian filtered to reduce the
effects of noise and blocking artifacts. The algorithm is computationally efficient,
with a complexity of N log(N), due to the sorting operation. One of the problems
that arises is that there are several small components that remain at the end of
the component growing process. Thus as a post processing step, all components
that have a size smaller than a constant minSize input by the user, are merged

32 Chapter 2.

into larger components along the weakest connecting edge. As input, the algorithm
takes the value of the standard deviation for the Gaussian blur, Kd, minSize, and
T .

2.5.4 Source-sink graph-cuts

Many current graph-partitioning approaches to segmentation, such as the one by
Boykov and Jolly [23, 118], rely on minimizing a global objective function defined
on an undirected graph G = (V, E). It is often expressed as:

E(c|p, λ) =
∑
i

ψ(ci|pi)︸ ︷︷ ︸
unary term

+ λ
∑

(i,j)∈E
φ(ci, cj |pi, pj)︸ ︷︷ ︸
pairwise term

, (2.9)

where ci ∈ {source, sink} and the weight λ controls the relative importance of the
so-called unary and pairwise terms. The unary term ψ assigns to each pixel its
potential to belong to the source or to the sink. The pairwise term φ promotes
coherence among neighboring nodes of the graph. A global optimum of such an ob-
jective function can usually be found using a standard mincut-maxflow algorithm.
In optimization theory, the mincut-maxflow theorem states that in a flow network,
the maximum amount of flow passing from the source to the sink is equal to the
minimum capacity that needs to be removed from the network so that no flow can
pass from the source to the sink. The Ford-Fulkerson algorithm [47] or its special-
ization, the Edmonds-Karp algorithm [38] is often used to minimize the objective
function.

2.5.5 Geodesic distance computation

Geodesic distance computation is not a clustering technique by itself. But it can
be used for clustering to obtain similar results as certain graph-based algorithms.
Geodesic distances can also replace the more common Euclidean distances in certain
clustering algorithms such as the k-means. So we devote this sub-section to the
discrete computation of geodesic distances.

In the image plane, for two pixel I(pi) and I(pj), the unsigned geodesic distance
from one to another is defined as:

G(I(pi), I(pj)) = min
P∈Γ

d(P) (2.10)

where Γ is the set of all paths between I(pi) and I(pj). A path P is defined as a
sequence of spatially neighboring pixels {p1, p2, ...pn} in 4 or 8-connectivity. The
cost d(P) of the path P is computed as

d(P) =
n∑
i=2
‖I(pi)− I(pi−1)‖ (2.11)

2.6. Summary of the chapter 33

Eq. 2.10 and Eq. 2.11 hold for the discrete computation of a geodesic path. In such a
case it is equivalent to the Dijkstra’s algorithm [36] for computation of the shortest
path on a graph.

Algorithm Type Uses

k-means Iterative Database saliency (Section 5.1), SLIC su-
perpixels (Section 6.2)

Mean shift Iterative Salient object segmentation (Sec-
tion 4.1.1)

Graph-based
segmentation

Agglomerative Superpixel-graph-based segmentation
(Section 6.4.2)

Graph-cuts Partitional Salient object segmentation (Sec-
tion 4.1.2), Mitochondria segmentation
(Sections 6.4.3 and C.2)

Geodesic
distances

Iterative Salient object segmentation (Sec-
tion 4.1.3), Pretty superpixels (Sec-
tion 6.6)

Table 2.3: Comparison of clustering algorithms used in this thesis.

2.6 Summary of the chapter

In this chapter we reviewed the literature for saliency detection, superpixel segmen-
tation, and selected clustering techniques. For saliency detection, we reviewed the
state-of-the-art techniques and analyzed some of the algorithms from a frequency-
domain perspective. We concluded that there is a need for algorithms that provide
saliency maps with sharp object boundaries, well-highlighted salient objects, and
have a low computational cost. In the literature review for superpixel segmentation
we noted that most of the algorithms suffer from some drawbacks. There is room for
algorithms that can provide compact and uniformly-sized superpixels, which provide
good adherence to object boundaries, need few input parameters, and are computa-
tionally inexpensive to generate. Finally, we also discussed the clustering algorithms
that are put to use in later chapters.

34 Chapter 2.

Chapter 3

Saliency Detection

This chapter deals with techniques for task-independent object detection, i.e saliency
detection. The observations we made in the previous chapter using a frequency-
domain analysis form the basis of the two novel saliency detection algorithms we
present in this chapter1. These two algorithms are compared with several other
state-of-the-art techniques in terms of precision and recall measures with respect to
a publicly available ground truth database.

3.1 Requirements for a saliency map

In Section 2.1.4 the shortcomings of existing saliency detection methods were men-
tioned. We set the following requirements for a saliency detector:

1. Emphasize salient objects of all sizes.
2. Uniformly highlight whole salient regions.
3. Establish well-defined boundaries of salient objects.
4. Disregard high frequencies arising from texture, noise, and blocking artifacts,

if any.
5. Compute saliency efficiently.
6. Output full resolution saliency maps.
7. Use minimal or no free parameters.

To highlight large salient objects, we need to consider very low frequencies from
the original image. This also helps highlight salient objects uniformly. In order to
have well defined boundaries, we need to retain high frequencies from the original
image. However, to avoid noise, coding artifacts, and texture patterns, the highest
frequencies need to be disregarded.

1The content presented in this chapter can be found in references [5] and [9]

35

36 Chapter 3.

3.2 Saliency detection algorithm - I

In this section we present the first saliency detection algorithm based on the insight
gained from Section 2.2.

3.2.1 Saliency using bandpass filtering

We propose to compute saliency using center-surround bandpass filtering as we can
easily control the low and high frequency cut-offs to suit our needs of saliency detec-
tion. It is also one of the most frequently used means of saliency detection [72, 98, 62].
For this purpose, we choose the Difference of Gaussians (DoG) filter (Eq. 3.1). The
DoG filter is widely used in edge detection since it closely and efficiently approxi-
mates the Laplacian of Gaussian (LoG) filter, cited as the most satisfactory operator
for detecting intensity changes when the standard deviations of the Gaussians are in
the ratio 1:1.6 [101]. A DoG filter is a simple bandpass filter whose cut-off values are
controlled by the standard deviations σ1 and σ2 and whose bandwidth is controlled
by the ratio σ1 : σ2. The relation between the σ and the cut-off value is given in Ap-
pendix B.2. The DoG filter has also been used for interest point detection [95] and
saliency detection [72, 62]. For tasks like edge detection, interest point detection, or
saliency detection, only the magnitude of the DoG filter output is of interest. The
DoG filter is given by:

DoG(x, y, σ1, σ2) = 1
2π

[
1
σ12 e

− (x2+y2)
2σ12 − 1

σ22 e
− (x2+y2)

2σ22

]
= G(x, y, σ1)−G(x, y, σ2), (3.1)

where σ1 and σ2 are the standard deviations of the Gaussian (σ1 > σ2).

3.2.2 Parameter selection

We use color and intensity features for our saliency detection. This allows us to use a
single feature vector in the CIELAB color space and simplifies feature combination.
The CIELAB color space is used since Euclidean distances in this color space are
approximately perceptually uniform. This approach is similar to the one used by
Achanta et al. [4] in AC08 and different from that of Itti et al. [72] where color and
intensity features are decoupled and separate feature maps are created for them.
Since we are only interested in the magnitude of the DoG filter output, we can
rewrite Eq. 3.1 to use color and intensity information for computing saliency as

S(x, y) = ‖Iσ1(x, y)− Iσ2(x, y)‖ (3.2)

where S(x, y) is the pixel saliency value at position (x, y), Iσ1 and Iσ2 are obtained
by Gaussian filtering each channel of the CIELAB image using surround and center
standard deviations σ1 and σ2, respectively, and ‖.‖ is the L2 norm (i.e. Euclidean

3.2. Saliency detection algorithm - I 37

[π
320 ,

π
160] σ2 = 0

[π
160 ,

π
80] [π

320 ,
π
80] σ2 = 1

[π80 ,
π
40] [π

160 ,
π
40] [π

320 ,
π
40] σ2 = 2

[π40 ,
π
20] [π80 ,

π
20] [π

160 ,
π
20] [π

320 ,
π
20] σ2 = 4

[π20 ,
π
10] [π40 ,

π
10] [π80 ,

π
10] [π

160 ,
π
10] [π

320 ,
π
10] σ2 = 8

[π10 ,
π
5] [π20 ,

π
5] [π40 ,

π
5] [π80 ,

π
5] [π

160 ,
π
5] [π

320 ,
π
5] σ2 = 16

[π5 ,
π

2.5] [π10 ,
π

2.5] [π20 ,
π

2.5] [π40 ,
π

2.5] [π80 ,
π

2.5] [π
160 ,

π
2.5] [π

320 ,
π

2.5] σ2 = 32
[π2.5 , π] [π5 , π] [π10 , π] [π20π] [π40 , π] [π80 , π] [π

160 , π] [π
320 , π] σ2 = 64

σ1 = 1 σ1 = 2 σ1 = 4 σ1 = 8 σ1 = 16 σ1 = 32 σ1 = 64 σ1 = 128

Figure 3.1: Center-surround DoG filtering of an artificial image containing five salient
objects of different sizes using Eq. 3.2. Surround σ1 increases from left to right (x-axis)
and center σ2 increases from bottom to top (y-axis). As σ1, of the surround gaussian,
is increased, objects of larger scales get highlighted progressively. As σ2, of the center
gaussian, is increased, more of the high frequency content is lost, so that the smaller
scale objects are progressively lost. The table below shows frequency ranges for each
saliency map. Note that for each filtered image/saliency map the values are normalized
and re-scaled to lie in the range [0, 255]

38 Chapter 3.

distance in CIELAB color space), which outputs the magnitude of the vector differ-
ences.

An appropriate selection of σ1 and σ2 will provide the right bandpass filter to
retain the desired spatial frequencies from the original image for computing the
saliency map. If the scale of the objects to be detected and the scale of those
to be discarded from the input are known a priori, then the appropriate set of σ
values can be chosen. This is often not the case. The two σ values, and therefore
frequency parameters, are hence selected as follows. To implement a large ratio in
standard deviations (so as to be able to detect the largest salient regions), we drive
σ1 to infinity (hence the name of our algorithm: Infinite Gaussian Saliency or IGS).
This results in a notch in frequency at DC while retaining all other frequencies. To
remove high frequency noise and textures (fourth criterion), we use a small Gaussian
kernel keeping in mind the need for computational simplicity. For small kernels, the
binomial filter approximates the Gaussian very well in the discrete case [33]. We use
1
16 [1, 4, 6, 4, 1] giving a high-frequency cut-off value of π/2.75. We therefore retain
more than twice as much high-frequency content from the original image as GB06
and at least 40% more than SR07. This choice of σ values also eliminates the need
for setting or fine-tuning of any parameters (last criterion).

3.2.3 Intuitive understanding of the choice of parameters

Let us consider combining several narrow bandpass DoG filters. If we define σ1 = ρσ

and σ2 = σ so that ρ = σ1/σ2, we find that a summation over DoG with standard
deviations in the ratio ρ results in

N−1∑
n=0

G(x, y, ρn+1σ)−G(x, y, ρnσ)

= G(x, y, σρN)−G(x, y, σ) (3.3)

for an integer N ≥ 0, which is simply the difference of two Gaussians (since all the
terms except the first and last add up to zero), whose standard deviations can have
any ratio K = ρN . If we assume that σ1 and σ2 are varied in such a way as to keep
ρ constant at 1.6 (as needed for an ideal edge detector), then we essentially add up
the output of several edge detectors (or selective band pass filters) at various scales.
This corresponds to adding up the images along the diagonal of Fig. 3.1. This gives
an intuitive understanding of why the salient regions will be fully covered and not
just highlighted on object borders or as blobs in the center of the salient regions.

3.2. Saliency detection algorithm - I 39

3.2.4 Computing saliency

Our method of finding the saliency map S for an image I of width W and height H
pixels can thus be formulated as:

S(x, y) = ‖Iµ − If (x, y)‖ (3.4)

where Iµ is the mean image feature vector, If (x, y) is the image pixel vector value in
the Gaussian filtered version (using a 5×5 separable binomial kernel) of the original
image (to eliminate fine texture details as well as noise and coding artifacts). We
use a color and intensity feature vector by transforming the given sRGB image to
the CIELAB color space. Each pixel location is an [l a b]T vector. This is compu-
tationally quite efficient (fifth criterion). In practice, we avoid the computationally
expensive square root operation in computing the Euclidean distance as this does
not affect the saliency detection significantly. Also, as we operate on the original
image without any downsampling, we obtain a full resolution saliency map (sixth
criterion). Thus, our method, summarized in Eq. 3.4 allows us to fulfill all of the
requirements for salient region detection listed earlier in this chapter.

3.2.5 Various interpretations

We have already explained our model from the frequency domain perspective. In
this section we explain our model from other perspectives to help relate other models
to ours and to understand the relative advantages and disadvantages.

Global rarity

The rarer pixels of a certain color are, the more salient they are likely to be. Rarity
is treated to be saliency by Mancas et al. [100] where it is computed as I(mi) =
−log(p(mi)), where p(mi) is the normalized frequency of occurrence, i.e histogram
bin size, of the message i (grayscale value), at a given pixel position i. In Eq. 3.4,
the contribution to the global mean vector Iµ from the rarer pixels is smaller. So the
mean vector is further from the rarer pixels in terms of the color distance, making
them more salient. In this sense, Eq. 3.4 captures global rarity.

Self-information

The expression −log(p(mi)) is essentially the self information of pixel i. Self-
information is the basis of several saliency detection techniques [24, 109, 126, 149]
except that the method of evaluation and the features used differ. Our algorithm
is therefore similar in philosophy to computing the self-information of a pixel with
respect to the whole image.

40 Chapter 3.

Full-wave rectification

Our method can also be considered to be performing a full-wave rectification of
a mean-subtracted signal. This is evident from Eq. 3.4 where we perform mean
subtraction followed by the norm operation, which rectifies the signal.

3.3 Saliency detection algorithm - II

The saliency detection algorithm presented in Section 3.2 treats the entire image
as the common surround (abstracted as the average image CIELAB color vector)
for any given pixel. The premise is that there is no knowledge of the scale of the
salient object and therefore it is best to pass all the low-frequency content. We base
our new saliency detection algorithm on the premise that we can make assumptions
about the scale of the salient object to be detected based on its position relative to
the image borders. This can lead to smarter filtering bandwidth choices. This also
helps overcome shortcomings of our previous algorithm.

3.3.1 The surround assumption of IGS

In Fig. 3.2 we observe that the larger the scale of the object is, the smaller has to
be the low-frequency cut-off for detecting it (i.e., highlighting it fully in the saliency
map), i.e larger the surround of the center-surround filter. Since we do not usually
know the scale of an object beforehand, it is prudent to assume the worst case
scenario and choose a very small low-frequency cut-off, i.e., a large surround. This
allows detecting both large and small objects. This is why the method presented in
Section 3.2 works well usually.

However, the method suffers from two drawbacks. In cases where the salient
object is quite small, the surround is unusually large (whole image) and asymmetric,
thereby potentially including a lot of noise. This affects the quality of detection.
The second drawback is that if the salient object or region occupies more than half
of the image pixels, or if the background is of a highly varied nature such that the
largest contribution to the mean vector Iµ in Eq. 3.4 comes from the salient object,
the salient object becomes closer to the mean and is less salient. Instead, it is the
background that appears more salient.

3.3.2 New surround assumption

To detect a large object fully, as in Fig. 3.2, we need a small value of the low-
frequency cut-off, which is achieved using a larger surround for center-surround
filter. Ideally, we would like to choose a surround just sufficient to fully highlight
the object. The question we want to address is if it is possible to choose a compact
surround sufficient to highlight the salient object without knowing its scale a priori.

3.3. Saliency detection algorithm - II 41

Input

[π2.5 , π]

[π5 , π]

[π10 , π]

[π20 , π]

[π40 , π]

[π80 , π]

[π
160 , π]

[π
320 , π]

Figure 3.2: Bandpass filtering of the input image with progressively increasing band-
width from top to down (values in brackets show spatial frequency range). The first
column of images is the same as the last row of Fig. 3.1. The high-frequency cut-off
is kept the same while the low-frequency cut-off is reduced. We make three related
observations here. One, the larger the scale, the smaller should be the low-frequency
cut-off. Two, this also means that the more interior pixels of a salient object need a
smaller low-frequency cut-off than the ones closer to edges of the object. Three, if
we succeed in detecting a large object, the cut-off chosen usually also allows detecting
smaller objects. These three observations form the basis of our improved method of
saliency detection.

42 Chapter 3.

Taking a cue from the image borders

Fig. 3.2 shows that a large value of low-frequency cut-off only lets us detect the pixels
at the borders of a large object. As we lower the value of the low-frequency cut-off,
we progressively detect more interior pixels of the object. If we know that we are
performing center-surround filtering at the object border, we can use a large value
of the low-frequency cut-off. Alternately, if we are performing filtering at the center
of the large object, we need to use a small value of the low-frequency cut-off. We do
not possess this knowledge a priori about the object size and location. However, we
observe that if the pixel belonging to a salient object is close to the image borders,
then it is likely to be close to the object borders (see Fig. 3.3). This means that we
can use the position of the pixel relative to the image borders as a cue to limit the
low-frequency cut-off.

In other words, we can vary the surround of the center-surround filter with
respect to each pixel position. We choose to vary the surround symmetrically with
respect to the center pixel position. To justify the use of a symmetric surround,
let us imagine that at each pixel position in the image we are at the center of
a large symmetric object (shown as a dotted blue ellipse) not touching the image
borders (Fig. 3.4). We need to choose a low-frequency cut-off for the center-surround
filtering that is enough to detect the innermost-pixel of this assumed large object.
If we succeed in detecting this fictitious object then we can as well detect any object
or part of object smaller than this.

To exploit the boundary based cue, we need to assume that salient objects are
not touching image borders, i.e they are fully inside the image. This is a reasonable
assumption as Fig. 3.5 shows. The figure is obtained by averaging the 1000 images
of our ground truth (Section 3.5) where white indicates object and black indicates
the background.

3.3.3 Saliency computation

With the new assumption about the surround we can compute saliency by applying
a position-varying bandpass filter at each pixel. The filter bandwidth should vary in
such a way that the low-frequency cut-off value of each filter at each pixel reduces
progressively as we move towards the center pixel from the image borders.

Position variant difference of boxes filtering

We use box filters for performing bandpass filtering. It allows us to use integral
images made popular by Viola and Jones [139] to perform the desired position-
dependent center-surround filtering at each pixel. This is both computation and
memory efficient, albeit with the tradeoff that the bandpass filtering is not ideal.
Thus, for an input image of widthW and height H, the symmetric surround saliency

3.3. Saliency detection algorithm - II 43

Figure 3.3: If a pixel belonging to a salient object lies close to the image border, then
it can not be far from the object borders (assuming the object is lying inside the image).
Such a pixel does not need a very low value of the low-frequency cut-off, suggesting the
the low-frequency cut-off for the center-surround filter can be varied according to the
position of the pixel relative to the image borders.

Figure 3.4: Images explaining the premise that we can guess the scale of the salient
object based on how far from the image borders we are when we are performing center-
surround filtering. At each position in the image the low-frequency cut-off value i.e the
surround of the center-surround filter should be such that we are able to detect the
center pixel of a fictitious large elliptical object (in blue dots). If we can detect this then
we can also detect any object smaller than the elliptical object.

44 Chapter 3.

Figure 3.5: Average of a thousand ground truth images in which white represents the
salient object and black represents the non-salient background. Despite the fact that
objects come in all sizes, shapes and locations, most of them lie away from the image
borders, and have roughly half the extent of the image dimensions.

value at a given pixel Sss(x, y) is obtained as:

Sss(x, y) = ‖Iµ(x, y)− If (x, y)‖ (3.5)

where If is the Gaussian blurred image as in Eq. 3.4 and Iµ(x, y) is the average
CIELAB vector of the sub-image whose center pixel is at position (x, y) as given by:

Iµ(x, y) = 1
A

x+xo∑
i=x−xo

y+yo∑
j=y−yo

I(i, j) (3.6)

with offsets xo, yo, and area A of the sub-image computed as:

xo = min(x,W − x) (3.7)
yo = min(y,H − y)
A = (2xo + 1)(2yo + 1)

The sub-image regions obtained in Eq. 3.6 using Eq. 3.7 are the maximum possible
symmetric surround regions for a given pixel at the center. This is the reason we call
our second saliency algorithm MSSS, for maximum symmetric surround saliency.

The closer a pixel is to the edges, the narrower will be its surround. Notice that
in Fig. 3.4 we also show a pixel that falls on the background and the assumed extent
of the plausible salient object as blue dotted ellipse. The filtering bandwidth we
use here is suited for detecting an object with an extent shown by the blue ellipse
and is not sufficient for detecting the background as salient. This is because the

3.4. Spatial frequency content of IGS and MSSS 45

(A) (B)

Figure 3.6: (A) In the method of Eq. 3.4, for a pixel at the center (red) or elsewhere
(blue), the surround region used for computing saliency remains the same, namely the
whole image area. (B) Our improved algorithm uses surround regions (sub-images) as
in Eq. 3.5 that are symmetric w.r.t the pixel whose saliency needs to be computed.

background is much bigger than the largest assumed object size and is not within
the image borders (it meets the borders).

Since the surround is usually more compact than the method of Section 3.2 it
results in more local treatment and better detection (see Fig. 3.6). More importantly,
the algorithm performs better in the case of varied backgrounds or when the salient
object is large, and generally suppresses the background better.

Using other bandpass filters

We can also use other bandpass filters like DoG for computing such position-variant
center-surround saliency. If we assume separable filters, then for any pixel position
(x, y), the low-frequency cut-offs of the bandpass filters applied to a row and column
should be roughly π

2x+1 and π
2y+1 , respectively. If we use time-invariant filters, then

we will have as many bandpass outputs as filters used. The final saliency map
in this case will be the result of sampling from the appropriate bandpass outputs.
Since only a few of the pixels are sampled from each bandpass filtered output, a lot
of computation is redundant. In addition a lot more memory is required. This is
avoided by the use of DoB filters.

3.4 Spatial frequency content of IGS and MSSS

From the frequency domain perspective we presented in Section 2.2, both for IGS
and MSSS the spatial frequency content is in the range (0, π/2.75], though in the
latter case the low-frequency cut-off is not a constant. A comparison of bandpass
filtered images with cut-off frequencies given in Table 2.1 with those of IGS and
MSSS is shown in Fig. 3.7. Examples of our saliency maps using our algorithm IGS

46 Chapter 3.

Input IT98,[π
256 ,

π
16] MA03,[0, π10]

GB06,[π
128 ,

π
8] GR07,[0, π] AIM07,[0, π7]

SR07,[0, π5] AC08,(0, π] SUN08,[π
100 ,

π
2]

SWQ09,[0, π5] IGS,(0, π/2.75] MSSS,(0, π/2.75]

Figure 3.7: Original image bandpass filtered with cut-off frequencies given in Table 2.1.
The spatial frequency content retained after performing linear operations explains to
some extent the appearance of the saliency maps shown in Fig 3.8 to Fig. 3.12.

3.5. Comparison with state-of-the art 47

and the improved algorithm MSSS are shown in Fig. 3.8 to Fig. 3.12. An objective
comparison of the saliency maps using our methods and several state-of-the art
algorithms is presented in the next section.

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.8: Visual comparison of saliency maps.

3.5 Comparison with state-of-the art

To compare the quality of saliency maps for the task of segmenting salient objects
we rely on a ground truth database. We derived the database from the publicly
available database used by Liu et al. [93]. This database provides bounding boxes
drawn around salient regions by nine users. However, a bounding box-based ground

48 Chapter 3.

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.9: Visual comparison of saliency maps.

3.5. Comparison with state-of-the art 49

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.10: Visual comparison of saliency maps.

50 Chapter 3.

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.11: Visual comparison of saliency maps.

3.5. Comparison with state-of-the art 51

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.12: Visual comparison of saliency maps. Our methods MSSS and IGS pro-
duce saliency maps that have well-defined borders, highlight whole object regions, and
suppress the background better than most methods. MSSS achieves better background
suppression than IGS even in the presence of complex backgrounds or when the salient
object is large.

52 Chapter 3.

(a) (b) (c)

Figure 3.13: Ground truth examples. (a) Original image. (b) Bounding box based
ground truth by Wang and Li [142]. (c) Our ground truth is more accurate since it is
object contour based and it treats multiple objects separately.

truth is far from accurate, as also stated by Wang and Li [142]. Thus, we created an
accurate object-contour based ground truth database2 of 1000 images (examples in
Fig. 3.13). We compute precision and recall measures (Section 3.5.1) of the saliency
maps with respect to our ground truth images.

3.5.1 Precision and recall

Precision and recall are two widely used statistical measures. The former is a mea-
sure of accuracy while the latter is a measure of completeness. In a statistical
classification task, the precision for a class is the number of true positives, i.e. the
number of elements correctly identified as belonging to the positive class, divided by
the total number of elements identified as belonging to the positive class. Recall is
computed as the number of true positives divided by the total number of elements
that actually belong to the positive class. The opposite of true positives is true
negatives, which are the items correctly identified as belonging to the negative class.
On the same lines, false positives are the items wrongly identified as positive while
false negatives are items wrongly identified as negative.

Precision = tp

tp+ fp
(3.8)

Recall = tp

tp+ fn
(3.9)

2http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html

3.5. Comparison with state-of-the art 53

where tp is true positives, fp is false positives, and fn is false negatives. Fig. 3.14
illustrates how tp, fp, and fn are found.

tp fpfn

Figure 3.14: In this image, the blue pattern represents ground truth while the orange
one represents an attempt to match the true shape. The degree to which this match
is done well can be quantified in terms of the precision and recall measures of Eq. 3.9.
These measures are computed using the values of true positives (tp) in green, where the
match takes place correctly, false positives (fp) in orange, and false negatives (fn), in
blue.

3.5.2 Comparison by thresholding

Our aim is to obtain a quantitative measure of how well a saliency map detects or
highlights a known salient object. We obtain this by performing naïve thresholding
of a given saliency map at several thresholds and comparing each output with the
ground truth.

For a given saliency map, with saliency values normalized in the range [0, 255],
we obtain a binary mask at all 256 integral thresholds Tf in the interval [0, 255], and
compute the precision and recall at each value of the threshold with respect to our
ground truth. We repeat this for all the 1000 images of the ground truth database
and average the values of precision and recall giving us 256 pairs of precision-recall
values. We plot a precision versus recall curve to obtain Fig. 3.15. This curve
provides a reliable comparison of how well various saliency maps highlight salient
regions in images. A higher curve indicates a better capability of segmenting a
saliency map by simple thresholding.

It is interesting to note that Itti’s method shows high accuracy for a very low
recall and then the accuracy drops steeply. This is because the salient pixels from
this method fall well within salient regions, and have near uniform values, but do

54 Chapter 3.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

on

MSSS
IGS
IT98
AC08
GB06
GR07
AIM07
SUN08
MA03
SWQ09
SR07

Figure 3.15: Precision-recall curve for naïve thresholding of saliency maps. Our meth-
ods IGS and MSSS are compared against the nine methods of IT98 [72], MA03 [98],
GB06 [62], GR07 [100], AIM07 [25], SR07 [67], AC08 [4], SUN08 [149], and SWQ09 [21]
on 1000 images with segmentation ground truth. The legend is ordered from top to
down in decreasing order of quality. IGS and MSSS significantly outperform all the
other state-of-the-art algorithms. Among our methods, MSSS outperforms IGS.

not cover the entire salient object. Methods GB06 and AC08 have similar perfor-
mance despite the fact that the latter generates full resolution maps as output. At
maximum recall, all methods have the same low precision value. This happens at
threshold zero, where all pixels from the saliency maps of each method are retained
as positives, leading to an equal value for true and false positives for all methods.
The curve for MSSS curiously rises in precision before falling (it also happens for
SWQ09 and slightly for IGS). This is attributed to relatively greater number of false
positives at high thresholds (around Tf = 245) as compared to lower thresholds. As
Tf gets lower, the number of true positives rises in relation to the false positives
leading to a small rise in the curve. As Tf lowers even further, the curve descends
like the other curves.

3.6. Discussion 55

3.6 Discussion

While our methods IGS and MSSS are simple and efficient, there are instances of
images where they fail to highlight the salient objects well. We show one such
example (from the database of 1000 images) in Fig. 3.16. In images where there
is poor contrast between the salient object and the surround, our methods perform
poorly. Poor contrast may be the consequence of uneven lighting conditions, the
object of interest having similar colors as the background, or the background being
quite cluttered with several regions of different colors. In addition, our methods,
particularly IGS, take only global contrast into account so objects/regions that are
locally salient with respect to their immediate neighborhood, but not globally salient
may not be well-highlighted. The goal is to not miss large salient objects since larger
salient objects are assumed to be more significant than smaller ones.

MSSS improves on IGS in terms of background suppression and dealing with
large salient objects (Fig. 3.17). However, it shows filtering artifacts, because of the
use of box-filters, which are not ideal bandpass filters. As we will see in the next
chapter, for applications like object segmentation this is not a problem.

Notably, our algorithms use only color and intensity information while the hu-
man visual system relies on several contrasts including orientation, texture, shape
and symmetry for spotting objects in a bottom-up fashion. In our experiments we
tried using the features of orientation and texture but found it difficult to choose the
right scales and combining these features with the color and intensity features. De-
spite using only color and intensity our algorithms perform better than most other
algorithms that take into account other features [72, 25, 149].

3.7 Summary of the chapter

In this chapter we presented two saliency detection algorithms. The first algorithm
uses the whole image to compute the surround. This is based on the observation
that when the scale of the salient object is not known a priori all the low-frequency
content should be retained. The second algorithm uses a variable surround based
on the observation that near the image borders we do not need a large surround
because we can limit the low-frequency content required for good saliency detection.
The saliency maps of both our algorithms prove to be superior to those of several
state-of-the-art algorithms when compared in terms of precision and recall measures
with reference to a publicly available ground truth database. In addition, they are
computationally inexpensive and do not require any input parameters.

56 Chapter 3.

Input IT98 MA03

GB06 GR07 AIM07

SR07 AC08 SUN08

SWQ09 IGS MSSS

Figure 3.16: Visual comparison of saliency maps where our methods IGS and MSSS
perform poorly. In this example the use of orientation information could have helped
detecting the entire flower as salient. However, there are other schemes, notably IT98
and GB06, which use orientation information, but their method does not prove general
enough to detect the salient object in this case.

3.7. Summary of the chapter 57

(a) (b) (c)

Figure 3.17: Comparison of saliency output of IGS and MSSS. (a) Input image. (b)
Saliency maps of IGS. (c) Saliency maps using MSSS. Usually, MSSS suppresses the
background better than IGS. Notice how the reflection of the balloon in the water is
suppressed well by MSSS because it touches the image border. But sometimes this
advantage comes with the price of uneven highlighting or a mild halo around the objects
as in the case of the butterfly and the balloon.

58 Chapter 3.

Chapter 4

Applications of Saliency Detection

In this chapter we present techniques for two applications of saliency detection:
salient region segmentation and content-aware image re-targeting1. These applica-
tions also serve as a way of comparing our saliency detection techniques presented in
Chapter 3 with those of the state-of-the-art. For the former application, we present
three different techniques. For each, we compare the quality of segmentation using
our saliency maps with those of other saliency detection techniques, using measures
of precision, recall, and Fβ-score (Eq. 4.2). For the latter task of content-aware
image resizing, we focus on the technique of seam carving [16]. We show by compar-
ison with state-of-the-art techniques of image re-targeting that our saliency maps
perform better than currently used energy maps.

4.1 Salient object segmentation

The maps generated by saliency detectors can be employed in salient object segmen-
tation using more sophisticated methods than simple thresholding. Saliency maps
produced by Itti’s approach [72] have been used in unsupervised object segmenta-
tion. Han et al. [61] use a Markov random field to integrate the seed values from
Itti’s saliency map along with low-level features of color, texture, and edges to grow
the salient object regions. Ko and Nam [76] utilize a Support Vector Machine trained
on image segment features to select the salient regions of interest using Itti’s maps,
which are then clustered to extract the salient objects. Ma and Zhang [98] use fuzzy
growing on their saliency maps to confine salient regions within a rectangular region.
We present three methods of segmenting salient objects using saliency maps. The
first one uses saliency-adaptive thresholding on pre-segmented images. The second
method relies on graph-cuts to segment regions. The third method uses geodesic
distances for this purpose.

1Most of the content of this chapter is also available in the references [5] and [8]

59

60 Chapter 4.

4.1.1 Segmentation by adaptive thresholding

We use a method for segmenting salient objects that is a modified version of the one
we published earlier [4]. In this technique we over-segment the input image using
k-means clustering and retain only those segments whose average saliency is greater
than a constant threshold. This threshold is set at 10% of the maximum normalized
saliency value. The binary maps representing the salient object are thus obtained
by assigning ones to pixels of chosen segments and zeroes to the rest of the pixels.

We present here two improvements to this method. First, we replace the hill-
climbing based k-means segmentation algorithm by the mean shift segmentation al-
gorithm [29], presented in Section 2.5.2, which provides better segmentation bound-
aries. We perform the segmentation in CIELAB color space (instead of CIELUV
space as done by the authors) on the input image. We use fixed parameters of 7, 10,
20 for sigmaS, sigmaR, and minRegion, respectively, for all the images (see [29]).
Second, we introduce an adaptive threshold that is image saliency dependent, in-
stead of using a constant threshold for each image. This is similar to the adaptive
threshold proposed by Hou and Zhang [67] to detect proto-objects [140]. The adap-
tive threshold is computed as Ta = 2 × Savg where the average saliency value Savg
is obtained as:

Savg = 1
W ×H

W−1∑
x=0

H−1∑
y=0

S(x, y) (4.1)

Here W and H are the width and height of the saliency map in pixels, respectively,
and S(x, y) is the saliency value of the pixel at position (x, y). A few results of
salient object segmentation using our improvements are shown in Fig. 4.1. We
choose all those segments of the image whose average saliency exceeds this threshold.
In addition, we ignore all those segments that touch any of the image borders since
salient objects usually do not touch image borders (see Fig. 3.5). We obtain binarized
maps of salient object from each of the saliency algorithms where all pixels of chosen
segments are white (ones) and all others are black (zeroes). This process is adopted
for saliency maps of all the methods we compared in Chapter 3. Once we have the
binarized maps we can compute precision and recall scores (Eq. 3.9) with respect to
a ground truth.

Generally, the precision is high if the saliency map correctly identifies the salient
object pixels and assigns low values to non salient regions and recall is high when
the whole object is highlighted.

But high precision may occur even if the object boundaries are not well defined.
Similarly, high recall may occur when a portion of the saliency map larger than the
salient object is highlighted without respecting its boundaries. Precision and recall
considered separately may lead to incorrect conclusions about the performance of
an algorithm. So, it is useful to have a combined score of the precision and recall
measures to judge the performance of an algorithm. This is computed in the form

4.1. Salient object segmentation 61

(a) (b) (c) (d) (e)

Figure 4.1: Salient object segmentation using saliency-adaptive thresholding. (a) Orig-
inal image. (b) Saliency map using MSSS (Section 3.3). (c) Mean-shift segmented
image. (d) Average saliency per segment assigned to each pixel of the segment. (e)
Those segments that have a saliency value greater than the adaptive threshold Ta are
chosen while others discarded. If the saliency map fails to highlight an object well, it is
not segmented successfully (fourth row). Similarly, if the saliency map highlights objects
in the background, they may be get segmented (sixth row).

62 Chapter 4.

of Fβ-score as follows.

Fβ = (1 + β2) Precision×Recall
β2 × Precision+Recall

(4.2)

where β is usually chosen to be 0.5, 2.0, or 1.0 to give more weight to precision, recall,
or give equal weight to precision and recall, respectively. We use β = 0.5 consistently
as we weigh precision higher than recall in our segmentation applications. The
average values of precision, recall, and Fβ-score (Eq. 4.2) are obtained over the
same ground-truth database used for evaluation of saliency maps in Section 3.5. A
plot of these values is shown in Fig. 4.2.

Itti’s method (IT98 [72]) shows a high precision but very poor recall, indicating
that it is better suited for gaze-tracking experiments, but perhaps not well suited
for salient object segmentation. Among all the methods, our techniques (IGS and
MSSS) usually show the highest precision, recall, and Fβ-score.

MSSS IGS GB06 GR07 AC08 AIM07 SWQ09 IT98 SUN08 MA03 SR07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
F−score

Figure 4.2: Precision-Recall bars for adaptive thresholding based salient object segmen-
tation in decreasing order of Fβ-score (β = 0.5). Our methods IGS and MSSS shows
high precision, recall, and Fβ values computed on the 1000 image database.

4.1. Salient object segmentation 63

4.1.2 Salient region segmentation using graph-cuts

We use a graph-cuts based approach for salient object segmentation from saliency
maps. Graph-cuts based methods are popular for image segmentation applications.
Boykov and Jolly [23] perform interactive segmentation where a graph-cuts algo-
rithm [22] segments foreground from background. As input, their method requires a
user to draw scribbles to indicate foreground and background regions. Similarly, in
GrabCut [118], the user draws a rectangle around the object of interest in an image.
The background is defined by the pixels outside the rectangle. The foreground is
then segmented using a graph-cuts based optimization that iteratively assigns pixels
to background or foreground based on their proximity to the respective multi-modal
color distributions. In our scheme of segmenting objects using graph-cuts, instead of
relying on user input, we use the saliency map to assign these pixels automatically.

We define a graph G = (V, E) over the pixels of the image. Each node in V cor-
responds to a pixel pi. Edges E connect neighboring pixels (using 8-connectivity).
We seek an optimal cut between pixels belonging to salient and non-salient regions
by minimizing the objective function of the form given by Eq. 2.9. The unary term
ψ assigns to each pixel its potential to belong to the foreground object or back-
ground. The unary potential terms are assigned by Boykov and Jolly [23] using
intensity histograms created separately for background and foreground pixels ob-
tained as scribbles from the user. In the case of GrabCuts, Rother et al. [118] assign
these values using a Gaussian Mixture Model (GMM) each for the background and
foreground pixels.

The pairwise term φ promotes coherence among similar pixel neighbors. It pe-
nalizes the assignment of different labels to neighboring pixels of similar color. It is
computed as:

φ(ci, cj |pi, pj) =

 exp
(
−‖I(pi)−I(pj)‖2

2σ2

)
if ci 6= cj

0 otherwise.
(4.3)

where I is the CIELAB color vector of a pixel and σ is assigned the value of the
average value of all the edge weights as done in several graph-cuts applications [23,
118], i.e.

σ = 1
|E|

∑
(i,j)∈E,i 6=j

‖I(pi)− I(pj)‖ (4.4)

In our graph-cuts setup we link the source to the salient object and the sink
to non-salient regions. As our initialization step, we assign a hard link, i.e a value
greater than the largest binary edge weight computed in Eq. 4.3, to the source and
sink. For this we use two thresholds that depend on the average saliency value
Savg computed as in Eq. 4.1. For all pixels whose saliency value is greater than the
threshold Ts = 3 × Savg we assign hard links to the source and to all pixels whose
saliency value is less than the threshold Tt = 1

3Savg we assign hard links to the sink.

64 Chapter 4.

These two thresholds were chosen experimentally to ensure that the hard links are
assigned only to pixels that have high probability of belonging to the salient object
or background.

In our case, the unary term assignment (using histograms or clustering) has min-
imal effect on the segmentation quality. This is because unlike user-drawn scribbles,
using our thresholding we assign a lot more pixels to the source and sink with hard
links. So, in our segmentation scheme we ignore the unary term. A few results of
salient object segmentation using our method are shown in Fig. 4.3.

We perform the graph-cuts based segmentation for the saliency maps of all meth-
ods on our database and compare the average values of precision, recall, and Fβ-score
(Eq. 4.2) in Fig. 4.4. Our method MSSS has an advantage over other saliency de-
tection techniques for such an application since it achieves both high precision and
high recall in detecting salient objects.

4.1.3 Salient region segmentation using geodesic paths

Geodesic paths have been used for segmentation and matting based on user-drawn
scribbles by Bai and Sapiro [19]. They use the fast marching algorithm proposed
by Yatziv et al. [147] for this. We use a geodesic paths approach to segment salient
object from images. However, unlike Bai and Sapiro, we rely on a thresholded
saliency map instead of user-drawn scribbles as input.

As in the previous section, we set saliency-dependent thresholds for labeling some
of the pixels. If the saliency value is greater than 3× Savg it is labeled as a salient
object pixel, if the saliency value is less than 1

3Savg it is considered a background
pixel. Each of these labeled pixels acts as a seed from which we reach out to other
pixels along the shortest geodesic paths. Each pixel p at given position in the xy-
plane of the image is assigned the label of its nearest seed if the geodesic path to it
from the seed is shorter than that from any other seed.

Geodesic path computation is presented in Section 2.5.5. In the computation
of the cost d(P) of the path P , ‖I(pi) − I(pi−1)‖ represents the Euclidean distance
between the CIELAB color vectors of pixels pi and pi−1. We present examples of
segmentation using geodesic distances in Fig.4.5. We compare the segmentation
output using our saliency maps with that using others with respect to our ground
truth database in Fig. 4.6.

4.1.4 Discussion

The simplest of the three salient object segmentation methods is the adaptive thresh-
olding method. It usually provides the highest F-scores for all methods, even when
the saliency map is of poor quality. The graph-cuts and geodesic based methods are
less forgiving in this respect - when the quality of the saliency map is poor, it results
in poor segmentation. The graph-cuts based approach and the geodesic path based
approach usually provide similar segmentations. The graph-cuts approach though is

4.1. Salient object segmentation 65

(a) (b) (c) (d)

Figure 4.3: Salient object segmentation using graph-cuts. (a) Original image. (b)
Saliency map using our method MSSS (Section 3.3). (c) Labeling by thresholding
explained in Section 4.1.2 - blue pixels belong to the background and yellow ones to the
salient object. The black pixels have unknown initial labels. Yellow pixels are assigned
hard links to the source (object) while blue pixels are assigned hard links to the sink
(background). (d) The segmentation obtained using graph-cuts.

66 Chapter 4.

MSSS IGS GR07 AC08 GB06 SWQ09 MA03 IT98 AIM07 SR07 SUN08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
F−score

Figure 4.4: Precision-Recall bars for graph-cuts based salient object segmentation,
in decreasing order of Fβ-score (β = 0.5). Our methods IGS and MSSS show high
precision, recall and Fβ scores computed on the 1000 image database.

4.1. Salient object segmentation 67

(a) (b) (c) (d)

Figure 4.5: (a) Original image. (b) Saliency map obtained using MSSS (Section 3.3).
(c) Labeling by thresholding - blue pixels belong to the background and yellow ones
to the salient object. The black pixels have unknown starting labels. (d) Result after
geodesic path based segmentation. Each labeled (blue or yellow) pixel serves as a starting
seed from which geodesic distances are computed to all the other pixels. Each pixel is
assigned the label of the seed it is nearest to in terms of the geodesic distance. In a
way, each seed competes with the other seeds for assigning its label to a pixel.

68 Chapter 4.

MSSS IGS AC08 GR07 GB06 SWQ09 MA03 AIM07 SR07 IT98 SUN08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
F−score

Figure 4.6: Precision-Recall bars for geodesic path based salient object segmentation,
in decreasing order of Fβ-score (β = 0.5). Our methods IGS and MSSS show high
precision, recall and Fβ scores on 300 images with ground truth.

4.2. Automatic Image Re-targeting 69

fastest of the three approaches while the geodesic path based method is the slowest.
The greater the number of seeds, i.e pixels labeled as belonging to salient object and
background by initial thresholding, the more time is taken by geodesic path based
segmentation.

4.2 Automatic Image Re-targeting

The diversity of today’s display device sizes and aspect ratios demands smarter
ways of re-targeting images than simple resizing, or adding black bars to fill empty
space, to better deliver visually important or salient content for the given display
dimensions. While cropping [26] is one option, image content adaptive warping [141]
and seam carving [16] are other options that accentuate visually important content
with minimal loss of original intent. These two re-targeting approaches have also
been extended to videos [119, 144].

Gal et al. [53] were the first to propose a solution to the general problem of re-
targeting an image while preserving regions of interest. In their method, the user has
to manually specify the regions of interest based on which the image is adaptively
warped.

Automatic content awareness, i.e the choice of visually important regions in
re-targeting schemes, was introduced by [16, 119, 144, 141]. All such automatic re-
targeting methods rely on finding visual importance values for each pixel. Avidan
and Shamir [16] proposed the popular content aware re-targeting scheme of seam
carving. They iteratively remove a seam, i.e. a connected set of vertical (horizontal)
pixels, to reduce the width (height) of an image.

Rubinstein et al. [119] extend the original seam carving idea of [16] to videos by
removing pixel manifolds in 3D volumes of video frames. Video re-targeting is also
done by Wolf et al. [144] who locally warp the frames of the video. This is done by
optimizing the best mapping between a source image and the re-targeted image.

Wang et al. [141] present another way of re-targeting images to arbitrary aspect
ratios while preserving visually prominent features given by a saliency map using
mesh based adaptive warping.

Assigning visual importance values (Section 4.2.1) is fundamental to all these
automatic re-targeting methods. In this section, we demonstrate that our saliency
maps provide better seam carving results than the commonly used gradient maps
(see Fig. 4.7).

4.2.1 Visual Importance Maps

The key to content awareness, needed by all automatic re-targeting schemes, is a
map of values that quantifies the relative visual importance of each pixel. The main
methods of assigning importance values to pixels are measures of L1-norm [16, 119]

70 Chapter 4.

(a) (b) (c) (d)

Figure 4.7: Our seam carving compared to state-of-the-art [119]: top row results show
the use of intensity gradient based energy map [119]; bottom row results show the use
of our global contrast based saliency map. Column (a) is the visual importance map
(the darker the pixel the lower the importance). Column (b) shows the seams chosen for
re-targeting, superimposed on the original image. Column (c) shows image with 80%
width. Column (d) shows image with 120% width.

4.2. Automatic Image Re-targeting 71

or L2 norm [144] of the grayscale intensity gradient, face or other object detectors,
saliency maps, or a combination of these [141, 144].

Avidan and Shamir [16] use the L1-norm of the grayscale intensity gradient to
compute their energy map. The energy map lets them successively remove seams of
minimal energy as determined using a dynamic programming algorithm. They com-
pare several ways of computing the energy maps, including Itti’s saliency maps [72],
and conclude that sums of magnitudes of gradients along the x and y axes (Eq. 4.5)
and the same normalized by the maximum of the histogram of oriented gradients [34]
give good results in general. To extend the spatial energy computation of Avidan
and Shamir [16] to a spatiotemporal one for their video re-targeting case, Rubinstein
et al. [119] introduce an inter-frame L1-norm gradient term.

Wolf et al. [144] use a saliency map that combines the results of a face detector
and a motion detector with the L2-norm of the intensity gradient. The importance
map of Wang et al. [141] is generated by multiplying the L2-norm of the intensity
gradient of the image with Itti’s saliency maps [72]. Itti’s maps do not highlight
salient regions uniformly and are highly downsized as compared to the input im-
age [4]. Thus, the resulting energy map has lower values for gradients that are not
in the vicinity of a saliency blob of Itti’s map.

Pixel energy computed from simple L1-norm [16, 119] or L2-norm [144] of the
grayscale intensity gradient suffers from certain drawbacks. First, the values peak
at edges rather than whole salient regions. Thus, energy is assigned to visually
important image content only at edges and not whole regions (see Fig. 4.7, top-left
image). Second, color information is ignored. The third disadvantage w.r.t iterative
re-targeting schemes like seam carving [16] is the need to recompute the energy after
seams are removed, since the local gradients may change after a seam is removed.
Finally, gradient based maps can be noise sensitive.

Our saliency maps as computed using Eq. 3.4 uniformly assigns saliency values
to entire salient regions, rather than just edges or texture regions. This is achieved
by relying on the global contrast of a pixel rather than local contrast, measured
in terms of both color and intensity features rather than just intensity as done
previously [16, 119]. The saliency map is computed only once irrespective of the
number of seam carving operations performed and is robust in the presence of noise.
We show the effectiveness of our method in avoiding the usual artifacts of seam
carving in normal and noisy images.

4.2.2 Seam carving

Avidan and Shamir [16] introduced the idea of seam carving for arbitrarily chang-
ing aspect ratios of images automatically. This is done by removing seams of low
importance pixels from the image. They define a vertical (horizontal) seam to be a
connected path of low energy pixels in the image from top to bottom (left to right)
containing one, and only one, pixel in each row (column) of the image. Thus, remov-

72 Chapter 4.

ing a vertical (horizontal) seam reduces the width (height) by one pixel. Finding
the globally minimal energy seam, which removes the least salient content, is posed
as a dynamic programming optimization problem. The energy maps are computed
using the L1-norm of the intensity gradient as:

Eg(x, y) =
∣∣∣∣ ∂∂xI(x, y)

∣∣∣∣+ ∣∣∣∣ ∂∂y I(x, y)
∣∣∣∣ (4.5)

where Eg(x, y) is the resulting importance value of a pixel at column x and row y,
and I is the grayscale intensity image. For a vertical seam removal, the dynamic
programming memoization table entry M(x, y) is given as:

M(x, y) = Eg(x, y) +min


M(x− 1, y − 1)
M(x, y − 1)
M(x+ 1, y − 1)

(4.6)

The globally minimal energy seam is found by backtracking from the minimum value
of the last row in M to the first row.

Rubinstein et al. [119] note that despite seam carving being an energy removal
operation, a removed seam may actually introduce more energy than it takes away
because of previously non-adjacent pixels becoming neighbors. They therefore in-
troduce forward energy criteria (equally applicable for both image and video cases;
illustrated in Fig.4.8), such that the optimal seam found is one whose removal re-
introduces minimum amount of energy. This changes Eq. 4.6 to:

M(x, y) = Eg(x, y) +min


CL(x, y) +M(x− 1, y − 1)
CU (x, y) +M(x, y − 1)
CR(x, y) +M(x+ 1, y − 1)

(4.7)

where CL, CU , and CR are image gradients resulting from non-adjacent pixels be-
coming neighbors when a seam pixel separating them is removed, and are computed
as:

CU (x, y) = |I(x+ 1, y)− I(x− 1, y)| (4.8)
CL(x, y) = |I(x, y − 1)− I(x− 1, y)|+ CU (x, y)
CR(x, y) = |I(x, y − 1)− I(x+ 1, y)|+ CU (x, y)

4.2.3 Improved seam carving

As mentioned above, the importance maps used by [141, 16, 119, 144] determine
local grayscale contrast using gradients that result in higher importance values for

4.2. Automatic Image Re-targeting 73

I(x+1,y-1)I(x,y-1)

I(x-1,y) I(x+1,y)

I(x-1,y-1) I(x,y-1)

I(x-1,y) I(x,y)

I(x+1,y-1)I(x-1,y-1)

I(x-1,y) I(x+1,y)

I(x+1,y-1)I(x-1,y-1) I(x,y-1)

I(x-1,y) I(x,y) I(x+1,y)

I(x-1,y-1) I(x,y-1)

I(x-1,y) I(x+1,y)

I(x+1,y-1)I(x-1,y-1) I(x,y-1)

I(x-1,y) I(x,y) I(x+1,y)

I(x+1,y-1)

(a) (b) (c)

Figure 4.8: Calculating the three possible vertical seam step costs for the pixel at
position (x, y) using forward energy. After removing the seam (shown in orange color),
new neighbors (shown in magenta) and new pixel edges (red line segments) are created.
In each of the three cases, the cost is defined by the forward difference in the newly
created pixel edges. Note that the new edges created in row y − 1 were accounted for
in the cost of the previous row pixel.

textured areas and edges, but lower values for smooth salient regions. Wang et
al. [141] attempt to address this problem by multiplying the L2 norm of the gradient
with Itti’s saliency maps [72], while Wolf et al. [144] combine the results of a face
detector and a motion detector [92] with the L2-norm of the intensity gradient.
However, these do not significantly alleviate the drawbacks of intensity gradient
maps.

On the other hand, our saliency maps as computed using the method of Sec-
tion 3.2 have uniformly highlighted salient regions with well-defined boundaries. We
also introduce the use of color information in the forward energy terms of Eq. 4.8.
This is done by replacing the scalar gray scale differences with the corresponding
vector distances in CIELAB color space to obtain:

CU (x, y) = ‖I(x+ 1, y)− I(x− 1, y)‖ (4.9)
CL(x, y) = ‖I(x, y − 1)− I(x− 1, y)‖+ CU (x, y)
CR(x, y) = ‖I(x, y − 1)− I(x+ 1, y)‖+ CU (x, y)

This computes forward energy better as both color and intensity information is taken
into account. Although, the use of color in forward energy terms gives an advantage
over intensity (see Fig. 4.9), the more significant advantage is provided by the use of
our saliency maps. Our saliency maps (see Fig. 4.7, and Fig. 4.14) generated using
Eq. 3.4 coupled with the modified forward energy terms of Eq. 4.9 overcome the
limitations of previously used importance maps [141, 16, 119, 144].

74 Chapter 4.

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Figure showing the difference in the choice of seams when taking into
account color information instead of only intensity in forward energy terms. (a) Input
image. (b) Saliency map for seam carving as computed using Eq. 3.4. (c) Seams chosen
for removal when forward energy terms use intensity information only. (d) Seams chosen
when forward energy terms use color and intensity information. (e) 80% width using
intensity based forward terms (f) 80% width using color and intensity based forward
terms.

4.2. Automatic Image Re-targeting 75

(a) Input (b) 70% width (c) 130% width

Figure 4.10: Image re-targeting comparison for 70% and 130% of original width. Col-
umn(a) shows the original images.(b) and (d) are the outputs of the method of Rubinstein
et al. [119] implemented by us.

76 Chapter 4.

(a) Input (b) 70% width (c) 130% width

Figure 4.11: Image re-targeting comparison for 70% and 130% of original width: Col-
umn(a) shows the original images. (b) and (c) are the outputs of Wolf et al. [144] as
provided by the authors. Apart from grayscale gradient information they also use face
detection results.

4.2. Automatic Image Re-targeting 77

(a) Input (b) 70% width (c) 130% width

Figure 4.12: Image re-targeting comparison for 70% and 130% of original width: Col-
umn(a) shows the original images. (b) and (c) are the outputs of Wang et al. [141]
as provided by the authors. They combine grayscale gradient maps with Itti’s saliency
maps [72] to obtain their importance maps.

78 Chapter 4.

(a) Input (b) 70% width (c) 130% width

Figure 4.13: Image re-targeting comparison for 70% and 130% of original width: Col-
umn(a) shows the original image. (b) and (c) are our seam carving results.

4.2. Automatic Image Re-targeting 79

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i)
(j
)

(k
)

Fi
gu

re
4.
14
:
A

sid
e-
by
-s
id
e
co
m
pa
ris
on

of
im

ag
e
re
-t
ar
ge
tin

g
co
m
pa
ris
on

fo
r7

0%
an
d

13
0%

of
or
ig
in
al

wi
dt
h:

Co
lu
m
n
(a
)
sh
ow

s
th
e
or
ig
in
al

im
ag
es
.
Co

lu
m
n
(b
)
sh
ow

s
th
e

gr
ad
ien

tm
ap

ob
ta
in
ed

us
in
g
Eq

.4
.5
.
Co

lu
m
ns

(c
)a

nd
(d
)a

re
th
e
ou

tp
ut
so

fR
ub

in
st
ein

et
al
.[
11

9]
,(
e)

an
d
(f
)
ar
e
th
e
ou

tp
ut
so

fW
ol
fe

ta
l.
[1
44

],
(g
)
an
d
(h
)
ar
e
th
e
ou

tp
ut
s

of
W
an
g
et

al
.[
14

1]
.
Co

lu
m
n
(i)

sh
ow

s
ou

r
sa
lie
nc
y
m
ap
s
ob

ta
in
ed

us
in
g
th
e
m
et
ho

d
pr
es
en
te
d
in

Se
ct
io
n
3.
2,

an
d
(j)

an
d
(k
)
ar
e
ou

r
se
am

ca
rv
in
g
re
su
lts
.
Co

lu
m
ns

(c
)
to

(h
)
us
e
gr
ad
ien

t
m
ap
s
fo
rc

on
te
nt

aw
ar
en
es
s
wh

ile
we

us
e
sa
lie
nc
y
m
ap
s.

80 Chapter 4.

The seam carving results (Fig. 4.13 and Fig. 4.14) obtained by using our saliency
map and modified forward energy terms are visually compared against those of
Rubinstein et al. [119] obtained using gradient maps (Fig. 4.10 and Fig. 4.14), as
well as those of Wang et al. [141] (Fig. 4.11 and Fig. 4.14)and Wolf et al. [144]
(Fig. 4.12 and Fig. 4.14). The results from the methods of Wang et al. [141] and
Wolf et al. [144] were provided by the respective authors. In Fig. 4.15 to Fig. 4.18 we
also show a comparison of seam carving performed using gradient maps with that
obtained using the saliency maps of various state-of-the-art methods we covered in
Chapter 3. In general, saliency maps perform better than simple gradient maps for
images with salient content.

We show results for changing aspect ratios by both removing and adding seems
as needed. As proposed by Avidan and Shamir [16], to enlarge an image by p seams,
we first find p seams for removal and duplicate them. To affect a change in both
dimensions of an input image, we choose between a vertical or a horizontal seam at
each step depending on which has lower energy.

Our saliency maps highlight visually important regions of the image uniformly
and not just at their edges. Thus, the seams chosen do not pass through high
energy regions, such as salient objects (see Fig. 4.7b). This permits us to obtain
seam carving results without artifacts in salient regions. It must be added that in
cases where the salient object is not highlighted correctly by our maps, gradient
based energy maps from Eq. 4.5 may provide better re-targeting results.

In our saliency maps, the importance value associated with a pixel is computed
with respect to the entire image (and not the immediate four or eight neighbors).
High saliency values are not assigned just at the edge of a region, but the entire
region. Once we know which pixels are less salient with respect to the original
image, we can remove them without having to recompute their importance after
each removal. This is unlike local gradients, whose values depend on local pixel
neighborhood, which may change when a seam of pixels is removed. Thus, unlike
the gradient maps, there is no need to recompute the saliency maps independent of
the number of seam carving operations performed.

4.2.4 Noise Robustness

Our saliency maps are more robust to noise than local intensity gradient based maps.
There are two reasons for this. First, our global approach is independent of local
noise patterns that strongly affect gradient based energy maps. Second, Eq. 3.4
allows using Gaussian blurring that can be increased according to the requirements
of the application. Although a 3 × 3 binomial kernel suffices, if very low bit-rate
coding is used or if Exif (Exchangeable Image File Format [2]) data indicates the
use of high ISO values (indicating probability for higher noise), one can increase the
binomial kernel size.

We experimented with Gaussian noise up to variance 0.1 (Fig. 4.19), and salt

4.2. Automatic Image Re-targeting 81

Imp. map Seams chosen 80% width 120% width

Figure 4.15: Comparison of seam carving using saliency maps of state-of-the-art tech-
niques. The far left column shows the importance maps used for seam carving. The first
of these on the top is the gradient edge map. The ones that follows are the saliency
maps obtained using the techniques IT98 [72], MA03 [98], GB06 [62], GR07 [100], and
AIM07 [25], respectively.

82 Chapter 4.

Imp. map Seams chosen 80% width 120% width

Figure 4.16: Comparison of seam carving using saliency maps of state-of-the-art
techniques. The far left column shows the importance maps used for seam carving.
This column shows saliency maps obtained from the techniques SR07 [67], AC08 [4],
SUN08 [149], SWQ09 [21], and our techniques IGS and MSSS, respectively.

4.2. Automatic Image Re-targeting 83

Importance map Seams chosen 80% width 120% width

Figure 4.17: Comparison of seam carving using saliency maps of state-of-the-art tech-
niques. The far left column shows the importance maps used for seam carving. The first
of these on the top is the gradient edge map. The ones that follows are the saliency
maps obtained using the techniques IT98 [72], MA03 [98], GB06 [62], GR07 [100], and
AIM07 [25], respectively.

84 Chapter 4.

Importance map Seams chosen 80% width 120% width

Figure 4.18: Comparison of seam carving using saliency maps of state-of-the-art
techniques. The far left column shows the importance maps used for seam carving.
This column shows saliency maps obtained from the techniques SR07 [67], AC08 [4],
SUN08 [149], SWQ09 [21], and our techniques IGS and MSSS, respectively.

4.3. Summary of the chapter 85

and pepper noise with noise density up to 0.1. We retain the binomial kernel at
3× 3 for all experiments (with and without noise). Our saliency maps provide good
seam carving results even in the presence of noise, as illustrated in Fig. 4.19.

4.3 Summary of the chapter

The first application of saliency detection we presented in this chapter is salient
object segmentation. We presented three techniques for doing this: using mean-shift
clustering and saliency adaptive thresholding, using graph-cuts, and using geodesic
distances. We applied these three techniques to saliency maps obtained from other
saliency detection techniques also and compared the results. We then presented
the application of saliency detection in content aware image resizing using seam
carving. The performance of our saliency maps in these two applications establishes
their effectiveness as compared to state-of-the-art saliency detection techniques. It
is also possible to combine generic saliency detection like ours with task-specific
detection like text detection. This is shown in Appendix A.6.

86 Chapter 4.

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i)
(j
)

Fi
gu

re
4.
19
:

Co
lu
m
n
(a
)
sh
ow

s
or
ig
in
al

(a
bo

ve
)
an
d
no

isy
(b
elo

w)
ve
rs
io
ns

of
th
e

im
ag
e.

Co
lu
m
n
(b
)
sh
ow

s
th
e
co
rre

sp
on

di
ng

gr
ad
ien

t
en
er
gy

m
ap
s.

Co
lu
m
n
(c
)
sh
ow

s
th
es

ea
m
sc

ho
se
n
ba
se
d
on

th
eg

ra
di
en
tm

ap
su

sin
g
th
em

et
ho

d
of

Ru
bi
ns
te
in
et

al
.[
11

9]
.

Co
lu
m
ns

(d
)a

nd
(e
)s

ho
w
wi
dt
h
re
-t
ar
ge
te
d
to

80
%

an
d
12

0%
of

th
e
or
ig
in
al
.
Co

lu
m
ns

(f
)t

o
(j)

sh
ow

th
e
re
su
lt
of

us
in
g
ou

rm
ap
si
ns
te
ad
.
N
ot
e
ho
w
m
uc
h
th
e
se
am

se
lec

tio
n

is
aff

ec
te
d
by

no
ise

in
gr
ad
ien

t
m
ap
s
as

co
m
pa
re
d
to

ou
r
m
ap
s.

D
es
pi
te

th
e
no

ise
,t
he

se
am

s
co
nt
in
ue

to
be

ch
os
en

fro
m

th
e
sa
m
e
re
gi
on

s
of

th
e
im

ag
e
(C

ol
um

n
(h
))
.

Chapter 5

Database Saliency and Image
Summaries

Most digital camera owners accumulate databases in the order of a few thousand
images. It is useful to have a small set of representative images from a database
of thousands of images to summarize its content. There are two related aspects of
such image summaries: how to generate them and how to present them. We address
both issues1.

In this chapter, we extend the idea of image saliency to databases and introduce
the notion of database saliency. We argue that in image databases, there are certain
images that are more uncommon or salient than others and therefore are likely to
be more interesting (see Fig. 5.1). These images should be given more priority in
the image summaries as opposed to less interesting ones.

5.1 Ranking images

We rank the images in decreasing order of their database saliency values. The
database saliency value of an image corresponds to its degree of ‘interstingness’. We
compute the database saliency value of an image as its total distance from all the
cluster centers of the database. This is illustrated in Fig. 5.4 and explained in the
following sections.

5.1.1 Image clusters and database saliency

We group the images of the database into a given number of clusters. The number
of clusters formed depends on how many images are required by the user to create
a summary of the database. Clustering is performed using the k-means algorithm
(Section 2.5.1). For this we need an image signature, i.e. a compact feature repre-
sentation of the image, and a distance measure to compute the similarity between

1The material presented in this chapter is also available in the reference [6]

87

88 Chapter 5.

(a) An example database of images

(b) Some images are more interesting than others. Here the size of the image is
relative to the degree of ‘interestingness’.

Figure 5.1: The goal of database saliency detection is to automatically rank images in
the order of their ‘interestingness’.

5.1. Ranking images 89

I I

I II

I I I I I I

I I

I

I

II

I

I

I C C C

C C

C C

C C C

C C

Figure 5.2: An artificial input image with coherent pixels labeled C and incoherent pixels
labeled I. In the case shown here, coherent pixels have more than six similar neighbors
while incoherent pixels have six or less.

two images. We propose the use of image saliency weighted color coherence vectors
(ISWCCV) as the image signature and the χ2 distance as a similarity measure [80].

Image saliency weighted color coherence vectors (ISWCCV)

Simple color histograms are poor abstractions of images as two visually dissimilar
images can have the same histogram (see Fig. 5.3(a)). Color coherence vectors
(CCV) were proposed by Zabih and Pass [111] to alleviate this problem. They label
pixels as belonging to one of the two classes: coherent and incoherent, as illustrated
in Fig. 5.2, and create a separate histogram for each. A coherent pixel is one that has
at least a threshold Tn number of similar pixels as its neighbors, while an incoherent
pixel has fewer.

To obtain an ISWCCV, we use image saliency computed using the method pre-
sented in Section 3.2. Instead of simply counting a pixel belonging to a bin, we take
into account the saliency value S(x, y), normalized in the interval [0, 1], to compute
the height of the bin. Thus, more weight is given to the salient pixels of an image
rather than considering the entire image uniformly. The height h(n) of the nth bin
is computed as:

h(n) =
∑

(x,y)∈bin(n) S(x, y)∑B
n=1

∑
(x,y)∈bin(n) S(x, y)

(5.1)

where B is the number of bins of the histogram. The expression in the denominator is
the normalizing constant. Fig. 5.3 illustrates the creation of ISWCCV using saliency
maps.

The χ2 significance test [80] provides a measure of similarity of two histograms
h1 and h2 as:

χ2(h1, h2) = 1
2

B∑
n=1

(h1(n)− h2(n))2

h1(n) + h2(n) (5.2)

The degree of similarity D between two images is computed as a weighted sum of

90 Chapter 5.

Histogram of
coherent pixels

Histogram of
incoherent pixels

Histogram of
coherent pixels

Histogram of
incoherent pixels

ISWCCVCCV

ISWCCVCCV

Weighted histogram
of incoherent pixels

Weighted histogram
of coherent pixels

Weighted histogram
of incoherent pixels

Weighted histogram
of coherent pixels

(a) (b) (c) (d)

Figure 5.3: (a) The two images on the left have the same global color histogram but
different CCV’s.(b) Coherent and incoherent pixel histograms forming the CCV’s for the
two images. (c) Saliency maps corresponding to the input image. (d) Image saliency
weighted color coherence vectors obtained by taking into account image saliency for
creating the coherent and incoherent color histograms.

5.1. Ranking images 91

Figure 5.4: Computing database saliency as a sum of distances from all cluster centers.

the χ2 similarity measures of the coherent and incoherent pixel histograms:

D(ch1,
i h1,

c h2,
i h2) = αχ2(ch1,

c h2) + (1− α)χ2(ih1,
i h2) (5.3)

where the superscripts c and i represent coherent and incoherent pixel histograms,
respectively, and α ∈ [0, 1] decides their relative weight. This similarity measure D
is used by us for performing the k-means clustering of the images.

We create the histograms on images resized to 40 × 30 pixels. We quantize the
values in each channel in the interval [0, 3] i.e. in to four bins. In our implementation,
we choose Tn to be 6, i.e, a pixel is considered coherent if it has at least 6 similar
neighbors. A neighboring pixel is considered similar if the quantized value of each
color channel value is the same as the quantized value of each channel of the pixel in
consideration. As as result of the quantization, each histogram has 64 (4×4×4) bins.

92 Chapter 5.

Finally, we use α = 0.3 to relatively weigh the coherent and incoherent histograms.

Computing database saliency

The ‘interestingness’ value i.e. the database saliency value of the nth image in the
database is computed as:

S(n) =
k∑

m=1
D(chm,i hm,c hn,i hn) (5.4)

where k is the number of clusters created, and chm and ihm correspond to the cluster
centers. This pair of values (i.e. ISWCCV) is computed as the average of all the
coherent and incoherent histograms belonging to a cluster.

The bigger S(n) is, the more interesting we consider the image to be. An image
is further away from its cluster center when it is less similar to the rest of the images
in that cluster. By considering the sum of distances from all the cluster centers we
choose images that are most dissimilar to the rest of the images in the database.
In other words, we consider those images to be more interesting that have fewer
images similar to them. This is visually explained in Fig. 5.4. A possible drawback
of this measure of database saliency is that some neighboring images of a cluster
can have similar values. To ensure that they father images chosen are dissimilar to
each other, we could also consider in computing the database saliency value mutual
distances between the images ranked as most salient.

Our method can also be used for an application like video summarization using
keyframe extraction. In this case however, we would choose images that are closest
to the cluster centers rather than farther away.

5.2 Choosing images for creating a summary

In this chapter we present two types of image summaries: mosaics and collages. In
both cases, we create a composite image that consists of several individual images.
To begin with, the user specifies the number of images k needed to create a summary.
This is the number of clusters formed from the images in the database. Instead of
just choosing the top k images from the ranked list to create a summary, we can
also create such summaries based on a template image provided by the user (e.g.
Fig. 5.11 and Fig. 5.12). In this case, we also need to make sure that the image
picked from the list of ranked images matches the region of the template image
that should be occupied by the chosen image. To find such a match, we compute
the Euclidean distance between the average CIELAB vectors of all the pixels in the
region and that of the image. This leads to another list of images in decreasing order
of similarity with the template image region. We introduce an affinity function Cw
that takes into account two rank based scores - the one resulting from the database

5.3. Image summaries 93

saliency rank, and the other resulting from similarity to the template image region.
A rank based score is computed as:

Rw = 1− r

rmax
(5.5)

where r is the rank and rmax is the largest value of such a rank. The affinity function
Cw assigns relative importance to database saliency ranking and matching an image
to the CIELAB average pixel value of the image region. It is computed as follows.

Cw = β(Rwdbs) + (1− β)(Rwis) (5.6)

where Rwdbs is the database saliency rank based weight, Rwis is the image similarity
rank based weight (corresponding to proximity of average CIELAB values of an
image in the database and the region of the image to be matched), and β (chosen
to be 0.5) is a constant that takes a value in the interval [0, 1].

5.3 Image summaries

Creating image compositions like mosaics and collages from images is an interesting
consumer application [14, 117]. The image mosaics we present use variable tile sizes,
unlike conventional mosaics. We also present a way to create image collages that
are created by joining images at their best seam cut.

5.3.1 Variable tile size image mosaics

Conventional image mosaics have same sized tiles that are occupied by the best
matching image from a database. If the image tiles are big, the composite image
appears blocky, while if the tiles are small, their content is hardly discernible. We
create an image mosaic that assigns variable size image tiles based on a novel energy
map decomposition technique.

We use the image saliency maps proposed in Section 3.2 as our energy maps
(alternatively, an edge gradient map can also be used). We recursively subdivide
the input image in four equal quadrants, subject to the energy contained within each
quadrant of the corresponding energy map exceeding a threshold Te. Each quadrant
is then overlaid by the database saliency ranked image whose average CIELAB vector
has the lowest Euclidean distance from the average CIELAB vector of the quadrant,
according to the affinity function of Eq. 5.6. The original image and the chosen tile
images are averaged to get the final mosaic. Some examples of how the final mosaic
is created from the input image are presented in Fig. 5.5 to Fig. 5.8. In the mosaics
shown, the base image is blended with the tiles. It is not necessary to perform this
blending. This choice is made to produce visually pleasing results. In a real-world
application such attributes can also be user-defined or assigned in accordance with
user studies.

94 Chapter 5.

(a) Original image (b) Saliency map

(c) Quad-tree decomposition (d) Quad-tree averages

(e) Our mosaiced image (f) Conventional mosaic

Figure 5.5: Steps for creating our mosaiced image and comparison with a conventional
mosaic.

5.3. Image summaries 95

(a) Original image (b) Saliency map

(c) Quad-tree decomposition (d) Quad-tree averages

(e) Our mosaiced image (f) Conventional mosaic

Figure 5.6: Steps for creating our mosaiced image and comparison with a conventional
mosaic.

96 Chapter 5.

(a) Original image (b) Saliency map

(c) Quad-tree decomposition (d) Quad-tree averages

(e) Our mosaiced image (f) Conventional mosaic

Figure 5.7: Steps for creating our mosaiced image and comparison with a conventional
mosaic.

5.3. Image summaries 97

(a) Original image (b) Saliency map

(c) Quad-tree decomposition (d) Quad-tree averages

(e) Our mosaiced image (f) Conventional mosaic

Figure 5.8: Steps for creating our mosaiced image and comparison with a conventional
mosaic.

98 Chapter 5.

5.3.2 Automatic image collages

In order to create a collage as in Figs. 5.11(b) and 5.11(d) we first stitch together rows
of salient images chosen by our database saliency technique, and then vertically stitch
the row compositions. To stitch any two adjacent images, we choose the optimal
cut between the two images in their overlap region. This is illustrated in Fig. 5.9.
The method of finding the best cut to stitch the two images at their overlapping

overlap

left im
age right im

age

left im
a r

left image right image

(a) (b)

Figure 5.9: Joining two adjacent overlapping images. (a) The overlapping region. (b)
The optimal joint found in the overlapping region.

region is a modified form of the dynamic programming based method presented in
Section 4.2.2. To join two images, we take into account the saliency maps of both
the images as well as the energy of the edge arising out of the seam-joint of the two
images. For vertically joining two images on the left and the right, the dynamic
programming memoization table entry M(x, y) is given as:

M(x, y) =Sl(x, y) + Sr(x, y)+ (5.7)

min


‖Il(x− 1, y − 1)− Ir(x, y − 1)‖+M(x− 1, y − 1)
‖Il(x, y − 1)− Ir(x+ 1, y − 1)‖+M(x, y − 1)
‖Il(x+ 1, y − 1)− Ir(x+ 2, y − 1)‖+M(x+ 1, y − 1)

where El is the saliency of the left image, Er is the saliency of the right image, and
‖.‖ is the L2 norm that takes into account the color and intensity edge energy of the
left and right pixels at the joint. The (x, y) coordinates in Eq. 5.7 refer to the pixel
positions relative to the top-left corner of the overlapping region of the two images.

Fig. 5.10 shows an example of a row composition. After stitching two images at
the optimal joint, slight smoothing is performed to remove any edge artifacts. In the
resulting collage image saliency helps stitch images without altering salient content
while database saliency helps in choosing the most interesting images. In our mo-
saics, we first stitch several images along a row. Then several such row compositions
are stitched vertically along their overlap region (using the same technique as used
for individual images) to obtain the final composition.

5.3. Image summaries 99

Fi
gu

re
5.
10
:
Th

e
fir
st

ro
w

sh
ow

s
O
rig

in
al

im
ag
es
.
Th

e
se
co
nd

ro
w

sh
ow

s
th
eir

co
r-

re
sp
on

di
ng

sa
lie
nc
y
m
ap
s.

Th
e
th
ird

ro
w

sh
ow

s
th
e
st
itc

he
d
an
d
bl
en
de
d
im

ag
e
th
at

pr
es
er
ve
s
sa
lie
nt

re
gi
on

s
an
d
at

th
e
sa
m
e
tim

e
jo
in
s
im

ag
es

at
th
eir

lo
we

st
en
er
gy

se
am

to
m
in
im

ize
ar
tif
ac
ts
.

100 Chapter 5.

5.4 Summary of the chapter

We presented a computationally feasible approach for summarizing a database and
two novel image presentation schemes. While we take into account only the color
content of the images into account using ISWCCV’s, there are a lot of other aspects
of the image’s content (e.g. the objects, the aesthetic aspects, etc.), which can be
taken into account using more sophisticated features, for assigning an ‘interesting-
ness’ value to it. This may require additional computer vision techniques as well as
extensive user studies.

The number of clusters created is dependent on the number of images required
to create a summary in the form of a mosaic or a collage. So, the way database
saliency is computed is dependent on the application. Although the method is fast
enough to take into account a few thousand images, the computational efficiency
depends on the size of the user’s database and the number of images needed for
summarization.

In the case of collages the goal is not necessarily adhering to a template image
structure faithfully (see Fig. 5.11 and Fig. 5.12). A template image is used to
influence the choice placement of images since visually it produces a more pleasing
collage as opposed to placing images randomly or in order according to the database
saliency rank.

5.4. Summary of the chapter 101

(a) (b)

(c) (d)

Figure 5.11: Examples of collages of database saliency ranked images that are based
on a template image. The collage (b) does not use any smoothing across the image
stitch while collage (d) does.

102 Chapter 5.

Figure 5.12: More examples of collages of database saliency ranked images that are
based on a user provided template image (not shown).

Chapter 6

Superpixel Segmentation

In this chapter we present a technique for superpixel segmentation. We compare
our algorithm with the state-of-the-art in terms of under-segmentation error and
boundary recall. Then we show applications of superpixel segmentation in object
class identification and mitochondria detection1. We show how our algorithm can
be extended to supervoxel segmentation. Finally, we present an extension of our
method to generate visually pleasing superpixels.

6.1 Introduction

Superpixels are clusters of spatially connected pixels in an image that share similar
properties. Superpixels are generated when an image is oversegmented, i.e when
more segments are generated than what may define whole object regions. Aggregat-
ing image data into superpixels preserves natural image boundaries while capturing
redundancy in the data [113]. Furthermore, superpixels provide a convenient prim-
itive from which to compute local image features. They capture redundancy in the
image [113] and greatly reduce the complexity of subsequent image processing tasks.
They have proved increasingly useful for applications such as depth estimation [65],
image segmentation [86, 63], skeletonization [82], body model estimation [107], and
object localization [52].

For superpixels to be useful they must strictly adhere to object boundaries,
provide control over the number of superpixels, output regularly sized compact su-
perpixels, be computationally efficient, and easy to deploy. Unfortunately, most
state-of-the-art superpixel methods do not meet all these requirements. As we will
demonstrate, they often suffer from a high computational cost, poor quality segmen-
tation, inconsistent size and shape, or contain multiple, difficult-to-tune parameters.

The approach we advocate in this work, while strikingly simple, addresses these
issues and produces high quality, compact, nearly uniform superpixels more effi-
ciently than state-of-the-art methods [45, 121, 82, 134]. The algorithm we propose,

1The material presented in this chapter is also accessible in the papers [7] and [97]

103

104 Chapter 6.

Figure 6.1: Images segmented using our algorithm into superpixels of (approximate)
size 64, 256, and 1024 pixels. The superpixels are compact, uniform in size, and adhere
well to region boundaries.

simple linear iterative clustering (SLIC) performs a local clustering of pixels in the
five-dimensional labxy space where [l a b]T are vectors of the CIELAB color space
and the [x y]T are pixel coordinates vectors in the image plane. A novel distance
measure enforces compactness and regularity in the superpixel shapes, and seam-
lessly accomodates grayscale as well as color images. SLIC is simple to implement
and easily applied in practice – the only parameter specifies the desired number
of superpixels. Experiments on the Berkeley benchmark dataset [102] show that
SLIC is significantly more efficient than competing methods, while producing seg-
mentations of similar or better quality as measured by standard boundary recall and
under-segmentation error measures.

For many vision tasks, compact and highly uniform superpixels that respect
image boundaries, such as those generated by SLIC in Fig. 6.1, are desirable. For
instance, graph-based models such as Conditional Random Fields (CRF) can see dra-
matic speed increases when switching from pixel-based graphs to superpixels [86, 52],
but loose or irregular superpixels can degrade the performance. This is because local
features such as SIFT extracted from the image at superpixel locations become less
meaningful and discriminative if the superpixels are loose or irregular, and learning
statistics over cliques of two or more superpixels can be unreliable. This effect can
be seen when we compare the performance of SLIC superpixels to competing meth-
ods for two vision tasks: object class recognition and medical image segmentation.
In both cases, our approach results in similar or greater performance at a lower
computational cost in comparison to existing methods.

6.2. SLIC superpixel algorithm 105

6.2 SLIC superpixel algorithm

Our approach generates superpixels by clustering pixels based on their color simi-
larity and proximity in the image plane. This is done in the five-dimensional labxy
space, where [l a b]T is the pixel color vector in CIELAB color space, which is widely
considered as perceptually uniform for small color distances, and [x y]T represents
the pixel position in the image plane. While the maximum possible distance between
two colors in the CIELAB space (assuming sRGB input images) is limited, the spa-
tial distance in the xy plane depends on the image size. It is not possible to simply
use the Euclidean distance in this five-dimensional space without normalizing the
spatial distances. In order to cluster pixels in this five-dimensional space, we there-
fore introduce a new distance measure that considers superpixel size. Using it, we
enforce color similarity as well as pixel proximity in this five-dimensional space such
that the expected cluster sizes and their spatial extents are approximately equal.

6.2.1 Distance measure

The distance measure we propose combines spatial and color similarity distances. If
spatial pixel distances outweigh pixel color similarities, it will result in superpixels
that do not respect region boundaries, only proximity in the image plane. Therefore,
Instead of using a simple Euclidean norm in the five-dimensional space, we used a
normalized and weighted sum of color and spatial distances.

dlab = (lj − li)2 + (aj − ai)2 + (bj − bi)2

dxy = (xj − xi)2 + (yj − yi)2

D′ =
√(

wlab
Nlab

)2
dlab +

(
wxy
Nxy

)2
dxy, (6.1)

where wlab and wxy are the weights given to the color similarity and spatial proximity
if one wishes to emphasize one distance over another, respectively, and Nlab and Nxy

are the color similarity and spatial proximity normalization factors, respectively. The
normalization factors are the maximal color and spatial distances within a cluster.

Our algorithm SLIC takes as input a desired number of approximately equally-
sized superpixels k. For an image with N pixels, the approximate size of each
superpixel is therefore N/k pixels. For roughly equally sized superpixels there would
be a superpixel center at every grid interval S =

√
N/k. At the onset of our

algorithm, we choose k superpixel cluster centers Ci = [li ai bi xi yi]T with i = [1, k]
at regular grid intervals S.

The spatial normalization factor is in fact the grid step distance S since the
algorithm tries to group pixels into a circle of diameter S in a superpixel. That is,
the spatial maximum distance between two pixels is expected to be no bigger than
S. The color normalization factor, however, depends on the pixels constituting the
superpixel and could vary from one superpixel to another. This is fixed to a constant

106 Chapter 6.

heuristically based on the color space used and the needs of the application. By
replacing D′Nlabwlab

by D we can rewrite Eq. 6.1 as:

D =

√√√√dlab +
(
Nlab × wxy
Nxy × wlab

)2

dxy, (6.2)

which simplifies to

D =

√
dlab + m2

S2 dxy, (6.3)

by replacing Nxy by S, and Nlab×wxy
wlab

by a constant m, which serves to vary the
relative weight between color similarity and spatial proximity. Eq. 6.3 is the distance
measure we use in practice. The greater the value of m, the more spatial proximity
is emphasized and the more compact the cluster. This value can be in the range
[1, 20] for CIELAB color space.

6.2.2 Algorithm

The Simple Linear Iterative Clustering (SLIC) algorithm is summarized in Algo-
rithm 6.1. We begin by sampling k regularly spaced cluster centers and moving
them to seed locations corresponding to the lowest gradient position in a 3 × 3
neighborhood. This is done to avoid placing them at an edge and to reduce the
chances of choosing a noisy pixel. Image gradients are computed as:

G(x, y) = ‖I(x+ 1, y)− I(x− 1, y)‖22 + ‖I(x, y + 1)− I(x, y − 1)‖22 (6.4)

where I(x, y) is the lab vector corresponding to the pixel at position (x, y), and ‖.‖
is the Euclidean L2 norm as before. This takes into account both color and intensity
information.

Each pixel in the image is associated with the nearest cluster center whose search
area overlaps this pixel. The key advantage of SLIC over regular k-means clustering
appears here. We note that the spatial extent of any superpixel is approximately
S2 (the approximate area of a superpixel). Since we enforce spatial proximity in
Eq. 6.3, we can safely assume that pixels that are associated with a given cluster
center lie within a 2S × 2S area around the superpixel center on the xy plane. This
then becomes the search area for the pixels nearest to each cluster center, drastically
reducing the number of distances computed to determine cluster membership. This
is unlike regular k-means clustering where the entire image plane would be considered
for the search. This is explained in Fig. 6.2.

After all the pixels are associated with the nearest cluster center, a new center
is computed as the average [l a b x y]T vector of all the pixels belonging to the
cluster. We then iteratively repeat the process of associating pixels with the nearest
cluster center and recomputing the cluster center until convergence (i.e when residual

6.2. SLIC superpixel algorithm 107

(a) Superpixels after 1 iteration of SLIC

(b) Superpixels after 10 iterations of SLIC

Figure 6.2: Explanation for the speed-up achieved by SLIC over conventional k-means
algorithm. (a) The image shows the superpixel clusters at the end of one iteration with
centers (black dots) chosen at regular grid steps S. (b) The superpixels at the end of
ten iterations. In this case the centers have moved and the clusters have taken their
compact form such that the maximum expected spatial distance between two pixels is
the grid step size S. The blue squares overlaid on the image show the search regions
used by SLIC to determine cluster membership. SLIC computes distances from each
cluster center to pixels within the search region of area 2S × 2S. This is unlike general
k-means algorithm that computes the distances from each cluster center to all the pixels
in the image. Since the search area, and hence the number of distance computations, is
inversely related to the desired number of superpixels, SLIC not only reduces the number
of distances computed but also makes the algorithmic complexity independent of the
number of superpixels.

108 Chapter 6.

difference between previous centers and recomputed centers is less than a threshold).

6.2.3 Post processing

At the end of superpixel clustering, a few stray labels may remain. These stray
labels belong to pixels in the vicinity of a larger segment that have the same label
as the larger segment but are not connected to it (in terms of 4 or 8-connectivity).
While this occurs rarely, this may arise despite using xy-plane distances computing
D (Eq. 6.3) since the k-means algorithm clusters pixels in the five-dimensional labxy-
space without explicitly enforcing connectivity in the two-dimensional xy-plane. Our
clustering process does not explicitly enforce connectivity. Hence, we enforce con-
nectivity in the last step of our algorithm by relabeling disjoint segments with the
labels of the nearest neighboring cluster using a connected components algorithm.

This step can be accomplished using a two-pass algorithm. In the first pass,
a usual connected components algorithm is run, all components are assigned new
component labels, and an adjacency graph is built. In the next pass, except the
largest component, any component that shares the same original SLIC-assigned
label is merged with the nearest adjacent component.

We however use a simpler version of this algorithm that uses only one pass and
does not need the adjacency graph. We use a queue based flood-fill algorithm to
connect SLIC-labeled pixels. During the component building step, as soon as we
encounter a component smaller than one-fourth the required superpixel size, we
merge it with the nearest previous component.

The complexity of the post-processing step depends on the number of uncon-
nected ‘stray’ components and can vary from image to image. In practice, this
process is linear in the number of image pixels and takes less than 10% of the total
time required for segmenting an image.

Algorithm 6.1 Simple linear iterative clustering (SLIC)
1: Initialize cluster centers Ci = [li ai bi xi yi]T by sampling pixels at regular grid

steps S.
2: Perturb cluster centers in an n×n neighborhood, to the lowest gradient position.
3: repeat
4: for each cluster center Ci do
5: Assign the best matching pixels from a 2S×2S square neighborhood around

the cluster center according to the distance measure (Eq. 6.3).
6: end for
7: Compute new cluster centers and residual error E {L1 or L2 distance between

previous centers and recomputed centers}.
8: until E ≤ threshold
9: Enforce connectivity.

6.2. SLIC superpixel algorithm 109

6.2.4 Complexity

It is easy to notice that the idea of iteratively evolving local clusters and cluster
centers used in our algorithm is a special case of k-means adapted to the task of
generating superpixels. Interestingly, by virtue of using our distance measure of
Eq. 6.3, we are able to localize our pixel search to an area (2S × 2S) on the image
plane that is inversely proportional to the number of superpixels k (see also Fif. 6.2).
A pixel falls in the local neighborhood of no more than eight cluster centers. We also
note that the convergence error of our algorithm drops sharply in a few iterations as
shown in Fig. 6.3. Our experiments show that it suffices to run the algorithm for 4
to 10 iterations. We use 10 iterations for all the results in this chapter. The trivial

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Iterations

E
rr

or

100 pixels
400 pixel
900 pixels
1600 pixels
2500 pixels

Figure 6.3: Plot of the residual error E in step 7 of Algorithm 6.1 of clustering versus
number of iterations of SLIC. The plot shows five different curves each for a different
size of superpixels. As can be seen the error drops rapidly after the first few iterations.

upper bound for the classical k-means algorithm [94] is O(kN), which was slightly
improved by Inaba et al. [69] to O(Nkd) for d-dimensional space. The practical time
complexity for the classical k-means algorithm is O(NkI) [39] based on the number
of distance computations, whereN is the number of data points (pixels in the image),
k is the number of clusters (or seeds), and I is the number of iterations required for

110 Chapter 6.

convergence. Our method achieves O(N) complexity (see Fig. 6.12), since we need
to compute distances from any point to no more than eight cluster centers and the
number of iterations is constant. Thus, SLIC is specific to the problem of superpixel
segmentation, and unlike conventional k-means clustering, avoids several redundant
distance calculations.

Speed-up schemes for the k-means algorithm have been proposed using prime
number length sampling [135], random sampling [79], by local cluster swapping [75],
and by setting lower and upper bounds [39]. However except for [39], these methods
do no achieve linear complexity for a given k. SLIC, on the other hand, is linear in the
number of pixels irrespective of k. This is shown in Fig. 6.4 where the comparison is
made with the regular k-means clustering. Note that, like [39], SLIC implicitly sets
bounds on distance calculations, but does not need to compute or carry forward these
bounds for the subsequent iterations. Unlike most of these segmentation schemes,
which are very general in nature, SLIC is specifically tailored to perform superpixel
clustering using the distance measure of Eq. 6.3 and is much simpler.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of superpixels

T
im

e
ta

ke
n

(s
ec

on
ds

)

GKM
SLIC

Figure 6.4: Plot of the time taken for 10 iterations of general k-means (GKM) versus
our algorithm for different number of superpixels on input images of size 481×321. Our
algorithm takes less than 0.5 second for any superpixel size.

6.3. Comparison 111

6.3 Comparison

In this section we compare our superpixel segmentation method with four state-of-
the-art algorithms, namely, GS042 [45], NC053 [107], TP094 [83], QS095 [52] using
publicly available source codes. GS04 and NC05 are graph based methods while
TP09 and QS09 are gradient based approaches. NC05 and TP09 are designed to
output a desired number of superpixels while GS04 and QS09 require parameter
tuning to obtain a desired number of superpixels. This choice of algorithms provides
a good representation of the state-of-the-art.

Fig. 6.5 to Fig. 6.10 provides a visual comparison of our output with these algo-
rithms. Fig.6.11 provides a quantitative comparison in terms of under-segmentation
error and boundary recall measures, similar to the ones used by Levinshtein et
al. [83] for this purpose, computed with respect to the Berkeley segmentation ground
truth [102].

6.3.1 Algorithm Parameters

As mentioned in the introduction, it is important for superpixel algorithms to be
easy to use. Parameters needed as input should be few in number and easy to
set. Table 2.1 summarizes the number of parameters that must be tuned or set for
each method. SLIC, like NC05 and TP09 requires a single parameter. It is also
important to note that GS04 and QS09 do not allow the user to control the number
of superpixels. We had to perform a search on the parameter space to be able to
control the number of superpixels in order to make a fair comparison to the other
methods.

6.3.2 Under-segmentation error

Under-segmentation error essentially measures the error an algorithm makes in seg-
menting an image when compared to a known ground truth (human segmented
images in this case). This error is computed in terms of the ‘bleeding’ of the seg-
ments output by the algorithm when superposed over ground truth segments. This
measure thus penalizes superpixels that do not tightly fit the limits of a ground
truth segment.

Given ground truth segments g1, g2, ..., gM and a superpixel output s1, s2, ..., sL,
the under-segmentation error for a ground truth segment gi is quantified as:

U = 1
N

 M∑
i=1

 ∑
[sj |sj

⋂
gi>B]

|sj |

−N
 (6.5)

2http://people.cs.uchicago.edu/~pff/segment/
3http://www.cs.sfu.ca/~mori/research/superpixels/
4http://www.cs.toronto.edu/~babalex/turbopixels_supplementary.tar.gz
5http://www.vlfeat.org/download.html

http://people.cs.uchicago.edu/~pff/segment/
http://www.cs.sfu.ca/~mori/research/superpixels/
http://www.cs.toronto.edu/~babalex/turbopixels_supplementary.tar.gz
http://www.vlfeat.org/download.html

112 Chapter 6.

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.5: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300
pixels each.

6.3. Comparison 113

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.6: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300
pixels each.

114 Chapter 6.

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.7: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300
pixels each.

6.3. Comparison 115

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.8: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300
pixels each.

116 Chapter 6.

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.9: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300
pixels each.

6.3. Comparison 117

Input GS04

NC05 TP9

QS09 SLIC

Figure 6.10: Visual comparison of the superpixels from state-of-the-art algorithms. The
average superpixel size in the two halves in all images is roughly 100 pixels and 300 pixels
each.

118 Chapter 6.

where |.| gives the size of the segment in pixels, N is the size of the image in pixels,
and B is the minimum number of pixels that need to be overlapping. The expression
sj
⋂
gi is the intersection or overlap error of a superpixel sj with respect to a ground

truth segment gi. B is set to be 5% of |sj | to account for small errors in ground
truth segmentation data. The value of U is computed for each image of the ground
truth and then averaged to obtain the graph in Fig. 6.11(a). As can be seen, SLIC
shows the lowest under-segmentation error for all superpixel sizes.

6.3.3 Boundary recall

We adopt the standard boundary recall measure, which computes what fraction of
ground truth edges fall within one pixel of a least one superpixel boundary. We use
the internal boundaries of each superpixel. So in effect we search for a ground truth
boundary in the margin of two pixels of the algorithm-generated boundaries. The
boundary recall of each of the considered methods is plotted against the number of
superpixels in Fig. 6.11(b). The boundary recall is second only to GS04 and is quite
similar to QS09. It must be noted that GS04 places too many boundary pixels near
segment boundaries resulting in a higher value of boundary recall as compared to
other methods.

6.3.4 Computational and memory efficiency

For images of size 480×320, SLIC is more than 10 times faster than TP09 and more
than 500 times faster than NC05. What is encouraging is that it is even faster than
GS04 for images greater than half a million pixels (see Fig. 6.12). This is because
our algorithm always operates at O(N) complexity while GS04 has O(N logN) com-
plexity. This is of interest because even low end consumer digital cameras produce
images exceeding 3 million pixels. GS04 requires 5×N memory to store edge weights
and thresholds, as opposed to SLIC, which needs 1 ×N memory (to store the dis-
tance of each pixel from its nearest cluster center). Also, as mentioned before, if a
search needs to be performed to obtain a given number of superpixels then GS04
and QS09 take more time in practice since they need to be run several times to get
the desired output.

6.3.5 Discussion

A good superpixel segmentation algorithm should have low under-segmentation error
as well as high boundary recall. To be useful as a pre-processing algorithm, such
a segmentation should result in equally sized compact superpixels with control on
its number. For the same reason, the algorithm should preferably also have low
computational cost and require few input parameters. Fig. 6.11(b) shows that the
highest boundary recall is achieved by GS04. This is because it produces several
segments close to object boundaries as seen in Fig. 6.5 to Fig. 6.10. However, GS04

6.3. Comparison 119

500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

Number of superpixels

U
nd

er
−

se
ge

m
en

ta
tio

n
er

ro
r

GS04
NC05
TP09
QS09
SLIC

(a)

500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of superpixels

B
ou

nd
ar

y
re

ca
ll

GS04
NC05
TP09
QS09
SLIC

(b)

Figure 6.11: (a) Plot of the under-segmentation error w.r.t. number of superpixels.
(b) Plot of the boundary recall w.r.t. number of superpixels. We use 10 iterations and
m = 5.0 for SLIC. The output of NC05 is visually the most appealing but its boundary
recall is quite poor. GS04 has a higher boundary recall than all algorithms, including
ours, but this is because of the fact that it generates a lot of segments in the vicinity of
object boundaries. SLIC has the lowest under-segmentation error and a high boundary
recall for all superpixel sizes.

120 Chapter 6.
T

im
e

in
 s

ec
on

ds

24
1x

16
0

10
23

x6
82

14
26

x9
51

17
38

x1
15

9

20
02

x1
33

5

GS04

Figure 6.12: Plot of the segmentation time taken in seconds versus image size in pixels.

6.4. Superpixel Applications 121

also exhibits higher under-segmentation error than our algorithm, as can be seen in
Fig. 6.11(a). Our algorithm actually shows the lowest under-segmentation error in
Fig. 6.11(a) as well as high boundary recall in Fig. 6.11(b) next only to GS04.

Note that GS04 as well as QS09, however, are not meant to output a desired
number of superpixels of a given size unless a parameter search is performed, which
requires several runs of the algorithm. Even then the superpixel sizes are unequal,
making the algorithm far less suitable for superpixel-based applications [82, 107, 52].
In addition, as seen in Fig. 6.12(b) our algorithm is faster than the compared state-
of-the-art algorithms for any image size (including GS04 for a single run) and it
outputs the desired number of equally-sized compact superpixels.

Referring back to Table 2.2 SLIC offers a control on the number of superpixels
(and consequently their size) and their compactness. It is O(N) complex and faster
than all the competing algorithms. It takes only one parameter - the desired number
of superpixels (and optionally, the compactness factor, the default value for which
is set to 10). When compared to NC05 and TP09, the only other algorithms to
offer a compact superpixels of the desired number, SLIC proves superior in terms of
under-segmentation error, boundary recall, and computational efficiency.

6.4 Superpixel Applications

Operating on superpixels instead of pixels can speed up existing pixel-based algo-
rithms, and even improve results in some cases [52]. For instance, certain graph-
based algorithms can see a 2 to 3-fold speed increase using superpixels [86]. Of
course, the superpixel generation itself should be fast for this to be practical.

Below, we consider two typical vision tasks that benefit from using superpixels:
object class recognition and medical image segmentation. In each case, superpixels
have been shown to increase the performance of an existing algorithm while reducing
computational cost. We show that SLIC superpixels outperform state-of-the-art
superpixel methods on these tasks, but with a lower computational cost.

6.4.1 Object class recognition

Our first task is to perform object class recognition for 21 object classes (some
examples in Fig. 6.13) from the STAIR vision library6 based on the work of Gould
et al [59]. Color, texture, geometry, and location features are computed for each
superpixel region. Then boosted classifiers are learned using these features for each
region class. Finally, a Conditional Random Field (CRF) model is learned using the
output of the boosted classifiers as features. In the original work [59], NC05 is used
to segment each image (of size 320 × 240 pixels) into about 200 superpixels. By
applying SLIC superpixels instead of NC05, the classification accuracy increases, as
shown in Table 6.1, while the computational cost is reduced by a factor of 400.

6http://ai.stanford.edu/~sgould/svl

http://ai.stanford.edu/~sgould/svl

122 Chapter 6.

Figure 6.13: Example images for some of the 21 classes of the STAIR vision library.

6.4.2 Superpixel-graph-based segementation

In this section we demonstrate the application of our superpixel in improving the
quality of a graph based segmentation algorithm. Felzenszwalb and Huttenlocher [45]
present an agglomerative algorithm (GS04) for segmenting images that relies on a
graph built over pixels, as explained in Section 2.5.3 previously. We replace the
graph on pixels by a graph on our superpixels. We use euclidean distances of aver-
age CIELAB values superpixels as the edge weights (as opposed to RGB distance
based weights as in the original algorithm). GS04 mainly takes three parameters
as input: a distance threshold Kd, a standard deviation value for the initial Gaus-
sian blur, and a threshold on the smallest acceptable size of a segment, minSize.
Since we use superpixels, which obviate Gaussian blurring as well as the need to
fix minSize, we retain only the distance threshold Kd. The segmentation quality
improves in most cases. Some results are shown in Fig. 6.14. In the case of larger
images this also results in a speed-up in segmentation since the graph has to built
on superpixels, which are far fewer in number than the pixels in the image. For the
same reason it also results in lower memory usage.

6.4.3 Mitochondria segmentation

The superpixels generated by SLIC have been used for segmenting Mitochondria [97]
in Electron Microscope (EM) imagery. In this section we present some results from
early experimentation in the use of superpixels for this purpose. The technique
presented in this section uses SIFT [95] features computed over each superpixel,
much like Fulkerson et al. [52]. These results serve to compare SLIC with various
superpixel segmentation algorithms for the task of mitochondria segmentation. The

GS04 NC05 TP09 QS09 SLIC

Pixelwise accuracy 74.6% 75.9% 75.1% 62.0% 76.9%

Table 6.1: Object class recognition for various superpixel methods.

6.4. Superpixel Applications 123

(a) Original image (b) GS04 usual (c) SLIC output (d) GS04 using SLIC

Figure 6.14: The use of SLIC superpixels for graph based algorithms can result in
higher speed, lower memory usage, and better quality output. In column (d) we show
the improvement in segmentation quality of GS04 using our superpixels.

results obtained using a more sophisticated version of this algorithm that exploits lo-
cal texture, shape, and boundary cues, are presented in Appendix C. The interested
reader may also refer to citation [97] for details. To assist recent efforts towards
a ‘bottom up’ understanding of brain function (e.g. the Diadem challenge [1]) by
segmenting mitochondria from neural electron microscopy (EM) images. Neurosci-
entists attempting to reconstruct neural structures at an extremely fine level of detail
must typically perform a painstaking manual analysis on such data. Modern seg-
mentation algorithms such as the one proposed by Fulkerson et al. [52] can efficiently
automate this process by taking advantage of superpixels. Fulkerson et al. [52] use
QS09 generate superpixels. Below, we compare mitochondrial segmentations using
an approach based on [52] for various types of superpixels including GS04, TP09,
QS09, and SLIC. NC05 is omitted because its computational cost is impractical for
the high resolution images we experiment with.

The first step of the approach is to perform a superpixel over-segmentation of
the image, and define a graph G = (V, E) corresponding to the superpixels. Each
node in V corresponds to a superpixel pi. Edges E connect neighboring superpixels.
Then, SIFT descriptors are extracted at center of each superpixel at various scales
and a fixed orientation.

The segmentation is performed using graph-cuts, which partitions the graph
into disjoint partitions by minimizing an objective function of the form given by
Eq. 2.9. The unary term ψ assigns to each superpixel its potential to be mitochondria
or background based on a probability P (ci|f(pi)) computed from the output of a

124 Chapter 6.

Table 6.2: Mitochondria segmentation results for various superpixel methods.

GS04 TP09 QS09 SLIC

VOC score 65.3% 58.9% 66.6% 67.3%

support vector machine (SVM) classifier trained using the SIFT descriptors. The
pairwise term φ assigns to each pair of superpixels a potential to have similar or
differing labels based on the difference of intensities between the two superpixels,

ψ(ci|pi) = 1
1 + P (ci|f(pi))

, (6.6)

and

φ(ci, cj |pi, pj) =

 exp
(
− ||I(pi)−I(pj)||

2

2σ2

)
if ci 6= cj

0 otherwise.
(6.7)

Segmentations obtained for each superpixel method were compared over a set of
23 annotated EM images of 2048×1536 resolution, containing 1023 mitochondria.
We used k = 5 k-folds cross validation for testing and training. Results are given in
Table 6.2, and example images appear in Fig. 6.15. The VOC score = tp

tp+fp+fn is
used to evaluate segmentation performance, as it is more informative than pixelwise
accuracy for sparse objects such as mitochondria7.

The advantages of the SLIC superpixel are demonstrated in the examples ap-
pearing in column 5 of Fig. 6.15. Features extracted over the regular, compact SLIC
superpixels tend to be more discriminative, helping the graph-cut to produce better
segmentations. The good adherence to image boundaries exhibited by SLIC super-
pixels result in smoother and more accurate segmentations. We can also see the
drawbacks of other superpixel methods by considering the examples in columns 2
through 4 of Fig. 6.15. The irregularity of GS04 superpixels in column 2 makes the
extracted features less discriminative, often causing the segmentation to fail. TP09,
in column 3, performs the worst of the four methods. Because the intensity gradients
in the EM images are not particularly strong, TP09 tends to merge smaller superpix-
els, causing issues in the segmentation. In column 4, the superpixels of QS09 appear
most similar to SLIC, but still result in numerous segmentation failures where they
do not respect mitochondrial boundaries as well as SLIC.

6.5 Supervoxel segmentation

Our superpixel segmentation algorithm SLIC easily extends to generating super-
voxels for use in segmenting image volumes and videos. In this case the algorithm

7tp=true positives, fp=false positives, fn=false negatives

6.5. Supervoxel segmentation 125

EM Image GS04 TP09 QS09 SLIC

Figure 6.15: Segmentation results on EM imagery (courtesy of Graham Knott: gra-
ham.knott@epfl.ch). Examples segmentations for GS04, TP09, QS09, and SLIC are
cropped from 2048×1536 micrographs. Regular, compact superpixels generated by SLIC
exhibit good boundary adherence and produce the best segmentation results. The large
superpixels produced by TS09 are a result of the algorithm merging small superpixels
over relatively weak intensity gradients in the EM image despite parameters being set
for smaller superpixels. See text for further discussion.

126 Chapter 6.

clusters voxels in the six-dimensional labxyz space. Eq. 6.3 modifies to:

D =

√
dlab + m2

S2 dxyz, (6.8)

where dxyz = (xi − xj)2 + (yi − yj) + (zi − zj)2 for cluster center i and a pixel j
in the volume. In addition, the search area for finding voxels nearest to a cluster
center is performed in a three-dimensional volume of (2S)3 voxels. The rest of
the algorithm is similar to the superpixel case as presented in Algorithm 6.1. The
post-processing step is the same too, except that the flood-fill operation is now
performed in the image volume. The supervoxels generated by our technique have
also for mitochondria detection. Some examples of the results are presented in the
Appendix.

6.6 Pretty superpixels

As we visually compare superpixels, we note that certain superpixels are visu-
ally more pleasing than others (Fig. 6.16). This does not necessarily mean they
perform better segmentation since the boundary recall may be poorer and under-
segmentation error higher than the less visually appealing superpixel algorithms. In
this section we present a way to obtain visually more pleasing superpixels. This is
done by changing the post-processing step. As the post-processing step, SLIC uses a
connected components based algorithm to merge disconnected pixels with the near-
est superpixels. Instead of this, we use geodesic distances to connect all pixels in
the image to the nearest cluster seed. The resulting superpixel algorithm is termed
Geodesic Simple Linear Iterative Clustering or GSLIC.

6.6.1 Euclidean versus geodesic distance

In Chapter 6 we presented the SLIC superpixel segmentation algorithm that uses
a novel k-means based algorithm. It needed a post-processing step for merging
stray superpixels. This was because the Euclidean distance based clustering in the
five-dimensional labxy space did not automatically enforce connectivity in the two-
dimensional xy-plane. Instead of the Euclidean distance it is also possible to use
geodesic distances, as presented in Chapter 4, for clustering in the labxy space. The
advantage is that the connectivity in the xy plane is inherent in such clustering.
However, such clustering is quite sensitive to the starting seed value. Also, the
under-segmentation error and the boundary recall are worse than those of SLIC.

6.6.2 Geodesic distance based superpixels

In Chapter 4 we used discrete geodesic distances to label pixels as foreground or
background using seeds obtained by thresholding the saliency map of an image. So

6.6. Pretty superpixels 127

(a) NC05 (b) TP09 (c) SLIC

Figure 6.16: Superpixel segmentation of different algorithms is not equally pretty. Seg-
mentations from NC05 for instance is considered more visually appealing than others, but
its boundary recall is poorer and under-segmentation error greater than other algorithms.

128 Chapter 6.

the labeling problem was binary in this case. Performing superpixel segmentation
using geodesic distances is the multi-label version of the same problem, with the
labels being the number of superpixels. The segmentation is done the same way as
in Section 4.1.3 of Chapter 4 except that now we have as many label seeds as the
number of superpixels (instead of binary foreground and background labeled seeds).
Each pixel at a position (x, y) is assigned the label of its nearest labeled seed if the
geodesic path to the pixel is shorter than that from any other seed. In a sense, every
labeled seed in the vicinity of a pixel competes the ownership of the pixel.

6.6.3 Post-processing using geodesic distances

We perform several iterations of the usual SLIC algorithm and replace the connected
components based post-processing step with one iteration of geodesic distance based
labeling (or equivalently clustering). The choice of the starting seed is quite crucial
for geodesic distance based clustering. As seeds for the geodesic clustering we the
lab values of pixels whose position is nearest to the xy values of the k-means seeds
of SLIC.

6.6.4 GSLIC comparison with state-of-the-art

NC05 arguably outputs the most visually pleasing superpixels followed by TP09
but these two algorithms have the worst boundary recall. The SLIC plus geodesic
post-processing scheme we present provides prettier superpixels the SLIC and yet
has better boundary recall and under-segmentation error as compared to NC05 and
TP09 as shown in Fig. 6.18. There is a compromise between how visually appealing
the superpixels are and how good their boundary recall is.

6.7 Summary of the chapter

In this chapter we presented a superpixel segmentation algorithm that generates a
desired number of roughly uniformly sized superpixels. The algorithm is compu-
tationally efficient, takes as an input parameter only the desired number of super-
pixels, and produces superpixels that demonstrate lower under-segmentation error
and higher boundary recall than most state-of-the-art algorithms. In addition, the
algorithm is easily extended for generating supervoxels. We presented applications
of our superpixels in object class identification, graph based image segmentation,
and mitochondria detection.

Our algorithm SLIC generates superpixels efficiently but they are visually less
appealing than certain competing methods. SLIC offers speedy convergence and is
quite robust to the starting seed position as long as it uses Euclidean distances. But
when the k-means clustering is performed using geodesic distances, the superpixels
are prettier and inherently connected but the convergence is sensitive to the starting
seed value. The advantages of the two approaches can be obtained if we first use

6.7. Summary of the chapter 129

(a) Original (b) SLIC output (c) GSLIC output

Figure 6.17: Output of one iteration of geodesic distance based clustering using pixels
at the SLIC centroidal positions as seeds. The visual appeal of GSLIC is better than
that of SLIC.

130 Chapter 6.

500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

Number of superpixels

U
nd

er
−

se
ge

m
en

ta
tio

n
er

ro
r

GS04
NC05
TP09
QS09
SLIC
GSLIC

(a)

500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of superpixels

B
ou

nd
ar

y
re

ca
ll

GS04
NC05
TP09
QS09
SLIC
GSLIC

(b)

Figure 6.18: (a) Under-segmentation error and (b) boundary recall of segmentations for
GSLIC. GSLIC shows almost the same undersegmentation error as SLIC. The boundary
recall is lower than SLIC, but it is still much better than NC05 and TP09.

6.7. Summary of the chapter 131

SLIC with Euclidean distance based k-means clustering followed by one iteration
of geodesic path based clustering using the converged SLIC centers as initial seeds.
This gives us superpixels that are visually appealing, well-connected, and more im-
portantly, have low under-segmentation error and high boundary recall than the
case when only geodesic distance based clustering is performed.

132 Chapter 6.

Chapter 7

Conclusions

Automatically finding objects of interest in images is one of the most basic computer
vision problems, which has both motivated researchers because of the widespread
applications, and challenged them because of its difficulty. Knowledge of the ob-
jects of interest can provide content awareness that has applications in security,
entertainment, and biological image processing, to name a few. The goal of this
thesis was to advance the research in two aspects of this problem: task-independent
saliency detection and task-specific object detection. We presented algorithms for
saliency detection and demonstrated their applications. We presented the concept
of database saliency and applied it for novel forms of image summarization. We pre-
sented a superpixel segmentation and showed its applications in image segmentation,
object class detection, and mitochondria detection.

7.1 Thesis summary

We presented a review of the state-of the art for saliency detection and superpixel
segmentation in Chapter 2. We studied some of these saliency detection algorithms
from a frequency-domain perspective to get more insights into their performance.
For superpixel segmentation, which aids the feature extraction step necessary for
certain techniques of object detection, we reviewed existing techniques by defining
them based on the two categories of graph-based methods or gradient based methods.
In addition, we covered certain clustering techniques that were deployed in later
chapters.

The conclusion we drew from the frequency-domain perspective of saliency de-
tection techniques was that in the event of not knowing what object we are looking
for in an image, or its scale, it is better to use a simple approach and rely on center-
surround filtering with a very low-frequency cut-off. This led to our first algorithm
for saliency detection presented in Chapter 3. For the second saliency detection al-
gorithm presented in Chapter 3, we showed that despite not knowing the object scale
a priori, we can make a practical assumption about the scale based on the pixel po-

133

134 Chapter 7.

sition in the image and as a result improve our first algorithm. Both our algorithms
for saliency detection significantly outperform state-of-the art algorithms.

In Chapter 4, we showed applications of saliency detection for the task of salient
object segmentation and image re-targeting. In the task of object segmentation,
unlike some previous techniques that rely on user-input indicating object and back-
ground regions, we relied on our saliency maps to automatically label these regions.
We then segmented salient objects using three different methods - adaptive thresh-
olding, graph-cuts, and geodesic distance based labeling. In all three cases, we
compared the efficacy of using our saliency maps as compared to those of exist-
ing algorithms and demonstrated that saliency maps from our algorithms are better
suited for salient object segmentation. This is because our saliency maps have better
object boundaries and usually highlight salient objects better.

For image re-targeting we used the method of seam carving. We improved this
technique, firstly, by using our saliency maps instead of the conventional gradient
energy maps, and secondly, by introducing the use of color information in computing
the best seam. We compared our improved seam carving technique with several ex-
isting algorithms to demonstrate the improvement in output quality. The additional
advantage of using our saliency maps is that they do not need to be recomputed
after each seam removal and they are more robust to image noise as compared to
conventional energy maps.

While saliency detection is limited to images, in Chapter 5, we extended the
notion of task-independent saliency to image databases and proposed a scheme to
detect “interesting images” from a collection of images. We further showed how
attractive summaries can be created from such images. The first such summary is
an image mosaic, which improves upon the visual appeal of conventional mosaics
by using varied sizes of images rather than tiny images of the same size. The
second technique for creating image summaries we presented is a collage that stitches
together interesting images chosen using our database saliency detection technique.

In Chapter 6, we presented a superpixel and supervoxel segmentation algorithm
that was used to develop techniques of detecting known objects of interest, specifi-
cally mitochondria, in noisy medical images and image volumes. Superpixel segmen-
tation serves to simplify and reduce computational load by breaking down the image
into roughly equally sized segments with similar properties, whose number, size, and
compactness can preferably be controlled. Our algorithm is particularly effective for
this task since it shows higher boundary recall and lower under-segmentation error as
compared to competing algorithms. It offers roughly equally sized superpixels based
on the sole user input parameter, namely the number of superpixels, and boasts of
lower computational and memory overhead as compared to existing algorithms. It is
also one of the few algorithms that can be used in practice for very large images. In
addition, we showed how our method is easily extended for computing supervoxels
on image or video volumes. The technique of object detection developed using our
superpixels was used to detect mitochondria in noisy medical images. In this task,

7.2. Some reflections and future research 135

our superpixel algorithm performed better than the other algorithms.

7.2 Some reflections and future research

We took a first principles approach in terms of spatial frequency content of saliency
maps and it led us to develop a couple of simple but very effective algorithms for
salient object detection using only the features of color and intensity. Our algorithms
consistently proved to be more effective that more complicated algorithms that use
additional features or more sophisticated models. We found that it is better to use
simple features for saliency detection since very little can be guessed about the form
and features of an unknown object. An evident course of future work is saliency
detection in videos. It would require taking into account object motion, which is a
very significant cue for visual attention

Human visual attention is also guided by other aspects of saliency apart from
the one arising from color and intensity contrast, namely, shape, orientation, clo-
sure, symmetry, as well as direction and speed of motion, in case of moving scenes.
Some researchers have tried taking into account some of these aspects but without
resounding success unless dealing with very specific images. This is both because of
the limitations of the features used by them as well as the lack of a robust mechanism
to combine the use of various features. This therefore remains a future opportunity
to improve saliency detection.

A lot of what we know about vision is from psycho-visual studies and neuro-
science research. Usually the proposed models explain only some of the observed
visual capabilities but there are newer discoveries being made in the areas of psy-
chophysics and neuroscience. We should update our models with these discoveries
and improve saliency detection.

Saliency detection can be used for several simple but useful applications. Some
of the works in the offing are non-photo-realistic rendering, saliency-based image
filtering, and saliency-based contrast stretching and color correction. Saliency de-
tection may also aid in clever use of printing ink - more dots per inch for salient
regions as opposed to non-salient ones. This warrants further investigation.

Not everything that is salient is important to us. Saliency may direct visual
attention, but our visual system quickly ignores it for what is more important, even
if it is less salient. While we assume that saliency alone can direct visual attention,
it would be true only in a completely alien environment. But humans have a very
strong familiarity with most of the environments they encounter in their daily lives.
So, in most cases we are able to ignore ‘salient noise’, i.e salient regions or objects
that grab our involuntarily attention for a very brief moment, to be able to find
the things that matter to us. To widen the range of real world applications for
everyday use, the next step to task-independent saliency detection is task-dependent
object detection, particulary multi-category object detection. As a research area,
this is a vast and difficult topic. We can make a small headway, at least in domain

136 Chapter 7.

specific object detection, using novel feature extraction techniques like superpixel
segmentation, and using clever machine learning algorithms. However, the evident
fact that the human visual system is capable of discriminating between thousands
of objects in a fraction of a second does suggest emphatically that there is a highly
simplified and efficient underlying abstraction scheme that is not explained by the
algorithmic models we use presently. This remains an open challenge to overcome
in the future.

Image database saliency is an interesting area to delve into given the deluge of
images that is getting increasingly difficult to manage. While we take into account
the content of the images using simple features, there are a lot of other aspects of
the image content (e.g. the objects, the aesthetics, etc.) that can be considered for
assigning an interestingness value to it. Further research can be done in abstract-
ing the images better, computing image similarity better, and experimenting other
schemes of defining and finding interesting images. This can surely be aided by user
studies since the notion of interesting images is highly subjective. It is also possible
to extend database saliency techniques to web-mined images from popular online
image databases like Flickr and Picasa.

Another aspect that needs more research in this connection is image clustering
techniques. One of the main limitations of several clustering techniques is that they
are not easily scalable. Ideally, it should be possible to update clusters on the fly
with images added or removed from the database. With ease of scalability in mind,
approaches like locality sensitive hashing could be used. The approaches should be
non-iterative in nature and should be able to support clustering in high-dimensional
spaces.

The number of pixels in images is growing at a rapid rate. It puts a heavy
computational overhead on most image algorithms. Superpixels offer an excellent
option of lowering the complexity by a few orders of magnitude. The abstraction
performed by superpixels is preferable over sub-sampling since it is anisotropic and
takes into account the local statistics. So, there is room for more applications of
superpixels, including in image compression, optical flow computation, and so on.
We can also look into parallelization of superpixel segmentation techniques and
deployment on mobile devices.

Finally, we would like to make a small case for simplicity and result oriented
top-down research. For saliency detection, using center-surround filtering by keep-
ing the appearance of the saliency map as the objective was surprisingly ignored.
The same can be said about using color and spatial information together for su-
perpixel segmentation using a known clustering technique instead of using more
complex models. In both cases, our algorithms were developed using a goal-oriented
approach. Instead of choosing a model or tool to find an application for, we tried to
find an effective approach for dealing with the task at hand. The result was simple
algorithms that outperformed more complex state-of-the-art approaches.

Appendix A

Text Detection

A.1 Introduction

The availability of information about the content of an image has always helped
in image classification problems. Text of different languages frequently appears in
various forms in images, and conveys useful information about names of people,
titles, locations, dates of events, etc.. This information is potentially very useful
for annotating images automatically, thereby aiding image retrieval. There can be
several other applications of such a text reader, like automatic video annotation,
number plate recognition, robot navigation etc..

Detecting and reading text automatically is more difficult if it appears in a
natural image (as opposed to a scanned and thresholded binary image of a scanned
document).

The task of text reading requires both localization (or detection) of text regions
in the image, as well as recognition of this text. While previous works have mainly
addressed the issue of text detection/localization in images, relying on third party
Optical Character Recognition (OCR) software for text recognition, we address both
issues in this chapter.

In this chapter, as a first step we first detect text regions in images using an
AdaBoost [49, 137] based detector and then we binarize the text region so that it is
suitable for being fed to an OCR engine.

A.2 Approaches in text detection

In this section we present research on text region detection and post-processing that
aims to use an OCR engine for reading the text. The approaches presented make use
of the appearance and gradient properties of text [105] in images. In this chapter
we choose to classify these approaches into two categories. To the first category
belong all the approaches that detect text regions using edges [146, 57, 127], texture
properties [84, 85, 145] or connected component analysis [44]. Most works often use

137

138 Appendix A.

more than one of these properties in combination.
In the work of Lienhart and Effelsberg [87] the character features of monochro-

macity and contrast with the local neighbourhood are used to classify a pixel as a
part of a connected component of a character. After this, some geometrical con-
straints of specific ranges of width and height as well as texture features are used to
filter out character regions. Connected component based character detection tech-
niques in combination with other text properties are also presented in [44] where
character extraction is done in steps of Sobel edge detection, RGB image binariza-
tion, connected component analysis, followed by filtering of false detection based on
certain heuristics.

Text detection schemes that use machine learning schemes fall in the second
category. In the technique of Li et al. [84, 85], a three layer neural network is trained
to detect text based on wavelet features of the multi-resolution wavelet pyramid of
video frames. An AdaBoost cascade is used as the text region detector by Vanhoucke
and Gokturk [133] inspired from the fast detection results of Chen and Yuille [27] in
ICDAR’05 text detection competition [96]. They introduce some additional features
apart from the basic haar-like features presented in [139].

This has partly to do with OCR being considered a closed area of research,
with existing techniques being near perfect. However, OCR systems do not perform
well on non-binarized images with complex backgrounds [145]. This section presents
research done so far in text detection in natural images. We first cite general research
on text detection using any method, followed by work that specifically uses AdaBoost
for this purpose.

A.2.1 Adaboost

Boosting is a general method for improving the performance of learning algorithms.
The AdaBoost, which stands for adaptive boosting, was introduced in 1995 by Fre-
und and Schapire [49]. AdaBoost was deployed by Viola and Jones [139] in 2001
to get some impressive results in face detection. The key improvements were the
use of extremely simple haar-like features that were easy to compute and the use of
cascades of AdaBoost learners to gain speed. Improvements on this were presented
by Lienhart et al. [88] and Shapire [?]. Since then AdaBoost has been used for other
applications as well [138, 104].

A.2.2 Text Detection and AdaBoost

Of particular interest to us in this chapter is the use of the AdaBoost cascade in
text detection. After detecting text regions using the AdaBoost cascade approach
similar to Chen and Yuille [27], Vanhoucke and Gokturk [133] use three different
OCR to read text from the extracted text regions and the results are fused using a
Bayesian approach. Although the approach of Chen and Yuille [27] was the second

A.3. Text recognition using AdaBoost 139

best in accuracy in ICDAR’05 [96] competition, it was about forty times faster than
the best approach.

A.3 Text recognition using AdaBoost

The goal of our work is to detect text in natural scenes and binarize it. A typical
example would be the name of a place on a sign post or the words on a shop’s facade.
This is not a simple problem given the variations in size, font type, perspective, color
of text and its background. So the learning algorithm used for text recognition needs
to be very robust. Given the previous success of AdaBoost in object detection [139],
it seemed like a good choice. In addition it provides speed advantages too if haar-like
features and cascading is used.

The first step consists of detecting text regions using an AdaBoost text region
detector. This helps text region localization. The text region given by the detector
then is then segmented using a k-means algorithm on CIELAB color space. We
then perform connected component analysis on the segmented image to produce a
binarized image that only contains characters and background. This binary image
may be used to perform OCR using a third party OCR engine.

A.3.1 AdaBoost approach

First we will review the AdaBoost algorithm A.1 and then we will see more in details
the two main contributions of Viola and Jones: the haar-like features computed
using integral images and the cascade A.3.3. AdaBoost is an algorithm to create a
strong classifier as a weighted sum of several weak classifiers. The weak learners or
classifiers classify data in a rough manner with an accuracy rate better than random.
Formally, let the training set be (x1, y1), ..., (xm, ym) where each xi is a sample taken
from the training set and each label yi ∈ {−1,+1}, i.e. belongs to the negative or
positive set. Furthermore let h1, h2, ..., hT be a set of hypotheses (features or weak
learners), then the weighted sum of weak classifiers f(x) is given by

f(x) =
T∑
t=1

αtht(x) (A.1)

H(x) = sign(f(x)) (A.2)

Here αt denotes the weight with which the hypothesis ht is combined and H(x) the
final classifier.

AdaBoost aggressively selects one weak classifier at each step t = 1, ..., T . One of
the main ideas of the algorithm is to maintain a distribution of a set of weights over
the training set. The weight of this distribution on training example i a iteration t
is denoted d(i)

t . Initially, all weights are set equally, but in each round, the weights
of incorrectly classified examples are increased so that the base learner is forced to

140 Appendix A.

Algorithm A.1 Adaboost algorithm
1.Input: S = {(x1, y1), ..., (xN , yN)}, Number of iterations T.
2.Initialize:d(i)

1 = 1/N for all i = 1, ..., N
3.Do for t = 1, ..., T,
(a) Train classifier with respect to the weighted sample set {S, d(i)} and obtain

hypothesis ht 7−→ {−1,+1},i.e. ht = L(S, d(i)).
(b) Calculate the weighted training error εr of ht :

εt =
N∑
i=1

d
(t)
i I(yi 6= ht(x)i)

(c) Set:
αt = 1

2 log
1− εt
εt

(d) Update the weights:

d
(i)
t+1 = d

(t)
i exp{−αtyiht(xi)}/Zt

where Zt is a normalization constant, such that
∑N
i=1 d

(t+1)
i = 1

4.Break if εt = 0 or εt ≥ 1
2 and set T = t− 1

5.Output: fT (x) =
∑T
t=1

αt∑T

r=1 αr
ht(x)

A.3. Text recognition using AdaBoost 141

Figure A.1: Feature set used

focus on the hard examples in the training set. The weak learner’s job is to find a
weak classifier (also called rules-of-thumbs or weak hypothesis) ht : x → {−1,+1}
appropriate for the distribution dt. In other words, its job is to minimize the error
of misclassified examples

εt =
N∑
i=1

d
(i)
t I(yi 6= ht(xi)) =

∑
i:ht(xi) 6=yi

d
(i)
t

Once the weak hypothesis ht has been chosen, AdaBoost chooses a parameter αt.
Intuitively, αt measures the importance that is assigned to ht. Note that αt ≥ 0 if
ε ≤ 1/2 and that αt gets larger as εt gets smaller. The distribution dt is next updated
using the rule 3.(c) shown in Algorithm A.1. The effect of this rule is to increase
the weight of examples misclassified by ht, and to decrease the weight of correctly
classified examples. Thus, the weights tend to “concentrate“ on difficult examples.
The final hypothesis H is a weighted majority vote of the T weak hypotheses where
αt is the weight assigned to ht.

A.3.2 Features

We use the same basic haar-like features as Viola and Jones [139]. The experiments
showed that even the basic set shown in figure A.1 results in very good detection of
letters. So we could capitalize on the same simplicity and speed of feature calculation
using integral image approach as for face detection in [139].

A.3.3 Cascade

This section describes an algorithm for constructing a cascade of classifiers, which
achieves increased detection performance while radically reducing computation time.
The key insight is that smaller, and therefore more efficient, boosted classifiers can be
constructed, which reject many of the negative sub-windows while detecting almost
all positive instances (i.e. the threshold of a boosted classifier can be adjusted so
that the false negative rate is close to zero). Simpler classifiers are used to reject the
majority of sub-windows before more complex classifiers are called upon to achieve

142 Appendix A.

low false positive rates. A cascade of classifiers is a degenerated decision tree where
at each stage a classifier is trained to detect almost all objects of interest while
rejecting a certain fraction of the non-object patterns.

The cascade design process is driven from a set of detection and performance
goals. For our detection, we need good detection rate (about 95%) and extremely
low false positive rate (about 10−6). The number of cascade stages and size of each
stage must be sufficient to achieve similar detection performance while minimizing
computation. Given a trained cascade of classifiers, the false positive rate of the
cascade is

F =
K∏
i=1

fi

where F is the false positive rate of the cascaded classifier, K is the number of
classifiers and fi is the false positive rate of the ith classifier on the examples that
get through to it. The detection rate is

D =
K∏
i=1

di

whereD is the detection rate of the cascaded classifier, K is the number of classifiers,
and di is the detection rate of the ith classifier on the examples that get through to
it. Given concrete goals for overall false positive and detection rates, target rates
can be determined for each stage in the cascade process. For example a detection
rate of 0.9 can be achieved by a 10 stage classifier if each stage has a detection rate
of 0.99 (since 0.9 ≈ 0.9910). While achieving this detection rate may sound like a
daunting task, it is made significantly easier by the fact that each stage needs only
achieve a false positive rate of about 30% (0.3010 ≈ 6× 10−6).

The original AdaBoost algorithm has to be modified to ensure the minimization
of the false negative rate instead of the training error. One simple way to impose
that is to adjust the final threshold. Increasing this threshold will badly affect the
detection rate and improve the false positive rate. The AdaBoost classifier with a
threshold b is now

fT (x) =
T∑
t=1

(αt∑T
r=1 αr

ht(x)
)

+ b

.
The cascade structure has three main parameters that need to be determined:

• Total number of classifiers: K

• Number of features ni of each stage i

• Threshold bi of each stage i

Finding the three optimal parameters is quite complicated considering that the goal
is to minimize the computation time of the total classification. The principle is to

A.4. Text region detection and localization 143

increase the number of features and stages until the given detection objective are
reached. The algorithm is given in Algorithm A.1.

Algorithm A.2 Cascade algorithm
1: User selects values for f , the maximum acceptable false positive rate per layer

and d, the minimum acceptable detection rate per layer.
2: User selects target overall false positive rate Ftarget
3: P= set of positive examples
4: N = set of negative examples
5: F0 = 1.0;D0 = 1.0
6: i = 0
7: while Fi > Ftarget do
8: i← i+ 1
9: ni = 0;Fi = Fi−1

10: while Fi > f × Fi−1 do
11: ni ← ni + 1
12: Use P and N to train a classifier with ni features using AdaBoost
13: Evaluate current cascaded classifier on validation set to determine Fi and

Di

14: Decrease the threshold for the ith classifier until the current cascaded clas-
sifier has a detection rate of at least d×Di−1. Revaluate current cascaded
classifier and update Fi and Di.

15: end while
16: empty the negative set
17: if Fi > Ftarget then
18: Evaluate the current cascaded detector on the set of non-face images and

put any false detections onto the set N
19: end if
20: end while

A.3.4 Training set

The training set for AdaBoost consists of positive and negative examples. We require
are two kinds of training sets - one for text region detection and one for character
recognition.

The positive examples training set for text regions detector is text regions con-
taining roughly three letters each. The negative examples are random regions from
natural images that do not contain any text. The size of the examples is 30×15 pixels
(width times height). We use 100 positive examples and 200 negative examples.

A.4 Text region detection and localization

The AdaBoost cascade trained to detect text regions gives several overlapping rect-
angular regions as output as shown in images (a) of Fig. A.2(a). In the figure, the

144 Appendix A.

blue rectangles show text detected on the original image, while the yellow rectangles
are rectangles detected on the inverted (or negative) image. The following algorithm
is used to find the final rectangle encompassing the text region, as shown in images
(b) of Fig. A.2.

1. The average area of rectangles is determined. All rectangles having an area
smaller than half this area are rejected as a first step.

2. The average height of the remaining rectangles is found. Choosing this to be
the bin size, a histogram of the y coordinates of the centers of the rectangles
is created.

3. The bins are sorted in terms of the number of y coordinates of the centers.
Those bins that contain eighty percent of the rectangles are chosen.

4. The largest bounding rectangle for the all the rectangles chosen this way is
found. If at the end of this process there are any rectangles that overlap beyond
a certain threshold, then they are merged by finding the largest bounding
rectangle.

A.5 Text region binarization

Once the text region is localized, we perform a k-means segmentation of it using
k = 2. This is because usually, the text and the background are uniformly colored.
We perform connected components analysis and binarize the text region assuming
that the largest connected component(s) belong(s) to the background, and smallest
ones are noise, and the intermediate ones to the text region. The steps of the
binarization are illustrated using some examples in Fig. A.2.

A.6 Combining text detection and generic saliency detec-
tion

The output of our detector is several overlapping detection rectangles around the
text region, as shown in Fig. A.3(b). We obtain text saliency maps by counting
at each pixel the number of times it is detected by the detection rectangles. Af-
ter normalizing this count to lie between [0, 255] we obtain an image as shown in
Fig. A.3(c). The combined saliency map is obtained by a pixel-wise multiplication
of the text saliency map and the generic saliency map. This is shown in Fig. A.3(d).
The combined saliency maps are more amenable to binarizing and isolating text in
order to be fed to an OCR engine.

A.6. Combining text detection and generic saliency detection 145

(a) (b) (c) (d) (e)

Figure A.2: Figure showing text detection and binarization examples. (a) The initial
detections on the input image using the AdaBoost cascade. (b) The combined detection
(black bounding box) using the algorithm presented in Section A.4. (c) The k-means
segmented result. (d) The binarized output.

146 Appendix A.

(a)

(b)

(c)

(d)

(e)

Figure A.3: Combining text saliency map and generic saliency detection. (a) Original
natural image with a text region. (b) Raw AdaBoost text detection rectangles (in
black). (c) Text saliency map by counting the number of detections at each pixel. (d)
Generic saliency detection using techniques from Chapter 3(e) Multiplying text saliency
and generic saliency detection. The combined saliency map can be more easily used for
binarizing text regions and feeding to an OCR engine.

A.7. Summary of the chapter 147

A.7 Summary of the chapter

In this chapter we presented a task-specific detection technique for text occurring in
natural images. We first presented the state of the art in text detection. We then
elaborated upon the text detection technique that is based on a well-known face
detection approach. Our method takes few examples to train, uses simple features,
is robust, and computationally efficient. We showed how the multiple detections
that result can be combined to obtain the final detection. We then presented a
method of binarizing the detected text so that it can be passed on to an OCR
engine. Finally, we showed how text saliency maps can be created and combined
with generic saliency maps to obtain task-specific saliency maps.

148 Appendix A.

Appendix B

Object scale and Gaussian filtering

What appears to be a yellow patch of land from an aeroplane turns out to be a
field of sunflowers closer on land. An even closer look can show the constituent
molecules, atoms, and subatomic particles. We say the yellow patch is observed
at a coarse scale while the atoms are visible at the much finer scale. Real-world
objects appear differently depending on the scale of observation. Just as objects
in the world, details in an image exist only over a limited range of resolution. For
a computer vision system analyzing an unknown scene, there is no way to know
a priori what scales are appropriate for describing the structures of interest in the
image. Hence, a reasonable approach is to consider descriptions of the image at
multiple scales. The formal theory for handling image structures at different scales,
by representing an image as a one-parameter family of smoothed images, is the scale-
space theory [143, 78, 46, 90]. The notion of scale-space applies to signals of arbitrary
numbers of variables. Here we restrict ourselves to two-dimensional images. For a
given image I(x, y), its linear (Gaussian) scale-space representation is a family of
derived signals L(x, y;σ) defined by the convolution of I(x, y) with the Gaussian
kernel

g(x, y, σ) = 1
2πσ2 e

−(x2+y2)
2σ2 (B.1)

with σ being the standard deviation of the Gaussian kernel such that

L(x, y;σ) = (g(., .;σ) ∗ I)(x, y) (B.2)

Typically only a finite discrete set of levels of L for σ ≥ 0 are considered in the
scale-space representation.

For σ = 0, g becomes an impulse function such that L(x, y; 0) = I(x, y), so
that the scale-space representation at the finest scale level σ = 0 is the image I
itself. As σ increases, L is the result of smoothing I with a larger Gaussian filter,
thereby removing more fine structures, i.e. high frequency detail. Specifically, high
frequency details, which are significantly smaller than σ in extent are removed from
the image as we move towards coarser scales, leaving us with low-pass versions of

149

150 Appendix B.

the image. This illustrates the relation between scale and spatial frequency content
of images.

It would seem that any low-pass filter g could be used to generate a scale-space.
This is, however, not the case. It is of crucial importance that no new structures (i.e,
that do not correspond to simplifications of corresponding structures at a finer scale)
are introduced at the coarse scales. The Gaussian filter is unique for generating a
linear scale-space based on this essential requirement [78, 46, 90].

B.1 Gaussian filtering in practice

Gaussian filtering in practice is done using separable filters to reduce the computa-
tional overhead. For good results, in the discrete signal case binomial filters [15] are
used as they approximate the Gaussian filters well for small values of σ. In addition,
they using shift and additions instead of computationally expensive division opera-
tion (used for normalization). However, for large values of σ, the use of the binomial
kernel or a discrete approximation of the Gaussian kernel (Eq. B.1) becomes com-
putationally expensive. In such cases, recursive filtering approaches are far more
advantageous as they use a small constant number of operations for filtering for any
σ value. The most popular approaches for this are by Deriche [35] and Young et
al. [148]. In this thesis we use the latter method along with the correct boundary
conditions proposed by Triggs and Sdika [129].

B.2 The relation between sigma and cut-off frequency

The Fourier transform of a one-dimensional normalized Gaussian function

g(x, σ) = 1√
2πσ

e−
x2

2σ2 (B.3)

is given by
F (ω) = e−

1
2ω

2σ2
. (B.4)

Knowing that power is 20log10(F (ω)), the relationship between cut-off frequency ωc
and standard deviation σ of the Gaussian at tc (we use 6db) is:

ωc =

√
tcloge10

10σ2 (B.5)

Appendix C

Mitochondria Segmentation using
SLIC Superpixels

In this chapter we present a more sophisticated mitochondria1 segmentation algo-
rithm than the one presented in Section 6.4.3. For more details the interested reader
is suggested to refer to the work of Lucchi et al. [97].

C.1 Segmenting objects in Electron Microscope imagery

Mitochondria segmentation belongs to the specialized category of segmenting objects
in EM imagery. State-of-the-art algorithms that perform well on natural image seg-
mentation benchmarks such as the Berkeley dataset [102] or Pascal VOC dataset [43]
do not perform as well when applied to Electron Microscope (EM) imagery. This
is because the image features they rely on are not sufficiently discriminative for
segmenting cellular structures such as mitochondria.

Mitochondria and similar objects in EM imagery exhibit shapes that are not
easily captured using standard techniques of shape abstraction. Their texture can
easily be confused with that of other cellular structures like endoplasmic reticula.
Mitochondrial boundaries, for instance, are difficult to distinguish from other mem-
branes that share a similar appearance. For such a task of segmenting objects in
EM imagery, all available visible cues should be taken into account simultaneously.

An example of generic object detection, TextonBoost [123], uses sophisticated
texture and boundary cues although only simple haar-like rectangular features are
used to capture shape [123]. Fulkerson et al. [52] compute SIFT descriptors [95]
on superpixels of the image to capture local texture and gradient information, but
shape information is not taken into account.

For segmenting neural EM imagery, Frangakis and R. Hegerl [48] use a nor-
malized cuts based approach. More recently, Vazquez-Reina et al. [3] use a level
set approach for this task. However, this approach is sensitive to initialization and

1Images courtesy of Graham Knott: graham.knott@epfl.ch

151

152 Appendix C.

allows dealing with only a single object at a time. Thévenaz et al. [125] use an ac-
tive contour approach that is aimed to detect elliptical blobs but it fails to segment
mitochondria, which can assume various non-ellipsoidal shapes. Andres et al. [11]
rely upon a convolutional neural network in their approach. However, it only ex-
ploits local information obtained from using a watershed supervoxel segmentation.
In yet another approach to detect mitochondria, Narashimha et al. [112] use texton
features to learn mitochondrial texture but ignore shape information.

C.2 Mitochondria detection and segmentation

Like the method presented in Section 6.4.3, this method also relies on graph-cuts
to minimize a cost function as in Eq. 2.9. The difference is that more sophisticated
features are used for training the SVM and such training is performed for the pairwise
terms φ also in Eq. 2.9. The pairwise term used in this case is a more general one:

φ(ci, cj |xi, xj) =
{ 1

1+P (ci,cj |xi,xj) , if ci 6= cj ,

0 , otherwise.
(C.1)

that uses the predictions P (ci, cj |xi, xj) of the pairwise SVM training.
The feature vector f used for training combines three types of features:

f = [fRayT
, fRotT, fHistT]T , (C.2)

where fRay represents Ray features that capture semi-local object shape [124], fRot

stands for rotational features describing texture and boundaries [58], and fHist repre-
sents histograms describing the local intensity. These features, as shown in Fig. C.1,
are explained below.
Ray Descriptors describe the shape of local objects for each point in the image in
a way that standard shape modeling techniques can not. Typically, other methods
represent object shape using contour templates [10] or fragment codebooks [81].
While these approaches can successfully segment a single object with known shape,
they tend to fail when the shape is highly variable or when many objects appear in
the image.

For a given point xi in the image, four types of Ray features are extracted by
projecting rays from xi at regular angles Θ = {θ1, . . . , θN} and stopping when they
intersect a detected edge (r) [124]. The distance from xi to r form the first type
of feature fdist. The other three types of features compare the relative distance
from xi to r for rays in two different directions (fdiff), measure the gradient strength
at r (fnorm), and measure the gradient orientation at r relative to the ray (fori).
While [124] uses individual Ray features as AdaBoost learners, we aggregate all fea-
tures extracted for a single point into a Ray descriptor fRay = [fdist fdiff fnorm fori]T .
We make it rotation invariant by shifting the descriptor elements so that the first

C.3. Mitochondria segmentation using SLIC supervoxels 153

T
f Ray f Rot f Histf =

fdist fori N U {xi}fnorm Gx Gxx Gyyyyfdiff

* * *

...

...

...

R
ay

 f di
st
 fe

at
ur

es
, θ

 =
 θ

 m
ax

 Rotational Gx features Histogram features (b max)Ray fdiff features, θ = θmaxOriginal image

A feature vector f
is extracted for
each superpixel
xi in I.

xi

Figure C.1: For each superpixel, the SVM classifiers in Eqs. 6.6 and C.1 predict the
presence of mitochondria based on a feature vector f we extract. f captures shape cues
with a Ray descriptor fRay, texture and boundary cues with rotational features fRot, and
intensity cues in fHist.

element corresponds to the longest ray.
Rotational Features capture texture and image cues indicating boundaries such
as edges, ridges, crossings and junctions [58]. They are projections of image patches
around a superpixel center xi into the space of Gaussian derivatives at various scales,
rotated to a local orientation estimation for rotational invariance.
Histograms complement fRay and fRot with simple intensity cues from superpixel
xi’s neighborhood N .

Unlike the approach presented in Section 6.4.3, SVM training is performed for
boundary prediction also. This is done using features extracted from pairs of su-
perpixels containing true object boundaries. The pairwise feature vector fi,j is a
concatenation of fi and fj extracted from each superpixel fi,j = [fT

i , fT
j]T. The

scheme of the detection and segmentation is presented in Fig. C.2.

C.3 Mitochondria segmentation using SLIC supervoxels

The supervoxels generated by our technique (Section 6.5) have also been used for
detection and segmentation of mitochondria in EM image volumes. The methodol-
ogy remains the same as in Section C.2. The difference is that a three-dimensional
version of the Ray features [124] is used. Fig. C.3 illustrates supervoxel segmentation
and mitochondria detection in a volume image.

154 Appendix C.

(a) Original EM image (b) Superpixels (c) Superpixel graph

(d) SVM prediction (e) Graph-cut segmentation (f) Final segmentation

Figure C.2: The scheme of object detection presented in Section C.2.(a) A portion
of an original EM image. (b) Superpixel over-segmentation. (c) Graph defined over
superpixels. White edges indicate pairs of superpixels used to train an SVM that pre-
dicts mitochondrial boundaries. (d) SVM prediction where blue indicates a probable
mitochondrion. (e) Graph cut segmentation. (f) Final results after automated post-
processing. Note: the same image is used in this figure for clarity; images in the training
and testing sets are disjoint. The method described in Section 6.4.3 follows the same
steps except that the features used are different and there is no training performed for
the pairwise term.

C.3. Mitochondria segmentation using SLIC supervoxels 155

(a)

(b)

(c)

Figure C.3: (a) Supervoxel segmentation of an EM volume. (b) Blue regions show
detected mitochondria on three of the surfaces. (c) The detected mitochondria binarized
and shown with maximum intensity projection.

156 Appendix C.

Bibliography

[1] “Diadem challenge,” http://www.diademchallenge.org/.

[2] “Digital still camera image file format standard (exchangeable image file for-
mat for digital still cameras: Exif) Version 2.1, Specification by JEITA,” June
1998.

[3] A. Vazquez-Reina, E. Miller, and H. Pfister, “Multiphase Geometric Cou-
plings for the Segmentation of Neural Processes,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[4] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region detection
and segmentation,” International Conference on Computer Vision Systems,
vol. 5008, pp. 66–75, 2008.

[5] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-tuned
salient region detection,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1597–1604, June 2009.

[6] R. Achanta, A. Shaji, P. Fua, and S. Süsstrunk, “Image summaries using
database saliency,” ACM Conference and Exhibition on Computer Graphics
and Interactive Techniques in Asia, 2009.

[7] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC
Superpixels,” École Polytechnique Fédérale de Lausanne, Tech. Rep. EPFL-
REPORT-149300, 2010.

[8] R. Achanta and S. Süsstrunk, “Saliency Detection for Content-aware Image
Resizing,” in Proc. IEEE International Conference on Image Processing, 2009.

[9] ——, “Saliency Detection using Maximum Symmetric Surround,” in Proc.
IEEE International Conference on Image Processing, 2010.

[10] A. Ali, A. Farag, and A. El-Baz, “Graph cuts framework for kidney segmenta-
tion with prior shape constraints,” Medical Image Computing and Computer
Assisted Intervention (MICCAI), 2007.

157

158 Bibliography

[11] B. Andres, U. Koethe, M. Helmstaedter, W. Denk, and F. Hamprecht, “Seg-
mentation of Sbfsem Volume Data of Neural Tissue by Hierarchical Classifica-
tion,” in Proc. Symposium of the German Association for Pattern Recognition
(DAGM), 2008.

[12] L. H. Armitage and P. G. B. Enser, “Analysis of user need in image archives,”
Journal of Information Science, vol. 23, pp. 287–299, 1997.

[13] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful seed-
ing,” in Proc. ACM-SIAM symposium on Discrete algorithms (SODA), 2007,
pp. 1027–1035.

[14] C. B. Atkins, “Blocked recursive image composition,” in Proc. ACM interna-
tional conference on Multimedia, 2008, pp. 821–824.

[15] M. Aubury, “Binomial filters,” Journal of VLSI Signal Processing, vol. 12, pp.
35–50, 1996.

[16] S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,”
ACM Transactions on Graphics, vol. 26, no. 3, p. 10, July 2007.

[17] A. Ayvaci and S. Soatto, “Motion segmentation with occlusions on the super-
pixel graph,” in Proc. Workshop on Dynamical Vision, Kyoto, Japan, October
2009.

[18] M. Aziz and B. Mertsching, “Fast and robust generation of feature maps
for region-based visual attention,” IEEE Transactions on Image Processing,
vol. 17, no. 5, pp. 633–644, May 2008.

[19] X. Bai and G. Sapiro, “A geodesic framework for fast interactive image and
video segmentation and matting,” IEEE International Conference on Com-
puter Vision, vol. 0, pp. 1–8, 2007.

[20] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features
(surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–
359, 2008.

[21] P. Bian and L. Zhang, “Biological plausibility of spectral domain approach for
spatiotemporal visual saliency,” Advances in Neuro-Information Processing,
vol. 5506/2009, pp. 251–258, 2009.

[22] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[23] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary and
region segmentation of objects in n-d images,” IEEE International Conference
on Computer Vision, vol. 1, pp. 105–112, July 2001.

Bibliography 159

[24] N. Bruce and J. Tsotsos, “Saliency based on information maximization,” Ad-
vances in Neural Information Processing Systems, vol. 18, pp. 155–162, 2006.

[25] ——, “Attention based on information maximization,” Journal of Vision,
vol. 7, no. 9, pp. 950–950, 6 2007.

[26] L. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang, and H. Zhou, “A visual
attention model for adapting images on small displays,” ACM Transactions
on Multimedia Systems, vol. 9, pp. 353–364, November 2003.

[27] X. Chen and A. Yuille, “Detecting and reading text in natural scenes,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
june 2004, pp. 366–373.

[28] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, p. 790Ű799, 1995.

[29] C. Christoudias, B. Georgescu, and P. Meer, “Synergism in low level vision,”
Pattern Recognition, 2002. Proceedings. 16th International Conference on,
vol. 4, pp. 150–155 vol.4, 2002.

[30] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature
space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 5, pp. 603–619, May 2002.

[31] Consumer Electronics Association, “Digital imaging: A focus on sharing,”
http://www.ce.org.

[32] T. Cour, F. Benezit, and J. Shi, “Spectral segmentation with multiscale graph
decomposition,” in Proc. IEEE Computer Vision and Pattern Recognition,
vol. 2, June 2005, pp. 1124–1131 vol. 2.

[33] J. L. Crowley, O. Riff, and J. Piater, “Fast computation of characteristic scale
using a half octave pyramid,” International Workshop on Cognitive Comput-
ing, October 2002.

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,
pp. 886–893 vol. 1, June 2005.

[35] R. Deriche, “Recursively implementing the gaussian and its derivatives,” In-
ternational Conference on Image Processing, pp. 263–267, 1992.

[36] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, p. 269Ű271, 1959.

[37] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-
Interscience, November 2000.

http://www.ce.org

160 Bibliography

[38] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic effi-
ciency for network flow problems,” Journal of the ACM, vol. 19, p. 248Ű264,
1972.

[39] C. Elkan, “Using the triangle inequality to accelerate k-means,” International
Conference on Machine Learning, 2003.

[40] T. Ell and S. Sangwine, “Hypercomplex fourier transforms of color images,”
IEEE Transactions on Image Processing, vol. 16, no. 1, pp. 22–35, January
2007.

[41] P. Enser, “Query analysis in a visual information retrieval context,” Journal
of Document and Text Management, vol. 1, pp. 25–39, 1993.

[42] ——, “Progress in documentation: Pictorial information retrieval,” Journal of
Documentation, vol. 51, no. 2, pp. 126–170, 1995.

[43] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.”

[44] N. Ezaki, M. Bulacu, and L. Schomaker, “Text detection from natural scene
images:towards a system for visually impaired persons,” in Proc. 17th Inter-
national Conference on Pattern Recognition (ICPR’04), vol. 2, 2004, pp. 683
– 686.

[45] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image segmenta-
tion,” International Journal of Computer Vision (IJCV), vol. 59, no. 2, pp.
167–181, September 2004.

[46] L. Florack, B. Romeny, J. Koenderink, and M. Viergever, “Scale and the
differential structure of images,” Image and Vision Computing, vol. 10, pp.
376–388, 1992.

[47] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, vol. 8, p. 399Ű404, 1956.

[48] A. Frangakis and R. Hegerl, “Segmentation of two- and three-dimensional
data from electron microscopy using eigenvector analysis,” in Proc. Journal of
Structural Biology, vol. 138, 2002, pp. 105–113.

[49] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting,” in Proc. European Conference on
Computational Learning Theory, 1995, pp. 23–37.

[50] S. Frintrop, M. Klodt, and E. Rome, “A real-time visual attention system
using integral images,” in Proc. International Conference on Computer Vision
Systems (ICVS), March 2007.

Bibliography 161

[51] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density
function, with applications in pattern recognition,” IEEE Transactions on
Information Theory, p. 32Ű40, 1975.

[52] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object lo-
calization with superpixel neighborhoods,” in Proc. IEEE International Con-
ference on Computer Vision), 2009.

[53] R. Gal, O. Sorkine, and D. Cohen-Or, “Feature-aware texturing,” Eurographics
Symposium on Rendering, pp. 297–303, 2006.

[54] D. Gao, V. Mahadevan, and N. Vasconcelos, “On the plausibility of the dis-
criminant center-surround hypothesis for visual saliency,” Journal of Vision,
vol. 8, no. 7, pp. 1–18, 6 2008.

[55] D. Gao and N. Vasconcelos, “Discriminant saliency for visual recognition from
cluttered scenes,” Advances in Neural Information Processing Systems, pp.
481–488, 2004.

[56] ——, “Integrated learning of saliency, complex features, and object detectors
from cluttered scenes,” IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 282–287, 2005.

[57] J. Gllavata, R. Ewerth, and B. Freisleben, “Finding text in images via local
thresholding,” in Proc. IEEE International Symposium on Signal Processing
and Information Technology(ISSPIT 2003), December 2003, pp. 539–542.

[58] G. Gonzalez, F. Fleuret, and P. Fua, “Learning rotational features for filament
detection,” IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1582–1589, 2009.

[59] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, “Multi-class seg-
mentation with relative location prior,” International Journal of Computer
Vision (IJCV), vol. 80, no. 3, pp. 300–316, 2008.

[60] C. Guo, Q. Ma, and L. Zhang, “Spatio-temporal saliency detection using phase
spectrum of quaternion fourier transform,” in Proc. IEEE Computer Vision
and Pattern Recognition, 2008.

[61] J. Han, K. N. Ngan, M. Li, and H.-J. Zhang, “Unsupervised extraction of
visual attention objects in color images,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 1, pp. 141–145, January 2006.

[62] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” Advances in
Neural Information Processing Systems, pp. 545–552, 2007.

162 Bibliography

[63] X. He, R. Zemel, and D. Ray, “Learning and incorporating top-down cues
in image segmentation,” in Proc. European Conference on Computer Vision,
2006, pp. 338–351.

[64] S. S. Hemami and T. N. Pappas, “Perceptual metrics for image quality evalu-
ation,” Tutorial presented at Human Vision and Electronic Imaging, 2007.

[65] D. Hoiem, A. Efros, and M. Hebert, “Automatic photo pop-up,” in Proc. ACM
Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH),
August 2005.

[66] D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a single
image,” in Proc. IEEE International Conference on Computer Vision, vol. 1.
IEEE, October 2005, pp. 654 – 661.

[67] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,”
IEEE Computer Vision and Pattern Recognition, pp. 1–8, June 2007.

[68] Y. Hu, X. Xie, W.-Y. Ma, L.-T. Chia, and D. Rajan, “Salient region detection
using weighted feature maps based on the human visual attention model,”
Springer Lecture Notes in Computer Science, vol. 3332, no. 2, pp. 993–1000,
October 2004.

[69] M. Inaba, N. Katoh, and H. Imai, “Applications of weighted voronoi diagrams
and randomization to variance-based k-clustering,” Proceedings of the tenth
annual symposium on Computational geometry, pp. 332–339, 1994.

[70] L. Itti and P. F. Baldi, “Bayesian surprise attracts human attention,” in Proc.
Advances in Neural Information Processing Systems, vol. 19. Cambridge,
MA: MIT Press, 2005, pp. 547–554.

[71] L. Itti and C. Koch, “Comparison of feature combination strategies for
saliency-based visual attention systems,” SPIE Human Vision and Electronic
Imaging IV (HVEI), pp. 473–482, May 1999.

[72] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for
rapid scene analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 11, pp. 1254–1259, November 1998.

[73] T. Kadir and M. Brady, “Saliency, scale and image description,” International
Journal of Computer Vision, vol. 45, no. 2, pp. 83–105, 2001.

[74] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region
detector,” in Proc. European Conference on Computer Vision, 2004.

[75] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu, “A local search approximation algorithm for k-means clustering,”
Annual symposium on Computational geometry, pp. 10–18, 2002.

Bibliography 163

[76] B. C. Ko and J.-Y. Nam, “Object-of-interest image segmentation based on
human attention and semantic region clustering,” Journal of Optical Society
of America A, vol. 23, no. 10, pp. 2462–2470, October 2006.

[77] C. Koch and S. Ullman, “Shifts in selective visual attention: Towards the
underlying neural circuitry,” Human Neurobiology, vol. 4, no. 4, pp. 219–227,
1985.

[78] J. Koenderink, “The structure of images.” Biological Cybernetics, vol. 50, pp.
363–370, 1984.

[79] A. Kumar, Y. Sabharwal, and S. Sen, “A simple linear time (1+e)-
approximation algorithm for k-means clustering in any dimensions,” IEEE
Symposium on Foundations of Computer Science, vol. 0, pp. 454–462, 2004.

[80] T. Leung and J. Malik, “Representing and recognizing the visual appearance of
materials using three-dimensional textons,” International Journal of Computer
Vision, vol. 43, no. 1, pp. 29–44, 2001.

[81] A. Levin and Y. Weiss, “Learning to combine bottom-up and top-down seg-
mentation,” European Conference on Computer Vision, 2006.

[82] A. Levinshtein, C. Sminchisescu, and S. Dickinson, “Multiscale symmetric part
detection and grouping,” in Proc. IEEE International Conference on Com-
puter Vision, September 2009.

[83] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi,
“Turbopixels: Fast superpixels using geometric flows,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2009.

[84] H. Li and D. Doermann, “Automatic text tracking in digital videos,” IEEE
Workshop on Multimedia Signal Processing, pp. 21–26, 1998.

[85] H. Li, D. Doermann, and O. Kia, “Automatic text detection and tracking in
digital videos,” IEEE Transactions on Image Processing, vol. 9, pp. 147–156,
January 2000.

[86] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” ACM Transac-
tions on Graphics, vol. 23, no. 3, pp. 303–308, 2004.

[87] R. Lienhart and W. Effelsberg, “Automatic text segmentation and text recog-
nition for video indexing,” Multimedia Systems, vol. 8, pp. 69 – 81, 2000.

[88] R. Lienhart, L. Liang, and A. Kuranov, “A detector tree of boosted classifiers
for real-time object detection and tracking,” in Proc. IEEE Conference on
Multimedia and Expo, vol. 2. IEEE Computer Society, 2003, pp. 277–280.

164 Bibliography

[89] T. Lindeberg, “Scale space for discrete images,” in Proc. Scandinavian Con-
ference on Image Analysis (SCIA), 1989, pp. 1098–1107.

[90] ——, “Scale-space theory: A basic tool for analysing structures at different
scales,” Journal of Applied Statistics, vol. 21(2), pp. 224–270, 1994.

[91] ——, “Feature detection with automatic scale selection,” International Journal
of Computer Vision, vol. 30, no. 2, pp. 79–116, November 1998.

[92] S.-C. Liu, C.-W. Fu, and S. Chang, “Statistical change detection with moments
under time-varying illumination,” IEEE Transactions on Image Processing,
vol. 7, no. 9, pp. 1258–1268, Sep 1998.

[93] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum, “Learning to detect
a salient object,” IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1–8, June 2007.

[94] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. IT-28, no. 2, pp. 129–137, March 1982.

[95] D. G. Lowe, “Distinctive image features from scale-invariant feature points,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[96] S. M. Lucas, “Text locating competition results,” International Conference on
Document Analysis and Recognition (ICDAR), vol. 0, pp. 80–85, 2005.

[97] A. Lucchi, K.Smith, R. Achanta, V. Lepetit, and P. Fua, “A fully automated
approach to segmentation of irregularly shaped cellular structures in em im-
ages,” International Conference on Medical Image Computing and Computer
Assisted Intervention, 2010.

[98] Y.-F. Ma and H.-J. Zhang, “Contrast-based image attention analysis by using
fuzzy growing,” ACM International Conference on Multimedia, pp. 374–381,
November 2003.

[99] V. Mahadevan and N. Vasconcelos, “Background subtraction in highly dy-
namic scenes,” IEEE Conference on Computer Vision and Pattern Recogni-
tion, June 2008.

[100] M. Mancas, B. Gosselin, and B. Macq, “Perceptual image representation,”
Journal of Image and Video Processing, vol. 2007, no. 2, pp. 3–3, 2007.

[101] D. Marr, Vision: a computational investigation into the human representation
and processing of visual information. W. H. Freeman, San Francisco, 1982.

[102] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented
natural images and its application to evaluating segmentation algorithms and

Bibliography 165

measuring ecological statistics,” IEEE International Conference on Computer
Vision, vol. 2, pp. 416–423, July 2001.

[103] Microsoft Research Visual Computing Group, “MSRA Salient Ob-
ject Database,” http://research.microsoft.com/en-us/um/people/jiansun/
SalientObject/salient_object.htm.

[104] S. Mitri, S. Frintrop, K. Pervölz, H. Surmann, and A. Nüchter, “Robust object
detection at regions of interest with an application in ball recognition,” in Proc.
IEEE International Conference on Robotics and Automation, 2005.

[105] M.Léon and A.Gasull, “Text detection in images and video sequences,” in
Proc. IADAT International Conference on Multimedia, Image Processing and
Computer Vision, Madrid, Spain, march 2005.

[106] A. Moore, S. Prince, J. Warrell, U. Mohammed, and G. Jones, “Superpixel
Lattices,” IEEE Conference on Computer Vision and Pattern Recognition,
2008.

[107] G. Mori, “Guiding model search using segmentation,” in Proc. IEEE Interna-
tional Conference on Computer Vision, 2005, pp. 1417–1423.

[108] E. Niebur and C. Koch, The Attentive Brain. Cambridge MA:MIT Press,
October 1995, ch. Computational architectures for attention, pp. 163–186.

[109] A. Oliva, A. Torralba, M. Castelhano, and J. Henderson, “Top-down control
of visual attention in object detection,” International Conference on Image
Processing, pp. 253–256, 2003.

[110] B. Olshausen, C. Anderson, and D. Van Essen, “A neurobiological model of
visual attention and invariant pattern recognition based on dynamic routing
of information,” Journal of Neuroscience, vol. 13, pp. 4700–4719, 1993.

[111] G. Pass and R. Zabih, “Histogram refinement for content-based image re-
trieval,” IEEE Workshop on Applications of Computer Vision, p. 96, 1996.

[112] R. Narashimha, H. Ouyang, A. Gray, S. McLaughlin, and S. Subramaniam,
“Automatic Joint Classification and Segmentation of Whole Cell 3D Images,”
Journal of Pattern Recognition, vol. 42, no. 2009, pp. 1067–1079, 2007.

[113] X. Ren and J. Malik, “Learning a classification model for segmentation,” IEEE
Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 10–17,
2003.

[114] R. A. Rensink, “The dynamic representation of scenes,” Visual Cognition,
2000.

http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm
http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm

166 Bibliography

[115] ——, “Seeing, sensing, and scrutinizing,” Vision Research, pp. 469–1487, 2000.

[116] P. L. Rosin, “A simple method for detecting salient regions,” Pattern Recog-
nition, vol. 42, no. 11, pp. 2363 – 2371, 2009.

[117] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake, “Autocollage,” ACM
Transactions on Graphics, vol. 25, no. 3, pp. 847–852, 2006.

[118] C. Rother, V. Kolmogorov, and A. Blake, “"grabcut": interactive foreground
extraction using iterated graph cuts,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 309–314, 2004.

[119] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for video
retargeting,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–9, August
2008.

[120] H. J. Seo and P. Milanfar, “Static and space-time visual saliency detection by
self-resemblance,” Jounal of Vision, vol. 9, no. 12, pp. 1–27, November 2009.

[121] J. Shi and J. Malik., “Normalized cuts and image segmentation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–
905, Aug 2000.

[122] A. S. Shlmon and S. Ullman, “Structural saliency: The detection of glob-
ally salient structures using a locally connected network,” IEEE International
Conference on Computer Vision, 1998.

[123] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost: Joint Ap-
pearance, Shape and Context Modeling for Multi-Class Object Recognition
and Segmentation,” in Proc. European Conference on Computer Vision, 2006.

[124] K. Smith, A. Carleton, and V. Lepetit, “Fast ray features for learning irregular
shapes,” IEEE International Conference on Computer Vision, 2009.

[125] P. Thévenaz, R. Delgado-Gonzalo, and M. Unser, “The Ovuscule,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2010.

[126] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual
guidance of eye movements and attention in real-world scenes: the role of
global features in object search,” Psychological Review, vol. 113, pp. 766–786,
2006.

[127] H. Tran, A. Lux, H. L. N. T., and A. Boucher, “A novel approach for text
detection in images using structural features.” in Proc. International conference
on advances in pattern recognition, August 2005, pp. 627–635.

[128] A. M. Treisman and G. Gelade, “A feature-integration theory of attention,”
Cognitive Psychology, vol. 12, no. 1, pp. 97–136, January 1980.

Bibliography 167

[129] B. Triggs and M. Sdika, “Boundary conditions for young-van vliet recursive
filtering,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2365–
2367, June 2006.

[130] W. Tsai, “Moment-preserving thresholding: A new approach,” Computer Vi-
sion Graphics and Image Processing, vol. 29, pp. 377–393, 1985.

[131] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and F. Nuflo,
“Modeling visual attention via selective tuning,” Artificial Intelligence, vol. 78,
no. 1-2, pp. 507–545, 1995.

[132] U.C. Berkeley Computer Vision Group, “The Berkeley Segmentation
Dataset and Benchmark,” http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/grouping/segbench/.

[133] V. Vanhoucke and S. B. Gokturk, “Reading text in consumer digital pho-
tographs,” in Proc. SPIE Document Recognition and Retrieval XIV, vol. 6500,
2007.

[134] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,”
in Proc. European Conference on Computer Vision, 2008.

[135] O. Verevka and J. Buchanan, “Local k-means algorithm for color image quan-
tization,” Graphics Interface, pp. 128–135, 1995.

[136] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm
based on immersion simulations,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991.

[137] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-
ple features,” IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 511–518, December 2001.

[138] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of
motion and appearance,” Mitsubishi Electric Research Lab Technical Report.,
Tech. Rep. TR-2003-90, 2003.

[139] P. Viola and M. Jones, “Robust real-time object detection,” Cambridge Re-
search Laboratory, Tech. Rep. CRL 2001/01, February 2001.

[140] D. Walther and C. Koch, “Modeling attention to salient proto-objects,” Neural
Networks, vol. 19, no. 9, pp. 1395–1407, August 2006.

[141] Y.-S. Wang, C.-L. Tai, O. Sorkin, and T.-Y. Lee, “Optimized scale-and-stretch
for image resizing,” ACM Transactions on Graphics, vol. 27, no. 5, December
2008.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

168 Bibliography

[142] Z. Wang and B. Li, “A two-stage approach to saliency detection in images,”
IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 965–968, 31 2008-April 4 2008.

[143] A. P. Witkin, “Scale-space filtering,” in Proc. International Joint Conference
on Artificial Intelligence, 1983, pp. 1019–1022.

[144] L. Wolf, M. Guttmann, and D. Cohen-Or, “Non-homogeneous content-driven
video-retargeting,” IEEE International Conference on Computer Vision, pp.
1–6, Oct. 2007.

[145] V. Wu, R. Manmatha, and E. M. Riseman, “Finding text in images,” in Proc.
ACM international conference on Digital libraries, 1997, pp. 3–12.

[146] J. Xi, X.-S. Hua, X.-R. Chen, L. Wenyin, and H.-J. Zhang, “A video text
detection and recognition system,” in Proc. IEEE International Conference
on Multimedia and Expo, 2001, p. 222.

[147] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(N) implementation of the fast
marching algorithm,” Journal of Computational Physics, vol. 212, pp. 393–
399, March 2006.

[148] I. T. Young and L. J. van Vliet, “Recursive implementation of the gaussian
filter,” Signal Processing, vol. 44, no. 2, pp. 139–151, 1995.

[149] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, “SUN: A
Bayesian framework for saliency using natural statistics,” Journal of Vision,
vol. 8, no. 7, pp. 1–20, 12 2008.

Curriculum Vitae

Radhakrishna Achanta

Images and Visual Representation Group (IVRG/LCAV)
School of Computer and Communication Sciences (I&C)

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Email: radhakrishna.achanta@a3.epfl.ch
Web: http://ivrg.epfl.ch/~achanta

Education

2006 - 2010 Ph.D. in Computer and Communication Sciences, IVRG/LCAV,
I&C, EPFL, Switzerland.

2000 - 2002 M.Sc. in Computer Science, National University of Singapore, Sin-
gapore.

1995 - 1999 B.E. in Electrical Engineering, Government Engineering College Ja-
balpur, India.

Professional Experience

2006 - 2010 Teaching Assistant, EPFL, Switzerland.
Assisted students in undergraduate and graduate courses.
Supervised semester and master projects.

2004 - 2006 Software Engineer, Muvee Technologies Private Limited, Singa-
pore.
Worked on the core engine of the automatic video editing software that
extracts features and optimizes the choice of audio, image, and video input
by the user.

2002 - 2004 Research Assistant, National University of Singapore, Singapore.
Worked on the Digital Image and Video Album project that was aimed to
automatically annotate image and video content.

169

http://ivrg.epfl.ch/~achanta

170 Curriculum Vitae

Skills
1. Programming skills: C, C++, x86 Assembler, Java, Jasmin, HTML, JavaScript,

Verilog, VHDL.

2. Tools and Libraries: MATLAB, MFC, DirectX, MPEGDC, MSSG Encoder,
Intel OpenCV.

3. Natural Languages: English, Hindi, Telugu, Tamil and French.

Awards and Honors
1. Cleared first round of VentureLab 2007 Start-up competition in Lausanne.

2. Best Executive Summary award in StartUp@Singapore business plan contest.
Led team of 6.

3. Qualified in first phase of Junior and Senior Level National Mathematics
Olympiad.

4. Qualified in first stage of National Talent Search Exam. in Physics.

5. Merit Certificate for 99% marks in Mathematics in All India Secondary School
Exam(AISSE).

6. Black Belt 1st dan in (Shitoryu) Karate (2006).

Acivities
1. Contributed text detection code to the open source project of ImageCerbus, a

plug-in for the spam filter SpamAssassin.

2. Member of National University of Singapore Karate club, Singapore.

3. Cadet in the National Cadet Corps (NCC), India.

4. Member of Electrical Society (GEC Jabalpur), India.

5. Current Interests: Tango, Yoga, Traveling, Motorbiking.

Publications
1. R. Achanta and S. Süsstrunk, “Saliency Detection using Maximum Symmetric

Surround,” in Proc. IEEE International Conference on Image Processing, Sep.
2010.

2. A. Lucchi, K. Smith, R. Achanta, V. Lepetit, and P. Fua, “A Fully Automated
Approach to Segmentation of Irregularly Shaped Cellular Structures in EM
Images,” in Proc. International Conference on Medical Image Computing and
Computer Assisted Intervention, Sep. 2010.

Curriculum Vitae 171

3. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC
Superpixels,” EPFL Technical Report no. 149300, Jun. 2010.

4. A. Guidi, R. Achanta, C. Fredembach, and S. Süsstrunk, “GUI-Aided NIR
and Color Image Blending,” in Proc. IEEE Mediterranean Electrotechnical
Conference, Apr. 2010.

5. R. Achanta, A. Shaji, P. Fua, and S. Süsstrunk, “Image Summaries using
Database Saliency,” in Proc. ACM SIGGRAPH ASIA, Dec. 2009.

6. R. Achanta and S. Süsstrunk, “Saliency Detection for Content-aware Image
Resizing,” newblock in Proc. IEEE International Conference on Image Pro-
cessing, Nov. 2009.

7. R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-tuned
Salient Region Detection,” in Proc. IEEE International Conference on Com-
puter Vision and Pattern Recognition, Jun. 2009.

8. R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient Region Detection
and Segmentation,” in Proc. International Conference on Computer Vision
Systems, May 2008.

9. R. Achanta, Y. Weiqi, J. Yi, M. S. Kankanhalli, “Modeling Intents for Home
Video Repurposing,” in Proc. IEEE Multimedia Magazine, 2005.

10. J. Wang, R. Achanta, M.S. Kankanhalli, and M.J.T. Reinders, “A sensor
fusion approach for tracking faces in compressed video,”, in Proc. Eleventh
annual conference of the Advanced School for Computing and Imaging, 2005.

11. C. Madhwacharyula, W. Jun, Y. Weiqi, J. Yi, A.S.V Radhakrishna, S. Bissol,
J. Charlson Yu, Z.Qiuying, S.H Srinivasan, H. Hassan Abdulredha, P. Mulhem,
M. S. Kankanhalli, “An Information-Integration Approach to Designing Dig-
ital Video Albums,” in Proc. IEEE Pacific-Rim Conference on Multimedia,
December 2003.

12. J. Wang, R. Achanta, M. Kankanhalli, “A Hierarchical Framework For Face
Tracking Using State Vector Fusion For Compressed Video,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, April
2003.

13. R. Achanta, J. Wang, M. Kankanhalli, “A Sensor Fusion Based Object Tracker
for Compressed Video,” in Proc. International Workshop on Advanced Image
Technology, January 2003.

14. R. Achanta, M. Kankanhalli, P. Mulhem, “Object Tracking in Compressed Do-
main MPEG Video for Automated Content-Based Indexing,” in Proc. IEEE
International Conference on Multimedia and Expo, Aug. 2002.

	Title
	Contents
	Abstract
	Résumé
	Acknowledgments
	Introduction
	Objects of interest
	Applications
	Goals of this thesis
	Overview of the thesis
	Chapter 2: State-of-the-art
	Chapter 3: Saliency detection
	Chapter 4: Applications of Saliency detection
	Chapter 5: Database saliency
	Chapter 6: Superpixel segmentation
	Chapter 7: Conclusions

	State of the art
	Saliency Detection Techniques
	Biological model based approaches
	Purely computational approaches
	Hybrid approaches
	Limitations and common criticisms

	Frequency domain analysis of saliency detection techniques
	Spatial frequency content of saliency maps
	Other algorithmic properties of the methods

	Object scale and frequency cut-offs
	Superpixel Segmentation Techniques
	Graph-based algorithms
	Gradient-ascent-based algorithms
	Limitations of superpixel algorithms

	Clustering
	k-means clustering
	Mean shift clustering
	Graph-based image segmentation
	Source-sink graph-cuts
	Geodesic distance computation

	Summary of the chapter

	Saliency Detection
	Requirements for a saliency map
	Saliency detection algorithm - I
	Saliency using bandpass filtering
	Parameter selection
	Intuitive understanding of the choice of parameters
	Computing saliency
	Various interpretations

	Saliency detection algorithm - II
	The surround assumption of IGS
	New surround assumption
	Saliency computation

	Spatial frequency content of IGS and MSSS
	Comparison with state-of-the art
	Precision and recall
	Comparison by thresholding

	Discussion
	Summary of the chapter

	Applications of Saliency Detection
	Salient object segmentation
	Segmentation by adaptive thresholding
	Salient region segmentation using graph-cuts
	Salient region segmentation using geodesic paths
	Discussion

	Automatic Image Re-targeting
	Visual Importance Maps
	Seam carving
	Improved seam carving
	Noise Robustness

	Summary of the chapter

	Database Saliency and Image Summaries
	Ranking images
	Image clusters and database saliency

	Choosing images for creating a summary
	Image summaries
	Variable tile size image mosaics
	Automatic image collages

	Summary of the chapter

	Superpixel Segmentation
	Introduction
	SLIC superpixel algorithm
	Distance measure
	Algorithm
	Post processing
	Complexity

	Comparison
	Algorithm Parameters
	Under-segmentation error
	Boundary recall
	Computational and memory efficiency
	Discussion

	Superpixel Applications
	Object class recognition
	Superpixel-graph-based segementation
	Mitochondria segmentation

	Supervoxel segmentation
	Pretty superpixels
	Euclidean versus geodesic distance
	Geodesic distance based superpixels
	Post-processing using geodesic distances
	GSLIC comparison with state-of-the-art

	Summary of the chapter

	Conclusions
	Thesis summary
	Some reflections and future research

	Text Detection
	Introduction
	Approaches in text detection
	Adaboost
	Text Detection and AdaBoost

	Text recognition using AdaBoost
	AdaBoost approach
	Features
	Cascade
	Training set

	Text region detection and localization
	Text region binarization
	Combining text detection and generic saliency detection
	Summary of the chapter

	Object scale and Gaussian filtering
	Gaussian filtering in practice
	The relation between sigma and cut-off frequency

	Mitochondria Segmentation using SLIC Superpixels
	Segmenting objects in Electron Microscope imagery
	Mitochondria detection and segmentation
	Mitochondria segmentation using SLIC supervoxels

	Bibliography
	Curriculum Vitae

