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Résumé 

Depuis peu, les chercheurs spécialisés du domaine de la foudre s’intéressent de prés à son 

interaction avec les objets foudroyés. Plusieurs campagnes de mesures, comprenant des 

enregistrements du courant et des champs électromagnétiques associés, ont été menées dans le 

monde, principalement en Russie, en Afrique du Sud, en Allemagne, au Japon et en Autriche. 

Ce sujet est relativement nouveau, et la résolution des problèmes qui s’y rapportent aura un 

impact important dans diverses applications fondées sur les mêmes théories, telle la protection 

contre la foudre ou la détermination des caractéristiques de la foudre à partir des champs 

mesurés à distance. Le principal objectif de cette thèse de doctorat consiste en 

développements  théoriques et en mesures expérimentales, en vue de comprendre et de 

résoudre des problèmes récemment apparus à propos des caractéristiques des arcs en retour de 

la foudre sur les structures élevées, ainsi que des rayonnements électromagnétiques qui leur 

sont associés 

 

Le Chapitre 2 passe en revue les récents progrès de la modélisation du foudroiement des 

tours élevées et les données expérimentales obtenues durant les deux dernières décennies. 

Deux types de modèles d’arc en retour sont discutés : les modèles d’Ingénieurs et les modèles 

de la Théorie d’Antenne (TA) ou Electromagnétique. Ces modèles ont été généralisés pour 

prendre en compte les structures foudroyées élevées.  

Ce chapitre comprend également une description de la méthode de calcul utilisée pour 

l’évaluation des champs électromagnétiques générés par une décharge de foudre sur une 

structure élevée, ainsi qu’une vue d’ensemble des données disponibles sur le courant de 

foudre et sur le champ électromagnétique associé. 
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Ce chapitre souligne enfin quelques questions importantes soulevées, ces dernières années, 

par différents groupes de recherche, et qui donnent lieu à de nouvelles investigations. Ces 

questions sont les suivantes : 

(1) On ne dispose ni d’une analyse théorique systématique, ni de données expérimentales 

pour les champs électromagnétiques au voisinage d'une structure frappée par la foudre. Or la 

caractérisation des champs électromagnétiques proches est particulièrement importante dans 

l'analyse de leur interaction avec des équipements électriques et électroniques situés à 

proximité. 

(2) Aucun modèle d’arc en retour n’est capable de reproduire le passage à zéro des 

champs lointains pour les coups de foudre sur des structures élevées. De quelle manière ces 

modèles peuvent-ils être révisés pour rendre compte de cet effet?  

(3) Comment les modèles d'ingénieurs peuvent-ils être révisés pour supprimer la 

discontinuité du courant au niveau du front d'onde de l'arc de retour? 

(4) On sait que les mesures de champs électromagnétiques rayonnés par la foudre sont 

affectées par la présence de bâtiments situés à proximité ou de structures métalliques. Mais 

actuellement, aucune analyse systématique et quantitative d'un tel effet n’est disponible dans 

la littérature. 

 

Le travail présenté dans cette thèse aborde toutes les questions mentionnées ci-dessus. Les 

principales contributions originales de cette thèse, tant théoriques qu’expérimentales, sont 

présentées dans les chapitres 3 à 6. 

 

Le Chapitre 3 est consacré à une description théorique de la signature des champs 

électriques et magnétiques à très courte distance, en relation avec le foudroiement d'une tour. 

Il y est montré que le champ électrique généré par un arc en retour de foudre sur une structure 

élevée peut changer de polarité à une distance très proche. Ce changement de polarité semble 

être une signature spécifique du champ électrique vertical très proche. Une équation simple a 

été développée afin d'obtenir une estimation de la distance critique en deçà de laquelle une 

telle inversion de polarité peut se produire. Il apparaît également que l'inversion de polarité 

dépend du coefficient de réflexion à la base de la tour, et disparaît lorsque ce coefficient est 

proche de 1. En revanche, d'autres paramètres tels que la vitesse de l'arc en retour, le 

coefficient de réflexion au sommet de l'objet foudroyé et le modèle d'arc en retour adopté ne 

semblent pas avoir un impact significatif sur l'inversion de polarité. Les résultats de 
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simulation ont aussi montré que la crête du champ électrique, à des distances supérieures à la 

hauteur de la tour, témoigne d'une décroissance usuelle en 1/r. Cependant, à des distances 

plus rapprochées, la crête du champ électrique se sature à cause de l'effet d'ombrage 

(shadowing effect) de la tour. Cet effet se traduit par une diminution substantielle du champ 

électrique proche. En outre, la crête du champ magnétique varie inversement 

proportionnellement à la distance horizontale et ne dépend pas de manière significative de la 

présence d'un objet élevé foudroyé. 

 

Le Chapitre 4 présente une version améliorée des modèles d'ingénieur pour l'arc en retour 

d’une décharge sur une structure de grande taille, prenant en compte (1) la présence de 

réflexions possibles au front d'onde de l'arc en retour, et (2) la présence d’un traceur ascendant 

de connexion. Nous proposons également une solution itérative élégante qui peut être 

facilement mise en œuvre dans les programmes de simulation par ordinateur pour prendre en 

compte de manière simple les réflexions multiples qui se produisent au niveau des 

discontinuités, aux deux extrémités de la tour ainsi qu’au front d'onde de l'arc en retour. 

Les résultats de simulation pour les champs magnétiques sont comparés aux mesures 

associées aux décharges de la Tour CN (553 m) à Toronto. Il en ressort que la prise en compte 

de la réflexion au front d'onde de l'arc en retour permet de mieux reproduire la structure fine 

de l'onde du champ magnétique. 

 

Le Chapitre 5 présente et discute les mesures obtenues en 2007 et 2008 de champs 

électriques (composantes verticale et radiale) et magnétiques des traceurs et des arcs en retour 

associés au foudroiement de la tour de Gaisberg en Autriche. Les données comprennent 

également les enregistrements simultanés des champs électriques verticaux et radiaux, qui ont 

été obtenus pour la première fois à des distances aussi proches. 

Il apparaît que les courbes du champ électrique radial et du champ électrique vertical ont 

une forme proche de celle d'une impulsion en V asymétrique. Le champ électrique vertical est 

caractérisé par une variation initiale négative, relativement lente, due au traceur descendant, 

suivie par une montée rapide due à la phase de l’arc en retour. Pour les champs électriques 

horizontaux cependant, le fond de l’impulsion en V n'est pas associé à la transition du traceur 

vers l'arc en retour. Le champ horizontal dû à l'arc en retour est caractérisé par une courte 

impulsion négative, d’une durée d’environ une microseconde. 
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En outre, nous avons développé une expression analytique du champ électrique radial en 

supposant une distribution de charge uniforme le long du traceur et une vitesse de propagation 

constante.  

Il est également montré que le champ électrique vertical de l'arc en retour est beaucoup plus 

faible que celui qui a été mesuré lors d’expériences de déclenchement artificiel de la foudre. 

Ce résultat confirme l'effet d'ombrage de la tour prédit, par l'analyse théorique du Chapitre 3, 

qui se traduit par une diminution significative du champ électrique à des distances inférieures 

à la hauteur de la tour.  

Enfin, l’aptitude des deux modèles d'arc en retour à reproduire les champs électriques 

vertical et horizontal a été testée sur les mesures obtenues. Les modèles considérés sont (1) le 

modèle MTLE (Modified Transmission Line with Exponential Decay), et (2) le modèle 

électromagnétique, mis en œuvre à l’aide du logiciel Numerical Electromagnetics Code NEC-

4. Il apparaît que les formes d'onde du champ électrique prédites par les deux modèles 

concordent avec les formes d'onde mesurées. En général, les champs obtenus par le modèle 

électromagnétique semblent être en meilleur accord avec les données mesurées, en raison de 

l'utilisation directe de l'onde de courant mesurée comme données d'entrée et de la 

représentation plus fine de la tour foudroyée. 

 

Le Chapitre 6 discute de l'effet des bâtiments et des structures métalliques sur les mesures 

du champ électromagnétique généré par la foudre. En effet, les capteurs utilisés pour la 

mesure des champs électriques et magnétiques de l'éclair sont souvent placés à proximité ou 

sur le toit des bâtiments ou d'autres structures. Les parties métalliques, ainsi que d'autres 

pièces conductrices de ces structures, peuvent affecter les champs mesurés. Afin d’évaluer 

l’effet de ces structures, des champs électriques et magnétiques ont été mesurés 

simultanément sur le toit d'un bâtiment et sur le sol aux alentours de ce bâtiment. Les résultats 

obtenus suggèrent que le champ électrique mesuré sur le toit de l'immeuble pourrait être 

amplifié par un facteur compris entre 1.7 et 1.9, tandis que les champs électriques mesurés sur 

le sol peuvent être atténués d'un facteur allant de 5 à 20. En outre, il est démontré que pour un 

capteur placé sur le sol à proximité d'un bâtiment, la composante du champ magnétique 

perpendiculaire au bâtiment peut être significativement atténuée, probablement en raison de 

l'effet des courants induits dans le bâtiment. Le champ magnétique sur le toit de l'immeuble ne 

semble pas être notablement affecté par le bâtiment. 
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Dans certaines simulations numériques utilisant le Numerical Electromagnetics Code (NEC-

4), le bâtiment a été représenté par un grillage métallique (wire-grid). Les résultats de ces 

simulations confirment les conclusions de l'analyse expérimentale, en dépit de différences 

quantitatives qui sont attribuées, du moins en partie, au modèle simplifié de l'immeuble. 

 

Liste des mots-clés: 

Foudre, Champ électromagnétique, Arc en retour, Modèles d'Ingénieur, Modèles 

électromagnétiques, Traceur descendant, Structures élevées, Effet d’ombrage, Traceur 

ascendant de connexion, Bâtiment à proximité. 
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Abstract 

The study of the lightning interaction with tall strike objects has attracted considerable 

attention of lightning researchers lately. Many lightning measurements including current and 

associated electromagnetic fields were recently made all over the globe namely in Russia, 

South Africa, Germany, Brazil, Japan, and Austria. It is a novel area of studies, and the 

resolution of associated questions will have an impact upon many lightning-related 

applications such as lightning protection and the determination of lightning parameters from 

remote field measurements. The main objective of the thesis is to carry out further theoretical 

investigations and experimental measurements to understand and elucidate recently raised 

questions on the characteristics of lightning return-strokes to tall structures and their 

associated electromagnetic radiation.  

 

Chapter 2 presents a review on recent progress in the modeling of lightning strikes to tall 

towers and associated experimental data obtained during the last decade or so. Two types of 

return stroke models namely the Engineering Models, and the Electromagnetic or Antenna-

Theory (AT) models, extended to take into account the presence of a tall strike object are 

discussed.  

The Chapter contains also a description of the computational methods for the evaluation of 

electromagnetic fields generated by a lightning strike to a tall structure, as well as an 

overview of available data on lightning current and associated electromagnetic fields.  

The chapter finally highlights some important questions raised by different research groups 

in the past few years which call for further investigations. These questions are as follows: 
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(1) No systematic theoretical analysis nor experimental data are available for 

electromagnetic fields in the immediate vicinity of a tall structure struck by lightning. The 

characterization of nearby electromagnetic fields is particularly important in the analysis of 

the interaction to nearby electrical and electronics systems.  

(2) Why do lightning return stroke models not reproduce the far-field zero crossing 

associated with lightning to tall structures? How should these models be revised to be able to 

reproduce such an effect? 

(3) How should the engineering models be revised in order to remove the associated 

current discontinuity at the return stroke wavefront? 

(4) It is well-known that the measurements of electromagnetic fields from lightning are 

affected by the presence of nearby buildings and metallic structures. However, no systematic 

and quantitative analysis of such an effect is presently available in the literature. 

 

The work presented in this thesis addresses all of the above questions. The main original 

contributions of this thesis, consisting of both theoretical and expeirmental work, are 

presented in Chapters 3 through 6. 

 

Chapter 3 is devoted to a theoretical description of the signature of electric and magnetic 

fields at very close distance associated with lightning strikes to a tower. It is shown that the 

electric field generated by a lightning return stroke to a tall structure can change polarity at 

very close distance range. This change in the polarity seems to be a specific signature of the 

very close vertical electric field. A simple equation is derived which provides an estimate of 

the critical distance below which such an inversion of polarity might occur. It is also shown 

that the inversion of polarity depends on the value of the reflection coefficient at the base of 

the tower and disappears for reflection coefficients close to 1. On the other hand, other 

parameters such as the return stroke speed, the reflection coefficient at the top of the strike 

object, and the adopted return stroke model seem not to have an impact on the inversion of 

polarity. Simulation results also showed that the electric field peak at distances beyond the 

height of the tower or so exhibits the typical 1/r dependence. At closer distances, however, the 

E-field peak features a saturation, due to the so-called tower shadowing effect. This 

shadowing effect results in a substantial decrease of the nearby electric field. On the other 

hand, the magnetic field peak varies inversely proportional to the horizontal distance and does 

not depend significantly on the presence of an elevated strike object. 
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Chapter 4 introduces an improved version of the engineering models for return-strokes to tall 

structures which accounts for (1) the presence of possible reflections at the return stroke 

wavefront, and, (2) a return stroke initiation above the structure due to an upward connecting 

leader. We also propose an elegant iterative solution that can be easily implemented into 

computer simulation programs to take into account in a straightforward way multiple 

reflections occurring at the discontinuities at the tower ends and at the return stroke 

wavefront. 

Simulation results for the magnetic fields are compared with experimental waveforms 

associated with lightning strikes to the CN Tower (553 m). It is shown that taking into 

account the reflections at the return-stroke wavefront results in better reproducing the fine 

structure of the magnetic field waveforms. 

 

Chapter 5 presents and discusses obtained measurements of electric (vertical and radial) and 

magnetic fields from leaders and return strokes associated with lightning strikes to the 

Gaisberg tower in Austria obtained in 2007 and 2008. The data include simultaneous records 

of vertical and radial electric fields, which were obtained for the first time at such close 

distances.  

It is found that the vertical and radial electric field waveforms appear as asymmetrical V-

shaped pulses. For the vertical electric field, the initial, relatively slow, negative electric field 

change is due to the downward leader and the following fast positive field change is due to the 

upward return stroke phase of the lightning discharge. For the horizontal electric fields, 

however, the bottom of the V is not associated with the transition from the leader to the return 

stroke. The horizontal field change due to the return stroke is characterized by a short 

negative pulse of the order of one microsecond or so, starting with a fast negative excursion 

followed by a positive one. 

In addition, an analytical expression for the radial electric field, assuming a uniform charge 

distribution along the leader with constant speed is derived.  

It is also shown that the return-stroke vertical electric field changes appear to be 

significantly smaller than similar measurements obtained using triggered lightning. This 

finding confirms the shadowing effect of the tower predicted by the theoretical analysis of 

Chapter 3, which results in a significant decrease of the electric field at distances of about the 

height of the tower or less.  
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Finally, the ability of two different models for the return stroke in reproducing measured 

vertical and horizontal electric fields is tested using the obtained measured data. The 

considered models are (1) the engineering MTLE (Modified Transmission Line with 

Exponential Decay) model, and (2) the electromagnetic model implemented using the 

Numerical Electromagnetics Code NEC-4. It is shown that both models predict electric field 

waveforms which are in reasonable agreement with measured waveforms. In general, the 

predicted fields by the electromagnetic model appear to be in better agreement with measured 

data, because of the direct use of the measured current waveform as an input and the more 

accurate representation of the tower.  

 

Chapter 6 reports on the effect of nearby buildings on electromagnetic fields from lightning. 

Indeed, sensors used for the measurement of lightning electric and magnetic fields are often 

placed close to or on top of buildings or other structures. Metallic beams and other conducting 

parts in those structures may cause enhancement or attenuation effects on the measured fields. 

Experimental waveforms radiated from distant natural lightning recorded during the summers 

of 2006 and 2007 are presented. Electric and magnetic field waveforms were measured 

simultaneously on the roof of a building and on the ground at different distances away from it. 

The results suggest that the measured electric field on the roof of the building could be 

enhanced by a factor of 1.7 to 1.9, whereas the electric fields on the ground experienced a 

significant reduction by a factor ranging from 5 to 20. Also, it is shown that for a sensor 

located on the ground close to a building, the magnetic field component perpendicular to the 

building can experience significant attenuation, presumably due to the effect of the induced 

currents in the building. The magnetic field on the roof of the building seems not to be 

significantly affected by the building. 

Simulations using the Numerical Electromagnetic Code (NEC-4) were also carried out in 

which the building was represented using a simple wire-grid model. The simulation results 

support in essence the findings of the experimental analysis, despite quantitative differences 

which are ascribed, at least in part, to the oversimplified model of the building. 

 

List of keywords: 

Lightning, Electromagnetic field, Return Stroke, Engineering Models, Electromagnetic 

models, Downward leader, Tall structures, Shadowing effect, Upward connecting leader, 

Nearby building. 
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Chapter 1  

Introduction 

The lightning discharge is the first cause of weather-related casualties after flash floods, well 

above tornadoes and hurricanes (Chapter 19 of [1]). It is also well known as a natural source 

of electromagnetic disturbances. The generated electromagnetic field could cause very costly 

damages in nearby telecommunication systems and equipment. Thirty to sixty percent of all 

power outages annually are lightning-related [2]. The evaluation of lightning electromagnetic 

effects and the design of an efficient protection system require a good knowledge of the 

phenomenon and an accurate estimation of the radiated electromagnetic fields. However, 

lightning occurrence is nearly unpredictable and its experimental characterization is quite a 

challenging task.  

The lightning current is certainly one of the most significant parameters to be determined 

for all the studies on the electromagnetic effects of lightning. It is worth noting that this 

current can only be measured at the base of the channel and the use of models is needed to 

predict the current spatial-temporal distribution along the channel. Tall structures or elevated 

objects located in urban areas or in countryside -particularly on mountain tops- are interesting 

means to measure lightning currents because they are often struck by lightning. Indeed, most 

of the available data on lightning currents are obtained using instrumented towers.  

Lightning initiated by tall strike-objects has attracted considerable attention of lightning 

researchers lately (e.g. [3-5]). Many lightning measurements including current and associated 

electromagnetic fields have been made all over the globe namely in Russia [4], South Africa 
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[6-7], Germany [8], Brazil [9], Japan [10], and Austria [11]. It is a novel area of studies, and 

the resolution of associated questions will have an impact upon many lightning-related 

applications such as lightning protection and the determination of lightning parameters from 

remote field measurements.  

The main objective of the thesis is to carry out further theoretical investigations and 

experimental measurements to understand and elucidate recently raised questions [5] on the 

characteristics of lightning return-strokes to tall structures and their associated 

electromagnetic radiation.  

 

1.1   Organization of thesis  

Chapter 2 presents a review on recent progress in the modeling of lightning strikes to tall 

towers and associated experimental data obtained during the last decade or so. Two types of 

return stroke models namely the Engineering Models, and the Electromagnetic or Antenna-

Theory (AT) models, extended to take into account the presence of a tall strike object are 

discussed. The Chapter contains also a description of the computational methods for the 

evaluation of electromagnetic fields generated by a lightning strike to a tall structure, as well 

as an overview of available data on lightning current and associated electromagnetic fields.  

 

Chapter 3 presents a theoretical description of the signature of electric and magnetic fields at 

very close distance associated with lightning strikes to a tower. It is shown that the electric 

field generated by a lightning return stroke to a tall structure can change polarity at very close 

distance range. This change in the polarity seems to be a specific signature of the very close 

vertical electric field. Two different theoretical explanations of such an inversion of polarity 

are given. In addition, a simple equation is derived which provides an estimate of the critical 

distance below which such an inversion of polarity might occur. The dependence of such an 

inversion of polarity on the value of the reflection coefficients at the base and top of the tower 

as well as other parameters such as the return stroke speed, and the adopted return stroke 

model are analyzed and discussed.  

 
Chapter 4 introduces an improved model for a lightning return stroke to tall structures that 

takes into account the presence of possible reflections at the return stroke wavefront and the 

presence of an upward connecting leader. Closed-form, iterative solutions for the current 
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distribution along the channel and the strike object are derived. Simulation results for the 

magnetic fields are compared with experimental waveforms associated with lightning strikes 

to the CN Tower (553 m tall).  

 

Chapter 5 presents and discusses measurements of electric (vertical and radial) and magnetic 

fields from leaders and return strokes associated with lightning strikes to the 100 m tall 

Gaisberg tower in Austria obtained in 2007 and 2008. The fields were measured at a distance 

of about 20 m from the tower. Simultaneously, return stroke currents were also measured at 

the top of the tower. The data include, for the first time at such close distances, simultaneous 

records of vertical and horizontal electric fields.  

The statistical parameters of the vertical and radial (horizontal) electric field changes due to 

the downward leader and the return stroke are presented and discussed. The obtained data are 

compared with available measurements obtained using triggered lightning and possible effects 

of the tower on the electromagnetic field signature are discussed. Finally, the ability of 

different lightning return stroke models in reproducing measured vertical and horizontal 

electric fields are tested using the obtained measured data.  

 

Chapter 6 presents an analysis of the effect of nearby buildings on the electric and magnetic 

fields radiated by lightning. Indeed, sensors used for the measurement of lightning electric 

and magnetic fields are often placed on top of buildings. Metallic beams and other conducting 

parts in those structures may cause enhancement or attenuation effects on the measured fields. 

The chapter describes an experimental campaign during which electric and magnetic fields 

radiated from distant natural lightning were measured simultaneously on the roof of a 

building (the Power Systems Laboratory of the Swiss Federal Institute of Technology, 

Lausanne, Switzerland) and on the ground at different distances away from it. The possible 

enhancement or reduction in the electromagnetic fields due the presence of such a building 

are investigated and discussed. Simulations using the Numerical Electromagnetics Code 

(NEC-4) in which the building was represented using a simple wire-grid model are also 

presented and compared with the experimental data. 

 

Finally, the conclusions of this study as well as proposed future work are presented in 

Chapter 7. 

 



 

 

 

 



 

 

 
 
 
 
 
Chapter 2  

Lightning to Tall Structures: State of the Art 

2.1   Introduction 

The lightning discharge is an unpredictable electromagnetic source and therefore its 

experimental characterization is quite a complex task. The lightning current is certainly one of 

the most significant parameters to be determined for all the studies on the electromagnetic 

effects of lightning. It is worth noting that this current can only be measured at the base of the 

channel and the use of return-stroke models is needed to predict the current spatial-temporal 

distribution along the channel. Tall structures or elevated objects located in urban areas or in 

the countryside -particularly on the mountain’s top- are interesting means to measure 

lightning currents because they are often struck by lightning. Indeed, most of the available 

data on lightning currents are obtained using instrumented towers. Another technique with 

which data on lightning current can be obtained is the artificial initiation of lightning using 

small rockets (Chapter 7 of [1]). However, in this thesis, we will essentially focus on lightning 

to tall structures and we will not cover data from rocket-triggered lightning.  

In this Chapter, we will present a review of recent progress in the analysis of lightning 

strikes to tall structures. The Chapter is organized as follows. In Section 2.2, we consider the 

modeling aspect of the problem and we present a review of the extension of lightning return 

stroke models to include the presence of an elevated strike object. Section 2.3 deals with the 

computation of electromagnetic fields generated by a lightning strike to a tall structure. A 
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review of available data on lightning current and associated electromagnetic fields is 

presented in Section 2.4. Finally, summary and conclusions are given in Section 2.5. 

 

2.2   Modeling Lightning Strikes to Tall Structures2 

Some of the return-stroke models, initially developed for the case of return-strokes initiated at 

ground, were generalized to take into account the presence of a vertically-extended strike 

object. The presence of an elevated strike object has been included in two classes of return-

stroke models, namely the engineering models and the electromagnetic or Antenna-Theory 

(AT) models, as defined by Rakov and Uman [12]. In the engineering return-stroke models, 

the spatial and temporal distribution of the channel current is specified based on observed 

characteristics such as the channel-base current, return-stroke speed and remote 

electromagnetic fields. The presence of an elevated strike object in such models has been 

considered by assuming the object as a uniform, lossless transmission line (e.g. [13]). In 

Antenna-Theory-type models (e.g. [14-17]) known as AT models, the strike object and the 

lightning channel are represented using thin wires. Maxwell’s equations are numerically 

solved using the Method of Moments (MoM) [18] to find the current distribution along the 

lightning channel, from which the radiated electromagnetic fields can be computed. Spatial 

and temporal current data out of electromagnetic and engineering models can be further used 

for computing electromagnetic fields. Beside electromagnetic and engineering models, the so-

called Hybrid Electromagnetic Circuit Model (HECM) could be considered as a third class of 

models based on electromagnetic and circuit theory (e.g. [19-20]).  

 

2.2.1  Engineering Models  

To analyze the interaction of lightning with tall strike objects, some of the engineering return-

stroke models, initially developed for the case of return-strokes initiated at ground, were 

extended to take into account the presence of a vertically-extended strike object e.g., [3, 22-

35]. In some of these models, it is assumed that a current pulse io(t) associated with the return-

stroke process is injected at the lightning attachment point both into the strike object and into 

the lightning channel, e.g., [3, 23, 26-32, 36]. The upward-moving wave propagates along the 

channel at the return-stroke speed v as specified by the return-stroke model. The downward-

                                                 
2 This Section is heavily drawn from [5]. 
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moving wave propagates at the speed of light along the strike object, assumed to be a lossless 

uniform transmission line characterized by constant non-zero reflection coefficients at its top 

and its bottom. As noted in [24], the assumption of two identical current waves injected into 

the lightning channel and into the strike object implies that their characteristic impedances are 

equal to each other. This assumption makes the models not self-consistent in that there is no 

impedance discontinuity at the tower top at the time of the lightning attachment to the tower, 

but there is one when the reflections from ground arrive at the tower top. 

 

2.2.1.1   Extension of engineering models based on a distributed source representation 

Rachidi et al. [13] presented an extension of the so-called engineering return-stroke models, 

taking into account the presence of a vertically-extended strike object, which does not employ 

the assumption that identical current pulses are launched both upward and downward from the 

object top. The extension is based on a distributed-source representation of the return-stroke 

channel [37-38], which allows more general and straightforward formulations of these models 

than the traditional representations implying a lumped current source at the bottom of the 

channel. 

The general equations for the spatial-temporal distribution of the current along the lightning 

channel and along the strike object have been derived in [13]: 

 
( ) ( )

( )( )
0

1

, , ,

2
1 1 ,

o t o

o
n

n n
t t g t

z h z h
i z t P z h i h t i h t

v c

h z nh z h
i h t u t

c c v

ρ

ρ ρ ρ ρ
∞

=

∗

+

′ ′− −′ ′= − − − −

′ ′+ −
+ − + − − −

    
       

   
      


 (2.1) 

for h < z´ < H0 

( ) ( ) 1

0

2 2
, 1 , ,n n n n

t t g o t g o
n

h z nh h z nh
t t

c c c c
i z t i h i hρ ρ ρ ρ ρ

∞
+

=

′ ′− +
− − − −

    ′ = − +        
  (2.2) 

for 0 ≤ z´ ≤ h 

where h is the height of the tower, ρt and ρg are the top and bottom current reflection 

coefficients for upward and downward propagating waves, respectively, given by 

t ch
t

t ch

Z Z

Z Z
ρ −=

+
 (2.3) 

t g
g

t g

Z Z

Z Z
ρ

−
=

+
 (2.4) 



2. Lightning to Tall Structures: State of the Art 

 
 

8

H0 is the height of the extending return-stroke channel, c is the speed of light, P(z´) is a 

model-dependent attenuation function, u(t) the Heaviside unit-step function, v is the return-

stroke front speed, and v* is the current-wave speed. Expressions for P(z´) and v* for some of 

the most commonly used return-stroke models are summarized in Table 2.1, in which λ is the 

attenuation height for the MTLE model and Htot is the total height of the lightning channel. 

 

Table  2.1 P(z´) and v* for different return-stroke models (Adapted from [12]). 

Model P(z´) v* 

BG 1 ∞ 

TCS 1 -c 

TL 1 v 

MTLL 1-z´/Htot v 

MTLE exp(-z´/λ) v 

 

Equations (2.1) and (2.2) are based on the concept of ‘undisturbed current’ io(t), which 

represents the ‘ideal’ current that would be measured at the tower top if the current reflection 

coefficients at its both extremities were equal to zero. 

It is assumed that the current reflection coefficients ρt and ρg are constant. In addition, any 

upward connecting leader and any reflections at the return-stroke wavefront [30] are 

disregarded.  

 

2.2.1.2   Extension of engineering models based on a lumped series voltage source 

Baba and Rakov [35, 39] proposed an alternative approach to Rachidi et al.’s distributed 

source representation [13], using a lumped series voltage source at the junction point between 

the channel and the strike object. They showed that such a representation ensures appropriate 

boundary conditions at the attachment point and is equivalent to the distributed source 

representation [39]. In their representation, Baba and Rakov expressed the spatial-temporal 

distribution of the current along the strike object and along the channel in terms of the short-

circuit current isc(t), which is related to the undisturbed current through 

( ) ( )2sc oi t i t=  (2.5) 

Furthermore, in [39], Baba and Rakov considered in their expressions a different speed vref 

for the upward propagating current waves reflected from the ground and then transmitted into 

the lightning channel.  
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Note that an equivalent representation in terms of the so-called reference current – the current 

that would flow through the return-stroke channel in the absence of the elevated struck object 

– has also been proposed by Shigihara and Piantini ([40]). 

 

2.2.1.3   On the representation of the elevated strike object 

In all engineering models, the elevated strike object is modeled as an ideal transmission line. 

To include the structural nonuniformities of the elevated strike object, several transmission 

line sections in cascade have also been considered (e.g. [25, 41]). The transmission line 

representation of the elevated strike object has been shown to yield reasonable results in 

comparison with experimental data. However, one should bear in mind that experimental data 

associated with lightning to tall structures are ‘affected’ by other, less-easily controlled factors 

such as the variability of lightning channel impedance and possible reflections at the return-

stroke wavefront [42]. In [43], Bermudez et al. presented an experimental validation of the 

transmission line representation of an elevated object struck by lightning. The experimental 

results were obtained using a reduced-scale model and injected signals with narrow pulse 

widths (down to 500 ps). The validation is performed using a reduced scale structure 

representing the Toronto CN Tower in Canada. Two models consisting, respectively, of 1-

section and 3-section uniform transmission lines were considered for the comparison. It was 

shown that the 3-section model is able to accurately reproduce the obtained experimental data. 

The overall agreement between the 1-section model and the experimental results was also 

satisfactory, at least for the early-time response.  

More recently, FDTD simulations performed by Baba and Rakov [44] and confirmed by 

Shoory et al. [45] suggest that the waveguide properties of a conical tower above ground 

depend on the direction of propagation. Precisely, while the current pulses suffer no 

attenuation while traveling from the tower apex to its base, the attenuation is significant when 

pulses propagate from the base to the apex [44]. This finding might render questionable the 

validity of reflection coefficients at ground level inferred from the measurements of the 

current at the top of the tower. 

 

2.2.1.4   Current distribution along the channel as predicted by engineering models 

Pavanello et al. [46] compared  the spatial-temporal distribution of the current predicted by 

engineering models, employing an undisturbed current io(t), given by 
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This undisturbed current is shown in Fig. 2.1, where the values of the parameters chosen are: 

Io1 = 9.9 kA, η = 0.845, τ1 = 0.072 μs, τ2 = 5.0 μs, Io2 = 7.5 kA, τ3 = 100.0 μs, τ4 = 6.0 μs. 

These values correspond to the channel-base current adopted in [47] to compare ground-

initiated lightning return-stroke models. Starting from the same undisturbed current, the 

spatial-temporal distribution of the current along the channel and along the strike object were 

calculated for each model.  

In the calculation, the elevated strike object was assumed to have a height h = 168 m, 

corresponding to the Peissenberg tower in Germany, and reflection coefficients were set 

respectively to ρt = -0.53 and ρg = 0.7 [8]. 

 

 
Fig.  2.1 Undisturbed current (Adapted from[46]) 

 
Fig 2.2 shows the current distribution along the tower and along the channel, at different time 

instants (t = 1, 2,.., 10 μs), predicted by each model. It can be seen that [46] 

- In accordance with (2.2), the current distribution along the tower is independent of the 

model; 

- The BG and TCS models exhibit a strong discontinuity at the return-stroke wavefront, 

inherent in these models [12] 

- Although the vertical scale of Fig. 2.2 does not allow resolution of current variation at 

the return-stroke wavefront for TL, MTLL and MTLE models, these models have also a 
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discontinuity at the front. This discontinuity arises from the fact that the current injected into 

the tower at its top is reflected back and forth at its top and bottom ends, and portions of this 

current are transmitted into the channel; these transmitted pulses, which are assumed to travel 

at the speed of light, catch up with the return-stroke wavefront travelling at a lower speed, but 

not allowed to propagate in the leader channel above the return-stroke front [48]. 

 

 
(a)       (b) 

 
(c)       (d) 

 
(e) 

 
Fig.  2.2 Current (horizontal axis) as a function of height z´ (vertical axis) at ten instants of time, t = 1, 2, …, 10 µs, for five 
models  starting from the same undisturbed current (shown in Fig.  2.1).  (a) TL model, (b) BG model, (c) MTLL model, (d) 

TCS model, (e) MTLE model. The horizontal dashed line indicates the height of the tower (168 m). (Adapted from [46]) 
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Fig.  2.3 shows the waveforms of current evaluated at the top (168 m) and the base of the 

tower (0 m). The effects of the multiple reflections at the tower extremities are clearly visible 

in the waveforms. It can also be seen that the current at the tower base has a higher peak value 

due to the contribution from the reflected wave at ground level [46]. 

 

 
(a)       (b) 

Fig.  2.3 Current at the top (a) and at the bottom (b)) of a 168-m tower. (Adapted from [46]) 

 

2.2.1.5   Determination of reflection coefficients at the top and the bottom of the strike object 

Engineering models require that the reflection coefficients at the top and bottom of the strike 

object be known. In most of the studies, those coefficients are assumed to be constant and 

frequency-independent. The values of the reflection coefficients have been inferred by several 

authors from a limited experimental set of current waveforms found in the literature [49-51]. 

The knowledge of reflection coefficients is also required to extract the ‘primary’ (or 

undisturbed) current exempt from the disturbances introduced by the transient processes along 

the tower. Guerrieri et al. [3] proposed a formula, corrected by Rachidi et al. [13], to extract 

the undisturbed current. The formula involves an infinite summation in the time domain, 

assuming that the reflection coefficients are constant and known. Gavric [52] proposed an 

iterative method based on the Electromagnetic Transient Program (EMTP) to remove 

superimposed reflections caused by a strike tower from digitally recorded lightning flash 

currents. Janischewskyj et al. [53] derived reflection coefficients at the CN Tower in Toronto 

and stated that the values depend on the initial rise time of the measured current, although the 

limited number of points in their plots render the drawing of conclusions difficult. A 

dependence on the risetime would suggest that at least one of the reflection coefficients is a 

function of the frequency. They also proposed a method to extract the reflection coefficients 
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from the measured current waveform. However, their method is applicable only assuming a 

simplified current waveform (double ramp) and neglecting any frequency dependence for the 

reflection coefficients. The last consideration was relaxed in a first approximation by 

Bermudez et al. [33]. They derive a frequency-domain counterpart of expressions (2.1) and 

(2.2) which include the frequency-dependence of reflection coefficients. They also derived an 

expression to calculate the reflection coefficient as a function of the frequency at the bottom 

of the lightning strike object from two currents measured at different heights along the strike 

object.  

They showed that [33], if the current and its time derivative overlap with reflections at the 

top or bottom of the strike object, it is impossible to derive the reflection coefficient at the top 

of the strike object exactly from any number of simultaneous current measurements. They 

proposed an extrapolation method to estimate this reflection coefficient. The proposed 

methodology was applied to experimental data obtained on the Peissenberg Tower (Germany) 

consisting of lightning currents measured at two heights. The obtained results suggest that the 

reflection coefficient at ground level can be considered as practically constant in the 

frequency range 100 kHz to 800 kHz [33]. 

 

2.2.2  Electromagnetic Models 

Electromagnetic models have been widely employed by lightning researchers for 

investigating lightning strikes to tall structures. An Antenna-Theory-type model was first 

proposed by Podgorski and Landt in 1985 [14, 54] and it was applied to analyze lightning 

strikes to the CN Tower. In AT-type models (e.g. [15-17, 55]), the elevated strike object is 

represented using thin wires and the ground is generally assumed to be perfectly conducting. 

Very recently, the ground finite conductivity and the buried grounding structure of the tower 

were included in the analysis [56-57]. The lightning return-stroke channel is modelled as a 

vertical wire antenna and the lightning return-stroke current is injected by a voltage source at 

the tip of the tower. The current distribution along the channel and along the tower is found 

by solving an electric field integral equation [17].  

 

2.2.2.1   Influence of the finite ground conductivity and the buried structure of the tower 

Petrache et al. [56-57] employed the Numerical Electromagnetics Code NEC-4 [58], a well-

known and widely used computer code based on the Method of Moments for analyzing the 
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electromagnetic response of antennas and scatterers. Compared to previous NEC versions, 

such as NEC-2 used by Baba and Ishii [16], NEC-4 is numerically more efficient and can also 

model wires buried in the ground or penetrating from the air into the ground. Fig 2.4b 

illustrates a wire model for the CN tower adopted by Petrache et al. [56]. Compared to 

previous models used by Podgorski and Landt [14] and by Kordi et al. [17], structural 

discontinuities are better reproduced in the present model and furthermore, the grounding 

structure of the tower is also taken into account as it can be seen in the inset of Fig. 2.4b. The 

buried part is composed of 6 vertical wires, each 15-m long. The ground is characterized by 

its conductivity σg and its relative permittivity εrg, assumed to be constant and frequency-

independent. In order to reproduce a return-stroke speed along the lightning channel lower 

than the speed of light, distributed series inductances and resistances are added to the modeled 

channel [16]. The adopted values are those suggested by Baba and Ishii [16], namely 3 μH/m, 

and 1 Ω/m, respectively. These values correspond to an equivalent return-stroke speed of 

about half the speed of light. The wire structure representing the tower and the lightning 

channel were divided into 10-m length segments, whereas the underground structure was 

divided into 1-m length segments. The voltage source at the top of the strike object is 

determined by the desired current waveform at the channel-base and by the input impedances 

of the lightning channel and the tower. The detailed procedure is explained in [59] and [17]. 

Fig.  2.5 presents two current waveforms associated with return-strokes to the CN Tower, 

which occurred, respectively, on April 7th and April 11th, 1999 [57]. The currents were 

measured at a height of 509 m. In the same figures, simulation results for the current obtained 

using NEC-4. 

For computations, the source current waveform was specified using Heidler’s functions 

according to the procedure described by Kordi et al. [17]. Comparisons presented in Fig.  2.8 

reveal good agreement between calculated and measured waveforms, especially when the 

finite ground conductivity is taken into account. In that figure, P.G. stands for perfect ground. 
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(a)         (b) 

Fig.  2.4 (a) The CN Tower, (b) its wire model including its grounding system. (Adapted from [56]) 

 

 
(a)       (b) 

Fig.  2.5 Lightning return-stroke currents at a height of 509 m above ground. The measured current waveforms correspond to 
events recorded at the CN Tower on: (a) April 7th, 1999, first return-stroke; (b) April 11th, 1999, second return-stroke. P.G. 

stands for perfect ground. (Adapted from [57]) 
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2.2.2.2   Reflections from the ground and their dependence on ground conductivity 

To analyze the influence of the ground conductivity upon the reflection coefficient at ground 

level, Petrache et al. [57] considered a simpler tower configuration which is shown in Fig.  2.6. 

They also considered a narrow-width pulse for the incident current (see Fig.  2.7), so as to 

determine the reflection coefficient in a straightforward way as proposed by Bermudez et al. 

[33].  

Fig.  2.8 shows the simulations for the current at 509 m above ground level and at ground 

level [57]. The simulations were carried out for different ground conductivities, namely ∞ 

(perfect ground), 0.01 S/m and 0.001 S/m. The ground’s relative permittivity εrg was assumed 

to be constant and equal to 10. 

From Fig.  2.8, it can be seen that the reflection coefficient at ground level, nearly equal to 1 

for a perfectly conducting ground, drops to 0.75 for a ground conductivity of 0.01 S/m and 

0.52 for a ground conductivity of 0.001 S/m.  

 

 
 

Fig.  2.6 Model of the tower used for the analysis of ground reflections. (Adapted from [57]) 
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Fig.  2.7 Narrow-width pulse incident current. (Adapted from [57]) 

 
(a)       (b) 

Fig.  2.8 Current at two heights along the tower as a function of the ground conductivity: (a) 509 m, and (b) 0 m (ground 
level). The incident current is represented in Fig.  2.7. (Adapted from [57]) 

 
2.2.3  Hybrid Electromagnetic Circuit Model (HECM) 

The so-called Hybrid Electromagnetic Circuit Model (HECM) (e.g. [19-20]) is a combination 

of electromagnetic and circuit theory models. In this model, the electric scalar and the 

magnetic vector potentials are employed to take into account electromagnetic coupling, which 

is represented in terms of circuit quantities, voltages, and currents. 

 

2.3   Electromagnetic field computation 

In contrast with electromagnetic models for which the electromagnetic fields are computed 

simultaneously with the distribution of the current along the radiating structure (strike object 

and lightning channel), the use of engineering models (which specify the spatial-temporal 

distribution of the current along the channel and the struck object) require the evaluation of 

-1 0 1 2 3
-2

0

2

4

6

8

10

Time [microseconds]

In
ci

de
nt

 c
ur

re
nt

 [k
A

]

-1 0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

8

10

Time [microseconds]

C
ur

re
nt

 [k
A

]

P.G.

0.01 S/m

0.001 S/m

-1 0 1 2 3 4 5 6 7 8 9 10

-4

-2

0

2

4

6

8

10

12

14

16

Time [microseconds]

C
ur

re
nt

 [k
A

]
P.G.

0.01 S/m

0.001 S/m



2. Lightning to Tall Structures: State of the Art 

 
 

18

the associated electromagnetic fields. The calculation procedure essentially depends on the 

ground electromagnetic properties. When the ground is assumed to be a perfectly conducting 

plane, image theory can be adopted for the evaluation of the electromagnetic fields. For 

distances not exceeding several kilometres, the perfect ground assumption is considered to be 

a reasonable approximation for the vertical component of the electric field and for the 

azimuthal component of the magnetic field (e.g. [60-61]). Indeed, even for a finitely 

conducting ground, contributions of the source dipole and of its image (see Fig.  2.9) to these 

field components add constructively and, consequently, relatively small variations in the 

image field due to the finite ground conductivity will have little effect on the total field. 

However, the horizontal (radial) component of the electric field radiated by lightning is 

appreciably affected by the finite ground conductivity. Indeed, for this field component, the 

effects of the two contributions subtract, and small changes in the image field may lead to 

appreciable changes in the total horizontal field. Although the intensity of the horizontal field 

component is generally much smaller than that of the vertical one, within the context of 

certain field-to-transmission line coupling models (e.g. [62]), this component plays an 

important role and thus, its calculation requires the use of the rigorous expressions or at least 

reasonable approximations of those. 

 

2.3.1  Electromagnetic field expressions for a perfectly conducting ground 

According to Eq. (2.1), at a generic height z´ along the channel, the current results from the 

contribution of a series of time-delayed current components. The first one, moving upward at 

a constant speed v, represents the return-stroke wave front which progressively turns on the 

distributed current sources [13] by way of which the channel is modeled. 

Assuming that no current flow is possible above the return-stroke wave front, the current 

distribution has to be abruptly cut off at this front [48, 63]. This is mathematically expressed 

by the Heaviside function present in Eq. (2.1). 

All other contributions resulting from multiple reflections at the two ends of the tall 

structure, are supposed to travel at the speed of light. Because of their higher speed, they catch 

up with the return-stroke wave front providing a nonzero contribution which leads to a 

discontinuity if no current is admitted above the front. Notice that this truncation already 

produces a discontinuity at time t = 0+ since the contribution of the very first distributed 
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current source in the channel is reflected from the tower top and propagates upward at the 

speed of light [48].  

 

 
Fig.  2.9 Adopted geometry for field computation [63] 

 
Although such a discontinuity may not be conceivable from a physical point of view, it must 

still be considered in the analysis for the sake of consistency with the adopted engineering 

models.  

The electromagnetic field contributions from an elemental dipole of current i(z´,t) of length 

dz´ located along the vertical axis at z´ (see Fig.  2.9) are calculated with the usual expressions 

valid for a perfectly conducting ground (e.g. [64]): 

 

2 2

5
/

2 2 2

4 2 3

' 2( ')
( , , ', ) ( ', / )

4

2( ') ( ', / )
( ', / )

t

z
o R c

dz z z r
dE r z z t i z R c d

R

z z r r i z t R c
i z t R c

cR c R t

τ τ
πε

 − −= − +


− − ∂ −+ − − ∂ 


 (2.7) 

 
5

/

4 2 3

' 3 ( ')
( , , ', ) ( ', / )

4

3 ( ') ( ') ( ', / )
( ', / )

t

r
o R c

dz r z z
dE r z z t i z R c d

R

r z z r z z i z t R c
i z t R c

cR c R t

τ τ
πε

−= − +

− − ∂ − + − + ∂ 


 (2.8) 



2. Lightning to Tall Structures: State of the Art 

 
 

20

 
3 2

' ( ', / )
( , , ', ) ( ', / )

4

dz r r i z t R c
dH r z z t i z t R c

R cR tϕ π
∂ − = − + ∂ 

 (2.9) 

in which 

- r, z are the cylindrical coordinates of the observation point, 

- R is the distance between the dipole and the observation point, 
2 2( ' )R r z z= + − , 

- i(z´,t) is the dipole current, 

- c is the speed of light, and, 

- εo is the permittivity of free space. 

The total electromagnetic fields are calculated by integrating the above equations along the 

tower-channel and its image, assuming a perfectly-conducting ground. 

In the presence of a current discontinuity, the radiation term, namely the last term in each 

equation, which is proportional to the current time-derivative, introduces a singularity that 

needs to be treated separately [64-69]. 

 

2.3.1.1   Turn-on term 

The complete expression of the electromagnetic field is obtained by integrating (2.7) through 

(2.9) along z´ from ground level to the wave front and then by adding the corrective turn-on 

term across the discontinuity in H, expressed as 

 
( ', / )

( ', , ) '
H

i z t R c
f z z r dz

t

∂ −
∂  (2.10) 

where f (z´,z,r) can be r2/c2R3, r(z-z´)/c2R3 or r/cR2, depending on which component of the 

field is being calculated [48]. 

The reason why an additional turn-on term must be introduced in the field equations is that 

the presence of the Heaviside function in Eq. (2.1) cannot be disregarded when the time-

derivative of the current is calculated. Its derivative, namely, a delta function, multiplied by 

the amplitude of the current at the wave front, needs to be added to the radiation term. In the 

case in which the current distribution presents no discontinuity at the return-stroke wave front, 

this turn-on term contribution vanishes. The discontinuity can be treated considering a 

nondiscontinuous current wave front of length ∆z´´ which reaches the level Ifront linearly in a 

time ∆t, and expressing the radiation integral across H taking the limit when the front duration 

tends to zero [64].  
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The final expressions for the turn-on term fields, in which the apparent front speed appears as 

the reciprocal of the term between brackets are given by [48]: 
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In equations (2.11)-(2.13), the two terms on the right-hand side represent the turn-on term due 

to the discontinuity at the wavefront and at its image, respectively. 

The general expression for the current at the wavefront is simply obtained from Eq. (2.1) in 

which the time variable t appears implicitly through H [48]: 
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It is worth to observe that the first term on the right-hand side of Eq. (2.14) is nonzero only 

for the BG and TCS models, and it corresponds to the inherent discontinuity predicted by 

these two models. This means, by consequence, that the turn-on term has the same expression 

for the TL, MTLL and MTLE models [48]. 

The contribution of the turn-on term to the total field depends on many factors such as the 

height of the tower, the reflection coefficients at its extremities, the return-stroke speed and 

the position of the observation point (distance and elevation). Pavanello et al. [48] found that 

the contribution of the turn on term to the total electric and magnetic fields is negligible at 

close distances (below 100 m) and increases rapidly to reach an asymptotic value of about 

12% at a distance of 5 km and beyond. At these distances, the field peak is essentially due to 

the radiation term. 
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2.3.1.2   Comparison between different engineering models 

Pavanello et al. [46] compared five engineering models (BG, TCS, TL, MTLL and MTLE) 

employing the same undisturbed current io(t), presented in Fig.  2.1. The elevated strike object 

was assumed to have a height h = 168 m, corresponding to the Peissenberg tower in Germany. 

The reflection coefficients were set respectively to ρt = -0.53 and ρg = 0.7 [8]. 

Fig. 2.10 presents electric and magnetic fields calculated at a distance of 50 m from the 

tower base [46]. At this distance, the electric field is dominated (at later times) by its 

electrostatic term. The model- predicted electric fields are very similar for the first 5 μs, 

beyond which the BG, TCS and MTLL models predict the flattening of the field, typically 

observed at close distances, while the TL model predicts a field decay. The late-time E-field 

predicted by the MTLE model exhibits a ramp, as in the case of a ground-initiated return-

stroke [46]. Note, however, that a judicious choice of the attenuation factor would result in the 

flattening of the late-time E-field at close range [70]. 

Fig.  2.10b shows that the predicted magnetic field is nearly model-independent. At this 

distance, the magnetic field is dominated by its induction term, and its waveshape is similar to 

the current at the base of the tower shown in Fig.  2.3b. 

Fig.  2.11 presents calculated electric and magnetic fields at a distance of 5 km [46]. The 

electric and magnetic field waveshapes for the first 5 μs are dominated by the radiation term 

and hence they are very similar. No significant differences are found between the various 

models in this early-time region. The differences between the model predictions become more 

pronounced at late times, t > 5 μs or so, although they are unremarkable. Note that all the 

models predict a flattening of the electric field at later times at a value that is significantly 

smaller than the initial peak, in contrast with calculated electric fields for ground-initiated 

return-strokes (see, for example, Fig. 12 of [47]). 

The electric and magnetic fields at a distance of 100 km are plotted in Fig.  2.12 [46]. At this 

distance, the fields are essentially radiation fields, and electric and magnetic fields have the 

same waveshape. The fields associated with ground-initiated return-strokes at such distances 

exhibit a zero-crossing which is only reproduced by the MTLE and MTLL models [12, 47]. 

As seen in Fig.  2.12, for the considered case of a 168-m tower-initiated return-stroke, none of 

the models predicts a zero-crossing. The absence of zero-crossing, in particular for the MTLE 

and MTLL models, can be explained by the contribution of the turn-on term [48]. 
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(a)                                                                                                   (b) 

Fig.  2.10 Electric (a) and magnetic (b) fields calculated at a distance of 50 m from a lightning return-stroke to a 168-m tower. 
(Adapted from [46])  

  
(a)                                                                                                    (b) 

Fig.  2.11 Electric (a) and magnetic (b) fields calculated at a distance of 5 km from a lightning return-stroke to a 168-m tower. 
(Adapted from [46]) 

  
(a)                                                                                                  (b) 

Fig.  2.12 Electric (a) and magnetic (b) fields calculated at a distance of 100 km from a lightning return-stroke to a 168-m 
tower. (Adapted from [46]) 
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2.3.1.3   Propagation effects 

The effect of the finite conductivity of the ground on the amplitude and waveshape of 

electromagnetic fields radiated by lightning return-strokes to tall towers was recently 

investigated in [71]. The study was based on the engineering return-stroke models extended to 

take into account the presence of a vertically-extended strike object. In [71], the propagation 

along a finitely-conducting ground is taken into account using Cooray’s approach [72]. 

Simulations were presented for a homogeneous ground and considering three cases: (1) a 

return-stroke initiated at ground level, (2) a return-stroke to a 168-m tall tower corresponding 

to the Peissenberg tower, and (3) a return-stroke to a 553-m tall tower corresponding to the 

CN Tower. It is shown that the propagation along an imperfectly conducting ground causes 

the amplitude of the field to decrease and its risetime to increase with decreasing ground 

conductivity. In addition, it was found that some of the fine structure of the electromagnetic 

field associated with transient processes along the struck tower vanishes due to propagation 

effects. Simulations presented in [71] revealed also that the enhancement effect of the tower 

(with respect to a ground-initiated return-stroke) on the peak field, which is considerable for a 

perfectly conducting ground, tends to become less significant for a lossy ground. 

 

2.3.1.4   Effect of the tower 

Based on theoretical modeling and experimental observations, it is well established that the 

presence of a tower could result in a substantial increase (a factor of 3 or so) of the electric 

and magnetic field peaks and their derivatives (e.g. [27, 34-35]) for observation points located 

at distances exceeding the height of the tower. 

Interestingly, the effect of the tower at distances of about the height or the tower or less, 

could result in a significant decrease of the electric field (e.g. [35, 73-74]). 

 

2.3.2  Electromagnetic field computation for a finitely conducting ground 

Assuming the lightning channel as a lossless vertical antenna above a finitely conducting 

ground the associated electromagnetic fields could be basically calculated using three 

different approaches: 1) use of dedicated algorithms; 2) use of simplified approaches; and 3) 

use of numerical methods (MoM or FDTD) [21]. 
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2.3.2.1   Dedicated Algorithms 

The exact solution of Maxwell’s equations due to a vertical dipole located above a finitely 

conducting ground as discussed in [75] result in the so-called Sommerfeld integral equations 

[76]. The high oscillatory nature of the Sommerfeld integrals makes it difficult to get the 

resulting expressions numerically evaluated. Some efforts have been recently made to find an 

efficient algorithm that could numerically evaluate the resulting expressions. A dedicated 

algorithm [77-80] has been developed by Delfino and co-workers that could be applied to the 

both air-ground expressions generated by a lightning discharge. 

 

2.3.2.2   Simplified Approaches 

A   Cooray-Rubinstein formula (above-ground horizontal electric field) 

Several studies have shown that the Cooray-Rubinstein formula [81-82] yields a satisfactory 

approximation of the above-ground horizontal electric field at close (one hundred meters), 

intermediate (some kilometers), and far (tens of kilometers) distances (e.g. [61, 81]. In the 

Cooray-Rubinstein formula the horizontal electric field at a given height, h, is expressed as 

the sum of two terms. The first term is the horizontal electric field for a perfectly conducting 

ground and the second term accounts for the effect of a finitely-conducting ground. This 

formula reads 

( ) ( ) ( ) 0, , 0,r rp pE z h r E z h r H z r
j

ϕ
μ

ε σ ω
= = = − =

+
 (2.15) 

where, Erp is the radial electric field calculated at the height, h, and Hφp the azimuthal 

magnetic field computed at the ground level, both computed assuming the ground to be a 

perfect conductor.  

Delfino et al. [79] showed that only for very low conductivities, does the Cooray-Rubinstein 

formula exhibit some deviations from the reference one, but it still gives a conservative 

estimate of the radial field component, since it behaves as an upper bound for the exact curve. 

General limits of validity of the Cooray-Rubinstein approximation were theoretically 

examined by Wait [83]. Shoory et al. [84] presented a general equation for the horizontal 

electric field, from which the Cooray-Rubinstein formula can be derived as a special case. 

Cooray [85] further proposed a simple modification of (2.15) that provides a better early time 

response. Barbosa and Paulino [86] proposed an approximate time-domain formula for the 

horizontal electric field whose range of validity was stated to be equivalent to that of the 
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Cooray-Rubinstein formula (which is in the frequency domain). Caligaris et al. [87] 

mathematically derived the time-domain counterpart of the Cooray-Rubinstein formula. 

 

B   Cooray formula (under-ground electric fields) 

Use of modern underground power and communication systems over the past few years has 

resulted in increasing attention to the study of penetrating lightning electromagnetic fields 

into a finitely conducting ground. The direct use of equations for radiated electromagnetic 

fields inside the ground [75] from a simple dipole as for the case of above-ground fields, can 

be very costly in terms of computation time. In [88], Cooray has proposed a simplified 

formula for the evaluation of underground vertical and horizontal electric fields from 

lightning. The accuracy of Cooray simplified expression has been further evaluated by 

Petrache et al. [89] by taking as reference the exact solutions published by Zeddam [90]. 

Petrache et al. reported a good agreement between the exact and predicted horizontal electric 

field penetrating the ground at distances as closes as 100 m [89]. The predictions of the 

Cooray’s formula were found to be in good agreement with exact solutions for large values of 

ground conductivity (about 0.01 S/m) [77]. For poor ground conductivities (0.001 S/m or so), 

Cooray’s expression yields less satisfactory results, especially for the late time response [77].  

 

2.3.2.3   Numerical Methods 

A   Finite Difference Time Domain (FDTD) 

Compared with traditional approaches for the evaluation of electromagnetic fields in the 

vicinity of the lightning channel, the FDTD method has the advantage of being easily 

implemented in computer codes [91], and, further, the finite ground conductivity is taken into 

account in a straightforward way. The one-dimensional FDTD method has been widely 

applied to the analysis of the induced overvoltages on overhead transmission lines by nearby 

lightning return strokes (e.g., [92]). It is only recently that the method has also been applied to 

the analysis of lightning electromagnetic fields. Sartori et al. [93] have proposed a hybrid 

method based partially on the FDTD technique for the near electric field calculation. The 

magnetic field was first determined analytically, assuming the spatial-temporal distribution of 

the current in each radiating dipole to be a step function. In 2004, Yang et al. [94] also used 

FDTD to compute electromagnetic fields in the vicinity of a return stroke. Their FDTD 
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approach has been used as a reference to test the validity of the quasi-image method and the 

Cooray-Rubinstein formula.  

More recently Mimouni et al. [95-96] calculated the underground electric and magnetic 

fields for strikes to both flat ground and tall towers, using engineering return-stroke models 

and the FDTD method. Fig.  2.13 and Fig.  2.14 show simulation results obtained by Mimouni 

et al. for the evaluation of the underground horizontal electric field which have been 

compared with those of Delfino et al. [80] as well as the results obtained using the Cooray 

simplified formula [88]. 
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(a)                                                                                                   (b) 

Fig.  2.13 Underground radial electric field (r = 50 m, depth d = 5 m) for (a) σ = 0.01 S/m, and (b) σ = 0.001 S/m lossy 
ground, compared with Sommerfeld approach and Cooray formula (Adapted from [95]). The results using Sommerfeld 

approach are from [80]. 
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(a)                                                                                                   (b) 

Fig.  2.14 Underground radial electric field (r = 50 m, depth d = 10 m) for (a) σ = 0.01 S/m, and (b) σ = 0.001 S/m lossy 
ground, compared with Sommerfeld approach and Cooray formula (Adapted from [95]). The results using Sommerfeld 

approach are from [80]. 
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It can be seen that the FDTD results are in excellent agreement with the exact evaluation of 

Delfino et al. [80]. The comparisons also show that the results obtained using the Cooray 

formula are in general in good agreement with more exact solutions, although some 

discrepancies can be observed for the late-time response of the field and for poor ground 

conductivities. Similar conclusions have been reported in [80]. 

Baba and Rakov [44, 97] also used the FDTD method to study the mechanisms of current 

wave propagation along vertical conductors [97], to reproduce small-scale experiments [44], 

and to study the enhancement of electromagnetic fields measured on the top of buildings [98]. 

 

B   Method of Moments (MoM) 

The method of moments has also been extensively applied to compute electromagnetic fields 

radiated by a lightning discharge, within the so-called antenna theory (AT) models, which 

belong to the class of electromagnetic models and in which the return-stroke channel is 

represented using thin wires (e.g., [15-17, 54-56, 59, 84]). Most of the MoM solutions are 

implemented in the frequency domain, which allows taking into account the presence of a 

lossy ground in a straightforward way. 

 

2.4   Experiments 

Two types of lightning observations are reviewed here: (a) recent current measurements on 

instrumented towers and (b) measurements of radiated electric and magnetic fields from tall 

towers.  

 

2.4.1  Measurements of lightning current 

Traditional lightning parameters needed in engineering applications include lightning peak 

current, maximum current derivative (di/dt), average current rate of rise, current risetime, 

current duration, charge transfer, and action integral, all derivable from direct current 

measurements. Distributions of these parameters presently adopted by most lightning 

protection standards are based on measurements by K. Berger and co-workers in Switzerland 

[99]. More recently direct current measurements on instrumented towers were made in 

Russia, South Africa, Canada, Germany, Brazil, Japan, and Austria. Important results from 
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the Brazilian, Japanese, and Austrian studies were published during the last decade and will 

be briefly reviewed3.  

 

2.4.1.1   The Morro do Cachimbo tower, Brazil 

Visacro et al. [100] reported statistical parameters of lightning current measurements on the 

60-m Morro do Cachimbo tower near Belo Horizonte, Brazil. A total of 31 negative 

downward flashes containing 80 strokes were recorded during a period of 13 years. Median 

peak currents for first and subsequent strokes were found to be 45 and 16 kA, respectively, 

higher than the corresponding values, 30 and 12 kA, reported for 101 flashes containing 236 

strokes by Berger et al. [99]. Possible reasons for the discrepancy include a relatively small 

sample size in Brazil, the dependence of lightning parameters on geographical location (Brazil 

vs. Switzerland), and different positions of current sensors on the tower at the two locations 

(bottom of 60-m tower in Brazil vs. top of 70-m tower in Switzerland). For typical first 

strokes (longer risetimes) the towers in question are expected to behave as electrically short 

objects, so that the position of current sensor should not influence measurements. On the other 

hand, for subsequent strokes (shorter risetimes) the towers may exhibit a distributed-circuit 

behaviour, in which case the peak current measured at the bottom of tower might be 

influenced in a higher degree by the transient process in the tower compared to the peak 

current at the top [4, 101-102]. Visacro and Silveira [103], using a hybrid electromagnetic 

model and assuming a 100-m long upward connecting leader, showed that, for typical 

subsequent-stroke current risetimes, however, peak currents at the top and bottom of the 

Morro do Cachimbo tower should be essentially the same.  

 

2.4.1.2   Transmission-line towers, Japan 

Takami and Okabe [104] presented measurements of lightning return-stroke currents on 60 

transmission-line towers (at the top) whose heights ranged from 40 to 140 m. A total of 120 

current waveforms for negative first strokes were obtained from 1994 to 2004. This is the 

largest sample size for negative first strokes as of today. The median peak current was 29 kA, 

which is similar to that reported by Berger et al. [99], although the trigger threshold in Japan 

(9 kA) was higher than in Switzerland. Interestingly, initial data from this Japanese study (for 

                                                 
3 This Section is heavily drawn from [21]. 
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35 negative first strokes recorded in 1994-1997) yielded the median peak current of 39 kA 

[10]. 

 

2.4.1.3   The Gaisberg tower, Austria 

Diendorfer et al. [105] analyzed parameters of 457 upward negative flashes initiated from the 

100-m Gaisberg tower in 2000-2007. Upward flashes contain only strokes that are similar to 

subsequent strokes in downward flashes; that is, they do not contain first strokes initiated by 

downward stepped leaders. Some upward flashes contain no strokes at all, only the so-called 

initial-stage current. The median return-stroke peak current was 9.2 kA (n = 615, the largest 

sample size as of today).  

 

2.4.1.4   The CN tower, Canada 

Studies on lightning striking the 553-m tall Toronto Canadian National (CN) Tower have 

been performed and reported by the “CN Tower Lightning Studies Group (CNT-LSG)” since 

1978 (e.g. [27, 106-108]). Hussein et al. [108] reported the median value of the initial peak of 

current pulses measured in 1992-2001 at the top of the tower to be 5.1 kA, which is 

considerably lower than for the Gaisberg-tower return strokes, as well as for subsequent 

strokes in downward lightning and for strokes in rocket-triggered lightning (e.g., [4]). The 

discrepancy may be due to inclusion in the Canadian sample of events with current peaks 

smaller than 1 kA, some of which could be associated with the so-called initial-stage pulses, 

not with return strokes. Miki et al. [109] presented a detailed characterization of initial-stage 

pulses in object-initiated (100-m Gaisberg tower, 160-m Peissenberg tower, and 200-m Fukui 

chimney) and rocket-triggered lightning. The Peissenberg-tower data were further examined 

by Flache et al. [110]. 

 

2.4.2  Measurements of lightning electromagnetic fields from tall towers 

Knowledge of the characteristics of electromagnetic fields produced by lightning discharges is 

needed for studying the coupling of lightning fields to various electrical circuits and systems, 

as well as sensitive electronic circuits. On the other hand, measured electric and magnetic 

fields can be used for the indirect estimation of lightning parameters and for testing lightning 

models.  
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Bermudez et al. [34] made simultaneous records, gathered during the summers of 2000 and 

2001, of the return-stroke current and its associated electric and magnetic fields measured at 

two distances, namely, 2 km and 16.8 km, related with lightning strikes to the CN Tower.  

During the summer of 2005, Pavanello et al. [111] measured the vertical component of the 

electric field and the azimuthal component of the magnetic field produced by lightning strikes 

to the CN Tower at three distances, 2.0, 16.8, and 50.9 km, from the tower.  

A representative set of simultaneously measured return-stroke current and associated 

electric and magnetic fields at 2.0 km, 16.8 km, and 50.9 km, respectively, related to the 

second stroke of a CNT flash on Aug. 19th (14:13:13, Toronto time) is shown in Fig.  2.15 

[111]. The current waveform is characterized by an initial peak, considered as the actual value 

of the return-stroke current injected by lightning on the tower top, followed by a second, 

higher, peak, due to reflection from ground of the current wave. At 2 km, the electric field is 

characterized by its initial peak followed by an increasing ramp, and the magnetic field is 

characterized by an initial peak followed by a hump. These features are in agreement with 

characteristics of fields at this distance range for direct strikes to ground as reported in [112], 

although fields associated with strikes to tall structures have a more pronounced initial peak 

[27, 34]. At 16.8 km and 50.9 km, the electric and magnetic fields are characterized by similar 

waveforms, typical of distant fields [111]. The waveforms of the electric and magnetic fields 

at 16.8 km and 50.9 km exhibit a first zero crossing accompanying a narrow undershoot about 

5 microseconds after the onset of the return-stroke. For fields at 50.9 km, the expected zero 

crossing at about 40 microseconds [112] is also observed. The observed early undershoot has 

been attributed by Pavanello et al. [111] to the transient processes along the tower.  

Pavanello et al. [111] compared the measured waveforms with predictions of the five 

engineering return-stroke models extended to include the presence of the strike object. A 

reasonable agreement is found for all the models for the magnetic field waveforms at the three 

considered distances, although the peak values of the computed fields were systematically 

about 25% lower than measured values [111]. None of the models, however, was able to 

reproduce the early zero crossing and the narrow undershoot seen in the measured field 

waveforms. As far as the electric field was concerned, larger differences have been observed 

between simulations and measurements. These differences were attributed to the enhancement 

effect of the metallic structures of the buildings on which measuring sensors were located 

[111]. 
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(a)                                                                               (b) 

 
(c)                                                                               (d) 

 
(e)                                                                               (f) 

 
(g)                                                                               (h) 

Fig.  2.15 Simultaneous records of (a) return-stroke current derivative, (b) return-stroke current (numerically integrated), (c) 
electric and (d) magnetic fields at 2 km, (e) electric and (f) magnetic  fields at 16.8 km, and (g) electric and (h) magnetic 

fields at 50.9 km. 2nd stroke of the flash striking the CN Tower tip at 14:13:13 on August 19th, 2005. (Adapted from [111]) 
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2.5   Conclusions 

Recent progress in the modeling of lightning strikes to tall towers and associated experimental 

data obtained during the last decade or so were reviewed. Two types of return stroke models 

namely the Engineering Models, and the Electromagnetic or Antenna-Theory (AT) models, 

extended to take into account the presence of a tall strike object were discussed.  

The engineering models are characterized by a discontinuity at the return stroke wavefront 

which requires special care when calculating the electromagnetic fields. In addition, this 

discontinuity cannot be considered as physically plausible.  

Neither the two classes of models was able to reproduce the far field zero crossing of the 

electromagnetic fields, nor was it able to predict the narrow undershoot observed in the 

waveforms of the electromagnetic fields associated with lightning strikes to the Toronto CN 

Tower. 

The research performed by different research groups in the last decade has raised some 

important questions that need to be elucidated by further theoretical investigations and 

experimental measurements. Some of these issues are the following 

- Why do lightning return stroke models not reproduce the far-field zero crossing 

associated with lightning to tall structures? How should these models be revised to be able to 

reproduce such an effect? 

- How should the engineering models be revised in order to remove the associated 

current discontinuity at the return stroke wavefront? 

- No systematic theoretical analysis nor experimental data are available for 

electromagnetic fields in the immediate vicinity of a tall structure struck by lightning. The 

characterization of nearby electromagnetic fields is particularly important in the analysis of 

the interaction to nearby electrical and electronics systems.  

- It is well-known that the measurements of electromagnetic fields from lightning are 

affected by the presence of nearby buildings and metallic structures. However, no systematic 

and quantitative analysis of such an effect is presently available in the literature. 

The above issues will be dealt with in the following chapters of this thesis. 

 



 

 

 

 



 

 

 
 
 
 
 
 
 
Chapter 3  

Characteristics of Very Close Electromagnetic 
Fields in the Vicinity of a Tall Struck Object 

3.1   Introduction 

Lightning interaction with tall structures has been a subject of interest among lightning 

researchers in the last decade or so (e.g. [3-5]). Towers have been used for decades to record 

lightning current waveforms. The data obtained by Berger and co-workers (e.g. [99]) in the 

1970's represents still today the most complete statistical characterization of lightning current 

parameters. More recently, experimental observations on both current and electromagnetic 

fields have been obtained on tall telecommunication towers (e.g. CN Tower in Canada [113], 

Peissenberg Tower in Germany [8], Gaisberg Tower in Austria [114]). On the one hand, the 

experimental data on towers, as well as theoretical analyses (e.g. [4-5]), have provided 

evidence that the lightning current and current-derivative data obtained by means of 

instrumented tall towers might be affected ('contaminated') by transient processes occurring 

along the tower. On the other hand, based on theoretical modeling and experimental 

observations, it is a well established fact that the presence of a tower may result in a 

substantial increase (a factor of 3 or so) of the electric and magnetic field peaks and their 

derivatives (e.g. [27, 34-35]) for observation points located at distances exceeding the height 

of the tower. 

Interestingly, the effect of the tower at distances of about the height or the tower or less 

could result in a significant decrease of the electric field (e.g. [35, 73-74]). 
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In this chapter, we discuss the signature of electric and magnetic fields at very close distance, 

within the tower height, to a tower struck by lightning [115]. 

 

3.2   Theory and adopted model 

In this study, we make use of the engineering models extended to take into account the 

presence of an elevated strike object [13]. The expression for the current distribution along the 

lightning channel, h < z < H, is [13] 
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and, for the current distribution along the strike object, 0 < z < h, 
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In (3.1) and (3.2), h is the height of the tower, ρt and ρg are the top and bottom current 

reflection coefficients for upward and downward propagating waves, respectively, c is the 

speed of light, P(z) is a model-dependent function, u(t) the Heaviside unit-step function, v is 

the return-stroke front speed, and v* is the current-wave speed. Expressions for P(z) and v* 

for some of the most commonly used return-stroke models can be found in [12]. Furthermore, 

io(t) is the so-called ‘undisturbed current’, which represents the ‘ideal’ current that would be 

measured at the tower top if the current reflection coefficients at both of its extremities were 

equal to zero. Equations (3.1) and (3.2) can be represented equivalently in terms of the short-

circuit current [4], which is simply twice the undisturbed current, isc = 2io. 

It is also assumed that the current reflection coefficients ρt and ρg are constant. In addition, 

any upward connecting leader and any reflections at the return stroke wavefront [30] are 

disregarded in the analysis presented in this chapter. These effects will be considered and 

included in the analysis in the next Chapter. 
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3.3   Considered configurations, channel-base current and return-

stroke model 

Two elevated strike objects are considered in this study: (1) a 168-m tall tower corresponding 

to the Peissenberg tower in Germany, with reflection coefficients set, respectively, to ρt = -

0.53 and ρg = 0.7 [8], and, (2) a 553-m tall tower corresponding to the CN tower in Canada, 

with reflection coefficients set, respectively, to ρt = -0.366 and ρg = 0.8 [53]. 

The above values for the reflection coefficients have been determined by analyzing the 

current waveforms measured at the two considered towers. It is worth noting that, as 

suggested by Baba and Rakov [44], the waveguide properties of a conical tower above ground 

seem to depend on the direction of propagation. In particular, while the current pulses suffer 

no attenuation while traveling from the tower apex to its base, the attenuation is significant 

when pulses propagate from the base to the apex. As a result, the value for the reflection 

coefficient at ground level inferred from the measurements of the current near the top of the 

tower, as done by Janischewskyj et al. [53] for the CN Tower, might be somewhat 

underestimated. However, Heidler et al. [8] used simultaneous records of current waveforms 

measured near the top and near the base of the Peissenberg Tower. Therefore, their estimation 

for the reflection coefficient should not suffer from this effect. 

In our computations, the short-circuit current isc(t) and the undisturbed current io(t) are  

represented by a Heidler’s function and characterized by a risetime of 1.2 μs and a pulse 

duration at half peak of 50 μs. The peak of the short circuit current is 20 kA: 
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the values of the parameters are: Io = 9.5 kA, η = 0.882, τ1 = 0.5 μs, τ2 = 63 μs. The value for 

the return-stroke speed is assumed to be 120 m/µs ([116]). 

The adopted return-stroke model is the TL model (P(z) = 1, v* = v). Other return stroke 

models will also be considered later in Section 3.5. 

The electromagnetic fields are computed using the expressions derived by Uman et al. [117] 

assuming a perfectly conducting ground. It is worth shortly discussing the apparent 

inconsistency of engineering models in which, on the one hand, the ground reflection 

coefficient can be set to a value inferior to 1, corresponding to an imperfect ground, and on 

the other hand, the electromagnetic fields are generally computed based on a perfect ground 
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assumption. Indeed, a value for the ground reflection coefficient of about 0.7 to 0.8 would 

correspond to a ground conductivity of 0.01 S/m for the CN Tower (and its grounding) 

geometry, as inferred by Petrache et al. [57], who used a wire-model to represent the tower 

and applied in their analysis the Numerical Electromagnetics Code NEC-4. Since the vertical 

electric and azimuthal magnetic field components are very weakly affected by a finite 

conductivity of 0.01 S/m, especially at the considered very close distance ranges [118], 

considering a perfect ground when calculating electromagnetic fields appears to be a 

reasonable assumption.  

Note that, throughout this chapter, we will adopt the atmospheric electricity sign convention 

for the electric field sign. 

 

3.4   Simulation results and discussion 

3.4.1  168-m tall tower 

Fig.  3.1 presents vertical electric and azimuthal magnetic fields calculated at the horizontal 

distances of 5 m, 10 m, 15 m, 20 m, 25 m and 50 m from the struck tower. The observation 

point is at ground level. 

 

 
(a)                                                                                                            (b) 

 
Fig.  3.1 Electric (a) and magnetic field (b) at different distances from the 168-m tall struck tower.  

ρt = -0.53 and ρg = 0.7, v = 120 m/µs. 

 
It can be seen that, as expected, the magnetic field, dominated at these distances by the 

induction term, is characterized by a waveshape similar to that of the current (at the base of 

the channel) and it has a 1/r dependence. On the other hand, it can be seen, interestingly and 

0 10 20 30 40 50
-40

-30

-20

-10

0

10

 

 

V
er

ti
ca

l e
le

ct
ri

c 
fi

el
d 

(k
V

/m
)

Time (μs)

r = 5m

r = 50mr = 25mr = 20m

r = 15m

r = 10m

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (μs)

M
ag

ne
ti

c 
fi

el
d 

(k
A

/m
)

 

 

r = 5m

r = 10m

r = 15m

r = 20m
r = 25m

r = 50m



3. Characteristics of Very Close Electromagnetic Fields in the Vicinity of a Tall Struck Object 

 
 

39

in contrast with waveforms associated with strikes to ground, that the electric field at very 

close range (within 15 m) exhibits a negative polarity. Beyond 25 m, the field becomes 

positive. Note that in all the considered cases, the very initial excursion of the electric field is 

positive. At very close distance ranges, this initial positive excursion lasts only some tens of 

nanoseconds and is not discernible in the plots. Fig.  3.2 shows the first 50 nanoseconds of the 

electric field at a distance of 5 m from the tower base during which a slight positive excursion 

prior to the negative’s is clearly distinguishable.  

 
 

Fig.  3.2 The initial positive excursion of the electric field at a distance of 5 m from the 168-m tall struck tower.  
ρt = -0.53 and ρg = 0.7, v = 120 m/µs. 

 
3.4.2  553-m tall tower 

Fig.  3.3 presents similar results for the vertical electric and azimuthal magnetic fields 

calculated at the horizontal distances of 20 m, 30 m, 50 m, 60 m and 100 m from the struck 

tower. The observation point is at ground level. 

As with the 168-m tall tower, it can be seen from the simulations that the electric field at 

very close range (this time within 30 m) exhibits a negative polarity. At the distance of about 

40 m, the field has a bipolar waveshape. Beyond 50 m, the field becomes positive. As for the 

case of the shorter 168-m tall tower, the magnetic field is positive at all the considered 

distances and the electric field has an initial positive excursion which is not clearly visible in 

the figure. 
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(a)                                                                                                               (b) 

 
Fig.  3.3 Electric (a) and magnetic field (b) at different distances from the 553-m tall struck tower. 

ρt = -0.366 and ρg = 0.8, v = 120 m/µs. 

 

3.5   Theoretical explanation for the inversion of polarity 

Two different theoretical explanations are provided. The first is based on the general 

expressions of the electromagnetic field implemented in this study, and the second, using the 

equation derived by Baba and Rakov [35].  

 

3.5.1  Explanation using general field equations 

The general expressions for the vertical component of the electric field and the azimuthal 

component of the magnetic field from a vertical antenna above a perfectly conducting ground, 

given by [117] for an observation point at ground level, are given by 
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where H is the height of the return stroke wavefront as seen by the observer, r is the 

horizontal distance between the channel and the observation point, and R is the distance 
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between a single dipole located at a height z above ground and the observation point (

22 zrR += ) (see Fig.  3.4).  

 

 
 

Fig.  3.4 Geometry for the calculation of electric and magnetic fields generated by a lightning return stroke initiated 
 at the top of an elevated strike object.  

 

Considering very close observation points such that r << h, at early times, when the height of 

the active dipoles is located near the top of the struck object, the multiplicative term 222 rz −

in the static and induction components of the electric field is positive. This is in contrast with 

the case of a return stroke to ground, for which 222 rz −  is negative at early times. Therefore, 

at the considered very close distance ranges, where the static and induction4 terms are 

predominant, these two terms start by giving a negative contribution to the overall field. Note, 

however, that the magnitude of the negative excursion of the field is mainly due to the 

induction term which depends on the current; since the static term is dependent on the time-

integral of the current, it remains very small at the early times and yields a positive 

contribution at later times.  

Note that the above phenomenon occurs solely for the vertical electric field component and 

only at distances lower than the height of the tower. 

Fig.  3.5 and Fig.  3.6 illustrate the above observation. In these figures, we have plotted the 

vertical electric field, for the case of the 168-m tall tower, at distances of 10 m and 50 m. In 

the same figures, we have also plotted the contributions of the static, induction and radiation 

terms. 

                                                 
4 Note that, as shown by Thottappillil and Rakov [67], the three field components are not uniquely defined. 
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Fig.  3.5 Electric field at a distance of 10 m from the 168-m tall struck tower. Contribution of static, induction and radiation 
terms. ρt = -0.53 and ρg = 0.7, v = 120 m/µs. 

 
 

Fig.  3.6 Electric field at a distance of 50 m from the 168-m tall struck tower. Contribution of static, induction and radiation 
terms. ρt = -0.53 and ρg = 0.7, v = 120 m/µs. 

 
At a distance of 10 m (Fig.  3.5), it can be seen that the contribution of the induction term is 

negative and greater, in absolute value, than that of the static and radiation terms. At 50 m 

(Fig.  3.6), the induction term is still negative; however, the positive contributions of the static 

and radiation terms are more significant at this distance.  
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3.5.2  Explanation using the formula derived by Baba and Rakov [35] 

In [35], Baba and Rakov decomposed the total electric field due to a lightning strike to a 

tower into its incident- and reflected-wave components. Doing so, and based on the theory 

developed by Thottappillil et al. [119], they derived analytical expressions for the electric and 

magnetic fields for the special case of a return stroke speed v = c and ρt = 0 (inferences below 

are not significantly influenced by these simplifying assumptions) at a horizontal distance r 

from the tower base. These equations read [35] 
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A careful examination of equations (3.6) and (3.7) allows making the following observations: 

- The magnetic field has always a positive polarity, regardless of the value for the 

reflection coefficient and the distance to the observation point. 

- The initial electric field excursion (determined by the first term of (3.6), before the 

second and third terms start giving their contributions) is positive, regardless of the distance 

to the observation point. However, at very close distances such that r << h, the electric field 

could exhibit a change of polarity in the form of a negative excursion following the initial 

positive excursion when the reflection coefficient ρg < 1. For the ideal case when ρg = 1, the 

second and third terms in (3.6) cancel each other and the electric field would become positive 

and unipolar. 

A rough estimation of the distance up to which the electric field exhibits a change of 

polarity can be made by simplifying (3.6) for r << h, namely  

1 1 1
( , ) , 0.5 , 0.5 ,

2 2 2z sc sc g sc
o o o

h h h
E r t i h t i h t i h t

ch c cr c cr c
ρ

πε πε πε
     ≅ − − − + −     
     

 (3.8) 

The critical distance rc up to which the electric field exhibits the negative excursion can be 

therefore estimated as 
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(1 )
2c g

h
r ρ= −  (3.9) 

For the considered 168-m and 553-m tall towers, the estimated values for cr  are respectively 

25 m and 55 m. These values correspond very well to the simulation results presented in the 

previous Section. 

 

3.6   Sensitivity of the polarity inversion to different parameters 

3.6.1  Return-stroke speed 

Fig.  3.7 presents for the case of a strike to the 168-m tower, the vertical electric field at a 

distance of 10 m, considering different values for the return stroke speed, namely, 100 m/µs, 

150 m/µs and 200 m/µs. It can be seen that the field inversion of polarity at very close 

distances is not sensitive to the value of the return stroke speed. 

 

 
 

Fig.  3.7 Electric field at a distance of 10 m from the 168-m tall struck tower calculated assuming three different values for 
the return stroke speed: 100 m/µs, 150 m/µs and 200 m/µs. ρt = -0.53 and ρg = 0.7 
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Fig.  3.8 Electric field at a distance of 10 m from the 168-m tall struck tower calculated assuming three different values for 
the top reflection coefficient: ρt = -0.3, ρt = -0.53, ρt = -0.8. ρg = 0.7, v = 120 m/µs. 

 
3.6.2  Reflection coefficients 

Fig.  3.8 presents the same case (168-m tall tower, distance r = 10 m), considering different 

values for the top reflection coefficients: ρt = -0.3, -0.53, and -0.8. Again, the polarity and the 

overall waveshape of the electric field is not significantly affected by the value of the top 

reflection coefficient. 

 
 

Fig.  3.9 Electric field at a distance of 10 m from the 168-m tall struck tower calculated assuming three different values for 
the ground reflection coefficient: ρg = 0.5, ρg = 0.7, ρg = 1. ρt = -0.53, v = 120 m/µs. 
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Fig.  3.9 presents the effect of the reflection coefficient at ground, ρg. The electric field at a 

distance of 10 m from a 168-m tall tower is calculated for three different values for ρg, namely 

0.5, 0.7 and 1.  

Interestingly, it can be seen that the polarity of the electric field at very close range depends 

on the ground reflection coefficient. The peak of the negative excursion of the electric field 

decreases when increasing the ground reflection coefficient. And for the large values of the 

coefficient (ρg = 1), the field becomes positive and unipolar, as theoretically predicted by 

Equation (3.6).  

In order to illustrate the vertical electric and azimuthal magnetic fields polarity dependence 

on the tower’s grounding properties, the field peak values are selected and plotted as a 

function of distance to the tower in Fig. 3.10. Taking the 553-m tall tower as the study case, 

two cases have been considered: (1) the same configuration and parameters described in 

section 3.3, and, (2) same as (1) but considering a perfect tower grounding, ρg = 1 [120]. 

It can be seen that when the ground reflection coefficient is about 0.8 or lower, the 

maximum E-field peak at very close distance range is of negative polarity. However, no 

considerable change is found in the azimuthal magnetic field when the ground reflection 

coefficient becomes less than unity. 

 

 
(a)                                                                                                 (b) 

 
Fig.  3.10 Electric (a) and magnetic field (b) peaks at different distances from the 553-m tall struck tower. ρt = -0.366 , v = 

120 m/µs. Two different values for the ground reflection coefficient are considered: ρg = 0.8 and ρg = 1. 

 
3.6.3  Shadowing effect of the tower 

In order to analyze the effect of the strike tower on nearby fields, the variation of the electric 
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observation point and shown in Fig.  3.11. The ground has been assumed to be a perfectly-

conducting plane. Two cases have been considered: (i) a lightning strike to ground, and (ii) 

the same strike to a 100-m tall object [121].  

 

  
(a)                                                                                               (b) 

Fig.  3.11 Electric (a) and magnetic field (b) peaks at different distances in the presence and absence of the 100-m struck tower. Solid line: 
strike to ground. o: strike to a 100-m tall tower 

 

It can be seen that the electric field peak at distances beyond the height of the tower or so 

exhibits the typical 1/r dependence. At closer distances, however, the E-field peak features a 

saturation, due to the so-called tower shadowing effect [35, 73-74]. This shadowing effect 

results in a substantial decrease of the nearby electric field. 

On the other hand, the magnetic field peak varies inversely proportional to the horizontal 

distance and does not depend significantly on the presence of an elevated strike object. 

 

3.6.4  Return-stroke models 

Fig.  3.12 presents the electric field at a distance of 10 m from the 168-m tower, adopting 5 

engineering return stroke models (TL, MTLL, MTLE, BG and TCS) [12], extended to take 

into account the presence of a tall structure [13]. The value for the decay constant λ in MTLE 

is assumed to be 2 km.  

It can be seen that all the models predict the initial negative excursion of the field. At early 

times, the considered models predict a similar response for the electric field, although the BG 

and TCS models produce sharper initial peaks than do the TL, MTLL and MTLE models. At 

later times, however, the models predictions deviate significantly one from another.  
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Fig.  3.12 Electric field at a distance of 10 m from the 168-m tall struck tower calculated assuming five different return stroke 
models (TL, MTLL, MTLE, BG and TCS). ρt = -0.53 and ρg = 0.7, v = 120 m/µs. 

 

3.7   Summary and conclusions 

We have shown in this chapter that the electric field generated by a lightning return stroke to a 

tall structure can change polarity at very close distance range, typically at distances of about 

one tenth the height of the struck object or so. This change in the polarity appearing as a 

negative excursion preceded by a short (some tens of nanoseconds) initial positive excursion, 

seems to be a specific signature of very close vertical electric fields. Two different theoretical 

explanations of such an inversion of polarity are given, the first based on general field 

equations for a perfectly-conducting ground, and the second based on the equation derived by 

Baba and Rakov for the case when the return stroke wave front speed is assumed to be equal 

to the speed of light and the reflection coefficient at the top of the tall structure is zero. A 

simple equation is derived which provides an estimate of the critical distance below which 

such an inversion of polarity might occur. We also showed that the inversion of polarity 

depends on the value for the reflection coefficient at the base of the tower and might 

disappear for reflection coefficients close to 1. On the other hand, other parameters such as 

the return stroke speed, the reflection coefficient at the top of the tower, and the adopted 

return stroke model seem not to have an impact on the inversion of polarity. Experimental 

data on electromagnetic fields at very close range to a tower struck by lightning are needed in 

order to confirm the theoretical finding. This finding, if experimentally confirmed, would 
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have implications on the interaction of electromagnetic fields to nearby electrical and 

electronics systems. 

 



 

 

 

 



 

 

 
 
 
 
 
 
 
Chapter 4  

Radiated Fields from Lightning Strikes to Tall 
Structures: Effect of Upward Connecting 
Leader and Reflections at the Return Stroke 
Wavefront 

4.1   Introduction 

Recently, Pavanello et al. [111] presented measurements of the electric and magnetic fields at 

three distances from the return stroke current associated with lightning strikes to the Toronto 

CN Tower (553 m). The vertical component of the electric field and the azimuthal component 

of the magnetic field were measured simultaneously at distances of 2.0 km, 16.8 km, and 50.9 

km from the CN Tower. The waveforms of the electric and magnetic fields at 16.8 km and 

50.9 km exhibited a narrow undershoot and a first zero crossing about 5 microseconds after 

the onset of the return stroke. Moreover, most of the field records exhibited a double-peak 

initial response. For fields at 50.9 km, the expected zero crossing at about 40 microseconds 

was also observed. A representative measured waveform exhibiting all four features (double-

peak, narrow undershoot, early zero-crossing and standard zero-crossing) can be seen in Fig. 

 4.1. 

Pavanello et al. [111, 122] presented also calculations of the electric and magnetic fields 

using six engineering models (TL, MTLL, MTLE, BG, TCS), extended to take into account 

the presence of a tall structure using a distributed-source approach [13], and the model 
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proposed by Baba and Rakov [39], based on a lumped-source approach). It was shown that 

the six considered engineering models produce very similar results, especially as far as the 

initial peak of the fields is concerned. While a reasonable agreement between simulations and 

measurements was found for the magnetic fields, the measured electric fields appeared to be 

significantly affected by the structures on which the sensors were installed (see Chapter 6 for 

a detailed discussion on this effect). The electric field peaks, in particular, were found to be 

considerably larger than the theoretical predictions [98, 123-124]. For this reason, we limit 

ourselves to magnetic fields in this study. 

 
Fig.  4.1 A representative waveform of the azimuthal magnetic field at 50.9km showing three features: Double-peak, narrow 

undershoot, early zero-crossing and standard zero-crossing of azimuthal magnetic field. 

 

The model proposed by Baba and Rakov reproduced better than the others the narrow 

undershoot that can be observed right after the first peak because its formulation does not 

imply the presence of the ‘turn-on’ term, which must be taken into account for the other five 

models, in which a current discontinuity appears at the return stroke wavefront [48]. None of 

the six considered models was able to reproduce either the typical zero-crossing of the far 

field, or the initial double-peak. 

In this chapter, we propose an improved version of the engineering models for return strokes 

to tall structures that takes into account the presence of possible reflections at the return stroke 

wavefront and an upward connecting leader [125-126]. To do this, we apply the procedure 
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proposed by Shostak et al. [30]. The present approach is based on the so-called distributed-

source representation of the lightning channel [13] featuring a self-consistent treatment of the 

impedance discontinuity at the tower top. In addition, we propose an elegant iterative solution 

which can be easily implemented into computer simulation programs to take into account in a 

straightforward way multiple reflections occurring at the discontinuities at the tower ends and 

at the return stroke wavefront. 

The chapter is organized as follows: in Section 4.2, an improved version of the engineering 

models is presented, in which the presence of an upward-connecting leader and reflections at 

the return stroke wavefront are accounted for. Section 4.3 presents a comparison between 

simulations and measured data of Pavanello et al. [111]. The data consist of magnetic field 

waveforms at three different distances (2 km, 16.8 km and 50.9 km) associated with lightning 

strikes to the CN Tower. Conclusions are given in Section 4.4. 

 

4.2   Proposed Model 

In this study, we make use of the engineering models extended to take into account the 

presence of an elevated strike object [13]. The tall object is represented as an ideal, uniform 

transmission line characterized by constant and frequency independent current reflection 

coefficients at its top and bottom (see Fig.  4.2). The expression for the current distribution 

along the lightning channel, h < z < H reads 
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and, for the current distribution along the strike object, 0 < z ≤ h, 
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 (4.2) 
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where h is the height of the tower, ρt and ρg are the tower top and bottom (ground) current 

reflection coefficients for upward and downward propagating waves, respectively, c is the 

speed of light, io(t) is the so-called undisturbed current [13], P(z) is a model-dependent 

function, u(t) the Heaviside unit-step function, v is the return-stroke front speed, and v* is the 

current-wave speed [12].  

Note that the undisturbed current can be equivalently expressed in terms of the ‘short-circuit 

current’ isc(t) = 2io(h,t) [4, 39] , or the ‘reference current’ [40]. The two latter (the reference 

current and the short-circuit current) coincide when the reflection coefficient at ground is 

equal to 1. 

 

 
Fig.  4.2 Lattice diagram of the return stroke current multiple reflections along the tower and the channel. The expressions 

for the time and magnitude of current reflections are given in Tables Table  4.1 and Table  4.2.  

 
In the proposed model we suppose that the return stroke channel is initiated at a height of ho 

above the tower. The time dependent wavefront level H(t) and the channel length above the 

RS initiation point hc(t) are simply given as 

0( ) ( )

( )
c

c

H t h h h t

h t vt

= + +
=  (4.3)

 

In Fig.  4.2, the multiple reflections are illustrated using a lattice diagram. Starting at the level 

of h0 where the downward and upward connecting leaders meet, the return stroke channel is 
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assumed to be initiated, moving vertically in opposite directions at the speed of the return 

stroke v. The current injected into the tower from its top is reflected back and forth at its ends, 

and portions of it are transmitted into the channel; these transmitted pulses, which are 

assumed to travel at the speed of light c, catch up with the return stroke wavefront travelling 

at a lower speed v. Assuming that the current vanishes abruptly at the return stroke wavefront 

results in a discontinuity at the wavefront [48]. It is worth noting that, strictly speaking, the 

lattice diagram used in this study is an approximation in the sense that it is implicitly assumed 

that all the time components of the current pulse ‘see’ the same wavefront, an approximation 

which is valid for early times. 

In this study, we developed an iterative approach (with a similar algorithm used in [127]) to 

obtain closed-form expressions for the current distribution along the tower and along the 

channel, taking into account the reflection coefficient at the return stroke wavefront and the 

initiation of the return stroke above the tower (h + h0). 

The new expression for the current in the channel reads [125-126] 
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and the corresponding expression for the current in the tower is  
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 (4.5) 

The times and magnitudes of successive current terms in (4.4) and (4.5) have been determined 

and their expressions are given in Table  4.1 and Table  4.2. 

The validity of the proposed expressions has been carefully checked through analysis and 

numerical simulations. It can be easily seen that (4.4) and (4.5) reduce to (4.1) and (4.2), 

simply by substituting h0 = 0 and ρc = 0 (see ρc in i4,n). 

It is worth noting that Baba and Rakov [128] have included the presence of an upward 

connecting leader in their model – which is in terms of a lumped voltage source excitation- 

and analyzed its effects. Note also that according to Baba and Rakov’s model, no reflections 
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could occur at the return stroke wavefront since current pulses in the channel are assumed to 

travel at the return stroke speed. 

 

Table  4.1 Current reflection times associated with the lattice diagram of Fig.  4.2. 
Iteration 
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Table  4.2Current reflections magnitude corresponding to the terms listed in Table  4.1 

Iteration 
No. 

i1,1..k i2,1..k i3,1..k i4,1..k 

0 ( )1,1 1 ti ρ= −   1,1 ti ρ= −   

1 
( )1,2 4,1

3,1 2,1

1 t

t

i i

i i

ρ
ρ

= −
=

 2,1 1,1gi iρ=  
( )

3,2 4,1

3,3 2,11

t

t

i i

i i

ρ
ρ

= −

= +
 4,1 3,1ci iρ=  

2 
( )1,4 4,2

1,5 2,2

1 t

t

i i

i i

ρ
ρ

= −
=

 2,2 1,2gi iρ=  
( )

3,4 4,2

3,5 2,21

t

t

i i

i i

ρ
ρ

= −

= +
 4,2 3,2ci iρ=  

k 
( )1,2 4,

1,2 1 2,

1k t k

k t k

i i

i i

ρ
ρ+

= −
=

 2, 1,k g ki iρ=  
( )

3,2 4,

3,2 1 2,1

k t k

k t k

i i

i i

ρ
ρ+

= −

= +
 4, 3,k c ki iρ=  

 

4.3   Simulation and comparison with experimenal data of 

Pavanello et al. [111] 

Pavanello et al. [111] reported on simultaneous measurements of the return-stroke current and 

electric and magnetic fields at three distances associated with lightning strikes to the Toronto 

CN Tower (553 m), obtained during the summer of 2005. The lightning return-stroke current 
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was measured using a 40-MHz Rogowski coil installed at a height of 474 m AGL (above 

ground level). The vertical component of the electric field and the azimuthal component of the 

magnetic field were simultaneously measured at distances of 2.0 km, 16.8 km, and 50.9 km 

from the CN Tower. The magnetic field sensor at 2 km was a loop antenna (697 Hz – 150 

MHz) located on the roof of the four-floor Pratt building of the University of Toronto. The 

magnetic field sensors at the two other locations were loop antenna sensors (TSN 245-H30, 

Thomson CSF, 4 kHz – 150 MHz), which were also located on the roof of buildings. The 

details of the experimental setup and the measuring equipment can be found in [111]. In this 

chapter, we have selected three sets of data comprising the return-stroke current and the 

associated magnetic fields at the three distances (see Table  4.3). Measured electric field 

waveforms are not used in the present study because they were significantly affected by the 

enhancement effect of the buildings on which the sensors were located [111, 124]. 

 

Table  4.3 Selected return strokes for the analysis (events occurred on August 19, 2005) 
Event Hour, Stroke IPeak (kA) 10-90% Risetime (µs) 

#1 14:13:13, Stroke 2/6 5.5 0.4 
#2 14:13:13, Stroke 3/6 11.7 1.0 
#3 14:11:41, Stroke 1/9 7.9 0.8 

 

The return stroke speed is assumed to be v = 120 m/μs. The total length of the lightning 

channel is assumed to be 12 km. Two models were adopted in the analysis: 

(1) The MTLE model [37, 129], including the presence of the tower [13]. The 

corresponding function P(z) is given by [12] 

( ) exp( / )P z z λ= −  (4.6) 

A value of 2 km was assumed for the current decay constant λ [27]. 

(2) The proposed improvement of the MTLE model, taking into account the presence of 

an upward connecting leader and reflections at the return stroke wavefront. 

The reflection coefficient at the return stroke wavefront was determined using the following 

equation [130-131] 

c

v c

v c
ρ −=

+
 (4.7) 

4.3.1  Current 

For each event, the undisturbed current is represented using the sum of two Heidler’s 

functions: 
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        (4.8) 

The parameters of the Heidler’s functions representing the current in (4.8) were determined 

using a trial-and-error approach to obtain the best match with the current recorded 

experimentally. The parameters are presented in Table  4.4, for the original MTLE model (in 

which the presence of an upward connecting leader and reflections at the return stroke 

wavefront are not considered) and in Table  4.5 for the proposed improved model. The 

currents at 474 m calculated using the two models and the parameters of Table  4.4 and Table 

 4.5 are shown in Fig.  4.3a, 3b and 3c, for which the effect of different reflections on the 

current waveforms are highlighted and quantified in Table  4.6. In Fig.  4.4a, 4b and 4c, the 

computed currents are compared with the actual current waveforms measured at the same 

height on the CN Tower. It can be seen that the fine structure of the measured current is better 

reproduced with the improved model. However, it is likely that some of the fine structure of 

the measured current waveforms is also due to structural discontinuities of the CN Tower. 

Some studies (e.g. [132]) have attempted to take into account these effects by modeling the 

tower as a cascaded multisection transmission line. 

 

 

Table  4.4 Parameters for the undisturbed current, tower reflection coefficients, return-stroke speed, for the MTLE model 

Event v(×108 m/s) ρg ρt η1 Io1 (kA) τ11 (μs) τ21 (μs) N1 η2 Io2 (kA) τ12 (μs) τ22 (μs) N2 

#1 1.2 0.8 -0.36 0.57 1.8 0.3 2.0 2 0.94 2.5 0.3 150 2 

#2 1.2 0.8 -0.36 0.46 4.48 0.3 1.0 2 0.94 6.05 0.3 140 2 

#3 1.2 0.8 -0.36 0.49 5.42 0.3 1.2 2 0.89 4.03 1.0 150 2 

 
 
 

Table  4.5 Parameters for the undisturbed current, reflection coefficients, return-stroke speed, height of the return-stroke 
initiation for the proposed improved MTLE model 

Event v(×108 m/s) h0(m) ρg ρt ρc η1 Io1 (kA) τ11 (μs) τ21 (μs) N1 Io2 (kA) η2 τ12 (μs) τ22 (μs) N2 

#1 1.2 20 0.6 -0.7 -0.43 0.74 3.71 0.3 7.0 2 2.7 0.77 6.0 170 2 

#2 1.2 20 0.6 -0.7 -0.43 0.006 4.5 4.0 0.3 2 9.03 0.97 1.0 120 6 

#3 1.2 15 0.6 -0.7 -0.43 0.77 5.7 0.3 9.0 2 4.5 0.74 7.0 150 2 
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Table  4.6 Reflections in the current waveform as shown in Fig.  4.3a,b and c 

Reflections 
Reflection Time 

General 
 

Event #1,2 Event #3 

Reflection 
Time (µs) 

Reflection 
Time (µs) 

1 Current arrival h = 474 m 
1,1

474h
t t

c

−
= +  0.43 0.39 

2 
First reflection from the channel top seen at  

h = 474 m 1,2

474h
t t

c

−
= +  0.87 0.72 

3 
Second reflection from the channel top seen at  

h = 474 m 1,4

474h
t t

c

−
= +  1.91 1.5 

4 First reflection from the ground seen at h = 474 m 
2,1

474
t t

c
= +  3.59 3.55 

5 
Third reflection from the channel top seen at  

h = 474 m 1,6

474h
t t

c

−
= +  4.1 4.07 

6 Ground-tower-ground reflection seen at h = 474 m 2,3

474
t t

c
= +  7.27 7.23 

 
 
 

 
(a)       (b) 

 
(c)       
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6 Fig.  4.3 Computed current h = 474m using the 
original MTLE and the proposed improved 
MTLE: 1 – current arrival; 2 – first reflection 
from the channel top; 3 – second reflection from 
the channel top; 4 – first reflection from the 
ground; 5 – third reflection from the channel 
top; 6 – ground-tower-ground reflection. See 
also Table  4.4 – (a) Event #1, (b) Event#2, and 
(c) Event#3. 
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(a)       (b) 

 
(c) 

Fig.  4.4 Comparison of predicted currents using the original MTLE model and the proposed improved version at the height 
474 m with the measured waveform on the CN Tower. (a) Event #1, (b) Event #2, (c) Event #3. 

 
4.3.2  Magnetic Field 

Fig.  4.5, Fig.  4.6 and Fig.  4.7 present, for the three considered events, the magnetic field 

computed for the three considered distances (2 km, 16.8 km and 50.9 km) by using the 

original MTLE model and the proposed improved version of it. On the same figures, 

measured waveforms of Pavanello et al. [111] are also shown for comparison.  

The measured magnetic field waveforms at 2 km feature an unexpected zero-crossing at 

about 40 microseconds, which is due to the value of the time constant of the H-field sensor of 

the University of Toronto used at that location [111]. As mentioned in Section 4.1, the 

magnetic field waveforms at 16.8 km and 50.9 km feature a first zero crossing about 5 

microseconds after the onset of the return-stroke, which is part of a narrow undershoot. Such 

an early undershoot, which occurs at a time given approximately by twice the propagation 

time along the tower, was attributed to the transient processes along the tower [111]. 
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Measured fields at 50.9 km exhibit the expected zero-crossing at about 40 microseconds 

[112].  

It can be seen that the computed results using the proposed improved version of the MTLE 

model are in better agreement with experimental observations than those obtained 

disregarding possible reflections at the return-stroke wavefront. Namely, the initial double 

peak, the early narrow undershoot typical of measured fields from lightning strikes to the CN 

Tower, and the far-field zero-crossing are all well reproduced by the improved model. None 

of these features were predicted by the original model. It is worth noting that the presence of 

the undershoot was found to be responsible for detection anomalies of the North American 

Lightning Detection Network (NALDN) which misclassified some of the return strokes to the 

CN Tower as cloud flashes ([133]). 

 

 

 
(a)       (b) 

 
(c) 

Fig.  4.5 Comparison of simulated azimuthal magnetic fields at 2 km using the original MTLE model and the proposed 
improved version with the measured waveform: (a) Event #1, (b) Event #2, (c) Event #3. 
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(a)       (b) 

 
(c) 

Fig.  4.6 Comparison of simulated azimuthal magnetic fields at 16.8 km using the original MTLE model and the proposed 
improved version with the measured waveform: (a) Event #1, (b) Event #2, (c) Event #3. 

 
The computed magnetic field peaks are systematically about 25% lower than measured 

values. Reasons for this discrepancy are discussed in [111] and can be partially attributed to 

the geometrical and electrical characteristics of objects in the vicinity of the sensors.  

It is also worth mentioning that other reasons for the observed differences between 

simulations and measurements can be the influence of channel inclination (e.g. [55, 134]) and 

the complexity of the tower structure (e.g. [135]). 

Fig.  4.8 presents the influence of the height of the upward connecting leader on the 

computed magnetic field. The reported results refer to event #1 (see Table  4.3), and the fields 

are computed at a distance of 50.9 km. The considered values for the length of the upward 

leader are 10, 20, 30 and 100 m. It can be seen that the height of the upward-connecting leader 

mostly affects the early-time response of the field, namely the two initial peaks. Interestingly, 

the double-peak field response is reproduced considering a length of the upward leader of 

about 10-30 m, which is in the order of typical values for subsequent strokes ([1]). The 
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(a)       (b) 

 
(c) 

Fig.  4.7 Comparison of simulated azimuthal magnetic fields at 50.9 km using the original MTLE model and the proposed 
improved version with the measured waveform: (a) Event #1, (b) Event #2, (c) Event #3. 
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Fig.  4.9 presents the effect of the return stroke speed on the computed magnetic field for the 

same configuration as that of Fig.  4.8. It can be seen that the return stroke speed does not 
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Fig.  4.8 Effect of the height of the upward connecting leader on the computed magnetic field at 50.9 km using the proposed 

improved version model (event #1). 

 
Fig.  4.9 Effect of return stroke speed on the computed magnetic field at 50.9 km using the proposed improved version 

model (event #1). 

 

4.4   Conclusions 

In this chapter, we proposed an improved version of the engineering models for return-strokes 

to tall structures that takes into account the presence of possible reflections at the return stroke 
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Simulation results for the magnetic fields are compared with experimental waveforms 

associated with lightning strikes to the CN Tower (553 m). It is shown that taking into 

account the reflections at the return-stroke wavefront results in better reproducing the fine 

structure of the magnetic field waveforms, including the double-peak, the early narrow 

undershoot and the far-field zero crossing. The results also suggest that the typical double-

peak response of the radiated fields from tall structures might be due to the combined effect of 

upward-connecting leaders and reflections at the return stroke wavefront. 



 

 

 

 



 

 

 
 
 
 
 
 
 
Chapter 5  

Lightning Electromagnetic Fields at Very Close 
Distances Associated with Lightning Strikes to 
the Gaisberg Tower in Austria 

5.1   Introduction 

As we have seen in Chapters 2 and 3, the effect of the presence of a strike object on the 

radiated electric and magnetic field depends essentially on the height of the strike object and 

on the distance to the observation point. For observation points located at distances exceeding 

the height of the tower, the presence of the tower results in a substantial increase of the 

electric and magnetic field peaks (e.g.,[27, 34-35]). On the other hand, theoretical analyses 

suggest that the presence of the tower at distances of about the height of the tower or less 

could result in a significant decrease of the electric field peak (e.g.,[35, 73-74]), and 

sometimes in an inversion of polarity [115, 128]. Pavanello et al. [111, 136] have also shown 

that measured distant electric and magnetic fields associated with lightning return-strokes to 

the Toronto CN Tower (553 m tall) exhibit a first zero crossing about 5 microseconds after 

the onset of the return-stroke. This early zero crossing is part of a narrow undershoot, which is 

due to the transient processes along the tower (the undershoot occurs at a time given 

approximately by twice the propagation time along the tower) [136]. 

Signatures of close electric field of dart leader/return stroke sequences in rocket-triggered 

lightning have been studied e.g., in [137-140]. Rubinstein et al. [137] analyzed vertical 
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electric field waveforms for 31 leader/return-stroke sequences at 500 m and two leader/return-

stroke sequences at 30 m from the lightning channel. The data were obtained at the Kennedy 

Space Center, Florida, in 1986 and 1991, respectively, using the classical rocket-and-wire 

technique (Chapter 7 of [1]). Specifically, they found, that at tens to hundreds of meters from 

the lightning channel the leader/return-stroke vertical electric field sequences exhibit a 

characteristic asymmetric V-shaped waveform with an initial negative transition being 

associated with the descending leader and the following positive transition with the return 

stroke. Note that the atmospheric electricity sign convention is used throughout this chapter, 

according to which a downward directed field is defined as positive [141]. For the radial 

electric field, the same convention used by Baba and Rakov [128] is used, according to which 

an outward directed field is defined as positive (see also Fig.  5.1). The bottom of the V 

corresponds to the transition from the leader stage to the return stroke stage [137]. 

Assuming a uniform charge distribution model for the leader, Rubinstein et al. [137] found 

that about 90 % of the leader electric field change measured at 30 m was determined by the 

charge on the channel below around 280 m, while at 500 m the corresponding contributing 

channel length was 2.5 km.  

Multiple-station measurements of triggered lightning electric fields were first performed in 

1993 at Camp Blanding, Florida [142] and in the same year at Fort McClellan, Alabama 

[143]. Electric fields were measured at 30, 50, and 110 m from the lightning channel at Camp 

Blanding and at 9.3 and 19.3 m at Fort McClellan. Rakov et al. [144] provided a detailed 

analysis of these experimental data showing that the variation of the close leader electric field 

change with distance was slower than the inverse proportionality (r-1) predicted by a 

uniformly charged leader model. In 2001, Crawford et al. [138] reported multiple-station 

measurements of the leader electric field change for strokes in triggered lightning flashes in 

1997, 1998, and 1999 at Camp Blanding, Florida. The fields were measured at distances from 

the lightning channel ranging from 10 to 621 m. In contrast with the 1993 data analyzed by 

Rakov et al. [144], Crawford et al. found that most of the 1997-1999 data indicate a distance 

dependence of the leader electric field change close to an inverse proportionality, consistent 

with a uniform distribution of leader charge. 

In this chapter, we present and discuss measurements of electric (vertical and radial) and 

azimuthal magnetic fields from leaders and return strokes associated with lightning strikes to 

the 100-m tall Gaisberg tower in Austria obtained in 2007 and 2008. The fields were 
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measured at a distance of about 20 m from the tower’s vertical axis. Simultaneously with the 

fields, return-stroke currents were also measured at the top of the tower. 

The measured data will be used to test engineering models and antenna-theory (or 

electromagnetic) models for the return stroke. 

 

5.2   Experimental setup 

5.2.1  Gaisberg Tower 

The Gaisberg tower is a 100-m tall radio tower located 1287 m above sea level on the top of a 

mountain 5 km east of the city of Salzburg, Austria. On average, the tower is exposed to about 

60 upward initiated flashes per year [105]. The tower dimensions at ground level are 10.5 m × 

10.5 m. 

 

5.2.2  Current Measurement System 

The current at the tower top is measured with a current viewing shunt with 0.25 mΩ and a 

total bandwidth of 0 Hz to 3.2 MHz. The electrical signal is split into two channels with a 

measuring range of ± 2 kA and ± 40 kA respectively. The signals of these two channels are 

routed to the bottom of the tower via fiber optic links (Isobe 3000, bandwidth 0 Hz – 15 

MHz) to the recording system consisting of a two-channel 20 MS/s, 8-bit digitizer. The 

recording time for each event is 800 ms with a 15-ms pre-trigger. 

 

5.2.3 Electromagnetic Field Measurement 

Radial electric fields at 20 m distance from the tower center axis were measured using an 

active spherical electric field sensor (TSN 245-E30, Thomson CSF, 1 kHz – 150 MHz). A 

similar sensor but with a different sensitivity (TSN 245-E31, Thomson CSF, 1 kHz – 150 

MHz) was used to measure the vertical electric field at 22 m. The azimuthal magnetic field at 

20 m was measured using a loop-antenna magnetic field sensor (TSN 245-H31, Thomson 

CSF, 2 kHz – 150 MHz). All the sensors were located on the metallic roof of a one-storey 

building at a height of about 3 meters above ground. The measured signals from the sensors 

were relayed via fiber optic links to the recording system, which consisted of a 50-MS/s, 8-bit 

digitizer with 1 MB memory per channel and a computer controller with local clock. The time 

scale of the digitizer was set to 20-ns resolution and segmented for recording up to twenty 
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200-µs-long EM field pulses per lightning flash. A 40-MHz low pass filtering was applied to 

both electric and magnetic field signals to reduce high frequency noise and to minimize 

aliasing. 

It is worth noting that the electric field sensors being located on the top of metallic 

structures could result in a local enhancement of the electric field of a factor typically ranging 

from 1.5 to 2.5 [98, 123, 145-146], see Chapter 6. However, a calibration campaign aiming at 

evaluating such an enhancement effect was carried out in the summer of 2008, measuring 

waveforms associated with distant lightning return strokes using as reference a flat plate 

antenna located on the surface of the ground [147] The campaign revealed that the 

enhancement effect of the metallic structures on the measured electric fields was minimal 

(about 1.1).  

 

5.3   Presentation of experimental data 

The whole measurement campaign includes three different measurement setups. All the data 

are associated with lightning strikes to the Gaisberg tower and each setup includes records of 

lightning current waveforms measured on the top of the tower. In the first setup (from May 

1st, 2007 to September 10th, 2007), we measured the vertical electric field and the azimuthal 

magnetic field, respectively at 22 m and 20 m from the center of the tower. In the second 

setup (from September 11th, 2007 to June 31st, 2008), we obtained records of the radial 

electric field and azimuthal magnetic field, respectively at 22 m and 20 m from the center of 

the tower. Finally, for the third setup (from July 1st, 2008 to August 1st, 2008), we measured 

the vertical and radial components of the electric field at 22 m and 20 m from the tower, 

respectively. The three setups are illustrated in Fig.  5.1. 

Representative sets of simultaneously measured return-stroke current and associated fields 

for each setup are shown in Fig.  5.2, Fig.  5.3, and Fig.  5.4, respectively. Note that a high 

frequency noise is superimposed on the first peak of the return-stroke current whose origin is 

unknown and currently under investigation [148]. The statistical data on lightning current 

peak presented in this work are obtained by applying a 650-kHz filter to the measured current 

waveforms. The filtered waveforms are shown in Fig.  5.2b, Fig.  5.3b, and Fig.  5.4b. Note 

that, unlike Diendorfer et al. [105] who applied in their analysis a 250-kHz filter, we chose a 

650-kHz filter because the resulting current waveforms have similar early-time waveshapes to 

those of the corresponding magnetic fields measured at 20 m. 
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It is worth noting that this is the first time that recorded waveforms of the vertical and radial 

electric fields are obtained at such close distances. As discussed in [149], there is an inherent 

difficulty in measuring the distant radial electric field component of lightning above the 

ground because of the overshadowing effect of the vertical electric field component that 

results even from a small tilt in the measuring antenna. Indeed, for observation points located 

on the ground or a few meters above the ground, the vertical electric field magnitude is much 

larger than that of the radial component (typically two orders of magnitude). This may explain 

the fact that data on radial electric fields are very rare. To the best of the authors’ knowledge, 

there are only four sets of available data: (1) The data obtained by Thomson et al. [150], who 

reported on the first ever simultaneous measurements of both the radial and the vertical E-

Field components for distant strokes. (2) The data by Michishita et al. [151] consisting of 

vertical and radial fields at distances beyond 16 km, (3) the data by Miki et al. [152] who 

measured simultaneously both vertical and horizontal electric fields at distances from the 

triggered lightning channel attachment point ranging from 0.1 to 1.6 m, and (4) the recent data 

on current and radial electric fields associated to return strokes of triggered lightning 

presented by Barbosa et al. [153]. Note that model-predicted vertical and radial electric field 

waveforms were presented in [128]. 

For lightning strikes to tall structures and at very close distances (within 50 m or so), the 

two electric field components (vertical and radial) become comparable in magnitude, as 

shown by simulations [128] [149] and verified by experimental data associated with lightning 

strikes to the Austrian Gaisberg tower which will be presented in this chapter. The obtained 

data will be analyzed in the next section. 

 

5.4   Data analysis 

A total of 13 upward initiated flashes containing 40 ICC pulses (pulses superimposed on the 

ICC, the initial continuing current typical for upward initiated flashes) and 44 return-strokes 

were recorded during the whole measuring campaign, although the sample size was different 

depending on the studied quantities and examined features for each data set. 
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Fig.  5.1 3D schematic view of the tower and the near field measuring campaign (a) first, (b) second, and (c) third setup (not 
in scale). 
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Fig.  5.2 Representative waveforms of the data recorded during first setup on 2007-10-18, (a) tower top unfiltered current, 
(b) tower top 650 kHz filtered current, (c) azimuthal magnetic field at r = 20 m, (d) vertical electric field at r = 22 m (flash 

574, stroke 1 of 5). Note that the faster decay of the magnetic field waveforms at late times and their unexpected zero 
crossing are presumably due to the value of the time constant of the H-field sensor which is in the order of 100 microseconds. 

 
Fig.  5.3  Representative waveforms of the data recorded during second setup on 2008-03-12, (a) tower top unfiltered current, 

(b) tower top 650 kHz filtered current, (c) azimuthal magnetic field at r = 20 m, (d), and radial electric field at r = 22 m. 
Expanded waveform of the radial electric field is shown in (e). Note that the faster decay of the magnetic field waveforms at 

late times and their unexpected zero crossing are presumably due to the value of the time constant of the H-field sensor which 
is in the order of 100 microseconds (flash 644, stroke 2 of 2). The arrow represents the transition between the leader and the 

return stroke. 

0 50 100 150 200
-2

0

2

4

6

8

10

12

14
(a)

Time (μs)

U
nf

ilt
er

ed
 c

ur
re

nt
 (

kA
)

0 50 100 150 200
-2

0

2

4

6

8

10
(b)

Time (μs)

F
ilt

er
ed

 c
ur

re
nt

 (
kA

)

0 50 100 150 200
-50

0

50

100

150

200

250
(c)

Time (μs)

H
φ (

A
/m

),
 r

 =
 2

0 
m

0 50 100 150 200
-6

-4

-2

0

2

4
(d)

Time (μs)

E
z (

kV
/m

),
 r

 =
 2

2 
m

0 50 100 150 200
-10

0

10

20

30
(a)

Time (μs)

U
nf

ilt
er

ed
 c

ur
re

nt
 (

kA
)

0 50 100 150 200
-5

0

5

10

15
(b)

Time (μs)

F
ilt

er
ed

 c
ur

re
nt

 (
kA

)

0 50 100 150 200
-100

0

100

200

300
(c)

Time (μs)

H
φ (

A
/m

),
 r

 =
 2

0 
m

0 50 100 150 200
-1

-0.5

0

0.5
(d)

Time (μs)

E
r (

kV
/m

),
 r

 =
 2

2 
m

76 78 80 82 84
-1

-0.5

0

0.5
(e)

Time (μs)

F
oc

us
ed

 E
r (

kV
/m

),
 r

 =
 2

2 
m



5. Lightning Electromagnetic Fields at Very Close Distances Associated with Lightning Strikes... 

 
 

74

 
Fig.  5.4 Representative waveforms of the data recorded during third setup on 2008-07-20, (a) tower top unfiltered current, 
(b) tower top 650 KHz filtered current, (c) radial electric field at r = 20 m, and (d) vertical electric field at r = 22 m (flash 

682, stroke 1 of 3). Expanded waveform of the radial electric field is shown in (e). The arrow represents the transition 
between the leader and the return stroke. 
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the same figure, we have plotted the prediction of Ampere’s law. Note, however, that 

Ampere’s law should be applied to the current at the tower base. Numerical simulations 

indicate that the peak current for a typical subsequent stroke at the bottom of a 100-m tall 

structure is about 1.25 times larger than the current at the top as a result of current reflections 

at the tower top and tower bottom. Such a value is still not large enough to explain the 

measured levels of magnetic field peaks. The observed discrepancy could also be due to the 

filtering applied to the measured current waveforms which might have resulted in an 

underestimation of the peak current. Other reasons could partially explain this enhancement, 

such as the proximity to the tower base and other close-by metallic structures, and also to the 

presence of a radial ground wire connected to the base of the tower which runs close to the 

magnetic field sensor and might give a non-negligible contribution to the overall magnetic 

field at the sensor location. 

Note, finally, that the used magnetic field sensor was checked and re-calibrated after the 

experimental campaign in the EMC Laboratory of the Swiss Federal Institute of Technology 

(EPFL) and found to be working properly. 

 

  
Fig.  5.5 Histogram of the magnetic field peak at r = 20 m for the first and second data set recorded in the period from 2007-

05-01 to 2007-09-10 and 2008-07-01 to 2008-08-01. 
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Table  5.1 Summary of the magnetic field and current peaks 
Date Hour Flash # Event 

Current 
peak (kA) 

Magnetic field 
peak (A/m) 

2007-10-18 16:11:54 568 
1 13.8 364.4 
2 22.7 Saturated at 483.7 

2007-10-18 19:28:42 569 

1* 2.6 48.9 
2* 2.5 47.9 
3* 7.6 175.9 
4* 4 105 
5* 7.6 192.5 
6* 2.2 57.2 
7* 5.3 135.1 
8* 6.6 165.4 
9* 11.6 293.2 

10* 4.1 101.9 
11* 2.6 75.1 
12* 3.3 88.6 
13* 3.1 83.5 

2007-10-18 19:31:59 570 

1* 2.5 63.9 
2* 1.8 46 
3* 1.8 43 
4* 1.8 46.8 
5* 2.6 63 
6* 1.8 45.1 
7* 1.8 40.6 

S2007-10-

18 
19:34:29 571 

2* 2.8 72.5 
3* 2.9 75 
4* 5.4 149.9 
6* 3.6 96.7 
7* 3.4 90.6 
8* 2.5 65.2 
9* 3 77.4 

10* 4.4 107.3 
11* 10.1 247.7 
12* 1.9 46.8 
13* 9.6 241.7 
15* 2.8 70.3 
16* 3.4 92.6 

2007-10-18 19:36:38 572 

1 10.8 252 
2 7.6 180.9 
3 5.6 140.3 
4 2.9 68.7 
5 13.7 295.2 
6 9 234.2 
7 13.5 203.1 
8 11 235.6 

2007-10-19 11:05:22 574 

1 9.6 240.2 
2 3 74.5 
3 10.5 258.2 
4 7.3 175.5 
5 13.5 192.4 

2007-11-06 08:19:05 576 
1 22.8 277.8 
2 11 240.1 

2007-11-10 17:44:33 585 1* 4.2 98 

2007-11-10 17:54:54 586 
1 16.7 364.3 
2 24 361.2 

2007-11-10 17:57:41 587 
1 2.2 51.6 
2 11.5 139.1 

2007-11-10 17:59:40 588 

1 27.6 Saturated at 485.4 
2 8 192.3 
3 4.1 107.6 
5 7.5 186.6 
6 20 364.1 
7 3.7 102.2 
8 15.7 238.5 
9 10.1 202.4 
10 2.9 77.4 
11 17.3 265.5 
12 11.9 248.8 
13 3.9 81.6 
14 10.4 154.2 
15 15.7 221.5 
16 14.7 192.1 

2008-12-03 16-43-27 644 
1 20.4 365.7 
2 13.4 179.7 

2008-12-03 17-15-57 645 

1* 18.3 330.7 
2* 9.8 173.1 
3* 4.6 81.4 
4* 12.1 219.6 
5* 33.7 Saturated at 466.4 
6* 5.2 91.9 
7 14.8 268.3 

* ICC pulse 
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Table  5.2 Minimum, mean, standard deviation, and maximum values of the magnetic field and  
current peaks presented in Table  5.1 

Number of events 
Magnetic field Peak (A/m) Current Peak (kA) 

Min Mean St. Dev. Max Min Mean St. Dev. Max 

76 40.6 158.9 94.5 365.7 1.8 7.9 5.7 24.0 

 

 
Fig.  5.6 Scatter plot and corresponding linear regression curve of the current peak and the magnetic field peak at r = 20 m 
for the first and second data set recorded in the period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 2008-08-01. The 

curve of the Ampere’s law is also included. 

 

5.4.2  Vertical Electric fields 
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electric field waveforms appear as asymmetrical V-shaped pulses. The initial, relatively slow, 

negative electric field change is due to the downward leader and the following fast positive 

field change is due to the upward propagating return stroke phase of the lightning discharge 

[137]. 

Table  5.3 and Table  5.4 summarize the parameters associated with leader-return stroke 

vertical electric field waveforms. ΔEL and ΔERS are the magnitudes of the electric field 

changes due to the leader and the return stroke, respectively, and RE is the so-called residual 

electric field defined as RE = ΔEL - ΔERS [140]. ΔEL, ΔERS and half peak width (HW) are 
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illustrated in Fig.  5.7a. Note that RE was originally defined only for the case of ΔEL > ΔERS 

[140]. In this chapter, we extend this definition to other cases as well. 

Fig.  5.8 presents a histogram of the leader vertical electric field change ΔEL at r = 22 m for 

the first and third data sets recorded in the periods from 2007-05-01 to 2007-09-10 and 2008-

07-01 to 2008-08-01. Fig.  5.8 and Fig.  5.9 present, for the same data sets, the histograms of 

the return stroke vertical electric field change ΔERS and the residual electric field RE. The 

obtained histograms are, as expected, indicative of log-normal distributions. The following 

observations can be made on the obtained data. 

 
(a) 

 
(b) 

Fig.  5.7 Definition of the leader electric field change, ∆EL, return stroke electric field change, ∆ERS (only for vertical), half 
peak width, HW, of the leader + return stroke field sequences, and residual electric field, RE (only for vertical) for (a) 

vertical and (b) radial electric fields. 
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Table  5.3 Summary of the vertical electric field at 22 m 

Date Hour 
Flash 

# 
Stroke 

∆EL 
(kV/m) 

∆ERS 
(kV/m) 

RE 
(kV/m) 

HW (μs) 

2007-10-18 19:28:42 569 

1* 1.3 2.1 -0.85 18.9 
2* 1.5 1.9 -0.41 14.4 
3* 3.7 5.4 -1.7 4.9 
4* 2.4 3.2 -0.81 7 
5* 3.6 5.3 -1.65 4.7 
6* 1 2.1 -1.04 13.4 
7* 2.5 3.8 -1.33 6.7 
8* 4 4.7 -0.77 8.1 
9* 5.7 6.9 -1.24 4.6 

10* 2.4 3.3 -0.87 12.6 
11* 1.5 1.9 -0.41 11.4 
12* 2 3 -0.98 10.7 
13* 1.6 2.9 -1.32 12.9 

2007-10-18 19:31:59 570 

2* 1.4 1.8 -0.37 17.4 
4* 1.4 1.5 -0.16 20.2 
5* 2 2.4 -0.42 21.7 
6* 1.3 2 -0.78 22.9 
7* 0.6 1.9 -1.3 24 

2007-10-18 19:34:29 571 

2* 1.9 2.9 -0.94 15.8 
3* 2.2 3.1 -0.90 17.8 
4* 2.3 4.5 -2.27 5.7 
6* 1.4 3.6 -2.17 11 
7* 2.5 3.5 -1.01 18.3 
8* 2.2 3 -0.81 23.7 
9* 2.7 3.2 -0.48 17.6 

10* 3.5 4 -0.50 13 
11* 6.4 7.3 -0.92 9.7 
12* 1.3 2.2 -0.94 23.8 
13* 5.9 6.4 -0.47 6.5 
15* 1.9 2.8 -0.96 11.9 
16* 2 3.6 -1.56 7.7 

2007-10-18 19:36:38 572 

1 5.6 7.3 -1.67 8 
2 4.1 5.3 -1.2 14.9 
3 3.7 4.7 -1.06 17.9 
4 1.7 2.9 -1.2 19.6 
5 7.2 7.8 -0.59 6.7 
6 5.4 6.3 -0.88 7.4 
7 4.5 6.3 -1.74 15.6 
8 5.2 6.7 -1.49 12.2 

2007-10-19 11:05:22 574 

1 5.7 7.3 -1.56 10.9 
2 1 3.8 -2.73 31.2 
3 5.4 7.3 -1.9 6.3 
4 3.7 5.4 -1.63 14.8 
5 3.7 6.5 -2.81 16.5 

2007-11-06 08:19:05 576 
1 5.3 6.9 -1.65 8.9 
2 4.9 6.7 -1.84 17.5 

2008-07-20 15:07:17 682 
1 2.3 4.1 -1.81 18 
2 1.1 2.8 -1.67 19.4 
3 6.8 6.1 0.66 8.4 

2008-08-01 21:48:31 683 
1 1.8 3.5 -1.66 24.7 
2 1.3 2.1 -0.85 18.9 

* ICC pulse 
 

Table  5.4 Minimum, mean, standard deviation, and maximum values of the vertical electric field parameters (at 22 m) 
presented in Table  5.3 

Number of 

events 

∆EL (kV/m) ∆ERS (kV/m) RE (kV/m) HW (μs) 

Min Mean St. Dev. Max Min Mean St. Dev. Max Min Mean St. Dev. Max Min Mean St. Dev. Max 

51 0.6 3.1 1.8 7.2 1.5 4.3 1.9 7.8 -2.8 -1.2 0.7 0.7 4.6 13.9 6.3 31.2
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Fig.  5.8 Histograms of the vertical electric leader field change at r = 22 m for the first and third data sets recorded in the 

period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 2008-08-01. 

 
Fig.  5.9 Histograms of the vertical return stroke electric field change at r = 22 m for the first and third data sets recorded in 

the period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 2008-08-01. 
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5.4.2.1   Magnitude of the return-stroke vertical electric field change 

The return-stroke vertical electric field changes at 22 m appear to be significantly smaller than 

similar measurements obtained using triggered lightning (see e.g., [138]). This is presumably 

due to the shadowing effect of the tower, which results in a significant decrease of the electric 

field at distances of about the height of the tower or less (see Chapter 3, Section 3.6.3). 

 

5.4.2.2   Ratio of leader to return stroke electric field change 

The electric field change due to the return stroke is found to be larger on average than the 

leader electric field change. This is in agreement with the data reported by Rubinstein et al. 

[137] on electric fields measured at 500 m from triggered lightning. Note that the data 

analyzed in [140] include only selected samples with positive value for the residual electric 

field (ΔEL > ΔERS). 

The corresponding scatter plots versus peak currents of ΔEL, ΔERS and RE are shown in Fig. 

 5.11, Fig.  5.12, and Fig.  5.13 . In accordance with the findings of Rakov et al. [140] related to 

triggered lightning, it can be seen that strokes having larger peak currents are associated with 

larger leader and the return stroke electric field changes. The corresponding correlation 

coefficient indicated in the figures for leader and return stroke vertical electric fields are 

respectively 0.73 and 0.75. The residual electric field appears to be less sensitive (correlation 

coefficient of 0.16) to the current peak and shows a slight decrease with increasing peak 

currents. 

 

5.4.2.3   Initial peak of the return stroke field change 

In a significant number of cases (33%), the vertical electric field waveform due to the return 

stroke is characterized by a first peak which exceeds the typical late-time flattening due to the 

electrostatic term (see Fig.  5.14). This is in contrast with similar measurements related to 

triggered lightning (e.g., [137, 140] which do not exhibit such a first peak. This first peak 

might be due to the radiation term of the field, which is somewhat enhanced by the presence 

of the tower. However, simulations made by the authors showed no such first peak at that 

distance. More research to better understand this behavior is underway. 
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Fig.  5.10 Histograms of the vertical residual electric field change at r = 22 m for the first and third data sets recorded in the 

period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 2008-08-01. 

 
Fig.  5.11 Scatter plot and corresponding linear regression curve of the current peak and the leader vertical electric field 

change at r = 22 m for the first and third data sets recorded in the period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 
2008-08-01. 
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Fig.  5.12 Scatter plot and corresponding linear regression curve of the current peak and the return stroke vertical electric field 

change at r = 22 m for the first and third data set recorded in the period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 
2008-08-01. 

 

 
Fig.  5.13 Scatter plot and corresponding linear regression curve of the current peak and the residual vertical electric field 

change at r = 22 m for the first and third data sets recorded in the period from 2007-05-01 to 2007-09-10 and 2008-07-01 to 
2008-08-01. 
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Fig.  5.14 Expanded waveforms of a representative data recorded during first setup on 2007-10-18 featuring an initial first 

peak of the vertical electric field, (a) tower top unfiltered current, (b) tower top 650 KHz filtered current, (c) azimuthal 
magnetic field at r = 20 m, and (d) vertical electric field at r = 22 m (flash 572, stroke 5 of 8). 
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Fig.  5.15 Representative data of an abnormal leader-return stroke waveform recorded during first setup on 2007-11-12, (a) 
tower top unfiltered current, (b) tower top 650 KHz filtered current, (c) azimuthal magnetic field at r = 20 m, (d) vertical 

electric field at r = 22 m showing an increasing ramp for the vertical leader electric field. Expanded waveforms of the current 
and the electric field are shown in (e) and (f), respectively (flash 586, stroke 2 of 2). 
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radial electric field waveforms. The magnitudes of the radial electric field changes due to the 
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in Fig.  5.7b. 
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Table  5.5 Summary of the radial electric field 

Date Hour Flash # Stroke ∆EL (V/m) HW (μs) 

2008-03-12 16:43:27 
644  

(22 m) 
1 830 4 
2 390 13 

2008-03-12 17:15:57 
645  

(22 m) 

1* 573 6.5 
2* 337 6 
3* 157 15 
4* 332 3.5 
5* 1030 3 
6* 130 20 
7 570 7 
8 895 10 

2008-07-20 15:07:17 
682  

(20 m) 

1 85.0 10 
2 68 15 
3 35.7 23 

2008-08-01 21:48:31 
683  

(20 m) 
1 153 7 
2 401 15 

* ICC pulse 

 

Table  5.6 Minimum, mean, standard deviation, and maximum values of the radial electric field presented in Table  5.5 

Number of events 
∆EL (kV/m) HW (μs) 

Min Mean St. Dev. Max Min Mean St. Dev. Max 

10 

(22 m) 
130 524.4 311.2 1030 3 8.8 5.6 20 

5 (20 m) 35.7 401 147.5 401 7 14 6.1 23 

 

The behaviour of the close electric field change due to the leader has been often analyzed 

assuming a uniformly charged leader (e.g., [137]). In this case, an analytical expression for 

the vertical electric field is available [141]. In the Appendix (Section 5.7), we derive an 

analytical expression for the radial electric field, assuming a uniform charge distribution along 

the leader with constant speed. The procedure for the vertical electric field was also drawn 

following the same approach as that used in [137]. The equations for the vertical and radial 

electric fields read (see Fig.  5.26 for the geometrical parameters) 
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in which ( ) L T
B

T T

H v t for H H
H t

H for H H

ì - >ïï= íï £ïî
, ρL is the leader channel linear charge density, vL 

is the leader speed and HT is the height of the tower. 

Fig.  5.16 shows the vertical and radial leader electric field per unit charge density calculated 

at 20 m for a leader reaching the tower for four different values of the speed vL: 2 m/µs, 5 

m/µs, 10 m/µs, and 20 m/µs. These values are in the range of measured data [155]. The half 

widths of the calculated waveforms corresponding to the above speeds for vertical leader 

fields are 22.9 μs, 14 μs, 8.6 μs, and 5 μs, respectively, and for the radial leader fields they are 

12.4 μs, 5.5 μs, 2.8 μs, and 1.5 μs, respectively. 

The calculated half width values fall for the most part within the ranges observed in the 

experimental waveforms given in Table  5.3 and Table  5.5. It should be noted, however, that 

the calculated width of the V for the vertical field is about three times that of the horizontal 

field. This contrasts with the experimental data, for which this ratio is on average 1.34. This 

discrepancy could be attributed to several factors, namely the assumptions in the simplified 

model: uniform charge distribution and neglecting the presence of the tower and the 

contribution of charges induced on it. 
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(a) 

 
(b) 

Fig.  5.16  (a) Vertical, and (b) radial leader electric field changes at r = 20 m due a uniform charge distribution for different 
leader speeds. 

 
Note that, on average, the vertical electric field is about 6 times as large as the horizontal 

electric field. As discussed in Section 5.3, the alignment of the measuring antenna is 
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extremely important because any tilt would cause a component of the vertical field to appear 

in the horizontal field signal. We added a tilt in simulations and observed its effect on the 

agreement between the simulated waveforms and their measured counterparts. We estimated 

thus the error in the alignment of the horizontal field sensor to be less than about 1 degree. 

This would result in a contamination of the horizontal field signal of less than 10%. 

 

5.5   Test of Electromagnetic and Engineering Models for the 

Return Stroke 

In this Section, we will use the obtained experimental data on vertical and horizontal electric 

fields radiated by lightning strikes to the Gaisberg tower to test models for the return stroke 

stage. We will consider two classes of models (e.g. [12]): (1) electromagnetic or Antenna-

Theory (AT) models and (2) engineering models and more specifically the Modified 

Transmission Line model with exponential decay (MTLE) [37, 129]. The representation of 

the channel-base current and the modeling parameters will be described in the following 

subsections. 

 
5.5.1  Channel-Base Current 

For the comparison, we selected three sets of data associated with the third setup (see Fig. 

 5.1c), namely, the 2nd and 3rd strokes of the flash 682, and the 2nd stroke of the flash 683 

(Table  5.5). It’s worth noting that for the simulations a 750-kHz low pass filter has been 

applied to the measured current waveforms. The simulated waveforms of electrical fields due 

the currents filtered by this cut-off frequency showed a better agreement to those of 

measurement in particular in terms of rise-time. Fig.  5.17 shows the measured current 

waveforms corresponding to these return strokes.  

For the case of the AT model (see Section 5.5.2), the filtered current waveforms are directly 

used as the exciting source at the top of the tower.  

For the case of the engineering model (MTLE), for each event, the so-called ‘undisturbed 

current’ is represented using the sum of two Heidler’s functions (Chapter 2, Section 2.2.1.4), 

the parameters of which being determined to reproduce in the best possible way the measured 

current waveform on the top of the tower: 
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(a)       (b) 

 
(c) 

Fig.  5.17 Current records of (a) Flash 682, stroke 2/3, (b) Flash 682, stroke 3/3 (c) Flash 683, stroke 2/2 

 
5.5.2  Antenna Theory Model (AT) 

In the AT models, the elevated strike object is represented by conducting wires. The lightning 

return-stroke channel is modeled as a vertical wire antenna and the lightning return-stroke 

current is injected by a voltage source at the tip of the tower. The current distribution along 

the channel and along the tower is found by solving an electric field integral equation ([17]).  

In this study, we used the Numerical Electromagnetics Code NEC-4 [58], a well-known and 

widely used computer code based on the Method of Moments for analyzing the 

electromagnetic response of antennas and scatterers. Compared to previous NEC versions, 
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such as NEC-2 used by Baba and Ishii [16], NEC-4 is numerically more efficient and can also 

model wires buried in the ground or penetrating from the air into the ground [57].  

As illustrated in Fig.  5.18, the model for the strike object consists of a 60-m tall vertical 

wire connected to five inclined wires representing the tower legs. A radius of 0.05 m has been 

applied to all wires in the model.  

In order to reproduce a return stroke speed along the lightning channel lower than the speed 

of light, distributed series inductances and resistances are included in the modeled channel 

[16]. The adopted values are those suggested by Baba and Ishii [16], namely 6 μH/m and 1 

Ω/m, respectively. These values correspond to an equivalent return stroke speed of 120 m/µs. 

The wire structures representing the tower and the lightning channel were divided into 20-m 

length segments. The voltage source at the top of the strike object is determined by the desired 

current waveform on the top of the tower and by the input impedances of the lightning 

channel and the tower. The detailed procedure is explained in [17]. 
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(a)       (b) 

 
Fig.  5.18  (a) Proposed Five-Leg model for Gaisberg tower as used in NEC simulation, and (b) lateral view of the both tower 

and vertical and radial electric field sensors above a perfect conducting ground 
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5.5.3  Engineering Models 

In Engineering Models, the presence of a struck object is included considering it as a uniform, 

lossless transmission line (see Chapter 2).  

In this analysis, we adopted the MTLE model [37, 129] . A value of 2 km was assumed for 

the current decay constant λ [27], and the return stroke speed was assumed to be v = 120 

m/μs.  

The parameters of the Heidler’s functions (5.3) representing the current were determined 

using a trial-and-error approach to obtain the best match with the filtered recorded currents. 

The determined parameters for each event are presented in Table  5.7. 

 

Table  5.7 Parameters for the undisturbed current, tower reflection coefficients, return-stroke speed, for the MTLE model 
Flash Stroke v 

(×108 m/s) 
ρg ρt Io1 

(kA) 
τ11 

(μs) 
τ21 

(μs) 
N1 Io2 

(kA) 
τ12 

(μs) 
τ22 

(μs) 
N2 

682 2/3 1.2 0.9 -0.35 6.5 0.2 4.0 4 2.3 5.5 180 5 
682 3/3 1.2 0.9 -0.35 3.7 0.18 3.8 3 0.9 5.7 40 5 
683 2/2 1.2 0.9 -0.35 6.3 0.65 1.4 4 1.9 4.1 25 2 

 

 

 
Fig.  5.19 Location of the two electric field sensors 

 
5.5.4  Simulation Results and Comparison with Experimental Data 

As shown earlier in Fig.  5.1, in the actual measurement setup the radial and vertical electric 

sensors were located 1 m above a metallic platform (see Fig.  5.19). A series of numerical 
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simulations were performed using NEC-4 in which the platform was modelled using wire-grid 

models. The obtained results revealed that ignoring the platform and considering the 

observation point at the same height (1 m) above a perfectly conducting ground would be a 

reasonable approximation. In NEC some wire-grid models could be proposed to take into 

account the presence of the metallic platform on the calculated electric fields. 

This fact was also confirmed, as far as the vertical electric field is concerned, by the 

calibration campaign mentioned in Section 5.2.3 during which waveforms associated with 

distant lightning return strokes were measured using as reference a flat plate antenna located 

on the surface of the ground [147], and the enhancement effect of the metallic platform on the 

measured vertical electric fields was found to be negligible.  

Fig.  5.20, Fig.  5.21 and Fig.  5.22 show the three data sets including  

- the filtered current waveforms as well as the waveform obtained using the adopted 

representations using Heidler’s functions, 

- the radial electric fields recorded at r = 20 m, and 

- the vertical electric fields recorded at r = 22m. 

Note that in these figures, we have only shown the electric field changes during the return 

stroke phase and deliberately ignored the field change during the preceding downward leader 

phase.  

The measurements are then compared with the simulated results using the MTLE and 

electromagnetic (NEC-4) models (see Fig.  5.23, Fig.  5.24, and Fig.  5.25). It can be seen that 

both models predict electric field waveforms which are in reasonable agreement with 

measured waveforms. In general, the predicted fields by the electromagnetic model appear to 

be in better agreement with measured data, especially for the third event. The better 

performance of the electromagnetic model could be due to the fact that: (1) the measured 

current waveform is directly used as an input of the model, while an analytical representation 

is used for the MTLE model, and (2) the tower is represented in a more accurate way in the 

electromagnetic model. 
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Fig.  5.20 Return stroke current, radial and vertical electric field due to the Flash 682, return stroke 2/3 

 
Fig.  5.21 Return stroke current, radial and vertical electric field due to the Flash 682, return stroke 3/3 
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Fig.  5.22 Return stroke current, radial and vertical electric field due to the Flash 683, return stroke 2/2 

 
 
 

 
(a)       (b) 

Fig.  5.23 (a) Vertical and (b) Radial electric field return stroke change due to the Flash 682, return stroke 2/3, measured, and 
simulated by AT and MTLE Engineering Models  
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(a)       (b) 

Fig.  5.24 (a) Vertical and (b) Radial electric field return stroke change due to the Flash 682, return stroke 3/3, measured, and 
simulated by AT and MTLE Engineering Models  

 
(a)       (b) 

Fig.  5.25 (a) Vertical and (b) Radial electric field return stroke change due to the Flash 683, return stroke 2/2, measured, and 
simulated by AT and MTLE Engineering Models  

 

5.6   Summary and Conclusions 

Measurements of electric (vertical and radial) and azimuthal magnetic fields from leaders and 

return strokes associated with lightning strikes to the 100-m tall Gaisberg tower in Austria 

obtained in 2007 and 2008 were presented and discussed. The fields were measured at a 

distance of about 20 m from the tower. Simultaneously with the fields, return-stroke currents 

were also measured at the top of the tower. The data include simultaneous records of vertical 

and radial electric fields, which were obtained for the first time at such close distances. 

The magnetic field waveforms are characterized by waveshapes similar to those of the 

incident current. However, the H-field peaks appear to be a factor of about 1.6 larger than the 
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values predicted by Ampere’s law. This enhancement could be due to several possible causes, 

such as the proximity to the tower base and other close-by metallic structures. 

The vertical and radial electric field waveforms appear as asymmetrical V-shaped pulses. 

For the vertical electric field, the initial, relatively slow, negative electric field change is due 

to the downward leader and the following fast positive field change is due to the upward 

return stroke phase of the lightning discharge. For the horizontal electric fields, however, the 

bottom of the V is not associated with the transition from the leader to the return stroke. The 

horizontal field change due to the return stroke is characterized by a short negative pulse of 

the order of 1 microsecond or so, starting with a fast negative excursion followed by a 

positive one. 

We derived an analytical expression for the radial electric field, assuming a uniform charge 

distribution along the leader with constant speed. The calculated width of the V-shaped pulse 

of the vertical field is about three times that of the horizontal field, in contrasts with the 

experimental data, for which this ratio is on average only 1.34. 

The return-stroke vertical electric field changes appear to be significantly smaller than 

similar measurements obtained using triggered lightning. This finding confirms to some 

extent the shadowing effect of the tower which results in a significant decrease of the electric 

field at distances of about the height of the tower or less. The vertical and radial E-field 

changes due to the return stroke were also found to be larger on average than the leader 

electric field changes. 

In a significant number of cases (33%), the vertical electric field waveform due to the return 

stroke is characterized by a first peak which exceeds the typical late-time flattening due to the 

electrostatic term. This is in contrast with similar measurements related to triggered lightning, 

in which such a first peak is absent. Around one quarter of the measured vertical electric field 

waveforms (18 pulses out of 75) feature an unusual waveform characterized by a positive 

leader field change followed by a bipolar return stroke field change with a zero crossing time 

of about 60 μs. The findings of this study call for further research to understand the reasons 

for the unexpected behavior of the electric field at these close distances. 

Finally, the ability of two different models for the return stroke in reproducing measured 

vertical and horizontal electric fields was tested using the obtained measured data. The 

considered models were (1) the engineering MTLE model, and (2) the electromagnetic model 

implemented using NEC-4. It has been shown that both models predict electric field 

waveforms which are in reasonable agreement with measured waveforms. In general, the 
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predicted fields by the electromagnetic model appear to be in better agreement with measured 

data, because of the direct use of the measured current waveform as an input and the more 

accurate representation of the tower.  

 

5.7   Appendix 

The leader channel is assumed to propagate downward at a constant speed vL from its initial 

height H along the z axis to the tower top level. The linear charge density along the leader ρL 

is assumed to be constant and time independent. The magnitude of the vertical [Rubinstein, et 

al., 1995] and radial components of the field change at a distance r from the strike point and a 

height z above ground due to an elemental section of the channel dz' at height z' can be 

written, including the effect of charge depletion in the cloud [150, 156], as the following (see 

Fig.  5.26) 

H

vLt
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y

Perfectly conducting ground

cloud

z'

HT

 
Fig.  5.26 Geometry for the calculation of electric field components of a vertical lightning channel in the presence of the 

tower above a perfectly conducting ground. 
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The overall field change at any time t is then obtained by integrating (5.3) and (5.4) from the 

height of the bottom of the leader at time t to the cloud charge center 
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Introducing (5.3) and (5.4) into (5.5) and (5.6) yields 
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After applying integration, we obtain the expressions for the vertical and radial components of 

the electric field due to the leader, which are given in equations (5.1) and (5.2). 



 

 

 
 



 

 

 
 
 
 
 
 
 
Chapter 6  

Effect of Nearby Buildings on Electromagnetic 
Fields from Lightning 

6.1   Introduction 

Sensors used for the measurement of lightning electric and magnetic fields are often placed 

close to or on top of buildings or other structures [34, 136, 146, 157-159]. Metallic beams and 

other conducting parts in those structures may cause enhancement or attenuation effects on 

the measured fields. Rubinstein et al. [157] used simultaneous measurements of lightning 

electric fields at the top of a building and at ground level to estimate an enhancement factor 

for the electric field of about 1.5 for their 17-floor building. Bonyadi-Ram et al. [146] 

presented a theoretical analysis in which the building on which the electric field was 

evaluated was represented by a metallic wire-grid model. Their results imply that the 

enhancement factor for the electric field is about 2.3 for a 10-m high building and increases 

with the height of the structure. Bermudez et al. [34] and Pavanello et al. [136] compared 

electromagnetic fields associated with lightning strikes to the Toronto CN Tower measured on 

the roofs of buildings at different distances from the tower with theoretical estimations. Their 

results suggest that both the electric and the magnetic fields may have been enhanced by the 

presence of the buildings, although the degree of enhancement was actually more significant 

for the electric field than for the magnetic field. Baba and Rakov [159] applied the finite-

difference time-domain (FDTD) method to evaluate the effect of a building on the vertical 

component of electric field radiated by nearby lightning. Their computation results show that 
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the magnitude of the E-field on the roof of a 20-m building is about 1.5 times greater than that 

at the same horizontal distance on the ground surface in the absence of the building.  

In this chapter, we present an experimental analysis for the evaluation of the distortion 

introduced by a building on the electric and magnetic fields from lightning [123-124, 160]. A 

numerical analysis using the Numerical Electromagnetics Code NEC-4 [58] is also presented 

to support the experimental data. 

 

6.2   Considered configurations and simulation parameters 

Experimental waveforms from distant natural lightning were recorded during the summers 

2006 and 2007. Electric and magnetic field waveforms were measured simultaneously at two 

different locations, on the roof of a building (the Power Systems Laboratory of the Swiss 

Federal Institute of Technology, Lausanne, Switzerland) and on the ground. The building is 

located on the Campus of the Swiss Federal Institute of Technology in Lausanne, on the north 

of Lake Geneva. 

The field derivatives were recorded using flat plate antennas (for the vertical E-field) and 

two magnetic loops (for the two magnetic field components Hx and Hy) [161]. The sensors 

outputs were connected via 20-m long 50 Ω double-shielded cables (RG214U type) to a 

digitizer. 

 
Fig.  6.1 Experimental Setup 1 

 

The angle of incidence of the lightning electromagnetic field was determined using the 

magnetic direction finding technique [1] from the two components Hx and Hy of the magnetic 
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field measured on the roof of the building. Here we implicitly made the assumption that the 

magnetic field components on the roof were not affected by the presence of the building, or 

that both components of the H-field were affected equally. 

Three different setups were considered and are described hereafter. 

 

 

 
(a) 

 
(b) 

Fig.  6.2  Experimental setup 2 (a) and location of the sensors on the rooftop (b). 
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(a) 

 

 
(b) 

Fig.  6.3  Experimental setup 3 (a) and location of the sensors on the ground (viewed from the rooftop) (b). 

 
Setup 1. illustrates the placement of the antennas for the first setup. The coordinate system 

used throughout this chapter is also shown in the same figure. The sensors on the roof are 

located approximately 1-m away from the southern edge and equidistant from the corners, 

while those on the ground are located about two meters away from the building façade and 

half way along it [123]. 
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Setup 2. Fig.  6.2 shows the location of the antennas for the second setup. Sets of electric and 

magnetic field sensors are located on the roof of the building, one in the center and the other 

near the southern edge (1 m away from the edge and half way along it). 

Setup 3. The arrangement of the antennas used for the third setup is shown in Fig.  6.3 Both 

sets of electric field sensors are located on the ground at 2 and 7 m from the southern edge, as 

shown in the figure. The magnetic field is measured on the roof center and at 7 m from the 

southern edge. 

 

6.3   Experimental results 

6.3.1  Setup One 

We analyzed 4 flashes occurred on July 5th, 2006. These flashes were identified as negative 

cloud-to-ground strikes by their field signatures. 

 

 
(a)       (b) 

 
(c)        
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Fig.  6.4 Setup 1: Electric and magnetic 
fields recorded on July 5th, 2006, 02:30:20 
local time. Single-stroke flash. Solid lines: 
measured waveforms on the roof, dashed 
line: measured waveforms on the ground. (a) 
Hx, (b) Hy, (c) Ez.  
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Fig.  6.4 presents one typical set of measurements consisting of simultaneous records of 

vertical electric fields and horizontal magnetic fields (Hx and Hy) on the roof of the building 

and on the ground, corresponding to a single-stroke flash occurred at 02:30:20 local time, July 

5th 2006. Stepped leader pulses are clearly visible in the waveforms before the onset of the 

return stroke pulse. Table  6.1 summarizes some salient parameters (angle of incidence, field 

peaks) for 13 strokes out of the four flashes recorded on July 5th, 2006. Table  6.2 presents the 

ratios of electromagnetic field peaks on the roof to those measured on the ground, as well as 

the values for the wave impedances. 

 

 

Table  6.1 Setup 1: Parameters of the events recorded on July 5th., 2006 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Number 

Inter-
Event 

Interval 
(ms) 

EGround 
(V/m) 

ERoof 
(V/m) 

Ground
XH  

(mA/m) 

Roof
XH  

(mA/m) 

Roof
YH  

(mA/m) 

Ground
YH  

(mA/m) 

2006-07-05, 
02:28:00 

63 

1/5  5.8 183.5 42.5 247.8 -128.8 -136.2 
2/5 45.6 4.3 52.7 11.6 70.1 -35.5 -32.7 
3/5 67.9 5.9 90.2 17.6 122.3 -60.9 -62.9 
5/5 117.9 2.0 54.6 14.7 71.3 -35.2 -32.7 

2006-07-05, 
02:30:20 

23 1/1  3.7 128.1 9.22 70.1 -159.4 -158.1 

2006-07-05, 
02:32:27 

60 

1/5  6.5 125.2 30.5 180 -66.6 -70.8 
2/5 66.0 5.4 101.4 22.1 148.9 -55.8 -58.7 
3/5 41.3 4.8 70.8 17.8 98.4 -36.5 -37.3 
4/5 50.2 5.1 67.8 19.5 100.1 -36 -45.6 
5/5 52.7 2.4 35.3 5.42 51.4 -19.2 -19.8 

2006-07-05, 
03:07:47 

107 
5/8 35.1 22.4 179.2 44.2 263 85.8 86.2 
7/8 525.8 10.9 108.1 33.3 163.4 49.3 54.2 

 
 

Table  6.2 Setup 1: Ratios of electric and magnetic field peaks and wave impedances 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Number 

Roof

Ground

E

E
 

Roof
X

Ground
X

H

H
 

Roof
Y

Ground
Y

H

H
 

Ground

Ground

E

H
(Ω) 

Roof

Roof

E

H
(Ω) 

Ground

Roof

E

H
(Ω) 

2006-07-05, 
02:28:00 

63 

1/5 31.7 5.8 0.9 40.5 657.1 20.7 
2/5 12.3 6.0 1.1 123.9 670.7 54.7 
3/5 15.2 7.0 1.0 90.8 660.2 43.4 
5/5 26.9 4.9 1.1 56.6 686.7 25.5 

2006-07-05, 
02:30:20 

23 1/1 34.7 7.6 1.0 23.3 735.6 21.2 

2006-07-05, 
02:32:27 

60 

1/5 19.1 5.9 0.9 84.8 652.3 34.1 
2/5 18.7 6.7 0.9 86.6 637.7 34.1 
3/5 14.9 5.5 1.0 114.9 675 45.2 
4/5 13.3 5.1 0.8 103.2 638 48.1 
5/5 15.0 9.5 1.0 114.5 643.2 42.8 

2006-07-05, 
03:07:47 

107 
5/8 8.0 6.0 1.0 231.4 647.8 81 
7/8 9.9 4.9 0.9 170.9 633.0 63.7 
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It can be seen from Table  6.1 and Table  6.2 that the electric field peak on the roof is one order 

of magnitude greater than that measured on the ground. On the other hand, the magnetic field 

component Hy is nearly identical on the ground and on the roof. However, the Hx component 

on the ground has a peak value 5 to 10 times lower than that of the same component measured 

on the roof. 

As discussed in [123], the obtained results suggest an enhancement of the vertical electric 

field measured on the roof of the building, in line with the conclusions of [34, 136, 146, 157-

159]. The enhancement referred to in the mentioned studies is defined as the ratio of the fields 

on top of a building to the corresponding fields in the absence of the building. Since we 

measured our electric field two meters from the building, the fact that the ratio of the E-field 

peak on the roof to the E-field peak on the ground is about 10-30 suggests an attenuation of 

the E-field measured on the ground [123]. 

The fact that the magnetic field component at ground level perpendicular to the building 

façade, Hx, is considerably lower than the same component on the roof is thought to be 

essentially due to currents induced on the metallic structure of this façade [123]. These 

currents flow predominantly in the yz plane and they generate therefore a magnetic field in 

the x direction. 

As can be seen in the 4th column of Table  6.2, a great disparity can be observed for the ratio 

of the electric field on the roof and that on the ground. For example, the first flash presents 

ratios of 31.7, 12.3, 15.2 and 26.9. Since all the measured fields for those strokes come from 

the same direction and propagated along the same path, they are expected to be submitted to 

the same attenuation and distortion effects. The fact that the ratio varies to such significant 

extent can be essentially due to two reasons: (1) the differences in the rise-times of the fields 

and possible frequency dependence of the building effect, and (2) the fact that the E-field 

waveforms on the ground were characterized by very low magnitudes (see Fig.  6.4c) and 

hence might have been affected by noise. 

In order to estimate the amount of enhancement/ attenuation of the electromagnetic field 

components, the following approach based on the wave impedance is proposed. Since all the 

events recorded in this study correspond to distant lightning strikes (some tens of kilometers), 

the field is essentially radiation and the electric field peak to magnetic field peak ratio should 

be equal to the free space wave impedance, 377 Ω. We also assume that the magnetic field 

components measured on the roof are not affected by the presence of the building. This 

assumption, which will be tested in Section 4, is supported by the fact that the two horizontal 
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field components measured on the roof of the building are not expected to be significantly 

affected by the currents induced on the roof, which flow predominantly in the same horizontal 

plane. The last two columns in Table  6.2 present the ratio of the electric field peaks on the 

roof and on the ground to the magnetic field peaks on the roof. It can be seen that the ratio of 

the field peaks on the roof ranges from 630 to 735 Ω, with a mean value of 640.4 Ω and a 

standard deviation of 10.46 Ω. These values indicate that the enhancement of the electric field 

on the roof is about 1.7 to 1.9. The ratio of the E-field peak on the ground to the E-field peak 

on the roof (last column of Table  6.2) ranges from 20 Ω to 80 Ω. Comparing these values to 

the free-space wave impedance suggests that the reduction of the electric field at ground 

ranges from 5 to 20. 

 

6.3.2  Setup Two 

We analyzed 10 flashes occurred on June 20th and 21st, 2007. All these flashes were identified 

as negative cloud-to-ground strikes by their field signatures. Fig.  6.5 presents one typical set 

of measurements consisting of simultaneous records of electric and magnetic fields recorded 

on July 20th 2007. Table  6.3 summarizes parameters for 12 strokes out of the recorded 10 

flashes. It can be seen that the vertical electric field at the edge of the rooftop is only slightly 

enhanced compared to the same component measured on the roof center (average: 5.67%). No 

significant difference was found between the y-component of the magnetic field at the two 

locations. However, the magnetic field x-component on the edge was significantly larger than 

that of the center (average 29.75%). 

Table  6.4 presents the ratios of electromagnetic field peaks on the roof to those measured on 

the ground, as well as the values for the wave impedances. Assuming again that the magnetic 

field components measured on the roof center are not affected by the presence of the building, 

the enhancement of the electric field can be evaluated by examining the last two columns in 

Table  6.4 which present the ratio of the electric field peaks on the roof center and on the roof 

edge to the magnetic field peaks on the roof center. It can be seen that the ratio of the field 

peaks on the roof ranges from 590 to 807 Ω, with a mean value of 686.64 Ω and a standard 

deviation of 77.67 Ω. These values indicate that the enhancement of the electric field on the 

roof is about 1.5 to 2. 
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(a)       (b) 

 
(c) 

 

Table  6.3 Setup 2: Parameters of the events recorded on June 20th and 21st, 2007 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Number 

Inter-Event 
Interval (ms) 

ECentre 

(V/m) 
EEdge 

(V/m) 

Centre
XH  

(mA/m) 

Centre
YH  

(mA/m) 

Edge
XH  

(mA/m) 

Edge
YH  

(mA/m) 
2007-06-20, 

22:50:20 
 

-171 
2/5 172 73.46 69.7 -16.5 116.8 -25.1 111.8 
3/5 134 66.56 70 -17.3 113.1 -24.1 109.5 
5/5 0.2 78.38 83 -19.9 132.2 -29.9 125.9 

2007-06-20, 
23:42:48 

161 1/2  53.69 57.1 30 84.9 36.3 82.3 

2007-06-20, 
23:43:03 

-50 1/1  28.97 28.89 -31.8 -27.1 -38.8 -29.2 

2007-06-20, 
23:48:40 

-48 1/1  27.63 29.4 -29.3 -26 -37.7 -28.5 

2007-06-20, 
23:49:57 

-60 1/3  93.25 99.5 -121.6 -69.8 -150.2 -76 

2007-06-20, 
23:50:23 

-59 1/1  52.94 60.21 -63.9 -38.5 -76.9 -45 

2007-06-20, 
23:52:33 

-51 3/3 103.9 40.51 44.69 -46.5 -37.9 -56.8 -42.7 

2007-06-20, 
23:59:42 

-48 3/4 56.78 37.18 37.08 -39.9 -35.4 -50 -37.5 

2007-06-21, 
00:03:03 

-48 1/1  38.45 43.5 -40.3 -36.9 -47.8 -42.4 

2007-06-21, 
01:10:49 

-170 1/1  53.8 58.14 -16.8 97.6 -22.5 93.6 
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Fig.  6.5  Setup 2: Electric and magnetic 
fields recorded on June 20th, 2007, 22:50:20 
local time. Stroke (3/5). Solid lines: 
measured waveforms on the roof, dashed 
line: measured waveforms on the ground. (a) 
Hx, (b) Hy, (c) Ez.  
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Table  6.4  Setup 2: Ratios of electric and magnetic field peaks and wave impedances 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Numb

er 

Edge

Centre

E

E
 

Edge
X

Centre
X

H

H
 

Edge
Y

Centre
Y

H

H
 

Centre

Centre

E

H
 

(Ω) 

Edge

Centre

E

H
 

(Ω) 

2007-06-20, 22:50:20 
 -171 

2/5 0.95 1.52 0.96 622.7 590.9 
3/5 1.05 1.39 0.97 581.7 611.8 
5/5 1.06 1.5 0.95 586.3 620.8 

2007-06-20, 23:42:48 161 1/2 1.06 1.21 0.97 596.3 634.1 
2007-06-20, 23:43:03 -50 1/1 0.99 1.22 1.08 693.4 691.5 
2007-06-20, 23:48:40 -48 1/1 1.06 1.29 1.1 705.3 750.5 
2007-06-20, 23:49:57 -60 1/3 1.07 1.24 1.09 665.1 709.6 
2007-06-20, 23:50:23 -59 1/1 1.14 1.2 1.17 709.6 807.1 
2007-06-20, 23:52:33 -51 3/3 1.1 1.22 1.13 675.3 745 
2007-06-20, 23:59:42 -48 3/4 0.99 1.25 1.06 697 695.2 
2007-06-21, 00:03:03 -48 1/1 1.13 1.19 1.15 703.7 796.1 
2007-06-21, 01:10:49 -170 1/1 1.08 1.34 0.96 543.2 587.1 

 

6.3.3  Setup Three 

We measured one flash occurred on July 1st, 2007 for this configuration and which was 

identified as a negative cloud-to-ground strike by its field signatures. Fig.  6.6 presents one 

typical set of measurements consisting of simultaneous records of electric and magnetic fields 

recorded on July 20th 2007. Table  6.5 summarizes parameters for the 2 strokes out of the 

recorded flash. It can be seen that the vertical electric field at 2 m from the building is 

significantly smaller in magnitude than that measured at 7 m from the building, presumably 

less affected by the building shadowing effect. In agreement with the results obtained for the 

setup 1, the magnetic field x-component at ground level perpendicular to the building façade, 

Hx, is considerably lower than the same component on the roof. However, it is found for this 

configuration that the Hy component at ground level is also lower (to a lesser degree) 

compared to the same component measured on the roof. 

Table 6.6 presents the ratios of electromagnetic field peaks, as well as the values for the 

wave impedances. It can be seen that the wave impedance for the field measured at 7 m from 

the building façade is nearly equal to the free space wave impedance. This could be 

considered as an indication that at this location, electric and magnetic field components are 

very little affected by the building. On the other hand, the ratios of the electric field at 7 m 

from the building to the magnetic field on the roof center are 261.9 and 269.7 Ω for first and 

second stroke respectively. Assuming that the magnetic field on the roof center is unaffected 

by the building, this would indicate that both the electric and magnetic fields at 7 m from the 

building façade are still affected by the shadowing effect, despite the fact that their ratio is 

close to the free space wave impedance. 
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(a)       (b) 

 
(c) 

Fig.  6.6 Setup 3: Electric and magnetic fields recorded on July 1st, 2007, 17:15:06 local time. Stroke (3/3). Solid lines: 
measured waveforms on the roof, dashed line: measured waveforms on the ground. (a) Hx, (b) Hy, (c) Ez.  

 
 

Table  6.5 Setup3: Parameters of the events recorded on July 1st, 2007 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Number 

Inter-
Event 

Interval 
(ms) 

2m
GroundE  

(V/m) 

7m
GroundE  

(V/m) 

Roof
XH  

(mA/m) 

Roof
YH  

(mA/m) 

Ground
XH  

(mA/m) 

Ground
YH  

(mA/m) 

2007-07-01, 
17:15:06 

-125 
1/3  10.6 44.7 -139 99 -93 84.2 
3/3 66.8 11.04 46.62 -141.6 99.2 -92.7 81.9 

 
 

Table  6.6 Setup3: Ratios of electric and magnetic field peaks and wave impedances 

Flash 
Incidence 

Angle 
(degrees) 

Event 
Number 

7m
Ground
2m
Ground

E

E
 

Roof
X

Ground
X

H

H
 

Roof
Y

Ground
Y

H

H
 

2m
Ground
7m
Ground

E

H
(Ω) 

2m
Ground

Roof

E

H
 

(Ω) 

7m
Ground
7m
Ground

E

H
(Ω) 

7m
Ground

Roof

E

H
 (Ω) 

2007-07-01, 
17:15:06 

-125 

1/3 
 

4.22 1.49 1.17 78.0 62.1 356.3 261.9 

3/3 
 4.22 1.53 1.21 81.3 63.9 376.9 269.7 
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6.4   Simulations 

In the analysis presented in this section, we made use of the Numerical Electromagnetics 

Code NEC-4 [9], a well-known and widely used computer code based on the Method of 

Moments for analyzing the electromagnetic response of antennas and scatterers. The building 

was represented using a very simplified wiregrid parallelepiped structure consisting of 12 

wires (see Fig. 6.7). Each wire was subdivided into 10 segments and the radius of all wires 

was 5 cm. The incident field used was a plane wave with a waveshape typical of a lightning 

return-stroke far field and with an angle of incidence corresponding to the event presented in 

Fig.  6.4 (July 5th 2006, 02:30:20), which corresponds to the setup 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.7  Wiregrid model for the building and the configuration for the NEC-4 computation corresponding to the event 
recorded on July 5th, 2006, 02:30:20 local time. 

 

The resulting computed electric and magnetic fields are shown in Fig.  6.8. Table  6.7 presents, 

for comparison, the ratios of the electric and magnetic field peaks and the wave impedances 

determined from the measured waveforms and from the simulations. Despite noticeable 

differences between simulations and measurements, which are believed to be essentially due 

to the oversimplified model for the building, it can be seen that the computed results are 

qualitatively in agreement with the observed data and show the same trends.  
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(a)       (b) 

 
(c)        

 

Table  6.7  Ratios of electric and magnetic field peaks and wave impedances. 
Comparison between measurements and simulations. Event July 5th, 2006 -02:30:20 

2006-02-05, 
02:30:20 

Roof

Ground

E

E
 

Roof
X

Ground
X

H

H
 

Roof
Y

Ground
Y

H

H
 

Ground

Ground

E

H
(Ω) 

Roof

Roof

E

H
(Ω) 

Ground

Roof

E

H
(Ω) 

Simulation 2.3 1.8 1.0 269.5 550.7 243.3 

Measurement 34.7 7.6 1.0 23.3 735.6 21.2 

 

Table  6.8  Percentage of difference between computed electric and magnetic field components  
in the presence of the building and with the building removed, leaving only the ground plane 

Percentage  
RoofE  GroundE  

Roof
XH  

Roof
YH  

Ground
XH  

Ground
YH  

Simulation 47 % -35 % 27 % -5 % -29 % -6 % 
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Fig.  6.8  Calculated electric and magnetic 
fields corresponding to the single-stroke flash 
that occurred on July 5th, 2006, 02:30:20 local 
time. Solid lines: calculated waveforms on the 
roof, dashed line: calculated waveforms on 
the ground. (a) Hx, (b) Hy, (c) Ez. 
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Table  6.8 presents the difference, expressed as a percentage, between the calculated fields in 

the presence of the building and those obtained without the building. The results confirm (i) 

the enhancement of the electric field on the roof and (ii) the attenuation of the electric field on 

the ground. The results also confirm that the Hy component is very little affected by the 

building whereas the Hx component on the ground is attenuated. The results also indicate an 

enhancement of the Hx component on the roof, which is in agreement with the experimental 

results obtained for the setup 2. 

 

6.5   Conclusions 

We presented experimental waveforms radiated from distant natural lightning recorded during 

the summers of 2006 and 2007. Electric and magnetic field waveforms were measured 

simultaneously on the roof of a building (the Power Systems Laboratory of the Swiss Federal 

Institute of Technology, Lausanne, Switzerland) and on the ground at different distances away 

from it. The fields were recorded using flat plate antennas (for the E-field) and magnetic loops 

(for the H-field). The results suggest that the measured electric field on the roof of the 

building could be enhanced by a factor of 1.7 to 1.9, whereas the electric fields on the ground 

experience a significant reduction by a factor ranging from 5 to 20. Also, it is shown that for a 

sensor located on the ground close to a building, the magnetic field component perpendicular 

to the building can experience significant attenuation, presumably due to the effect of the 

induced currents in the building. The magnetic field on the roof of the building seems not to 

be significantly affected by the building. 

Simulations using the Numerical Electromagnetic Code (NEC-4) were also carried out in 

which the building was represented using a simple wiregrid model. The simulation results 

support in essence the findings of the experimental analysis, despite quantitative differences 

which are ascribed, at least in part, to the oversimplified model of the building. 

 



 

 

 
 
 
 
 
 
 
Chapter 7  

Summary, Conclusions and Perspectives 

7.1   Summary and conclusions 

The focus of this thesis was the analysis and modeling of lightning strikes to tall structures in 

view of the characterization of generated electromagnetic fields. The work comprised both 

theoretical investigations and experimental measurements with the aim of improving our 

current understanding of lightning to tall structures and associated electromagnetic fields. 

 

Chapter 2 reviewed recent progress in the modeling of lightning strikes to tall towers and 

associated experimental data obtained during the last decade or so. Two types of return stroke 

models namely the Engineering Models, and the Electromagnetic or Antenna-Theory (AT) 

models, extended to take into account the presence of a tall strike object were discussed. It 

was emphasized that the engineering models are characterized by a discontinuity at the return 

stroke wavefront which requires special care when calculating the electromagnetic fields. In 

addition, this discontinuity cannot be considered as physically plausible.  

It was also shown that none of the two classes of models were able to reproduce the far field 

zero crossing of the electromagnetic fields, nor the narrow undershoot observed in the 

waveforms of the electromagnetic fields associated with lightning strikes to the Toronto CN 

Tower. 

The chapter highlighted some important questions raised by different research groups in the 

past few years which call for further investigations. These questions were as follows: 
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(1) No systematic theoretical analysis nor experimental data are available for 

electromagnetic fields in the immediate vicinity of a tall structure struck by lightning. The 

characterization of nearby electromagnetic fields is particularly important in the analysis of 

the interaction to nearby electrical and electronics systems.  

(2) Why do lightning return stroke models not reproduce the far-field zero crossing 

associated with lightning to tall structures? How should these models be revised to be able to 

reproduce such an effect? 

(3) How should the engineering models be revised in order to remove the associated 

current discontinuity at the return stroke wavefront? 

(4) It is well-known that the measurements of electromagnetic fields from lightning are 

affected by the presence of nearby buildings and metallic structures. However, no systematic 

and quantitative analysis of such an effect is presently available in the literature. 

The work presented in this thesis addresses all the above questions. 

 

In Chapter 3, a detailed theoretical analysis of electromagnetic field characteristics in the 

immediate vicinity of a tower struck by lightning was presented. It was shown that the electric 

field generated by a lightning return stroke to a tall structure can change polarity at very close 

distance range, typically at distances of about one tenth the height of the struck object or so. 

This change in the polarity appearing as a negative excursion preceded by a short (some tens 

of nanoseconds) initial positive excursion, seems to be a specific signature of very close 

vertical electric fields. Two different theoretical explanations of such an inversion of polarity 

were given, the first based on general field equations for a perfectly-conducting ground, and 

the second based on the equation derived by Baba and Rakov for the case when the return 

stroke wave front speed is assumed to be equal to the speed of light and the reflection 

coefficient at the top of the tall structure is zero. A simple equation was derived which 

provides an estimate of the critical distance below which such an inversion of polarity might 

occur. It was also shown that the inversion of polarity depends on the value for the reflection 

coefficient at the base of the tower and might disappear for reflection coefficients close to 1. 

On the other hand, other parameters such as the return stroke speed, the reflection coefficient 

at the top of the tower, and the adopted return stroke model seemed not to have an impact on 

the inversion of polarity. Simulation results also showed that the electric field peak at 

distances beyond the height of the tower or so exhibits the typical 1/r dependence. At closer 

distances, however, the E-field peak features a saturation, due to the so-called tower 
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shadowing effect. This shadowing effect results in a substantial decrease of nearby electric 

field. On the other hand, the magnetic field peak varies inversely proportional to the 

horizontal distance and does not depend significantly on the presence of an elevated strike 

object. 

 

In Chapter 4, an improved version of the engineering models for return-strokes to tall 

structures was proposed which accounts for (1) the presence of possible reflections at the 

return stroke wavefront, and, (2) a return stroke initiation above the structure due to an 

upward connecting leader. We also proposed an elegant iterative solution that can be easily 

implemented into computer simulation programs to take into account in a straightforward way 

multiple reflections occurring at the discontinuities at the tower ends and at the return stroke 

wavefront. 

Simulation results for the magnetic fields were compared with experimental waveforms 

associated with lightning strikes to the CN Tower (553 m). It was shown that taking into 

account the reflections at the return-stroke wavefront results in better reproducing the fine 

structure of the magnetic field waveforms, including the double-peak, the early narrow 

undershoot and the far-field zero crossing. The results also suggested that the typical double-

peak response of the radiated fields from tall structures might be due to the combined effect of 

upward-connecting leader and reflections at the return stroke wavefront. 

 

Chapter 5 presented and discussed obtained measurements of electric (vertical and radial) 

and magnetic fields from leaders and return strokes associated with lightning strikes to the 

Gaisberg tower in Austria obtained in 2007 and 2008. The Gaisberg tower is a 100-m tall 

radio tower located 1287 m above sea level on the top of a mountain 5 km east of the city of 

Salzburg, Austria. The fields were measured at a distance of about 20 m from the tower. 

Simultaneously with the fields, return-stroke currents were also measured at the top of the 

tower. The data include simultaneous records of vertical and radial electric fields, which were 

obtained for the first time at such close distances. The whole measurement campaign includes 

three different measurement setups. Each setup includes records of lightning current 

waveforms measured on the top of the tower. In the first setup (from May 1st, 2007 to 

September 10th, 2007), we measured the vertical electric field and the azimuthal magnetic 

field, respectively at 22 m and 20 m from the center of the tower. In the second setup (from 

September 11th, 2007 to June 31st, 2008), we obtained records of the radial electric field and 
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azimuthal magnetic field, respectively at 22 m and 20 m from the center of the tower. Finally, 

for the third setup (from July 1st, 2008 to August 1st, 2008), we measured the vertical and 

radial components of the electric field at 22 m and 20 m from the tower, respectively.  

A total of 13 upward initiated flashes containing 40 ICC pulses (pulses superimposed on the 

ICC, the initial continuing current typical for upward initiated flashes) and 44 return-strokes 

were recorded during the whole measuring campaign, although the sample size was different 

depending on the studied quantities and examined features for each data set. 

It was found that the magnetic field waveforms are characterized by waveshapes similar to 

those of the incident current. However, the H-field peaks appear to be a factor of about 1.6 

larger than the values predicted by Ampere’s law. This enhancement could be due to several 

possible causes, such as the proximity to the tower base and other close-by metallic structures. 

It was also observed that the vertical and radial electric field waveforms appear as 

asymmetrical V-shaped pulses. For the vertical electric field, the initial, relatively slow, 

negative electric field change is due to the downward leader and the following fast positive 

field change is due to the upward return stroke phase of the lightning discharge. For the 

horizontal electric fields, however, the bottom of the V is not associated with the transition 

from the leader to the return stroke. The horizontal field change due to the return stroke is 

characterized by a short negative pulse of the order of 1 microsecond or so, starting with a fast 

negative excursion followed by a positive one. 

In addition, an analytical expression for the radial electric field, assuming a uniform charge 

distribution along the leader with constant speed was derived. The calculated width of the V-

shaped pulse of the vertical field is about three times that of the horizontal field, in contrasts 

with the experimental data, for which this ratio is on average only 1.34. 

It was also shown that the return-stroke vertical electric field changes appear to be 

significantly smaller than similar measurements obtained using triggered lightning. This 

finding confirms to some extent the shadowing effect of the tower, predicted by the 

theoretical analysis of Chapter 3, which results in a significant decrease of the electric field at 

distances of about the height of the tower or less. The vertical and radial E-field changes due 

to the return stroke were also found to be larger on average than the leader electric field 

changes. 

In a significant number of cases (33%), the vertical electric field waveform due to the return 

stroke was characterized by a first peak which exceeded the typical late-time flattening due to 

the electrostatic term. This is in contrast with similar measurements related to triggered 
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lightning, in which such a first peak is absent. About one quarter of the measured vertical 

electric field waveforms (18 pulses out of 75) feature an unusual waveform characterized by a 

positive leader field change followed by a bipolar return stroke field change with a zero 

crossing time of about 60 μs.  

Finally, the ability of two different models for the return stroke in reproducing measured 

vertical and horizontal electric fields was tested using the obtained measured data. The 

considered models were (1) the engineering MTLE model, and (2) the electromagnetic model 

implemented using NEC-4. It was shown that both models predict electric field waveforms 

which are in reasonable agreement with measured waveforms. In general, the predicted fields 

by the electromagnetic model appear to be in better agreement with measured data, because of 

the direct use of the measured current waveform as an input and the more accurate 

representation of the tower.  

 

Chapter 6 was devoted to effect of nearby buildings on electromagnetic fields from 

lightning. Indeed, sensors used for the measurement of lightning electric and magnetic fields 

are often placed close to or on top of buildings or other structures. Metallic beams and other 

conducting parts in those structures may cause enhancement or attenuation effects on the 

measured fields. Experimental waveforms radiated from distant natural lightning recorded 

during the summers of 2006 and 2007 were presented. Electric and magnetic field waveforms 

were measured simultaneously on the roof of a building (the Power Systems Laboratory of the 

Swiss Federal Institute of Technology, Lausanne, Switzerland) and on the ground at different 

distances away from it. The fields were recorded using flat plate antennas (for the E-field) and 

magnetic loops (for the H-field). The results suggested that the measured electric field on the 

roof of the building could be enhanced by a factor of 1.7 to 1.9, whereas the electric fields on 

the ground experienced a significant reduction by a factor ranging from 5 to 20. Also, it was 

shown that for a sensor located on the ground close to a building, the magnetic field 

component perpendicular to the building can experience significant attenuation, presumably 

due to the effect of the induced currents in the building. The magnetic field on the roof of the 

building seems not to be significantly affected by the building. 

Simulations using the Numerical Electromagnetic Code (NEC-4) were also carried out in 

which the building was represented using a simple wire-grid model. The simulation results 

supported in essence the findings of the experimental analysis, despite quantitative differences 

which are ascribed, at least in part, to the oversimplified model of the building. 
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7.2   Perspectives 

A number of ideas appeared during the course of this study and as a result of the findings of 

the theoretical investigations and experimental campaigns which definitely deserve further 

research. The main ideas are discussed hereafter. 

The improved version presented in Chapter 4 in which possible reflections at the return 

stroke wavefront and the presence of an upward connecting leader are considered represent 

certainly a significant improvement in the modeling of return strokes to tall structures. The 

improved model was found indeed successful to reproduce the early undershoot, the far field 

zero crossing and the double peak structure of the field, features that original models were not 

able to reproduce. The new model also allows, to the extent that the upper reflection 

coefficient for the current is set to -1, to naturally remove the physically unreasonable 

discontinuity on the return stroke wavefront. Even though a current reflection coefficient set 

to -1 corresponds to an open-circuit condition, the situation of a return-stroke is quite different 

from a traditional transmission line in the sense that the channel is not static and extends in 

length as a function of time. As mentioned in Chapter 4, Heidler and Hopf [130-131] coped 

with this problem by defining a reflection coefficient which is given by ( ) / ( )c v c v cρ = − + , v 

and c being respectively the return stroke speed and the speed of light. However, the above 

equation is based on simplified assumptions and a more detailed analysis is required to 

describe boundary conditions at the end of an extending transmission line. 

The experimental campaign carried out in Austria revealed a number of interesting 

questions which call for further investigations. It was found that in a significant number of 

cases, the vertical electric field waveform due to the return stroke is characterized by a first 

peak which exceeds the typical late-time flattening due to the electrostatic term, in contrast 

with similar measurements related to triggered lightning, in which such a first peak is absent. 

As of today, the reason for this effect is not quite well understood. Also, some of the 

measured vertical electric field featured an abnormal waveform characterized by a positive 

leader field change followed by a bipolar return stroke field change, never observed in 

available measurements obtained using triggered lightning. Possible reasons for this could 

include the contribution of the charges induced on the tower to the very close electric field, 

nonuniform charge distribution along the channel, inclination of the channel.  

Work is already in progress to address the raised issues. 
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