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Abstract: We construct a general class of chiral four-dimensional string models

with Scherk–Schwarz supersymmetry breaking, involving freely acting orbifolds. The

basic ingredient is to combine an ordinary supersymmetry-preserving ZN projection

with a supersymmetry-breaking projection Z′
M acting freely on a subspace of the

internal manifold. A crucial condition is that any generator of the full orbifold group

ZN ×Z′
M must either preserve some supersymmetry or act freely in order to become

irrelevant in some large volume limit. Tachyons are found to be absent or limited

to a given region of the tree-level moduli space. We find several new models with

orthogonal supersymmetries preserved at distinct fixed-points. Particular attention

is devoted to an interesting Z3 × Z′
3 heterotic example.
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1. Introduction

It is commonly accepted that weak-scale Supersymmetry (SUSY) represents a reason-

able intermediate solution to the physics beyond the Standard Model (SM). However,

the mechanism of SUSY breaking is still a very open issue, in particular when trying

to embed the SM or its Minimal Supersymmetric version (MSSM), in a fundamental

theory including gravity, such as string theory. Ultimately, we are therefore still very

far from any viable example of fundamental theory for particle physics. The tradi-

tional picture for the latter is a string model with fundamental and compactification

scales Ms and Mc of the order of the Planck scale, but it has now been understood

that much lower Ms and/or Mc can actually be achieved [1, 2, 3], making a low

SUSY-breaking scale MSUSY more natural.
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One of the most interesting mechanisms of SUSY breaking is the so-called

Scherk–Schwarz (SS) mechanism [4, 5], in which SUSY is broken at Mc by twisting

the boundary conditions of each field through a global R-symmetry transformation.

More in general, the same idea can be used to break also gauge symmetries, by

supplementing the twist with a gauge transformation [6]. This non-local breaking

mechanism is very natural in the presence of compact dimensions, since the possibil-

ity of twisting boundary conditions is not forbidden by any symmetry of the theory; it

can thus be considered as spontaneous, in this somewhat loose sense. Moreover, it is

completely perturbative, and can therefore be efficiently investigated. These proper-

ties are quite appealing, especially from the string theory point of view, where it has

been known for some time that the underlying superconformal structure forbids any

continuous perturbative SUSY breaking [7]; the SS mechanism evades this theorem

because SUSY is recovered only in a singular decompactification limit. As shown in

[1, 8], one more interesting property arises in the string context: only massless states

give a sizeable one-loop contribution to the cosmological constant. More precisely,

Λ ∼ (nB − nF ) M4
c + O(e−M2

c /M2
s ), where nB and nF denote the number of massless

bosons and fermions in the model. Unfortunately, this still yields an unacceptably

large value, unless nB = nF .

An important question to address for string models with SS SUSY breaking is

whether Msusy can be low enough, since it is set by the compactification scale Mc.

In oriented models, like heterotic orbifolds, Mc is naturally tied to the string scale

Ms, and both must be very close to the Planck scale in order to achieve the correct

value of the Newton constant and perturbative gauge couplings in D = 4. Gauge

coupling unification is then achieved around Ms. On the contrary, this is instead

generally lost by introducing a large hierarchy between Mc and Ms. Moreover, large

threshold corrections to gauge couplings [9] arise in general (see [10] for studies in

models with partially broken SUSY), and much effort has been devoted in the past

to finding models exempt of such corrections [1, 11]. New interesting possibilities

arise instead for unoriented models, where Mc and Ms are less constrained and can

be independently low.

A general method to construct string models with SS-type SUSY breaking by de-

forming supersymmetric orbifold models [12] has been developed in the past [13]. It

has been realized that basic principles of string theory, like modular invariance, pose

severe restrictions on the implementation of the SS mechanism with this method,

allowing in practice only discrete R-parity twists. Moreover, the range of application
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of this method appears to be limited to rather peculiar orbifolds [14], and unfortu-

nately does not apply to the most interesting Z3 models (see [15] for a field theory

analysis). Subsequently, it has been realized that similar models could be obtained

as freely acting1 orbifolds [16], opening in principle the possibility to construct a

much larger class of models with SS SUSY breaking; however, little progress has

been accomplished in this respect. Unoriented models can be obtained as orientifold

descendants of these oriented models, and several examples have been worked out

by now [17, 18].

Recently, renewed interest for the SS mechanism has emerged through a series of

interesting papers considering five-dimensional orbifold field theories in which SUSY

is broken at Mc to yield the SM at lower energies (see for instance [19, 20]). A

particularly simple and interesting example of this kind has been obtained in [20],

by compactification on an orbifold of the type S1/Z2 × Z′
2, where the Z2 and Z′

2

actions preserve orthogonal supersymmetries and have fixed-points separated by a

translation in S1. This construction can be reinterpreted as a SS compactification on

the orbifold S1/Z2, where a Z′
2 subgroup of the R-symmetry group is used to twist

the boundary conditions, or similarly with Z2 and Z′
2 interchanged [20]. It represents

the simplest realization of SS SUSY breaking through a freely acting orbifold, and an

embedding of this simple construction into a realistic string model is a very important

challenge for the future.

The aim of this paper is to investigate in some generality the possibility of

constructing orbifold string models with SUSY broken à la SS, in which orthogonal

supersymmetries are preserved at distinct fixed-points separated by a translation

in the compact space. The main idea is to combine a standard SUSY-preserving

action G with a SUSY-breaking action G′ acting freely in a subspace of the internal

compactification torus, in such a way that the generators of the full G × G′ action

consist of SUSY-preserving elements with disjoint sets of fixed-points, and freely

acting SUSY-breaking elements mapping the fixed-points of each set into each other.

Possible tachyons can arise only in twisted sectors of the freely acting elements, and

are therefore massive over most of the compactification moduli space. We find that

the allowed geometries are basically either of the known Z2 ×Z′
2 type, possibly with

an additional ZK projection, or of a new Z3 × Z′
3 type, and we construct a general

class of examples of this kind of ZN × Z′
N models.

1By freely acting, we always mean an action that is free at least on a submanifold of the

compactification manifold.
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As an interesting application, we present a novel class of four-dimensional Z3×Z′
3

heterotic models with SS SUSY breaking. For generic embedding of the orbifold

action in the gauge bundle, one finds a chiral spectrum with a non-vanishing nB−nF

which can be either positive or negative, but not zero. Also the number nT of would-

be tachyons is in general non-zero, but there are a few examples with nT = 0, for

which tachyons are therefore completely absent.

The paper is organized as follows. In section 2, we describe the main features

of freely acting orbifolds that are relevant to our construction. In section 3, the

partition functions of such models are derived and in section 4 their stability is

briefly analysed. In section 5 we present an explicit ZN × Z′
N construction, discuss

their realization for N = 2, 3, and in section 6 we consider in more detail a Z3 × Z′
3

example. In the last section we report our conclusions. Some modular properties of

orbifold partition functions are collected in an appendix.

2. Freely acting orbifolds and SUSY breaking

The type of orbifold models we are looking for can be described in very simple terms.

Consider an orbifold group G generated by a set of elements {gi, g
′
j} such that each

gi acts non-freely, with fixed-points P k
gi
, and preserves some SUSY, whereas the

g′
j act freely, and do not preserve any SUSY. Clearly, such a construction is highly

constrained from the requirements of a finite group structure and modular invariance.

Moreover, the freely acting generators g′
j should map a fixed-point P k

gi
of any of the

non-freely acting element gi into another fixed-point P k′

gi
of the same element gi; this

condition ensures, in particular, that the orbifold is abelian.

The crucial property characterizing SUSY breaking in such a model is the fact

that the associated elements act freely. More precisely, they must act as a simple

translation by a finite fraction of lattice vector in at least one of the 3 internal tori.

This implies indeed that such elements trivialize in a suitable decompactification

limit, in which SUSY is therefore restored. This is a clear implementation of the

SS SUSY breaking mechanism in string theory and, interestingly enough, the same

mechanism can be applied also to gauge symmetries by embedding non-trivially the

g′
j ’s in the gauge bundle. Intuitively, it is obvious that thanks to the translation

that they contain, the elements g′
j result effectively in the implementation of a twist

around a given cycle of the internal space. Would the g′
j’s act non-freely, then SUSY

would be broken at the string scale rather than the compactification scale.

4



In the following, we construct explicit examples of the above type by considering

product groups G = ZM × Z′
N , in which the ZM factor is generated by a non-freely

acting SUSY-preserving element g, and the factor Z′
N by a freely acting SUSY-

breaking element g′. In order to obtain the required structure, one must then analyse

the action of each generator of the full G. To this aim, it is convenient to recall

at this stage some basic facts about supersymmetries in four-dimensional orbifold

compactifications. The basic Majorana–Weyl supercharge Q in D = 10 fills the 16

of SO(9, 1). This decomposes in D = 4 into four Majorana supercharges Qn =

QnL + QnR, transforming each as a 2 ⊕ 2̄ under SO(3, 1) and together as a 4 of

the maximal SO(6) R-symmetry group. For each n = 1, 2, 3, 4, QnL and QnR have

SO(6) weights wn and −wn respectively, where:

w1 = (1
2
, 1

2
, 1

2
) , w2 = (1

2
,−1

2
,−1

2
) , w3 = (−1

2
, 1

2
,−1

2
) , w4 = (−1

2
,−1

2
, 1

2
) .

A generic orbifold element g acts as the combination of a rotation of angle 2πvi

and some unspecified shift, in each of the 3 internal T 2
i . Under this action, the 4

possible supercharges transform as:

QnL → e2πiv·wnQnL ,

QnR → e−2πiv·wnQnR .

Therefore, the supercharge Qn is left invariant by g if v · wn is an integer, indepen-

dently of the shift.

3. Partition functions

In order to construct explicit examples of the models described in the previous sec-

tion, the basic two-dimensional blocks of the partition function for a generic twist

involving both a rotation and a translation are needed. These are used to derive

the full heterotic and Type II partition functions of such orbifolds and deduce the

constraints arising from the requirement of modular invariance. Type I open de-

scendants could be constructed in the usual way, with the additional constraint of

tadpole cancellation, but we shall not consider such constructions here. Most of the

results reported below are standard [21, 22], but we have re-analysed them without

any assumption about SUSY, in order to avoid any possible confusion.

Consider first a ZN group generated by the element α = αgeomαgauge, where αgeom

defines the geometric action on the internal compactification torus and αgauge is its
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embedding in the gauge bundle. Take the geometric part to be

αgeom = exp 2πi
3
∑

i=1

(

viJ
i + RiδiP

i
)

, (3.1)

with J i and P i being the generators of rotations and diagonal translations in each

internal two-torus T 2
i with basic radii Ri. The gauge part is of course trivial for Type

IIB models, whereas for the E8 × E8 heterotic string, it has the general form

αgauge = exp 2πi
8
∑

p=1

(

v′
pJ

′p + v′′
q J

′′q
)

, (3.2)

with J ′p and J ′′q being the Cartan currents of the two E8 factors.

In order to have αN = 1, one must take vi = ri/N , v′
p = r′p/N and v′′

q = r′′q/N

with integer ri, r′p and r′′q , and due to spinor representations, impose the constraints

N
(

3
∑

i=1

vi,
8
∑

p=1

v′
p,

8
∑

q=1

v′′
q

)

= 0 mod 2 . (3.3)

The partition function for one complex field with twists (g, h) = (kv, lv), shifts

(ĝ, ĥ) = (kδ, lδ), and spin structure (a, b) (k, l = 0, 1, ..., N − 1; a, b = 0, 1
2
) is easily

computed. For a complete (left + right) boson, one finds:

ZB

[

h

g

∣

∣

∣

∣

∣

ĥ

ĝ

]

(τ) =



























|η(τ)|−4Λ

[

ĥ

ĝ

]

(τ) , if (g, h) = (0, 0)

∣

∣

∣

∣

∣

η(τ) θ−1

[

1
2

+ h
1
2

+ g

]

(τ)

∣

∣

∣

∣

∣

2

, if (g, h) 6= (0, 0)

.

The lattice contribution is given by (see [16]):

Λ

[

ĥ

ĝ

]

(τ) =

√
G

α′ Im τ

∑

~m,~n

e−
π

α′Im τ
[(m+ĝ)+(n+ĥ)τ ]i(G+B)ij [(m+ĝ)+(n+ĥ)τ̄ ]j

=
∑

~m,~n

e2πi ĝ·m q
1
2
|PL[ĥ]|2 q̄

1
2
|PR[ĥ]|2 , (3.4)

where
√

G =
√

detGij is related to the volume V of the target-space torus T 2 by

V = (2π)2
√

G and the lattice momenta are given by

PL[ĥ] =
1√

2 Im T Im U

[

− m1 U + m2 + T
(

(n1 + ĥ) + (n2 + ĥ) U
)

]

,

PR[ĥ] =
1√

2 Im T Im U

[

− m1 U + m2 + T̄
(

(n1 + ĥ) + (n2 + ĥ) U
)

]

, (3.5)
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in terms of the standard dimensionless moduli T and U parametrizing the metric G

and antisymmetric field B as:

Gij = α′ Im T

Im U





1 Re U

Re U |U |2



 , Bij = α′





0 ReT

−Re T 0



 . (3.6)

Notice that (3.4) reduces to V/(4π2α′ Im τ) for a non-compact boson.

For a fermion, one finds instead

ZF

[

a

b

∣

∣

∣

∣

∣

h

g

]

(τ) = η−1(τ) e−2πibh θ

[

a + h

b + g

]

(τ)

= η−1(τ)
∑

pa=n+a

q
1
2
(pa+h)2e2πi(pa+h)ge2πipab . (3.7)

Notice in particular the crucial phase in the first row of (3.7)2, ensuring that the

GSO projection amounts to the standard constraints on the bosonization momentum

p independently of h, as evident from the second row of (3.7).

The modular properties of these basic partition functions, as well as the con-

straints they impose, are derived in the appendix; we report here only the main final

results. Denoting the generic twist with G = (gi, ĝi, g
′
i, g

′′
i ) and its conjugate with

Ḡ = (Nvi − gi, 1 − ĝi, Nv′
i − g′

i, Nv′′
i − g′′

i ), the total partition function3 is given by

Z =
∑

G,H

C

[

H

G

]

N

[

H

G

]

Z

[

H

G

]

, (3.8)

where Z
[

H
G

]

, N
[

H
G

]

and C
[

H
G

]

denote respectively the partition function, the number

of fixed-points and an arbitrary overall phase in each sector
[

H
G

]

.

For a generic Type IIB model, one finds

Z

[

H

G

]

= ZB

[

0

0

∣

∣

∣

∣

∣

0

0

]

3
∏

i=1

ZB

[

hi

gi

∣

∣

∣

∣

∣

ĥi

ĝi

]∣

∣

∣

∣

∣

∑

a,b=0, 1
2

ηab ZF

[

a

b

∣

∣

∣

∣

∣

0

0

]

3
∏

i=1

ZF

[

a

b

∣

∣

∣

∣

∣

hi

gi

]∣

∣

∣

∣

∣

2

, (3.9)

C

[

H

G

]

= 1 , (3.10)

where ηab = (−1)2a+2b+4ab are the usual GSO-projection signs. The partition function

is then modular-invariant without any further restriction.
2This phase is very often missing in the literature, probably because it is irrelevant for super-

symmetric constructions. It has previously been noticed in [22], but is not evident in [21].
3To be precise, we consider the light-cone partition function; the contribution of longitudinal

degrees of freedom provides only the correct invariant measure d2τ/Im τ2 in the world-sheet moduli

space.
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For a generic heterotic E8 × E8 model one gets:

Z

[

H

G

]

= ZB

[

0

0

∣

∣

∣

∣

∣

0

0

]

3
∏

i=1

ZB

[

hi

gi

∣

∣

∣

∣

∣

ĥi

ĝi

](

1

2

∑

a,b=0, 1
2

ηab ZF

[

a

b

∣

∣

∣

∣

∣

0

0

]

3
∏

i=1

ZF

[

a

b

∣

∣

∣

∣

∣

hi

gi

])

×
(

1

2

∑

c,d=0, 1
2

8
∏

p=1

Z̄F

[

c

d

∣

∣

∣

∣

∣

h′
p

g′
p

]

× 1

2

∑

e,f=0, 1
2

8
∏

q=1

Z̄F

[

e

f

∣

∣

∣

∣

∣

h′′
q

g′′
q

])

, (3.11)

C

[

H

G

]

= e−iπ(g·h−g′·h′−g′′·h′′) . (3.12)

This partition function is modular-invariant provided that the embedding satisfy the

condition [21, 22] (see also [23]):

N(v2 − v′2 − v′′2) = 0 mod 2 . (3.13)

It is straightforward to extend this analysis to more general orbifold groups G

with more than one generator. The results (3.9)-(3.12) hold true, but the condition

(3.13) must be extended to all the independent generators of G.

Recall finally that modular invariance of the partition function, together with

the condition of tadpole cancellation for unoriented descendants, guarantees the full

consistency of this kind of string models, and implies in particular the absence of di-

vergences or anomalies. Actually, as shown in [24, 25], even the complete mechanism

of anomaly cancellation is encoded in the background dependence of the partition

function itself in a very natural way.

4. Stability

An important issue for the kind of non-supersymmetric models we aim to construct

is their stability. At tree level, one must make sure that no tachyonic modes appear.

To check the presence of tachyons, one must compute the zero-point energy.

The contribution of each left or right complex field can be easily read off from the

behaviour of the corresponding partition function in the limit Im τ → ∞. One finds:

E0
B[h] =

1

24
− 1

2

(1

2
− θ[1

2
|h]
)2

, (4.1)

E0
F [a|h] = − 1

24
+

1

2

(

a − θ[a|h]
)2

, (4.2)

where

θ[a|h] = |h| − int(|h| + 1
2
− a) . (4.3)

8



In the following, it will prove convenient to use the bosonized description for all the

fermions. Correspondingly, one must count a zero-point energy of only E0
F [0|0] =

−1/24 for each of them, since in this description the orbifold action is a lattice shift

and no longer a twist. It is then useful to define the quantity

C[h] =
1

2

3
∑

i=1

θ[1
2
|hi]

(

1 − θ[1
2
|hi]

)

. (4.4)

For Type IIB models, the mass formula is:

L0[a|h] =
1

2
|PL[ĥ]|2 + NL[h] +

1

2
(pa + h)2 +

(

− 1

2
+ C[h]

)

,

L̄0[c|h] =
1

2
|PR[ĥ]|2 + NR[h] +

1

2
(pc + h)2 +

(

− 1

2
+ C[h]

)

.

For heterotic models, one finds similarly:

L0[a|h] =
1

2
|PL[ĥ]|2 + NL[h] +

1

2
(pa + h)2 +

(

− 1

2
+ C[h]

)

,

L̄0[c|e|h] =
1

2
|PR[ĥ]|2 + NR[h] +

1

2
(p′c + h′)2 +

1

2
(p′′e + h′′)2 +

(

− 1 + C[h]
)

.

The sectors a, c, e are now associated to the different classes of lattice vectors.

For each state, the Hamiltonian H [h] = L0[h] + L̄0[h] gives the mass squared

as m2[h] = 2
α′

H [h], whereas the level mismatch ∆[h] = L0[h] − L̄0[h] is related by

modular invariance to the phase picked under the orbifold transformation, which

reads φ(g) = e2πi∆[g] for an orbifold transformation g4. The level-matching condition

L0[h] = L̄0[h] therefore implies invariance under the orbifold action in twisted sectors.

Tachyons can occur only in twisted sectors associated to the SUSY-breaking

elements. The mass of a generic state in these sectors is of the form m2 = m2
0 +

1
α′

(|PL|2 + |PR|2), with a moduli-independent contribution m2
0, which can be either

positive or negative, but a positive-definite moduli-dependent contribution from the

internal momentum. It is then quite clear that possible tachyons can always be made

massive by selecting a suitable part of moduli space. More precisely, the minimal

value of |PL|2 + |PR|2 is generically obtained for the zero mode m = n = 0; one then

finds:

m2 > m2
0 +

ĥ2

α′

|T (1 + U)|2
Im T Im U

. (4.5)

Focusing for concreteness on a fixed complex structure U , the condition for the

absence of tachyons turns into a restriction on the Kähler modulus T . One finds:

(Re T )2 + (Im T − T0)
2 > T 2

0 , (4.6)
4Notice for instance that the contribution to ∆[g] from KK and winding modes is given by

1

2
(|PL[ĝ]|2 − |PR[ĝ]|2) = m·(n + ĝ) and leads to the phase e2πim·ĝ, in agreement with (3.4).
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with

T0 =
α′(−m2

0)

2 ĥ2

Im U

|1 + U |2 . (4.7)

This condition excludes a circle close to the origin in the moduli space of T =

(B + i R2)/α′, as depicted in fig. 1. Notice in particular that only R ≥
√

T0 α′ is

allowed for B = 0, but all the R > 0 are allowed as soon as B ≥ T0 α′.

Im T

T0

2 T0

−T0 T0 Re T

Figure 1: Tachyons can arise only in the shaded region of the T moduli space.

It is clear from the above discussion that the stability of this kind of model

is triggered by the effective potential of both the radion field and its pseudoscalar

partner, entering together in a would-be chiral multiplet T of the low-energy effec-

tive action. This potential is completely flat at the tree level, but since SUSY is

broken, non-trivial quantum corrections are expected to occur, and the VEV of T is

dynamically fixed.

5. Explicit constructions

The general construction described so far actually admits relatively few concrete

realizations. We restrict ourselves to abelian orbifolds involving rotations and trans-

lations in the lattice of the internal T 6. The basic group structure is of the form

ZM × Z′
N , where ZM is generated by a standard SUSY-preserving non-freely act-

ing rotation α, and Z′
N by the combination β of a SUSY-breaking rotation and a

translation. We focus in the following on the case M = N .
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The partition function of such ZN (α) × Z′
N (β) models has the form:

Z =
1

N2

N−1
∑

k,l=0

N−1
∑

p,q=0

N

[

αlβq

αkβp

]

Z

[

αlβq

αkβp

]

. (5.1)

Interestingly, this partition function can be decomposed into ZN blocks. To see this,

let us define αi = αβi−1, i = 1, · · · , N , so that the total orbifold group can be rewrit-

ten as G = {1, αi, · · · , αN−1
i , β, · · · , βN−1}. The new elements αi are combinations of

SUSY-preserving rotations and translations, with fixed-points P a
αi

differing from one

another by the translation contained in β (see figs. 2 and 3). In this new parametriza-

tion, the partition function simplifies substantially: only those sectors of the form
[

αq
i

αp
i

]

or
[

βq

βp

]

give a non-vanishing contribution to the partition function. In this sense,

one can therefore write: ZN (α) × Z′
N (β) = ZN (α1) + · · · + ZN(αN−1) + ZN (β), and

the partition function can be rewritten as:

Z = ZU
ZN (αi)×ZN (β) +

N
∑

i=1

NZN (αi)

N
ZT

ZN (αi)
+

NZN (β)

N
ZT

ZN (β) , (5.2)

where

ZU
ZN (αi)×ZN (β) =

1

N2

[

Z

[

0

0

]

+
N−1
∑

b=1

(

N
∑

i=1

Z

[

0

αb
i

]

+ Z

[

0

βb

])]

, (5.3)

ZT
ZN (αi)

=
1

N

N−1
∑

a=1

N−1
∑

b=0

Z

[

αa
i

αb
i

]

, (5.4)

ZT
ZN (β) =

1

N

N−1
∑

a=1

N−1
∑

b=0

Z

[

βa

βb

]

. (5.5)

The untwisted sector can be computed by projecting the usual untwisted sector of

any of the supersymmetric ZN (αi) orbifolds with the SUSY-breaking action ZN (β).

The choice of αi is irrelevant, since ZN (αi) × ZN (β) = G for any αi. The massless

states of the ZN (αi) orbifold that are not invariant under ZN(β) will survive only

as KK or winding modes, and get a mass of order Mc. There are then the twisted

sectors of the supersymmetric ZN (αi) orbifolds and those of the non-superymmetric

ZN (β) orbifold, all with a degeneracy given by the number of fixed-points divided

by a factor N . This additional factor has a clear geometric interpretation. For αi

twisted sectors, it reflects the fact that not all the fixed-points are independent; they

fall into groups of N filling orbits of β. For β twisted sectors, all the fixed-hyperplanes

are independent, but they fill the T 2 where the shift acts, and there is therefore an

additional factor of 1/N from the volume.

11



In these models, SUSY is broken at a scale set by the volume of the T 2 where

β acts as a shift: MSUSY = Mc. This is due to the shift entering the definition of

β. Indeed, this has two crucial consequences. The first is that the SUSY-breaking

element β trivializes for large R. The second is that the N elements αi, preserving

different fractions of the maximal SUSY, have fixed-points which differ by a fraction

of lattice vectors, and therefore move far apart for large R. Potential tachyons

can appear only in the non-supersymmetric ZN (β) twisted sectors. As explained in

section 4, all the states in these sectors have a moduli-dependent positive contribution

to their mass squared, and tachyons can thus always be avoided.

Out of these basic ZN × Z′
N models, one can then in general construct more

complicated models by further projecting with an additional ZK action generated

by a SUSY-preserving rotation γ, which is orthogonal to the translation in β. We

report in the following the examples that we have been able to construct.

5.1 Z2 × Z′
2 models

Consider the orbifold group G = Z2 × Z′
2, where the two factors are generated by

the elements

α : vα = (1
2
, 1

2
, 0) , δα = (0, 0, 0) ; (5.6)

β : vβ = (0, 1, 0) , δβ = (1
2
, 0, 0) . (5.7)

This kind of models have already been considered in [16, 17]. Defining αi = αβi−1,

the orbifold group can be rewritten as G = {1, αi, β}, where

α1 : preserves Q2 and Q3 ;

α2 : preserves Q1 and Q4 ;

β : does not preserve any Qn .

(5.8)

This model can be lifted to D = 6, where it represents the unique possibility

of a model with N = 1 → N = 0 SUSY breaking. From the D = 4 point of view,

however, it has N = 2 → N = 0 SUSY breaking and is therefore non-chiral. More

interesting D = 4 models with orbifold group G = Z2 ×ZK ×Z′
2 can be obtained by

a further ZK orbifold projection acting in the last two T 2’s, which does not influence

the freely acting SUSY-breaking element. One can choose the generator γ of this

action to have vγ = (0, 1
K

, 1
K

) and δγ = (0, 0, 0). It is then straightforward to show

that all the elements in G either preserve some SUSY or act freely in the first T 2.

More precisely, for k = 1, ..., K − 1, one finds that, in addition to the conditions

12



U

1

P 1
α1

P 2
α1

P 4
α1

P 3
α1

P 1
α2

P 2
α2

P 4
α2

P 3
α2

Figure 2: The αi fixed-points P a
αi

in T 2
1 for the Z2×Z′

2 model. The SUSY-breaking element

β acts as a shift in this plane, and relates different fixed-points of the same element αi,

β : P a
αi

→ P a+2
αi

. One can take P 1,2
αi

as independent fixed-points. Correspondingly, the

fundamental cell of the orbifold theory can be chosen to be the shaded area, since this is

mapped to the fundamental cell of the whole torus through αi and β transformations.

(5.8), γn preserves Q3 and Q4, αγk preserves at least Q3, αγkβ preserves at least Q4,

whereas γnβ do not preserve any Qn in general but act as translations in the first

T 2. The resulting models have therefore all N = 1 → N = 0 SUSY breaking. The

cases K = 2, 3 have already been discussed in [18].

5.2 Z3 × Z′
3 models

Consider now the orbifold group G = Z3 × Z′
3, where the two factors are generated

by the elements:

α : vα = (1
3
, 1

3
, 0) , δα = (0, 0, 0) ; (5.9)

β : vβ = (0, 0, 2
3
) , δβ = (1

3
, 0, 0) . (5.10)

Different choices for the SUSY-preserving element α lead to equivalent models, and no

other options are possible for the SUSY-breaking element β, so that this construction

is essentially unique. For instance, an equivalent model would have been obtained by

considering the usual N = 1 supersymmetric Z3 twist for vα. Defining αi = αβi−1,

13



the total orbifold group can be rewritten as G = {1, αi, α
2
i , β, β2}, where:

α1 : preserves Q2 and Q3 ;

α2 : preserves Q4 ;

α3 : preserves Q1 ;

β : does not preserve any Qn .

(5.11)

Notice that this class of models does not have N = 2 twisted sectors along the SUSY-

breaking directions, implying that most likely no threshold corrections will depend

on the corresponding moduli.

ei π
3

1

P 1
α1

P 1
α3

P 3
α2

P 1
α2

P 2
α1

P 2
α3

P 3
α3

P 2
α2

P 3
α1

Figure 3: The αi fixed-points P a
αi

in T 2
1 for the Z3 × Z′

3 model. Again, β acts as a shift

in this plane, and relates different fixed-points of the same αi, β : P a
αi

→ P a+1
αi

. One can

take P 1
αi

as independent fixed-points and the shaded area as the fundamental cell of the

orbifold theory.

6. The Z3 × Z′
3 heterotic model

Consider the Z3 × Z′
3 construction introduced in the previous section applied to

heterotic strings. The condition (3.13), evaluated for all the independent generators,

implies that the embeddings should satisfy:

v′2
α + v′′2

α =
2

9
mod

2

3
, v′2

β + v′′2
β =

4

9
mod

2

3
, v′

αv′
β + v′′

αv′′
β = 0 mod

2

3
. (6.1)
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We will analyse in detail the case of standard embedding of both actions into the

gauge bundle as an example, and then discuss qualitative features of more general

embeddings.

6.1 Standard embedding

Consider first the untwisted sector. This is most easily derived starting from the

N = 2 Z3(α) model, and further projecting the spectrum by Z3(β). Massless left-

moving states are associated with lattice 4-vectors p with p2 = 1 and
∑

m pm = odd,

filling the 8V and 8S of SO(8). These states pick up a phase φα(p) = e2πip·vα under

α transformations, and a phase φβ(p) = e2πip·vβ under β transformations. Denoting

with α = e
2π
3

i and β = e
2π
3

i the basic phases under these two transformations, one

finds the following decomposition:

8V →
[

2V

]

⊕
[

2 · 1
]

(α + α−1) ⊕
[

1
]

(β + β−1) ,

8S →
[

2 · 1
]

(β + β−1) ⊕
[

1
]

(α + α−1)(β + β−1) . (6.2)

There are then several relevant types of right-moving states. Neutral states arise from

right-moving states with p = p′ = p′′ = 0 and NR = 1, and fill an 8V of SO(8). Under

the orbifold action, they decompose as their left-mover counterparts. Charged states

under each E8 factor are instead associated to right-moving lattice 8-vectors p′ or p′′

with p′2, p′′2 = 0, 2 and
∑

m p′m = even, corresponding to NR = 1, 0. These fill a 120

and a 128 of SO(16), forming in total the 248 of E8. The hidden sector is unaffected

by the orbifold projection. In the visible sector, the Z3(α) projection breaks E8 to

E7×U(1), whereas the Z3(β) projection further breaks this to SO(10)×SU(2)×U(1)2

and makes all the gauginos massive; charged states pick up a phase φα(p′) = e−2πip′·vα

under α transformations, and a phase φβ(p) = e−2πip′·vβ under β transformations, and

decompose as follows5:

120 →
[

(45, 1) ⊕ (1, 3) ⊕ 2 (1, 1)
]

⊕
[

(10, 2) ⊕ (1, 1)
]

(α + α−1)

⊕
[

(10, 1)
]

(β + β−1) ⊕
[

(1, 2)
]

(α + α−1)(β + β−1) ,

128 →
[

(16, 2)
]

(β + β−1) ⊕
[

(16, 1)
]

(α + α−1)(β + β−1) . (6.3)

The massless spectrum is found by tensoring the above left and right-moving states

and keeping only invariant states. In this way, one finds a total content in the

5In the following, for simplicity we will not distinguish between 16 and 16, 2 and 2 representa-

tions. For the same reason, we will not report the U(1) charges of the states. One can easily check

that the spectrum is chiral.
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untwisted sector which can be summarized as follows:

8V ⊗ 8V : 2V ⊗ 2V ⊕ 10 ;

8S ⊗ 8V : 4 ;

8V ⊗ 248 : 2V ⊗
[

(45, 1) ⊕ (1, 3) ⊕ 2 (1, 1)
]

⊕ 4 (10, 2) ⊕ 2 (10, 1) ⊕ 4 (1, 1) ⊕ 2 (16, 2) ;

8S ⊗ 248 : 4 (10, 1) ⊕ 4 (1, 2) ⊕ 4 (16, 2) ⊕ 4 (16, 1) ;

8V ⊗ 248′ : 2V ⊗ 248′ ;

8S ⊗ 248′ : − . (6.4)

Consider next αi-twisted sectors. The α1-twisted sector preserves N = 2 SUSY,

and the spectrum of hypermultiplets is known: at each of the 9 fixed-planes one

gets 1 56 and 7 singlets of E7. Each of the α2,3-twisted sectors preserves instead a

N = 1 SUSY, and the spectrum of chiral multiplets is similar for both of them: at

each of the 27 fixed-points one gets a (27, 1) and 3 copies of (1, 3̄) of E6 × SU(3).

Decomposing into representations of SO(10) × SU(2), one finds in total:

α1 : 3 hyper-mult. in
[

2 (16, 1) ⊕ (10, 2) ⊕ 2 (1, 2) ⊕ 7 (1, 1)
]

;

α2 : 9 chiral-mult. in
[

(16, 1) ⊕ (10, 1) ⊕ 3 (1, 2) ⊕ 4 (1, 1)
]

;

α3 : 9 chiral-mult. in
[

(16, 1) ⊕ (10, 1) ⊕ 3 (1, 2) ⊕ 4 (1, 1)
]

.

Finally, consider the β-twisted sectors, where potential tachyonic states might

arise. In the left-moving sector, there is only one such state in the NS sector with

(p+v)2 = 1
9

and NL = 0. For right-movers, there are 14 such states with (p′+v′)2 = 10
9

and NR = 0. Pairing these states, one finds would-be tachyons in the (10, 1)⊕2 (1, 2)

of SO(10) × SU(2) with α′

2
m2 = −2

3
+ 1

2
(|PL|2[ĥ] + |PR|2[ĥ]). The level-matching

condition selects the KK and winding modes satisfying m(n + h) = integer, allowing

m = 0 mod 3. The worst situation arises for m = n = 0, and using m2
0 = − 4

3α′
and

U = ei π
3 , one computes from (4.7) that T0 =

√
3. For |T − i T0| > T0, all the states

in these sectors are massive6.

Summarizing, the model we have constructed exhibits a chiral spectrum, and

SUSY is broken at the scale MSUSY = R−1
1 together with part of the gauge group.

Tachyons can be avoided independently of R−1
1 by choosing B1 >

√
3α′. One has

nB − nF = 534 from the untwisted sector. There are then 3 supersymmetric twisted

6Notice, however, that since these tachyons are in the appropriate representation to correspond

to the SM Higgs, one may wish to keep some of them and impose a less restrictive constraint.
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sectors, clearly with nB − nF = 0. Finally, there is one non-supersymmetric twisted

sector, which gives nB −nF = 0 if |T − i T0| > T0 and nB −nF = 14 if |T − i T0| = T0.

6.2 More general embeddings

Models with more general embeddings can be easily constructed, and there are ac-

tually only a few possibilities to explore. As usual, thanks to the symmetries of the

E8 lattice, one can restrict shift vectors with length squared less than 1, whose

embeddings must satisfy the conditions (6.1). Moreover, when applied 3 times,

they must reduce to a lattice vector; since the lattice is even, this implies that

v′2
α , v′′2

α , v′2
β , v′′2

β = 0 mod 4
9
. The first condition in (6.1) leaves then 9 independent

possibilities for (v′2
α , v′′2

α ), namely: (0, 2
9
), (2

9
, 0), (0, 8

9
), (8

9
, 0), (2

9
, 2

3
), (2

3
, 2

9
), (4

9
, 4

9
),

(2
3
, 8

9
), (8

9
, 2

3
). Similarly, the second condition in (6.1) restricts (v′2

β , v′′2
β ) to be among

the following 8 possibilities: (2
9
, 2

9
), (0, 4

9
), (4

9
, 0), (2

3
, 4

9
), (4

9
, 2

3
), (2

9
, 8

9
), (8

9
, 2

9
), (8

9
, 8

9
). As

in [12], one can then choose a unique representative w for each value of w2. Finally,

the last condition in (6.1) turns out to constrain only the relative permutations of

the shift vectors for the two factors.

We have computed the mismatch nB−nF between massless bosons and fermions,

as well as the number nT of would-be tachyons, for all these models. The possible

values for (nB−nF , nT ) depend only on the embedding (v′2
β , v′′2

β ) of the SUSY-breaking

element β, and one finds (318, 2) for (2
9
, 2

9
), (534, 14) for (0, 4

9
) or (4

9
, 0), (48, 2) for

(2
3
, 4

9
) or (4

9
, 2

3
), (156, 8) for (2

9
, 8

9
) or (8

9
, 2

9
), and (−6, 0) for (8

9
, 8

9
). There exist therefore

models without any possible tachyons7. Notice also that for generic embeddings, it

becomes particularly clear that the class of models under consideration is intrinsically

chiral. Indeed, each sector, and in particular the two N = 1 sectors, will have in

general a different gauge twist, leading to distinct spectra of representations.

We did not consider the additional freedom of adding Wilson lines in our models.

It should be appreciated, however, that like most of the other moduli, Wilson lines

are now dynamical. A non-trivial effective potential is generated for these gauge-

invariant operators [26], that will in general dynamically break part of the gauge

group.

7. Conclusions

In this paper, a new class of four-dimensional non-supersymmetric string vacua has
7In these cases, one could define consistent models with hard SUSY breaking at the string scale

by dropping the shift in the SUSY-breaking element β.
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been analysed. The key point of the construction resides in the idea of considering

freely acting translations and non-supersymmetric rotations, in addition to standard

supersymmetric orbifold rotations. In this way, SUSY is broken at the compacti-

fication scale Mc through a string version of the Scherk–Schwarz mechanism [16].

Although we focused on simple examples of oriented closed string models, our con-

struction is quite general and can be easily generalized in various way. For example,

one can construct more complicated models with different supersymmetries or gauge

symmetries being broken at different compactification scales M i
c. Unoriented models

with D-branes and O-planes can be derived from Type IIB models as in [17, 18].

There are, we believe, several interesting issues that deserve further study. Among

all, the most important would be a deeper analysis of the quantum stability of these

models. In particular, one should study the quantum effective potential for the com-

pactification moduli to see whether a stabilization of the geometry can be achieved.

A similar question should be faced also for the dilaton and for Wilson lines, whose

VEV’s are also dynamically determined at the quantum level. Using the by now well

established string web of dualities, it would also be instructive to analyse possible

dual realizations of our models, allowing to study their strong coupling behaviour.

Finally, we think that the new SUSY-breaking geometries found in this paper are

quite promising from the point of view of realistic model building. As already noticed

in the introduction, it would be exciting to embed in this kind of string models the

recently constructed higher-dimensional field theory models with SS SUSY and gauge

symmetry breaking [19, 27]. The possibility of having an exponentially suppressed

cosmological constant [8, 1] is also quite appealing in this context.
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A. θ-functions and modular invariance

Defining q = exp 2πiτ , one has

η(τ) = q
1
24

∞
∏

n=1

(1 − qn) , (A.1)
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and

θ

[

a

b

]

(τ) =
∑

n

q
1
2
(n+a)2e2πi(n+a)b

= e2πiabq
a2

2

∞
∏

n=1

(1 − qn)(1 + qn+a− 1
2 e2πib)(1 + qn−a− 1

2 e−2πib) , (A.2)

satisfying the periodicity property

θ

[

a + m

b + n

]

(τ) = e2πinaθ

[

a

b

]

(τ) . (A.3)

Under modular transformations, these functions transform as follows:

η(τ + 1) = ei π
12 η(τ) , (A.4)

η(−1/τ) =
√
−iτ η(τ) , (A.5)

and

θ

[

a

b

]

(τ + 1) = e−iπa(a−1) θ

[

a

a + b − 1
2

]

(τ) , (A.6)

θ

[

a

b

]

(−1/τ) =
√
−iτ e2πiab θ

[

b

−a

]

(τ) . (A.7)

Using the above formulae, the modular properties of the basic partition functions

reported in section 3 are the following:

ZB

[

h

g

∣

∣

∣

∣

∣

ĥ

ĝ

]

(τ + 1) = ZB

[

h

g + h

∣

∣

∣

∣

∣

ĥ

ĝ + ĥ

]

(τ) , (A.8)

ZB

[

h

g

∣

∣

∣

∣

∣

ĥ

ĝ

]

(−1/τ) = ZB

[

g

Nv − h

∣

∣

∣

∣

∣

ĝ

1 − ĥ

]

(τ) , (A.9)

and

ZF

[

a

b

∣

∣

∣

∣

∣

h

g

]

(τ + 1) = e−i π
12

−iπ[a(a−1)+h2]ZF

[

a

a + b − 1
2

∣

∣

∣

∣

∣

h

g + h

]

(τ) , (A.10)

ZF

[

a

b

∣

∣

∣

∣

∣

h

g

]

(−1/τ) = e−2πi[ab+g(Nv−h)+bNv]ZF

[

b

a

∣

∣

∣

∣

∣

g

Nv − h

]

(τ) . (A.11)

At this point, it is straightforward to derive the conditions required to achieve

modular invariance of the general partition function (3.8). A basic modular trans-

formation maps the
[

H
G

]

sector into either the
[

H
G+H

]

or
[

G
H̄

]

sectors, and since

N

[

H

G + H

]

= N

[

G

H̄

]

= N

[

H

G

]

, (A.12)
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the residual phases occurring in this transformation will severely constrain the C
[

H
G

]

’s.

For a generic Type IIB model, the partition function (3.9) in a generic sector is

found to transform (using (3.3)) as:

Z

[

H

G

]

(τ + 1) = Z

[

H

G + H

]

(τ) , (A.13)

Z

[

H

G

]

(−1/τ) = Z

[

G

H̄

]

(τ) . (A.14)

One can therefore take C
[

H
G

]

= 1 as in (3.10), without any further condition.

For a generic heterotic E8 × E8 model, again using (3.3), the partition function

(3.11) transforms as:

Z

[

H

G

]

(τ + 1) = e−iπ(h2−h′2−h′′2)Z

[

H

G + H

]

(τ) , (A.15)

Z

[

H

G

]

(−1/τ) = e−2πi[g·(Nv−h)−g′·(Nv′−h′)−g′′·(Nv′′−h′′)]Z

[

G

H̄

]

(τ) . (A.16)

These transformations leave the partition function invariant if the C
[

H
G

]

’s satisfy

C

[

H

G + H

]

= e−iπ(h2−h′2−h′′2) C

[

H

G

]

, (A.17)

C

[

G

H̄

]

= e−2πi[g·(Nv−h)−g′·(Nv′−h′)−g′′·(Nv′′−h′′)] C

[

H

G

]

. (A.18)

An additional consistency condition arises in this case from the requirement that

each sector
[

H
G

]

should be separately invariant under τ → τ + N . This happens if

N(v2 − v′2 − v′′2) = 0 mod 2, as anticipated in (3.13). In this case, all the phases

proportional to N drop from (A.18), and the conditions (A.17) and (A.18) have

the unique solution C
[

H
G

]

= e−iπ(g·h−g′·h′−g′′·h′′), reported in (3.12). This factor is

identified with the total phase picked up by the vacuum |Ω[H ]〉 in the H-twisted

sector under the orbifold action G. This can be verified explicitly by constructing

this vacuum with twist fields. Notice that for standard embedding (v′ = v, v′′ = 0)

this is equal to 1 in all sectors.
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